
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/288697606

Extended dynamic structure DEVS

Article · January 2009

CITATIONS

2
READS

6

3 authors:

Some of the authors of this publication are also working on these related projects:

Simulation and Machine Learning in Robotics View project

Robot Control and Visualization Toolbox for Industrial Robots View project

Olaf Hagendorf

Hochschule Wismar

24 PUBLICATIONS 91 CITATIONS

SEE PROFILE

Thorsten Pawletta

Hochschule Wismar - University of Applied Sciences

103 PUBLICATIONS 309 CITATIONS

SEE PROFILE

Christina Deatcu

Hochschule Wismar

23 PUBLICATIONS 38 CITATIONS

SEE PROFILE

All content following this page was uploaded by Thorsten Pawletta on 14 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/288697606_Extended_dynamic_structure_DEVS?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/288697606_Extended_dynamic_structure_DEVS?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Simulation-and-Machine-Learning-in-Robotics?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Robot-Control-and-Visualization-Toolbox-for-Industrial-Robots?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olaf_Hagendorf?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olaf_Hagendorf?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hochschule_Wismar?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olaf_Hagendorf?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thorsten_Pawletta?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thorsten_Pawletta?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thorsten_Pawletta?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christina_Deatcu?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christina_Deatcu?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hochschule_Wismar?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christina_Deatcu?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thorsten_Pawletta?enrichId=rgreq-2703583655cdfce9b2e323db3c179b8c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODY5NzYwNjtBUzo3NDc2NDg2MjU2OTI2NzJAMTU1NTI2NDczMTM1MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

EXTENDED DYNAMIC STRUCTURE DEVS

Olaf Hagendorf
(a)

, Thorsten Pawletta
(b)

, Christina Deatcu
(c)

(a)

 Liverpool John Moores University, School of Engineering, UK
(a, b, c)

 Hochschule Wismar, University of Applied Sciences: Technology, Business and Design, Germany

(a)

 oh@ibhagendorf.de,
(b)

thorsten.pawletta@hs-wismar.de,
(c)

christina.deatcu@hs-wismar.de

ABSTRACT

Since the first publication of DEVS, the formalism was

enhanced and many extensions have been introduced.

Every extension holds some advantages over the other,

e.g. Parallel DEVS generalizes the specification and

handling of concurrent events, DEVS with Ports

enables a more structured modeling and Dynamic

Structure DEVS introduces dynamic structure changes

at coupled model level during simulation time. The

extensions have one joint attribute: they are extending

the Classic DEVS formalism and don’t incorporate the

advantages of each other. Hence, the decision on one

DEVS extension inhibits the use of advantages of

another one. This lack leads to the idea of a merging

formalism to combine the advantages of different

approaches. The Extended Dynamic Structure DEVS

combines the Classic DEVS with some of the existing

extensions: Parallel DEVS, Dynamic Structure DEVS

and DEVS with Ports.

Keywords: Discrete Event Simulation, DEVS,

DSDEVS, PDEVS, EDSDEVS

1. INTRODUCTION

The DEVS formalism was first introduced by Zeigler

(Zeigler 1976) in the 1970s. In (Zeigler et.al. 2000) the

authors classify this formalism, position and compare it

with other, more established modeling and simulation

formalisms. Several international research groups are

working on the DEVS formalism and are regularly

publishing results at the annual DEVS Symposium at

Spring Simulation Conferences, European Modeling

and Simulation Symposia and others. Wainer (Wainer

2009) maintains a list of available DEVS tools. The

DEVS formalism is, in contrast to other modeling and

simulation formalisms, not very widely used in

industrial practice. This situation persists despite the

fact that the theory is a well-founded, general

formalism. It can only be assumed that one reason of

the marginal acceptance is the type of available

software tools (Pawletta et.al. 2006).

There are several publications to extend the

application field or to ease the use of DEVS e.g. Parallel

DEVS generalizes the specification and handling of

concurrent events, DEVS with Ports enables a more

structured modeling and Dynamic Structure DEVS

introduces dynamic structure changes at coupled model

level during simulation time and significantly eases the

modeling of larger real systems. The extensions have

one joint attribute: they are based on the Classic DEVS

formalism and extending it in a specific direction.

Hence, the decision on one DEVS extension inhibits the

use of advantages and application fields of another one.

This lack leads to the idea of a merging formalism to

combine the advantages of different approaches and

widen the application field of the resulting formalism.

The Classic DEVS formalism with the formal

modeling concept and simulation algorithms is

introduced in chapter 2. After a short introduction of a

few DEVS extensions, three of them are described in

detail in chapter 3. The fusion of Classic DEVS with the

introduced extensions to the new Extended Dynamic

Structure DEVS approach is presented with formal

concept, simulation principles and algorithms in chapter

4. The conclusions in chapter 5 complete this

contribution.

2. CLASSIC DEVS

DEVS is a modular, hierarchical modeling and

simulation formalism. Every DEVS model can be

described by using two different model types, atomic

and coupled. Both model types have an identical,

clearly defined interface through input and output ports.

An atomic model describes the behavior of a non-

decomposable entity via input/output events and event

driven state transition functions. A coupled model

describes the structure of a more complex model

through the aggregation of several entities and their

couplings. These entities can be atomic models as well

as coupled models. The DEVS formalism consists of

two parts: (i) a formal DEVS model definition and (ii)

simulator algorithms.

