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Abstract: A high organizational complexity above the cognitive limits of employees and manage-
ment can contribute to a business performing sub-standardly in comparison to its competitors. As
businesses can grow over time into a state of high complexity, an active approach to complexity
management has to be taken. This paper presents the NES classification method, aimed at facili-
tating the modeling and assessment of organizational complexity. Here, any system is classified
as belonging to one of three classes: class N natural, class E engineered, or class S slipped systems.
Operationalizing NES by applying the Tree Attribute Matrix modeling method, this paper describes
exemplary observations made as part of consulting projects that demonstrated typical underperfor-
mance situations resulting from their organizations “slipping” into structures of high complexity, and
includes management measures to reduce complexity and thereby improve performance.

Keywords: complexity management; organizational complexity; performance improvement

1. Introduction

There are many potential reasons for an organization performing below the level of
its competitors: the inability to adapt to a changing market [1,2], a value creation process
inferior to that of the broader industry [3], the low motivation or inadequate training
and flexibility of personnel [4,5], and many others. One cause might also be an internal
organizational structure of high complexity, so much so that management cannot efficiently
collect the information needed, cannot take high-quality decisions, and, once decisions are
taken, cannot effectively implement them—with all of this, in turn, negatively impacting all
the aspects mentioned above: the flexibility of market adaptation processes, value creation
chains, human resource management, and other processes.

In this context, we understand organizational complexity as the degree of differenti-
ation within the entities that constitute an organization [6], thereby generally following
Luhmann [7] and his more general concept of system complexity. Based on that—or a
similar—definition, many authors examine the internal structure of organizations and its
complexity, acknowledging the general necessity to manage the complexity of a structure
for product-, process-, and organization-related reasons [8,9].

To manage complexity, it first has to be modeled and understood by the decision maker.
That necessitates modeling techniques that encapsulate the two fundamental views of an
organization: the structural model describes the fundamental composition of the system
without the detailed examination of elapsing time. On the other hand, the dynamic model
of a system describes processes and other characteristics dependent on elapsing time.

The modeling of organizational dynamics has a long research history [10,11], and is still
a very active field of study both from a methodological point of view [12–14] and regarding
its applications in specific industries [15–17]. In the same vein, modeling methods for the
structure of organizations have seen both historical [8,18,19] and active research [20–22].
In addition to methods specifically designed to capture organizational structures [9,22,23],
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conceptual modeling techniques first developed for simulation modeling, such as event-
activity chains and other methods [24], can help to gain insights into the structure of an
organization. Specifically, complex organizations can be seen as complex systems due to
their typical attributes such as non-linearity, adaptation to external change, internal feed-
back loops, and emergence [25], thereby enabling the use of methods and tools developed
as part of complex systems theory [26]. In the domain of modeling business organizational
structures and behavior over time [27], that might include modeling evolutionary change
in organizations [28], facilitating increased organizational resilience [29], and modeling
mergers and acquisitions [30]. Based on such research and modeling methods for orga-
nizational structure, over the years, a number of approaches for assessing organizational
complexity have been proposed for specific areas such as manufacturing [23,31], supply-
chain management [32], and software architecture [33]. A more general method is Tree
Attribute Matrix (TAM) modeling [34,35], one building block of the NES classification
system discussed below, where organizational structures are decomposed in tree- and
matrix-like aspects—which then allows their degree of organizational complexity to be
assessed and measured.

