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Abstract: A permanent magnet actuator (PMA) is a critical device for transforming, transmitting,
and protecting electrical energy in renewable energy systems. The reliability of a PMA exerts a direct
effect on the operational safety, stability, and reliability of renewable energy systems. An effective
fault diagnosis and adjustments for manufacturing processes (MPs) are vital for improving the
reliability of a PMA. However, the state-of-the-art fault diagnosis methods are mainly used for single
process parameters, extensive sample data, and automated manufacturing systems under real-time
monitoring and are not applicable to a PMA with low levels of automation and high human factor-
induced uncertainties. This study proposes a novel fault diagnosis approach based on a surrogate
model and machine learning for multiple manufacturing processes of a PMA with insufficient training
data due to human factor uncertainties. First, a surrogate model that correlated the MP parameters
with the output characteristics (OCs) was constructed by a finite element simulation. Second, the
quality performance of the OCs under different fault combinations with the mean or variance of the
shift of the MP parameters as typical patterns was calculated by the Monte Carlo method. Finally,
using the above computations as the training data, a fault diagnosis model capable of identifying
the fault pattern of the manufacturing process parameters according to the OCs was constructed
based on machine learning. This approach compensated for the inadequacies of traditional fault
diagnosis methods with complex analytical models or numerous processing data. The effectiveness
and potential applications of the proposed approach were verified through a case study of a rotary
PMA in smart grids.

Keywords: renewable energy systems; permanent magnet actuator; manufacturing process; surrogate
model; fault diagnosis

1. Introduction

Electrical energy is essential for human production and management activities. At
this stage, the development and utilization of electrical energy are plagued by two major
contradictions; one is between the increasing electrical energy demand and the depletion of
traditional fossil energy (e.g., oil, gas, and coal), and the other is between the accumulated
environmental pressure and the high-emission energy consumption structure [1,2]. The
International Energy Agency has predicted that global energy demand will grow by 50%
to 60% by 2030, with emerging markets such as Asia, South America, and Africa being
the main drivers of global energy demand growth in the future, especially Southeast Asia,
where energy consumption is predicted to grow at an annual rate of around 6% [3]. In this
context, it is a priority to achieve a smooth and efficient energy transition based on new
energy sources (such as wind, solar, and hydropower) and to accelerate this transition, thus
achieving energy security and the goal of a carbon peak as well as carbon neutrality [4,5].
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Photovoltaic generation, wind generation, biomass and hydropower generation, and
electric vehicle applications, for example, can effectively address the non-renewability and
environmental pollution induced by traditional fossil energy. The past few decades have
seen successes in related pioneering technologies, even in large-scale applications [6]. With
the increase in renewable energy generation, conversion, and transmission, the safety and
reliability of renewable electricity energy caused by randomness and volatility cannot be
ignored. Power electronics are the basis and key to the security, reliability, and stability of
renewable power energy systems. Permanent magnet actuators (PMAs), although one of
the least reliable components of power electronics [7,8], are widely used in smart grids, pho-
tovoltaic generation facilities, electric vehicles, and all-electric aircraft (an example is shown
in Figure 1), and play a role in circuit conversion and safety protection, for example [9,10].
Current research focuses on the design and optimization of PMAs whilst ignoring the
influence of the manufacturing processes (MPs) on the reliability of the PMA [11,12]. The
MP is one of the leading factors affecting the PMA lifecycle [13]. As it becomes increasingly
complicated and diversified, fault diagnoses and optimization according to relevant infor-
mation and data have become indispensable measures to improve the reliability of PMAs
and have attracted much research attention [14,15].
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Figure 1. Typical applications of a PMA in renewable energy systems: (a) PMAs in smart grids (1: 
power generation; 2: power distribution; 3: signal measurement); (b) PMAs in all-electric aircraft. 