2.1. Formal Concept

The formal Classic DEVS description defines coupled

and atomic models as a combination of sets and

functions. The description of an atomic model is a

7-tuple (Zeigler et.al. 2000):

am = (X, Y, S, δext, δint, λ, ta)

• X, Y and S specify the sets of discrete inputs,

outputs and internal states.

In: Proc. of 21th European Modelling & Simulation Symposium,
Puerto de la Cruz, Spain, September, 2009, Volume 1, 36-45

• δext: Q × X → S where Q = {(s,e) | s ∈� S,

0<e<tnext}

The external state transition function δext handles

external input events.

• δint: S → S

The internal state transition function δint

establishes a new internal state.

• λ: S → Y

The output function λ generates an output event

depending on the internal state S.

• ta: S → ℜ଴
ା

 ∪ ∞

The time advance function ta schedules the time of

the next internal event after each state transition.

Figure 1 shows the dynamic behavior of an atomic

model.

Fig. 1 Dynamic Behavior of an Atomic Model

The description of a coupled model is a 9-tuple (Zeigler

et.al. 2000):

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC, SELECT)

• dn specifies the name of the coupled model.

• X and Y specify the sets of discrete inputs and

outputs.

• D specifies the set of sub component names.

• Md

| d ∈ D

Md is the model of the sub component d

• EIC, EOC and IC are the sets of external input,

external output and internal couplings.

• The SELECT function prioritizes concurrent

internal events of sub components.

Figure 2 depicts the relations of the elements of a

Classic DEVS coupled model.

Fig. 2 Coupled Model Elements

The Classic DEVS approach supports the specification

of behavioral system dynamics in atomic systems and

the specification of static component aggregations in

coupled systems. It is not possible to describe structural

system dynamics at the coupled model level, i.e. the

deletion or creation of components and couplings or

changes of interfaces, although all necessary structural

information is also available during simulation time.

The only possibility to realize a structural system

dynamic is to specify it with logical constructs at the

atomic model level. However, this removes the

advantages of reusability and model clarity and

increases modeling complexity.

2.2. Classic DEVS Simulation
Beside the formal definition the second part of the

Classic DEVS formalism is the description of abstract

simulator algorithms for the execution of DEVS

models. The algorithms are named abstract because they

are implemented as a general pseudo code. The abstract

simulator has a modular, hierarchical structure matching

exactly the modular, hierarchical structure of a DEVS

model. A DEVS model can be directly transformed into

an executable simulator model using abstract simulator

elements e.g. as shown in (Praehofer 1992; Zeigler et.al.

2000).

The abstract simulator approach consists of three

different elements namely root coordinator, coordinator

and simulator. Each atomic model is associated with a

simulator element and each coupled model is associated

with a coordinator element. The root coordinator is

added to that structure as topmost ruling entity.

3. DEVS EXTENSIONS

Extensions of the Classic DEVS formalism increase the

classes of system models that can be represented by

DEVS. Several DEVS extensions are introduced e.g. in

(Barros 1996; Chow et.al. 1994; Hagendorf et.al. 2006;

Pawletta et.al. 1996; Praehofer 1992; Uhrmacher et.al.

1994; Wainer 2009; Zeigler et.al. 2000). An incomplete

list of DEVS extensions recently presented is:

• DEVS with Ports: The port extension adds

additional input and output ports to models.

• Parallel DEVS: Parallel DEVS (PDEVS) considers

concurrent transition events.

• Dynamic Structure DEVS: Dynamic Structure

DEVS (DSDEVS) enables changes during a

simulation run. Several partial very different

approaches exist. Dynamic structure extensions

introduced by Barros (Barros 1996) and Pawletta

(Pawletta et.al. 1996) keep the general structure of

Classic DEVS modeling and simulation with

additions to coupled model definitions but

unchanged atomic model definitions. Other

dynamic structure extensions e.g. an agent based

DEVS (Uhrmacher et.al. 1994) introduce more

extensive modifications.

• DSDEVS-hybrid: The extension of discrete state

changes by continuous state changes as introduced

by DSDEVS-hybrid enables a complete new

application field and can ease the modeling of

several problems (Deatcu et.al. 2009).

• Real Time DEVS: The DEVS model is executed

in real time rather than in model time. The time

advance function delivers time intervals which

allow uncertainty when an internal event has to

take place.

The next sections introduce some of these DEVS

extensions in more detail. They are used as basis of the

subsequently introduced, unifying DEVS formalism.

3.1. DEVS with Ports

The introduction of ports into the Classic DEVS

formalism makes modeling easier and the representation

of information flow more clearly (Zeigler et.al. 2000).

In Classic DEVS each model has only one single input

and one single output port. All events are received and

sent through these ports. With the port extension, a

model has several input and output ports each dedicated

for a specific task i.e. event type. A model can have

several output ports which can be connected to input

ports of other models as shown in figure 3. Hence, each

event can use a dedicated, well defined routing path.

The modeling becomes more structured; a model can

become clearer and better understandable through

differentiated interfaces.