In this paper, we describe a modeling framework designed to enable management
and consultants to assess organizational complexity, which also helps to identify com-
plexity “hot spots” that can contribute to organizations underperforming compared to
their competitors. Our approach is anchored in cognitive theory and based on the NES
classification method, which we present here to an international audience for the first time
(The NES classification framework has been introduced to a German-speaking audience
in [34]). NES aims to help decision makers with assessing the organizational complexity of
an organization, a step that serves as a starting point for active complexity management.
In NES, any system is classified as belonging to one of three categories: natural systems
(class N), engineered systems (class E), or slipped systems (class S). This classification of
systems is based on the cognitive limits of human understanding as researched in cognitive
theory, specifically by Miller [36] and others. In his seminal study, Miller reports that nearly
all human beings can fully understand and consider only up to seven different units of
information at the same time; his findings were confirmed and refined by neurophysio-
logical studies [37,38], with later researchers claiming a lower short-term memory limit of
five items or less [39,40]. Operationalizing Miller’s findings, his “magical number” gives
an indication for a desirable upper limit for the complexity of an organization: to enable
optimal decision making, no more than seven—preferably, no more than five—facts, items,
or connections should have to be considered in any given action or decision. The NES
method classifies organizations that adhere to that upper limit of complexity as class E.
Such systems might be designed by humans for human use, so they can be understood and
controlled by human operators or managers. Class N natural systems are not the focus of
this paper: they might be part of nature or the environment, often complex or seemingly
chaotic. The third category is the class S of slipped systems—organizations designed by
humans that do not adhere to cognition limits. Such systems might start out as class E
systems but grow over time into a state of high complexity, and so become harder and
harder to understand and to control.

To operationalize NES, we apply TAM modeling—a simple method to assess and
measure complexity in organizations. While applying NES and TAM itself does not reduce
complexity, the gained insights about specific complexity “hot spots” can be used as a
starting point for complexity reduction in specific parts of the organization—bringing
a class S system back to a class E state. To illustrate the application of NES and TAM,
we describe some examples and typical remedies that are often encountered later in the
complexity assessment and management process. While the shared symptom–remedy
combinations are only intended as illustrations, not as strongly justified recommendations,
they can be seen as steps towards defining patterns [41].

This paper continues with a short introduction to the NES classification method,
putting a specific focus on the structure, dynamics, value creation, and inertia of natural,
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engineered, and slipped systems (Section 2). It then goes on to discuss a method to
operationalize the NES classification method to identify organizations with a high potential
for underperformance, proposing to use the TAM modeling method [35] to discern such
slipped systems from their natural and engineered counterparts (Section 3). To illustrate
the process, we then discuss a number of typical symptoms of slipped systems encountered
during consulting projects, including potential methods that might be employed to mitigate
them (Section 4). The paper concludes with a short summary of the lessons learned and an
outlook on further research (Section 5).

2. The NES Classification Method

The NES classification method [34]—the abbreviation NES stands for Natural, Engi-
neered, and Slipped—was designed to facilitate and formalize the discussion of human-
centric systems, with a special focus on modeling, assessing, and, in further steps, improv-
ing organizational complexity. In this context, we define any system as human-centric if it
is designed and constructed by humans and for human usage.

NES examines any given system and, using a number of methods and tools described
below, classifies it as class N, E, or S. Informally, class N natural systems consist of real-
world systems that have not been designed and built by humans, including, in particular,
physical systems that are part of nature and subject of classical and relativistic mechanics,
thermodynamics, or quantum mechanics. These systems are not the focus of this paper.
Class E engineered systems are real-world systems that have been designed and constructed
by humans to serve a specific purpose, and that adhere to certain complexity characteristics
described below. These systems typically include technical systems such as machines, but
also organizations such as businesses, associations, and authorities. Engineered systems are
designed to be controlled by humans—to do that effectively, a human operator or manager
has to be able to understand the causality of modification and effect; only if that condition
holds can an operator/manager purposely use modifications to control the system.

Class S slipped systems also include systems designed by humans. In contrast to
class E systems, though, a class S organization does not adhere to the limits of cognition.
Typically, that results from a too-complex structure, unmanageable dynamic properties,
or the lack of a valid, comprehensible value creation chain. An important subset of class
S consists of systems that, at the time of their design, could be well described as class
E, but have undergone iterative changes that have led to them not adhering to class E
conditions anymore, typically by an increase in their structural complexity over time. Such
slipped systems have thus slipped from the control of their designers, and have evolved
into systems that are not well understood or controllable.