The batch production of PMAs comprises a large number of parts; the MP covers 
multiple stages such as machining, heating, welding, coating, cleaning, assembling, ad-
justments, encapsulating, and baking. The manufacturing process parameters are used to 
characterize the process quality. The complexity of MMPs and an abnormal variation in 
the MP parameters inevitably cause unit-to-unit variability, resulting in a poor qualified 
rate and poor reliability in the batch production [16–18]. Therefore, it is imperative to con-
duct an effective fault diagnosis of MPs and resolve the abnormal variation sources. Gen-
erally, the main fault diagnosis methods for MPs can be divided into data-driven and 
model-based approaches. The former requires abundant historical and online detection 
data, deploying artificial intelligence algorithms. The latter is based on the knowledge of 
the diagnosed system that can be obtained from the physical principles, the fault mecha-
nisms, and relevant expertise, for example [19,20]. Studies on the fault diagnosis of aircraft 

Figure 1. Typical applications of a PMA in renewable energy systems: (a) PMAs in smart grids
(1: power generation; 2: power distribution; 3: signal measurement); (b) PMAs in all-electric aircraft.

The batch production of PMAs comprises a large number of parts; the MP covers
multiple stages such as machining, heating, welding, coating, cleaning, assembling, ad-
justments, encapsulating, and baking. The manufacturing process parameters are used to
characterize the process quality. The complexity of MMPs and an abnormal variation in
the MP parameters inevitably cause unit-to-unit variability, resulting in a poor qualified
rate and poor reliability in the batch production [16–18]. Therefore, it is imperative to
conduct an effective fault diagnosis of MPs and resolve the abnormal variation sources.
Generally, the main fault diagnosis methods for MPs can be divided into data-driven and
model-based approaches. The former requires abundant historical and online detection
data, deploying artificial intelligence algorithms. The latter is based on the knowledge of
the diagnosed system that can be obtained from the physical principles, the fault mecha-
nisms, and relevant expertise, for example [19,20]. Studies on the fault diagnosis of aircraft
maintenance, semiconductor manufacturing, and spur gear revealed the effectiveness of
the two methods [21–23].
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Current manufacturing trends veer towards multi-variety and small-batch produc-
tion [24], making it increasingly difficult to obtain substantial data, especially fault data.
Moreover, as mentioned above, complex product structures and MPs make the requisite
manufacturing systems-relevant knowledge inaccessible. Traditional fault diagnosis meth-
ods cannot address these issues. The development of computer simulation technology can
ensure accessible output characteristics (OCs) through numerical methods such as finite
element, finite difference, and matrix methods. The simulation model was identified to
present the influence of the MPs easily and precisely [25–28]. However, model complexities
entail high computational costs. One effective solution is the use of surrogate models.

Surrogate models, also known as approximation models, are used to represent a
complex phenomenon and have gained increasing popularity over past decades due to
their ability to exploit the black-box nature of the problem and their attractive computational
simplicity [29]. A surrogate model acts as a model of a model and, thus, can replace an
expensive simulation model by approximating its input–output responses. There are many
commonly used surrogate modeling methods such as a polynomial response surface, neural
networks, Kriging, radial basis functions, Bayesian networks, and random forests [30]. The
preparation of an accurate surrogate model necessitates adequate simulation sample points.
Appropriate experimental design methods can reduce this number of training sample
points, thus shortening the simulation time [31,32].

Surrogate models provide an accurate and efficient data source for reliability assess-
ments and optimization. Existing MP diagnosis methods mainly rely on historical fault
data and experiments. These methods are unsuitable for the fault diagnosis for the MP of
PMAs in small batches and multiple varieties. In this paper, we propose a new method
of fault diagnosis in the manufacturing process. For the first time, surrogate modeling
theory is introduced into constructing the sample database required for the MP diagnosis
model training. Combined with the machine learning method, we solve the problem of
data sources and a multiple fault coupling diagnosis. Based on this, we propose a novel
fault diagnosis approach for the MPs of PMAs. Section 2 introduces the basic flow of the
proposed approach, the surrogate model building, the training data calculation, and the
fault diagnosis process. Section 3 presents the case study, in which a rotary PMA is chosen
as an example to verify the effectiveness of the proposed approach. Section 4 conveys the
concluding remarks.