Fig. 3 Model with Multiple Input and Output Ports

The formal description of Classic DEVS with Ports

largely remains the same except the extended

definitions of X, Y for atomic and coupled models

(Zeigler et.al. 2000):

X = {(p,v) | p ∈ InputPorts, v ∈ Xp}

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp}

• p is the input or output port of the model

• v is a discrete value

• Xp and Yp specify the sets of discrete inputs and

outputs at port p

Whereas in Classic DEVS the coupling definitions

consist of a sub model name as destination and source,

respectively, for EIC and EOC and of a pair of sub

model names for IC, the port extension necessitates a

coupling definition extension, too:

• EIC = { (input_port, d.input_port) |

input_port ∈ InputPorts, d ∈ D,

d.input_port∈InputPorts of Md }

• IC = { (di.output_port, dk.input_port) | di,dk ∈ D,

di.output_port∈ OutputPorts of ܯௗ೔ ,

dk.input_port ∈ InputPorts of ܯௗೖ, i<>k }

• EOC = { (d.output_port, output_port) |

d.output_port ∈ OutputPorts of Md, d ∈ D,

output_por ∈ OutputPorts}

3.2. Parallel DEVS

Parallel DEVS (PDEVS) was introduced by Chow

(Chow et.al 1994). It adds new elements and functions

to the Classic DEVS formalism. It allows all imminent

components to be activated simultaneously and enables

sending their output to other components at the same

time concurrently. Multiple outputs are combined in a

bag which is sent as a whole to a model’s external state

transition function. A bag is similar to a set, containing

an unordered set of elements, but allows multiple

occurrences of an element. In Classic DEVS by contrast

events are handled individually. In a PDEVS simulator

(Zeigler et.al. 2000) during the *-message handling first

all outputs are established before calling external and

internal state transition functions. Each receiving

component is responsible for examining and

interpreting its combined inputs in the correct order.

PDEVS gives the atomic model more control over the

handling order of concurrent external and internal

events. In Classic DEVS a super-ordinate component,

the coupled model, is responsible for the execution

order of concurrent internal events of different sub

components using the select function. In PDEVS the

order of simultaneous events is locally controllable at

atomic model level with an additional, third state

transition function, the confluent transition function

δcon. Hence, it merges the decision logic of execution

order of concurrent events with the event handling

functions at a same level.

According to the extensions of PDEVS an atomic

model is defined by the following 8- tuple (Chow et.al.

1994):

am = (X, Y, S, δext, δint, δcon, λ, ta)

• X, Y and S specify the sets of discrete input events,

output events and sequential states.

• δext: Q × X
b
 → S where X

b
 is a bag covering

elements of X and Q = { (s,e) | s ∈�S, 0<e<tnext }

The external state transition function δext handles a

bag covering external inputs X
b
= {xi | xi ∈�X}.

• δint: S → S

The internal state transition function δint

establishes a new internal state.

• δcon: S × X
b
 → S

The confluent transition function δcon handles the

execution sequence of δint and δext functions during

concurrent external and internal events.

o The confluent function definition

δcon(s, X
b
) = δext(δint(s), 0, X

b
) with

δext(s, e, X
b
) is equivalent to the Classic

DEVS behavior with a higher prioritized

handling of internal events.

o The alternative confluent function defintion

δcon(s, X
b
) = δint(δext(s, ta(s), X

b
)) with δint(s)

first handles external events.

o The execution of the confluent function with

an empty bag δcon(s, null) calls directly the

internal transition function δint.

• λ: S →Y
b
 where Y

b
 is a bag covering elements of Y

The output function λ generates a bag covering

outputs Y
b
 = { yi | yi ∈ Y } depending on the

internal state S.

• ta: S → ℜ଴
ା

 ∪ ∞

The time advance function ta schedules the time of

the next internal event after each state transition.

The definition of a coupled model for PDEVS is the

same as for Classic DEVS except for the absence of the

select function (Zeigler et.al. 2000):

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC)

The execution of a PDEVS model is carried out

similarly to Classic DEVS with some changed details in

the message handling (Zeigler et.al. 2000).

3.3. Dynamic Structure DEVS

Several approaches extend the Classic DEVS to

Dynamic Structure DEVS (DSDEVS). Barros (Barros

1996) and Pawletta (Pawletta et.al. 1996) introduce two

DSDEVS variants with an extension of the coupled

model definition while the atomic model definition

remains unchanged. With theses extensions the coupled

model is able to change its structure during simulation

time. Uhrmacher (Uhrmacher et.al. 1994) introduces an

agent based approach. It defines extensions for both

atomic and coupled systems. Another approach is Cell-

DEVS, a combination of cellular automata with the

DEVS formalism where each cell consist of a single

DEVS model (Wainer 2001).