To formalize the discussion, any NES system ϕ is represented as a triple ϕ = (S, W, T)
of the system’s structure S, its value creation W, and its inertia T. Here, a system’s structure
S describe the organizational structure, without regarding elapsing time or corresponding
changes in the system state. Accordingly, the structure of a system can be described without
applying the concept of time. The value creation W describes the aims or the meaning of a
system created by humans. The inertia T describes the changeability of the system, with
value creation kept constant.

In addition to S, W, and T, a system’s dynamics D describe the processes occurring
when the system is “switched on,” in particular when its state changes over time. Modeling
a system’s dynamics corresponds to the calculation of time evolution in a partial differential
equation model [42].

While structure and dynamics can be found in all systems, the aspects of value creation
and inertia are only relevant in the context of human-designed systems. Additionally, the
adequate measures for value creation and inertia are strongly dependent on the characteris-
tics of the specific system under examination and the objectives of the modeling and/or
assessment process.

Structure. In NES, we describe a system’s organizational structure S(V, G) with
V = {v1, . . . , vi, . . . , vn} as a set of variables with |V| = n. With vt

i denoting the value of vi
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at time t, the set of variable values at time t is defined as Vt =
{

vt
1, . . . , vt

i , . . . , vt
n
}

. The
set G = {g1, . . . , gi, . . . , vh} consists of individual transitions vt+∆t

i = gi
(
Θ(gi) ⊆ Vt, ∆t

)
between potential variable states. Here, ∆t is the time step of the state change described as
gi, with Θ(gi) denoting the set of parameters of the transition, i.e., the variables of gi. The
number #Θ(gi) of elements of Θ(gi) is called the span of transition gi.

Through a suitable choice for the value set of vi, both quantitative and qualitative
dependencies of the variables can be represented. If gi is assigned a stochastic function,
stochastic dependencies of the variables can be represented as well.

The structural complexity of the system S(V, G) is defined as KS =

(
#V, max

gi∈G
#Θ(gi)

)
,

with #V as the number of variables and the maximum span any transition gi of the system
includes. A system’s structure can be modelled and assessed using the TAM modeling
method described below.

Dynamics. To model a system’s dynamics over time, we first define an episode
⇀
V = D∗

(
V0, ∆t

)
=
(
V0, . . . , Vt, . . . Vt+∆T , . . .

)
as a sequence of states the system iterates

through if it is executed from a start configuration V0 with time steps ∆t. If V∗ is the set
of permitted start configurations, then D = ∪V∈V∗D∗(V, ∆t) describes the dynamics of
the system with time step ∆t, i.e., all potential sequences of states. In the case that gi is
nondeterministic, i.e., some or all gi are stochastic functions, the sets Vt for the respective
variables vt

i consist of the associated distributions. As this is usually the case in examined
real-world systems, it is often not possible to determine closed-form solutions for the
dynamics of the system. Usually, though, solutions for a subset of the episodes can be
approximated by appropriate sampling, e.g., by applying the Monte Carlo method.

An episode
⇀
V is called a finite episode if

⇀
V is a finite sequence of system states.

Dynamics D are called finite dynamics if the number of all episodes #D contained in set is
finite and all episodes are finite as well.

Value creation. Human-centric systems are designed, built, and operated with a
purpose that is usually some type of value creation. To model that value creation, the value

creation indicator w(
⇀
V) of an episode

⇀
V is defined as a function indicating whether the

aims or purpose of the system has been contributed to through the execution of a finite

episode
⇀
V of D. It is defined as

w(
⇀
V) =

{
1 in case the purpose is reached
0 else.

For a given set VA =
{

V0
1 , . . . , V0

N
}
⊆ V∗ of N initial configurations of a system, the

value creation W(VA, ∆t) for any time increment ∆t is defined as

W(VA, ∆t) =
∑V0∈VA

w
(

D∗
(
V0, ∆t

))
N

It describes the ratio to which the system achieves its goals for a given ∆t. Here, D∗

has to be a finite episode for all V0 ∈ VA . To simplify the notation, a specification of ∆t can
be omitted; value creation is then denoted as W(VA).