2. The Proposed Fault Diagnosis Approach for the MPs of PMAs
2.1. Procedure of the Proposed Approach

Figure 2 illustrates the proposed fault diagnosis approach for the MPs of PMAs for
renewable energy systems. The critical processes of the proposed approach were as follows:
(a) the construction of the surrogate model of the MP parameters and the OCs; (b) the
calculation of the training data under different fault patterns; and (c) the construction of
the fault diagnosis model of the MPs.

The simplified procedure for the fault diagnosis of the MPs for PMAs based on the
surrogate model was as follows:

(a) A simulation model of a PMA was constructed based on the MP data. Statistic and
dynamic OCs were calculated by the model. The key MP parameters and OCs were
selected. The MP parameters were injected.

(b) An approximate modeling method was chosen considering the number of simu-
lated sample points used for the surrogate model construction. The accuracy of the
surrogate model was evaluated through the corresponding indexes.

(c) The MP parameters significantly influencing the consistency of the OCs were further
identified by the contribution rate analysis method. The critical OCs were determined
according to the system requirements.

(d) Based on a critical MP failure mode analysis, the means and variances of the key OCs
of a batch of products under different combinations were obtained through statistics
from the corresponding computational results.
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(e) An appropriate fault diagnosis model was chosen and trained by the constructed
database. The prior information of the MP was used to optimize the model parameters.
Its accuracy was assessed by the appropriate indexes.
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2.2. Simulation Modeling and the MP Parameter Injection of the PMAs

The simulation of PMA OCs is an electromechanical coupling process, including both
the static magnetic chains and suction calculation as well as the dynamic electromagnetic
force of the electromagnetic and mechanical system, posing challenges to solving the
problem in single commercial software. In this paper, we proposed a joint simulation
modeling method using the software of 3D modeling, an electromagnetic field analysis,
and a dynamics analysis. The modeling process is shown in Figure 3. The proposed model
included the following two aspects for the PMA.
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(a) The calculation model of static OCs: The 3D modeling software UG and Pro/E were
used to establish the PMA 3D solid model. The corresponding solid model was
imported into the software for the dynamics analysis, flexible body generation, and
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the electromagnetic field analysis. A data interface between the software and the
rigid and flexible body was generated to carry out the electromagnetic characteristics
research. The rigid and flexible bodies were positioned and assembled in the dynamics
software to establish a complete mechanical system dynamic model.

(b) The calculation model of dynamic OCs: The loading of dynamic electromagnetic
forces and the simulation of the dynamic characteristics of the PMA were performed
through the secondary development of the dynamics software. In the post-processing
(e.g., ADAMS), the corresponding results were extracted and analyzed after the simu-
lation. One merit of this method was that it combined multiple software programs and
gave full play to the advantages of each type of software. The disadvantage was that
each time step during the dynamic simulation required the secondary development
module to read and write to a disk file, decelerating the simulation.

(c) MP parameter injection and analysis: The manufacturing process data of the PMA
were injected into the simulation model and the output characteristics of the current
manufacturing state were calculated. At the same time, the degree of influence of the
manufacturing process fluctuations on the output characteristics of the PMA was analyzed
according to the quality requirements and the critical MP parameters were screened out to
lay the foundation for the establishment of the surrogate model of the PMA.

2.3. The Establishment of a Surrogate Model for the MP

Based on the screened critical manufacturing processes, the sample points (a series of
virtual prototypes) within the allowed range of MP parameters of the PMA were generated
by Latin hypercube sampling (LHS), orthogonal experimental design (OED), or uniform
sampling (US); thus, a simulation model was obtained for the OCs of each prototype.