The different types of extensions are carried out

due to different application fields or problem definitions

e.g. a typical Cell-DEVS application field is social and

environmental modeling and simulation. The

approaches of Barros and Pawletta are extending the

classic formalism without changing its overall principle

and thus without changing the general application field

of Classic DEVS. The DSDEVS approach of Pawletta

enables several options to specify structural dynamics:

• Creation, destruction, cloning and replacement of

sub components

• Exchange of a sub component between two

coupled models

• Changing coupling definitions of a coupled system

The DSDEVS approach extends the coupled model

definition but the atomic model definition stays

unchanged. During the simulation time a coupled model

can change its structure. Each structure can be seen as a

structure state si with s0, s1, ...,sn ∈ SDS. A structure state

si describes all structure relevant elements of a coupled

model. Additionally a structural state set HDS can store

further structure information e.g. the number of

structure changes at the present time or the current

structure number. External or internal events, handled

by the additional state transition functions δx&s and δint

at coupled model level, induce structure state changes

and as a result model structure changes. This dynamic

structure extension of Classic DEVS was developed

with a regard to hybrid systems, i.e. systems with

continuous and discrete event dynamic. In the following

only the relevant aspect for discrete event systems are

taken into account.

A DSDEVS coupled model is defined by the

following 6-tuple (Pawletta et.al. 1996):

CMDS = (dds , SDS , δx&s , δint , λ , ta)

• dds specifies the name of the coupled model.

• According to the above definition of a coupled

model, its structure consists of sets of sub

components and coupling relations. Structure

changes mean modifications of these sets.

Obviously, the sets of sub systems and coupling

relations could be interpreted as a structure state.

The set of sequential structure states

{s0, s1, ..., sn} = SDS defines all structure variants of

the variable structure coupled model CMDS.

Structure state changes can be induced by handling

external or internal events of the coupled model

itself or by state events i.e. output events of

subordinated components. A structure state is

defined by a 9-tuple:

si = (X, Y, HDS, D, { Md

}, EIC, EOC, IC, select)

o X and Y specify the sets of discrete input and

output events. The sets exactly match the sets

X and Y in Classic DEVS. As an extension of

DSDEVS the coupled model can directly

handle external input events and can create

external output events itself.

o The set HDS represents additional structure

related state variables. They are equivalent to

the state variable set S of an atomic model.

o D specifies the set of sub component names.

o Md | d ∈ D
Md is the model of the sub component d of

the coupled model CMDS. The set { Md

}

defines all sub components of CMDS.

o EIC, EOC and IC are the external input,

external output and internal couplings.

o The function select prioritizes concurrent

internal events of the coupled model itself

and its sub components.

• δx&s: QDS × X → HDS where QDS = {(h,e) | h ∈�
�DS, 0<e<tnext}

The external and state transition function δx&s

handles external input events and state events i.e.

output events of sub components. However it is

unreasonable to make changes in the set of sub

components or the coupling relations by this

function directly. This could lead to ambiguous

event handling because external events could

simultaneously influence the dynamic of sub

components and the structure state. Consequently

the δx&s function is only allowed to modify

structure related state variables in the set HDS.

• δint: SDS → SDS

The internal transition function δint changes the

structure state si to si+1 and as a result induces a

structure change of CMDS. The execution of output

function λ and internal transition function δint is

induced by a time driven internal event.

• λ: SDS → Y

The output function λ generates output events

depending on the state SDS.

• ta: SDS → ℜ଴
ା

 ∪ ∞

As with the dynamic of atomic models, internal

events are scheduled by the time advance function

ta. After each state transition the next internal

event is established by the time advance function.

},...{ 0 nDSu ssSs =∈

nDSv ssSs ,...{ 01 =∈
+

Fig. 4 Dynamic Behavior of a DSDEVS Coupled Model

The dynamic behavior of an atomic model is identical

to the behavior in Classic DEVS. Figure 4 shows the

dynamic behavior of a dynamic structure coupled

model. The figure depicts two external input events and

one internal event. Reasons for an input event handling

can be an external input event at the input port of the

coupled model itself or an external output event at the

output port of a sub component Md of the coupled

model. The handling of both events by the coupled

model is identically. As a result of an event the structure

related state variable set HDS can be changed and with

the concluding call of the time advance function an

immediate internal event can be induced. An internal

event is handled by a coupled model similar to the

internal event handling of an atomic model, i.e. the

event handling can induce a change of the state sets S

and SDS, respectively.

4. EXTENDED DYNAMIC STRUCTURE DEVS

Chapters 3 and 4 introduce the Classic DEVS

formalism and several DEVS extensions. This work

aims to bring together all introduced approaches and to

combine their advantages and application fields. In

(Zeigler et.al. 2000) a first step into this direction is

undertaken, the introduced PDEVS formalism is a

combination of the original PDEVS and DEVS with

Ports. The Extended Dynamic Structure DEVS

(EDSDEVS), proposed here, combines the extensions:

Classic DEVS with PDEVS, DSDEVS and DEVS with

Ports. The selection of the extensions is carried out to

ensure the preservation of the generic modeling and

simulation principles of Classic DEVS. The fusion

results in a DEVS formalism with the following main

characteristics:

• Modular, hierarchical and dynamic structure

modeling and simulation formalism,

• Formal description by sets and functions,

• Exact definition of simulation algorithms,

• Dynamic behavior description in atomic models,

• Dynamic structure description in coupled models,

• Exact behavior definition of concurrent events,

• Substantial similarity between real system and

model.

The next sections focus on the formal concept of

EDSDEVS modeling with formal descriptions, dynamic

behavior descriptions and introduction of the simulation

concept with abstract simulator algorithms.