Inertia. The inertia of an NES system quantifies its ability to resist changes. In a
human-made system, e.g., a business, this corresponds to restructuring cost, which can be
measured in units of money or time.

Approaching a definition of inertia, we examine the transformation of system
ϕ1 = (S1(V1, G1), W1, T1) to system ϕ2 = (S2(V2, G2), W2, T2). We also assume that for
the permitted initial states VA1 of ϕ1, an equivalent set of initial states VA2 of ϕ2 exists
describing the equivalent initial states.

The transition energy ∆e(ϕ1, ϕ2, ∆t, VA1, VA2) ∈ R with W1 ≥W2 is the energy to be
raised to convert ϕ1 to ϕ2. Inertia T is the least transition energy required to transform
ϕ1 into a system ϕ2 with (greater or) equal value creation and with lower complexity. In
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general: the lower the inertia of a system, the easier it is to simplify it while preserving
value creation.

In real-world businesses or organizations, a transformation to a system with lower
complexity or lower inertia often requires a high transition energy. Transformation to a
more complex or inert system, on the other hand, is usually easy, e.g., simply requiring
additional variables. If interpreted as an effect of thermodynamics, that observation shows
that simple and less inert systems have a lower entropy (or a higher order). In principle,
incremental changes of the system state tend to increase the system’s entropy and make it
more complex and inert.

3. Classifying Slipped Systems

To use NES to identify slipped systems, i.e., systems with a high degree of organiza-
tional complexity, the framework has to be operationalized. To reach that aim we propose
to apply the Tree Attribute Matrix (TAM) modeling method as a tool to assess and measure
a system’s structure S(V, G) with regard to its organizational complexity, and thereby to
identify class S systems. TAM, recapped below based on [35], represents the examined or-
ganizational structure as a collection of interconnected tree and matrix structures annotated
with attributes.

A number of organizational and process modeling methods based on matrices ex-
ist. Those include Design Structure Matrices (DSM) [43,44] and their extensions, notably
Multiple-domain Matrices [45,46] and Domain Mapping Matrices [47]. DSM, based on
adjacency matrices from graph theory [48], allows for the representation of the interdepen-
dencies of elements, for example, steps in business processes [49] or product families [47].
DSM are used as input data for complex clustering, sequencing, and other algorithms and
operators [43,50] designed to analyze the modeled system. While traditionally applied in
the Artificial Intelligence context [51,52], Bayesian Networks [53,54] are another modeling
technique that can be used to assess internal dependencies in the business context [55,56],
including stochastic elements. Specifically, the tree aspects of TAM models can be translated
to Bayesian Networks—even though, for the purpose of the assessment of the organiza-
tional complexity of businesses, TAM trees can be modeled with less overhead. Designed
for that specific purpose, TAM combines stripped-down versions of matrix analysis meth-
ods and graph/tree analysis models. Those simplifications eliminate the option to run
more complex analysis algorithms; however, for our simple method, those are not needed.
The simplified modeling process also saves overhead during the consulting projects.

The following paragraphs explain the basics of TAM and describe how to apply it to
gain systematic metrics to discern natural, engineered, and slipped systems.

3.1. Metrics

The TAM modeling method is based on the observation that the organizational struc-
tures of well-formed human-centric systems, i.e., systems designed by humans and for
human usage, typically exhibit similar patterns that can be visualized by arranging the
system into components (here called aspects) that can be seen as trees, attributes and matri-
ces [34,35,57]. These components can be formally described as three equivalence relations
T̃, Ã, and M̃.