For example, the mathematical model for calculating the dynamic characteristics
of a PMA with a rotating armature motion is shown in Equation (1), which contains
the differential equation for the coil, the motion equation for the movable components
(armature), and the differential equation for the angular velocity and angular displacement.

dψ
dt = U − iR
dω
dt =

Mx−M f
2J ω2

dα
dt = ω
ψ|t=0 = ψ0, ω|t=0 = ω0 = 0, α|t=0 = α0

(1)

where ψ and U are the flux and voltage of the PMA control coil, respectively; i and R are
the current and resistance of the PMA control coil, respectively; α and ω are the angular
displacement and angular velocity of the movable component (armature), respectively; J is
the kinetic energy of the movable component (armature) rotation; Mx is the suction torque;
Mf is the counter torque; and ψ0 and α0 are the coil flux and armature displacement at t = 0,
respectively.

The dynamic equations of the PMA in Equation (1) could be calculated quickly and
accurately. In contrast, for the electromagnetic field equations—especially for the 3D
electromagnetic systems—the solution speed of the inefficient finite element significantly
reduced the efficiency of the performance analysis of the electromechanical component
products. Therefore, we built an alternative model for electromagnetic systems based on
custom interpolation functions.

The basic form of the PMA electromagnetic suction torque model is expressed in
Equation (2), assuming that the perturbations induced by the parameter changes did not
affect each other.

F = F0 +
n

∑
i=1

∆Fi (2)

where F is the static suction torque; F0 is the suction torque with the MP parameters
unchanged; and ∆Fi is the static suction torque disturbance caused by fluctuations in each
MMP xi and can be obtained through interpolation.
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A function was then defined: f = g(x1, x2), for [m − ∆x1, m, m + ∆x1]⊂X1, [n − ∆x2,
n, n + ∆x2]⊂X2, (∆x1, ∆x2 > 0). When f was monotonic for both ∆x1 and ∆x2, then g(m, n)
was between the points g(m − ∆x1, n − ∆x2), g(m + ∆x1, n − ∆x2), g(m − ∆x1, n + ∆x2),
and g(m + ∆x1, n + ∆x2), as shown in Figure 4.
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Therefore, g(m, n) could be expressed as:

g(m, n) =
x1=m+∆x1,x2=n+∆x2

∑
x1=m−∆x1,x2=n−∆x2

g(x1, x2) · l|x1,x2 (3)

where l is the weight coefficient of each point, indicating the influence of each point on the
target point. Two conditions were required to be met simultaneously: (a) when the output
value was the node value, the weight coefficient of the node was 1 and the other points
were 0; and (b) the value range of the weight coefficient was 0 ≤ l ≤1.

The OCs of the electromagnetic suction torque of the PMA satisfied the monotonicity
with respect to the voltage and rotation angle if four boundary points were chosen; i.e.,
(Um0, αn0), (Um1, αn0), (Um0, αn1), and (Um1, αn1). (Um0 ≤ U ≤ Um1, αm0 ≤ α ≤ αm1), which
could be obtained from Equation (4) as follows:

∆Fi =
(m1,n1)

∑
(m,n)=(m0,n0)

∆F(∆xi)|(Um ,αn)
· h(U, α)|(Um ,αn)

(4)

where h(U, α) is the interpolation function.
The model with the optimum common evaluation index of model accuracy (RMSE)

was then assessed as follows:

RMSE =

√
1

ntest

ntest

∑
s=1

(Fis − F̃is)
2

(5)

where ntest is the number of selected test samples and Fis is the actual response value of
the test sample points; i.e., the simulation value. F̃is is the predicted value of the surrogate
model. A poor RMSE reflected a high model accuracy.

When the model accuracy failed to meet the requirements, it could be enhanced by
increasing the sample points. The surrogate modeling process is shown in Figure 5.
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2.4. The Screening of the Critical Parameters

The contribution rate analysis method is a statistical method for experimental data
that identifies the main factors affecting the MP of the PMA from numerous MP parameters.
The calculation and analysis of the contribution rate for the multi-factor non-replicated
experiments are shown in Table 1.

Table 1. Calculation and analysis of the contribution rate of multiple design parameters.