4.1. Formal Concept

The EDSDEVS formal descriptions of coupled and

atomic models as a combination of sets and functions

are structured similar to the Classic DEVS formal

description. The EDSDEV atomic model amEDS is

defined as an 8- tuple:

amEDS = (X, Y, S, δext, δint, δcon, λ, ta)

• X = {(p,v) | p ∈ InputPorts, v ∈ Xp}

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp}

The definitions of both sets are identical to the

definitions in DEVS with Ports.

• S specifies the set of internal states and is identical

to internal state set S of a Classic DEVS atomic

model.

• δext: Q × ܺ
௕ → S with X

b
 = {xi | xi = (p,v), p ∈

InputPorts, v ∈ Xp } and Q = {(s,e) | s ∈�S,

0 < e < tnext

}

The external state transition function δext handles a

bag covering external inputs. Each input consists

of a pair of a discrete input v ∈ Xp and an input

port p ∈ InputPorts. The set XP is the set of

discrete inputs at port p and InputPorts is the set of

input ports of model amEDS. The function δext can

induce an internal event with a rescheduling of the

time of the next internal event. This extended

definition of δext is a fusion of the δext definitions

of PDEVS and DEVS with Port.

• δint: S → S

The internal state transition function δint can

establish a new internal state. The execution of

output function λ and internal state transition

function δint is induced by a time driven internal

event. The time of an internal event is established

by the time advance function ta. The definition is

identical to the definition in Classic DEVS.

• δcon: S × ܺ
௕ → S

The confluent transition function δcon handles the

execution order of δint and δext functions during

concurrent external and internal events. In spite of

the same function signature δcon(s, X
b
) the

parameter X
b
 is different to that in the PDEVS

definition as described in section 3.2. Anyhow the

three δcon definitions from there also apply here.

This extended definition of δcon is based on the

PDEVS δcon function definition. Unlike in PDEVS

the function has to handle a bag covering inputs,

each consisting of a discrete input and input port

pair.

• λ: S → ܻ
௕ whit Y

b
 = {yi | yi = (p, v), p ∈

OutputPorts, v ∈ Yp}

The output function λ can generate a bag covering

outputs Y
b
. In spite of the same function signature

Y
b
 = λ (s) the function result Y

b
 is different to that

in the PDEVS definition as described in section

3.2. The function result is a bag covering outputs

Y
b
={ yi | yi = (p, v) } each consisting of a pair of

discrete output v ∈ Yp and output port

p ∈ OutputPorts. The set YP is the set of discrete

outputs at port p and OutputPorts is the set of

output ports of model am. If and which outputs

are generated depends on the internal state S. This

extended definition of λ is based on the PDEVS λ

function definition. Unlike in PDEVS the function

generates a bag covering outputs each consisting

of discrete output and output port pairs as

introduced in DEVS with Ports.

• ta: S → ℜ଴
ା

 ∪ ∞

The time advance function ta schedules the time of

the next internal event after each state transition.

The definition is identical to Classic DEVS.

Figure 5 shows the dynamic behavior of an atomic

EDSDEVS model amEDS. At time tu the confluent

transition function δcon handles two concurrent events.

The first event contains a bag covering external inputs

received by the atomic model amEDS. The figure depicts

an example bag covering three external inputs received

at two different input ports. A concurrent internal event

at tu was scheduled by the previous execution of the

time advance function ta. Depending on the specific

implementation of function δcon sequence a) or b) is

executed. The execution of λ creates a bag covering

outputs. The shown bag ௨ܻ
௕ covers two outputs.

},...{ 0

0

m

inport

xx

X =

},...{ 0

0

p

outport

yy

Y =

},...{ 0 q

outport

yy

Y
j
=

},...{ 0 n

inport

xx

X
i

=

)},(),,(

),,{(

10

0

inportxinportx

inportxX

cb

a

b

u =

)},(

),,{(

1

0

outporty

outportyY

e

d

b

u =

Fig. 5 Dynamic Behavior of an Atomic EDSDEVS

Model

An Extended Dynamic Structure DEVS coupled model

is defined by the following 7-tuple:

CMEDS = (dn, SEDS, δx&s, δint, δcon, λ, ta)

• dn specifies the name of the coupled model.

• In the EDSDEVS formalism the coupled model

structure consists not only of sets of sub

components and coupling relations as in DSDEVS

but also of additional interface definitions i.e.

input and output port definitions. The set of

sequential structure states {s0, s1, ...,sn} = SEDS has

to define all structure variants of the coupled

model CMEDS. Two model structure variants can

vary in different interface definitions, in contrast

to DSDEVS where each model has a non-variable

interface with a single input and a single output

port. Hence, a structure state has to incorporate

interface definitions with sets of input and output

ports additionally to the structure state definition

as introduced in section 3.3. An EDSDEVS

structure state is defined by a 10-tuple:

si = (X, Y, HEDS, D, { Md

}, InputPorts,

OutputPorts, EIC, EOC, IC)

o X and Y specify the sets of discrete input and

outputs. The sets exactly match the extended

definitions of X and Y as introduced in DEVS

with Ports.

o The sets HEDS, D and Md exactly match the sets

HVS, D and Md of the DSDEVS formalism

introduced in section 3.3.

o InputPorts and OutputPorts specify the sets of

input and output port names of the coupled

model CMEDS. These two elements of the

structure state si are introduced by the

EDSDEVS formalism.

o EIC, EOC and IC are the external input, external

output and internal couplings of CMEDS. The

definition of the coupling relations exactly

match the definition as introduced with the

DEVS with Ports extension.

• δx&s: Q × X
b
 → HEDS where X

b
 is a bag covering

input, input port pairs and Q = {(h,e) | h ∈ ����,
0<e<tnext}

The external and state transition function δext

handles a bag covering inputs, each consisting of a

pair of a), b) or c):

a) A discrete input v ∈ Xp and an input port p ∈

InputPorts. The set XP is the set of discrete

inputs at port p and InputPorts is the set of

input ports of model CMEDS.

b) A discrete output v ∈ Md.Yp and an output port

p ∈ Md.OutputPorts where Md is the model of

the sub component d of the coupled model

CMEDS. The set Md.YP is the set of discrete

outputs at port p and Md.OutputPorts is the set

of output ports of model Md.

c) A discrete input v ∈ Md.Xp and an input port

p ∈ Md.InputPorts where Md is the model of

the sub component d of the coupled model

CMEDS. The set Md.XP is the set of discrete

inputs at port p and Md.InputPorts is the set of

input ports of model Md.

This extended definition of δext is a fusion and

extension of the δext definitions of DSDEVS,

PDEVS and DEVS with Ports. In DSDEVS only

state events induced by output events of sub

components are handled. However, an output port

can have coupling relations to multiple input ports.

In this case there is a difference in the handling of a

single output event of a single source sub model or

multiple input events of different destination sub

models. Hence, the external and state transition

function of EDSDEVS can handle both output and

input events. However, the functionality is in

accordance with the description of the DSDEVS

external and state transition function δx&s.

• δint: SEDS → SEDS

ta: SN → ℜ଴
ା

 ∪ ∞

The internal state transition function δint, and the

time advance function ta exactly match the

functions of the DSDEVS formalism.

• δcon: SEDS × ܺ
௕ → SEDS

The confluent transition function δcon handles the

execution sequence of δint and δext functions during

concurrent external and internal events. The

EDSDEVS formalism introduces the confluent

transition function also at coupled model level due

to the fusion of PDEVS and DSDEVS. An

EDSDEVS coupled model handles external, state

and internal events. Hence and in contrast to

PDEVS, in EDSDEVS concurrent external and

internal events can occur also at coupled model

level. Consequently, a confluent transition

function to handle concurrent events is necessary

at this level. The functionality is in accordance

with the description of the confluent transition

function δcon at atomic model level in this section.

• λ: SEDS → Y
b

The output function λ generates a bag covering

outputs Y
b
 = {yi} depending on state SEDS. An

output yi consists of a pair of discrete output v ∈ Yp

and output port p ∈ OutputPorts. The set YP is the

set of discrete outputs at port p and OutputPorts is

the set of output ports of model CMEDS. The output

function λ in the EDSDEVS formalism merges

three sources:

o The output function λ at coupled model level is

introduced by DSDEVS.

o The definition of the function creating a bag

covering outputs is based on PDEVS.

o The output event structure with pairs of

output/output port is introduced by DEVS with

Ports.

Figure 6 shows the dynamic behavior of a coupled

EDSDEVS model CMEDS. At time tu the confluent

transition function δcon handles concurrent external and

internal events. The first event is a bag covering inputs

received at input ports by the coupled model CMEDS. A

concurrent internal event at tu was scheduled by the last

execution of the time advance function. Depending on

the specific implementation of function δcon sequence a)

or sequence b) is executed. The execution of the internal

state transition function δint can change the structure

state su to su+1 or su+1 to su+2 and therefore the model

structure of ܯܥா஽ௌ
 to ܯܥா஽ௌ

∗ . The execution of the

output function λ creates a bag covering outputs ௨ܻ
௕ .

The depicted example bag ௨ܻ
௕ covers two outputs.

},...{ 00 minport xxX = },...{ 00 poutport yyY =

},...{ 0 qoutport yyY
j

=},...{ 0 ninport xxX
i

=

},...{ 00 rinport xxX =

},...{ 0 sinport xxX
k

=

},...{ 00 voutport yyY =

},...{ 0 woutport yyY
l

=

),,(1 eXss b

uuconu δ=
+

)},(),,(),,{(100 inportxinportxinportxX cba

b

u =

b

uX
b

uX

b

uX

)},(

),,{(

1

0

outporty

outportyY

e

d

b

u =

b

uX

Fig. 6 Dynamic Behavior of a Coupled EDSDEVS

Model

4.2. EDSDEVS Simulation

The simulation engine for EDSDEVS models is a

combination and extension of the simulation algorithms

of Classic DEVS, PDEVS and DSDEVS. The message

handling of coordinators are largely similar to

simulators. Each coordinator holds its own time of next

internal event in tnext_c and searches the minimum time

of next internal event in tnext of sub components and in

its own tnext_c.