Deviation
Source

Sum of Squared
Deviations Freedom Mean Variance

Sum of Squares
of Pure

Deviations

Contribution
Rate

Parameter A SA = (∑a
i=1 y2

i· − CT)/b fA = a− 1 VA = SA/ fA S′A = SA − fAVe ρA = S′A/ST
Parameter B SB = (∑b

j=1 y2
·j − CT)/a fB = b− 1 VB = SB/ fB S′B = SB − fBVe ρB = S′B/ST

. . . . . . . . . . . . . . . . . .
Error e Se = ST −∑N

A Si fe =
n
∏
i=a

(i− 1) Ve = Se/ fe S′e = fTVe ρe = S′e/ST

Sum ST = ∑a
1 ∑b

1 · · ·∑n
1 y∗2 − CT fe =

n−1
∏
i=a

i - ST 100%

Using a 6-factor 3-level experiment as an example, the contribution margin analysis is
shown in Equations (6)–(13) [9].

Sil =
(T1i − T3i)

2

6
(6)

Siq =
(T1i − 2T2i + T3i)

2

18
(7)

Se = ST −
n

∑
i=1

Sil −
n

∑
i=1

Siq (8)

Ve =
Se

d fe
(9)

where Sil and Siq are the fluctuation of the squared primary term and the squared quadratic
term of the controllable factor xi corresponding with the OC y, respectively. Se is the sum
of the squared error terms, Ve is the error variance, and dfe is the degree of freedom of the
error term. If a term smaller than Ve existed in Sil and Siq, it was subsumed into Se. For
each subsumed term, dfe was added to by 1. T1i, T2i, and T3i were the partial sums of the
test results corresponding with three levels of the test factor xi, respectively, and expressed
as follows:

Ti =
k

∑
j=1

yj = T1i + T2i + T3i (10)
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ρil =
Sil −Ve

ST
(11)

ρiq =
Siq −Ve

ST
(12)

ρe = 100%−
n

∑
i=1

ρil −
n

∑
i=1

ρiq (13)

where ρil and ρiq are the contribution rate of the primary and quadratic terms of the param-
eter xi corresponding with the OC y, respectively; ρe is the error term contribution rate.

2.5. The Building of the Diagnosis Training Database

A variation in a few of the MP parameters after the preliminary screening had a slight
effect on the output characteristics. The set of key MP parameters that influenced the
variation in the OCs (e.g., the qualified rate of the PMA) was gained by the contribution
rate analysis method and expressed as XK = {xk1, xk2, . . . , xkn}. According to the analysis of
the normal manufacturing process data, the central value and tolerance sets correspond-
ing with these key manufacturing process parameters were µK = {µk1, µk2, . . . , µkn} and
σK = {σk1, σk2, . . . , σkn}, respectively.

As the ith key MPP (xki) complied with the measured data of N(µki, σki), a few data
were expanded into the batch data through the Monte Carlo method and the MP parameters
were randomly combined. The key OCs of each individual were gained by the surrogate
model. Finally, a statistical analysis of the OCs of a batch product was undertaken, through
which the quality performance of a normal MP was calculated (e.g., the mean, variance,
and qualified rate). The procedure is shown in Figure 6.
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Figure 6. Procedure of the calculation of the quality performance.

Faults were injected into the mean or variance of the manufacturing process parameters
to simulate possible parameter shifts during actual manufacturing. Similarly, the Monte
Carlo method and the constructed surrogate model obtained a quality performance under
various fault patterns. When the mean or variance was within the shift range of a particular
fault pattern, a certain number of samples were chosen for the statistical analysis and quality
performance computation. The fault patterns of the manufacturing process parameters for
the PMA are shown in Table 2.

Table 2. Fault patterns of MP parameters. (“↑” means increase, “↓” means decrease).