Figure 7 depicts an EDSDEVS model example

with associated simulation model elements i.e. root

coordinator, coordinator and simulator instances,

message handling and model function calls. The overall

structure is very similar to the Classic DEVS simulation

model execution except for additions at the coordinators

and associated coupled models. Because of complexity

and clarity selected situations are shown in sections:

i. (Figure 7a) initialisation phase with i-message

handling:

During the initialisation phase model component’s

init functions are called because of an i-message

handling similar to Classic DEVS. Additionally,

after structure changes during the simulation phase

the init function is called too.

ii. (Figure 7b) *-message handling created due to an

internal event of model am2:

The root coordinator advances the simulation clock

and a *-message is firstly created. The message is

sent to the successor coordinator instance of coupled

model CM1 (not depicted). This coordinator

instance compares the actual simulation time t with

its own next internal event time stored in tnext_c and

determines that it is not responsible for handling this

event. Hence, the event is forwarded to the

successor coordinator instance of CM2. The

coordinator instance is again not responsible for

handling the message itself but knows that a sub

component scheduled the event. The coordinator

instance will then forward the message to the

appropriate simulator instance associated with am2.

The simulator instance of am2 calls the model

functions λ and δint. A result of calling λ could be a

y-message sent back to the subordinate coodinator

instance of CM2. This coordinator instance reacts

with the call of the model function δx&s of CM2 and

a message forward to the simulator instance of am3

due to an appropriate IC coupling.

Fig. 7 EDSDEVS Model Example with Simulation

Model Elements and Message Flow during Initialization

and Simulation Phases

iii. (Figure 7c) *-message handling created due to an

internal event of model CM2:

The depicted situation is similar to 7b except that

the coordinator instance of CM2 determines that

simulation time t and its tnext_c are equal. Hence, it

has to handle the *-message itself with calling λ and

δint model functions of CM2 with the possibility of

generating a y-message sent to a sub component

and/or superordinated coordinator instance and of

changing its sequential structure state SEDS.

iv. (Figure 7d) concurrent event handling with the

confluent transition function δcon:

The figure depicts the handling of concurrent

external and internal messages by the coordinator

instance of CM2. The confluent function of CM2 is

called to handle the concurrent messages.

Depending on the specific implementation of δcon

the external transition function δx&s and internal

transition/output functions δint, respectively, are

firstly called. The external message is concurrently

handled by the function δcon and forwarded to the

simulator instance of sub component am2 as an x-

message due to an appropriate EIC. Calling the

output function λ could cause an y-message sent to a

sub component and/or superordinated coordinator

instance.

Listings 1 and 2 show the pseudo codes of the

EDSDEVS simulator components.

variables:

 tlast // time of last event

 tnext // time of next int state event

 am // associated atomic model

// t=0 init at simulation start

// t>0 init after structure change

when receive i-msg(t)at time t

 am.init(t)

 tlast := t

 tnext := am.ta()

when receive *-msg(t) at time t

 if t <> tnext

 error: bad synchronisation

 y_bag := am.λ()

 send y_bag in a y-msg to parent coord.

when receive x-msg(t, x_bag) at time t

with value x_bag containing x.value und

x.port pairs

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 if t=tnext and x_bag is not empty

 //concurrent ext. & int. event

 am.δcon(t, x_bag)

 else if t=tnext and x_bag is empty

 // internal event

 am.δint(t)

 else

 // external event

 am.δext(t-tlast, x_bag)

 end if

 tlast := t

 tnext := tlast + am.ta()

Listing 1 Pseudo Code of an EDSDEVS Simulator

variables:

 tlast // time of last event

 tnext // minimal time of next int.

 // state event of coupled model

// or sub component

 tnext_c // time of next int state event

 //of the coupled model itself

 CM // associated coupled model with

 // CM.st current structure state

 IMM // imminent children

 mail // output mail bag

// t=0 init at simulation start

// t>0 init after structure change

when receive i-msg(t)at time t

 CM.init(t)

 foreach sub component Md ∈ CM.st.M

 send i-msg(t) to Md

 tlast := t

 // determine time of next scheduled

 // internal state event of coupled

 // model itself

 tnext_c := CM.ta()

 // determine minimum time of next

 // scheduled internal state events of

 // coupled model and all subcomponents

 tnext := min(tnext_c, { Md.tnext | Md

∈ CM.st.M })

when receive *-msg(t) at time t

 if t <> tnext & t<>tnext_c

 error: bad synchronisation

 // internal state event of CM

 if t=tnext_c

 y_bag := CM.λ()

 send bag of value/output port pairs

in a y-msg to parent coordinator

 // internal state event of a subcomp.

 else if t=tnext

 // find all subcomps with tnext==t

 IMM:={Md |Md ∈ CM.st.M ∧ Md.tnext= t}

 foreach Md in IMM

 send *-msg(t) to Md

when receive x-msg(t, x_bag) at time t

with x_bag containing x.value/x.port

pairs

 if not (tlast ≤ t ≤ tnext_c)

 error: bad synchronisation

 if t=tnext_c and x_bag is not empty

// concurrent ext. and int. event

 CM.δcon(t, x_bag)

 else if t=tnext_c and x_bag is empty

 CM.δint(t) // int. event

 else

 CM.δx&s(t-tlast, x_bag) //ext. event

 end if

 // get all subcomponents Md* with an

 // appropriate EIC

 receivers:=subcomponents{Md|Md∈CM.st.M}

with {coupling|coupling∈CM.st.EIC}

 // forwards x-msg to all appropriate

 // subcomponents

 foreach subcomponent Md* in receivers

 // ext. event of subcomponent

 CM.δx&s(t-tlast, x_bag)

 send x-msg(t, x_bag, Md*.p) to Md*

at port p

 foreach subcomponent Md* in IMM and not

in receivers

 // send empty bag without inputport

 send x-msg(t, NULL, NULL) to Md*

 tlast := t

 tnext_c := tlast + CM.ta()

 tnext := min(tnext_c,{Md.tnext|Md∈CM.st.M})

when receive y-msg(t, y_bag, d) at time t

with y_bag with value/port pairs from d

 // collect all y-msgs from all subcomp

 if d is not the last not reporting d

in IMM

 add (y_bag, d) to mail

 mark d in IMM as reporting

 // all subcomps now handled their *msg

 else if d is the last not reporting d

in IMM

 CM.δx&s(t-tlast, mail)

 // check ext. coupling to form sub-

 // bag of parent output

 y_bagparent = NULL

 foreach d in mail where (y_bag and

d) has an appropriate EIC

 add y_bag to y_bagparent

 send y-msg(t, y_bagparent,, CM) to

parent model

 // check IC to get children Md*

 // with an appropriate IC who

 // receives a sub bag

 receivers := subcomponents{Md|d in

mail, Md∈CM.st.M} with

{coupling|coupling∈CM.st.IC}

 foreach subcomp Md* in receivers

 creates sub bag x_bag from mail

with elements where Md* is

receiver

 send x-msg(t, x_bag) to Md*

 mark d in IMM as sending

 foreach sub component Md* in IMM

where Md* is not sending

 send x-msg(t, NULL) to Md*

 tlast := t

 tnext_c := tlast + CM.ta()

 tnext := min(tnext_c, { Md.tnext | Md

∈ CM.st.M })

Listing 2 Pseudo Code of an EDSDEVS Coordinator

5. CONCLUSIONS

The EDSDEVS formalism introduced in this

contribution is a fusion of Classic DEVS with several

extensions. This approach is an as generic as possible

modeling and simulation formalism based on DEVS. It

widens significantly the application area of DEVS

modeling and simulation. Further extensions are

desirable and essential. To establish a widely accepted

modeling and simulation approach extensions for

parallel computing and graphical modeling are

necessary. There are also approaches for hybrid DEVS

extensions i.e. the support of continuous state changes.

These proposals are recommended as further research.

REFERENCES

Barros, F.J., 1996. Modeling and Simulation of

Dynamic Structure Discrete Event Systems: A

General Systems Theory Approach. Thesis (PhD),

University of Coimbra

Chi, S.D., 1997. Model-based Reasoning Methodology

Using the Symbolic DEVS Simulation Trans. of

SCS, 14(3): p.141-152

Chow, A.C., Zeigler, B.P., 1994. Parallel Devs: A

Parallel, Hierarchical, Modular Modeling

Formalism. Proceedings of the 1994 Winter

Simulation Conference, LakeBuenaVista/FL, USA

Deatcu, C., Pawletta, T., Hagendorf, O., Lampe, B.,

2009. Considering Workpieces as Integral Parts of

a DEVS Model. Proceeding of 2009 EMSS - part

of I3M Multiconference 2009 Teneriffa, Spain

Hagendorf, O., Pawletta, T., Pawletta, S., Colquhoun,

G., 2006. An approach for modelling and

simulation of variable structure manufacturing

systems. Proceeding of the 2006 ICMR Liverpool,

UK

Pawletta, T., Lampe, B.P., Pawletta, S., Drewelow, W.,

1996. Dynamic structure simulation based on

discrete events. ASIM-Mitteilungen Nr.53, 9.

Workshop Simulation and AI, p.7-11, Ulm,

Germany, 02.1996.

Pawletta, T., Deatcu, C., Pawletta, S., Hagendorf, O.,

Colquhoun, G., 2006. DEVS-Based Modeling and

Simulation in Scientific and Technical Computing

Environments Proceedings of the 2006 Spring

Simulation Conference, Huntsville/AL, USA

Praehofer, H., 1992. CAST Methods in Modelling.

Pichler, F., Schwärtzel, H. Springer Pub.

Uhrmacher, A.M., Arnold, R., 1994. Distributing and

maintaining knowledge: Agents in variable

structure environment. 5
th

 Annual Conference on

AI, Simulation and Planning of High Autonomy

Systems, p. 178-194

Wainer, G., Giambiasi, N., 2001. Application of the

Cell-DEVS paradigm for cell spaces modelling

and simulation. SIMULATION Transactions of

The Society for Modeling and Simulation

International, vol. 76, 01.2001

Wainer, G. A., 2009. DEVS Tools. Available from:

www.sce.carleton.ca/faculty/wainer/standard/tools

.htm [Accessed 06.2009]

Zeigler, B.P., 1976 Theory of Modeling and Simulation.

1
st
 edition, John Wiley

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000 Theory of

Modelling and Simulation. 3
rd

 edition, Academic

Press

View publication statsView publication stats

https://www.researchgate.net/publication/288697606