Fault Parameter Parameters of the Characteristics

Mean ↑ (δµki, σki)
δ > 1

Mean ↓ 0 < δ < 1
Variance ↑ (µki, εσki) ε > 1

Combined (δµki, εσki)
δ > 1

ε > 10 < δ < 1

2.6. Fault Diagnosis for the MPs Based on Machine Learning

Different MP parameters can affect the OCs of PMAs and even directly trigger PMA
functional failure. In order to monitor the performance of the PMA through its MP parame-
ters, we adopted a BP neural network model to establish a non-linear mapping relationship
between the MP parameters and the health status to achieve a fault diagnosis for the MPs
of the PMA. The specific implementation is shown in Figure 7.
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First, the data set was constructed by combining the MP parameters according to the
PMA, with each group including the armature length, armature width, yoke length, yoke
step height, permanent magnet width, and core diameter. The simulation model obtained
the static and dynamic OCs corresponding with each group of process parameters and
used them as labels for the group. The data set was then randomly sampled, with 20%
taken as the test set and the remaining 80% as the training set.

Afterward, the neural network was constructed. The number of neurons in the input
and output layers was determined according to the dimension of MP parameters and
output features. Two fully connected layers were set up as hidden layers in between.
Finally, the neural network was activated with a sigmoid function. The MP parameters and
labels from the training set were then fed into the input and output layers of the neural
network for training. The overall architecture is shown in Figure 8.
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Subsequently, the trained model was validated using a test set. When the model
achieved a prediction with the required accuracy, new MP parameters could be input into
the model and whether the OCs met the thresholds could be observed to predict the health
and fault status of the PMA.

The accuracy of the classifier and prediction was evaluated through the corresponding
evaluation indexes. The diagnostic accuracy is shown in Equation (14).

Acc = NC × N−1 × 100% (14)
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where NC is the number of accurately classified samples and N is the total sample size.

3. Case Study

We selected a rotary PMA with a double permanent magnet configuration as the case;
the physical prototype electromagnetic, and contact system are shown in Figure 9. The
rotated angle was 0–2◦ and the rated coil voltage was 28 V. The time and voltage of suction
and release did not exceed 2 ms and 14 V, respectively.
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Figure 9. The rotary PMA with a double permanent magnet: (a) physical prototype; (b) electromag-
netic system; (c) contact system.

Using the PMA simulation modeling method, the machine model was first established
in UG. The model was imported into ANSYS and the electromagnetic suction torque curve
was calculated. The multi-body dynamics simulation software ADAMS was used for
the simulation analysis of the reaction force characteristics of the contact spring system.
Simulink was utilized to establish the calculation module of the coil circuit and the in-
terpolation module of the electromagnetic torque and current. The mechanical system
model established by ADAMS was embedded into the model established by Simulink
as a submodule to address the dynamics problems. The dynamic characteristic analysis
of Simulink and ADAMS was interactively completed; the model is partially shown in
Figure 10.
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Using the PMA simulation model, the OCs (such as the coil current waveform and the
suction and release time of the PMA) were calculated. The results are shown in Figure 11.
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Figure 11. The simulation results of the rotary PMA: (a) coil voltage; (b) dynamic suction and release
output characteristics.

According to the comparison of the simulation results of the coil voltage during the
PMA suction with the measured results, the error between the measured and simulated
values was within 5%, which verified the accuracy of the simulation model.

Based on the working principle and simulation results of the PMA, there were six
main manufacturing process parameters for the PMA. The parameter names, central values,
and variances are shown in Table 3.

Table 3. Critical MP parameters.

Parameter Mean Variance Parameter Mean Variance

x1 Length of armature 15.2 ±0.11 x4 Thickness of permanent magnet 1.8 ±0.025
x2 Length of yoke 2.8 ±0.075 x5 Width of permanent magnet 4.1 ±0.075
x3 Step height of yoke 0.57 ±0.375 x6 Radius of core 1.8 ±0.025

A simulation model of the PMA was constructed. The variation range of the critical
MP parameters was set as ±12% of the central value. Later, 90 groups of simulation sample
points were chosen by LHS and brought into the simulation model to obtain corresponding
OCs. A surrogate model of the MP parameters and OCs was constructed through custom
interpolation functions based on these sampling points. An additional ten random samples
were selected to verify the accuracy of the model. The comparison results of the surrogate
and simulation models are shown in Figure 12.

As shown in Figure 11, the relative computational error was lower than 4%. The RMSE
of the model was calculated according to Equation (5).

RMSE =

√
1

ntest

ntest

∑
s=1

(Fis − F̃is)
2
= 0.088

The surrogate model had high accuracy, meeting the requirement of fault diagnosis
for the MPs.

The set of parameters significantly affecting the output variation could be gained
through the contribution rate analysis method and expressed as XK = {x1, x2}.

Based on an actual manufacturing investigation, possible fault patterns of these two
manufacturing process parameters were disclosed; the variation range was then determined.
Training samples for the fault diagnosis model were obtained according to the above
method. The results are shown in Table 4.
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teristics (suction torque); (b) dynamic output characteristics (operation voltage and operation time).

Table 4. Fault pattern and related parameters. (“↑” means increase, “↓” means decrease).

Fault Pattern Physics Failure Mode in MP of
PMA

Shift Range
(δ/ε)

Number of
Training Data

Number of
Testing Data

1 µ1 ↑
Damage of line cutting positioning

reference plane (armature) 1~1.1 400 80

2 µ1 ↓
Wear of detection datum of test

equipment (armature) 0.9~1 400 80

3 µ2 ↑ Wear of spin riveting fixture (yoke) 1~1.1 400 80
4 σ1 ↑ Wear of fixing fixture (armature) 1.5~2 400 80
5 σ2 ↑ Wear of fixing fixture (yoke) 1.5~2 400 80

By analyzing the working principle of the PMA, three key OCs that reflected the
characteristics that customers are most concerned about were selected as the fault features.
Specifically, the pick voltage (U3, feature 1) could reflect the working efficiency of the
PMA and the release and pick time (t1 and t2, feature 1 and feature 2, respectively) could
reflect the operating sensitivity of the PMA. The corresponding physics working process
of the PMA is shown in Figure 13. The training samples were classified through the
introduced machine learning method. The relevant parameters or the fault characteristics
during machine learning were chosen and adjusted. The final classification results are
shown in Figure 14.
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Similarly, the diagnostic accuracy of the model could be calculated from the classifica-
tion results of the testing samples:

Acc =
92

100
× 100% = 92%

As can be observed, the model presented high accuracy and could meet the engineering
application requirements.

The corresponding fault features were brought into the fault diagnosis model from the
quality performance of the aerospace relay manufacturing process with a low qualified rate.
Based on the statistical analysis, the variance in the MP parameters increased correspond-
ing with the diagnosed fault pattern in response to cutting tool wear, thus significantly
decreasing the suitable rate. The proposed method was verified using an actual case.

4. Conclusions

The reliability of the MP exerts a direct influence on the PMA product quality. In
this study, we proposed a new fault diagnosis approach for the MPs of a PMA based on a
surrogate model and machine learning method to address the issues of the single process
parameters and real-time data requirements that are plagued by traditional diagnostic
methods. The following results and contributions were achieved.

(1) The simulation and surrogate modeling methods of static and dynamic OCs were
proposed for the fault diagnosis of the MPs. Machine learning was then introduced
into the fault diagnosis and a comprehensive diagnosis of multiple faults of the
manufacturing process was achieved. Taking the rotary PMA as an example, the
simulation and surrogate model error was no greater than 5% and the fault diagnosis
accuracy was over 92%.

(2) A surrogate model of the MP parameters and the product output characteristics was
built based on finite element simulations with no stipulations for copious knowledge
reserves on the complicated MP or relative data. This is a new method for obtaining
training data for fault diagnoses.

(3) Many factors such as material attributes, tool wear, and assembly quality have not
been previously considered and diagnosed due to the complexity of MPs. The ap-
proach proposed here considered the comprehensive influences of the MP parameters
on the product quality through a finite element simulation. This offers a new direction
in MP optimization.

(4) Considering the key MP parameters determined in this method, it demonstrates a
certain relevance for monitoring MPs or lowering the involved costs. The proposed
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fault diagnosis approach for MPs requires no prior conditions. It can accept multiple
MP parameters and is convenient to implement.
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