Trees. The TAM modeling process begins with the decomposition of the set of variables
to equivalence classes T ⊆ T, with T being the set of all equivalence classes, using an
equivalence relation vaT̃vb with va, vb ∈ V. Each class T orders its variables to a hierarchical,
tree-like structure that, in TAM, is called an aspect of the system. Within each aspect,
the variables are arranged hierarchically into levels—each variable is only dependent on
variables of the level below. The aspect resulting from this procedure is a tree-like graph (see
Figure 1), with the dependencies of the transitions depicted as edges between the nodes.
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In practical applications, the transitions inside an aspect are often qualitative functions.
These functions often can be translated to plain English statements such as “v1 is present,
if v2 and v3 are present,” with leaf-like variables often carrying more complex semantics.
Usually, the composition and internal structure of an aspect represent an interdependent
part of the real-world system, e.g., raw materials and pre-products in a production line, the
hierarchies in a department, or the steps of a production process. Based on our experience,
the typical simplicity and elegance of the decomposition of a system into aspects results
from the often-observed hierarchical build-up of human-centric systems from functionally
isolated sub-systems.

For each aspect T, the aspect complexity KT(T) is defined as the maximum number
of levels of the aspect tree and the maximum span of any node in T. Based on that, the
aggregated aspect complexity KT̃ is defined as the maximum number of aspects in the
model and the maximum aspect complexity KT of any T:

KT̃ = max(#T, maxT∈TKT(T))

Matrices. While aspects represent sub-systems with hierarchical dependencies, inter-
actions between different aspects are represented by matrices. Here, we focus on the subset
of transitions that belong to variables from one aspect, but which depend on variables from
a different aspect. To that extent we define an equivalence relation M̃ that decomposes this
subset of transitions into equivalence classes M. Assume Ti and Tj are two different aspects
with transition sets Gi and Gj. If there is gi ∈ Gi that depends on at least one variable of Tj,
and also gj ∈ Gj exists depending on at least one variable from Ti, those two transitions are
considered equivalent in relation to M̃, or gi M̃gj. M̃ creates sets of transitions (equivalence
classes) M ⊆M, with M being the set of all those classes.

In practical applications, matrices (see Figure 2) represent dependencies between
aspects of an organization, e.g., products with different sets of features, the responsibility
of department personnel for different products, or interfaces between applications in a
software landscape.
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Any two variables connected by a matrix element are considered dependent, directly
or indirectly, and are denoted by a pair (a1, b1). Similarly, (a1, b2) is a connected pair.
Extending that logic, those two pairs can be considered related, because both have a
common element, a1. This procedure leads to a number of disjointed sets of connection
pairs. In general, this decomposition is denoted as H

(
Ti, Tj, M

)
. The cardinalities of those

sets h are called the lengths l(h), and provide a measure of complexity for matrices. The
matrix complexity KM(M) of a class M connecting Ti and Tj is defined as the maximum of
the lengths of all h ∈ H

(
Ti, Tj, M

)
: KM(M) = max(l(h)

∣∣h ∈ H
(
Ti, Tj, M

)
) .

We can now define the aggregated matrix complexity KM̃ of all M classes as:

KM̃ = max(#M, maxM∈MKM(M)) (1)

Attributes. In TAM, attributes are defined as variables whose dependencies are
contained in one single aspect (see Figure 3), and thus do not contribute to any matrices.
Even if an organization has a large number of these attributes, they would not increase its
structural complexity; attributes are, therefore, not taken into account when determining
the aspect complexity KT and the aggregated aspect complexity KT̃ . To model attributes,
the set of transitions G = GA ∪ GA is dissected into sets of attributed transitions GA and
of non-attributed transitions GA. This separation of transitions GA and GA enables the
distinction of structure-creating transitions in GA and attribute transitions in GA.

With the instruments of aggregated tree complexity KT̃ and aggregated matrix com-
plexity KM̃ in place, we can now assess the aggregated TM complexity of a system, our
central metric to identify slipped systems:

KTM = max(KT̃ , KM̃) (2)

3.2. Discerning Natural, Engineered, and Slipped Systems

Once the examined enterprise is modelled using TAM (see Figure 4), the described
metrics can now be applied to quantitatively discern class N, E, and S systems—with a focus
on identifying and assessing slipped systems. As TAM mainly quantifies and highlights
organizational complexity in a system, that is the main metric applied. In this sub-section
we discuss how the NES classification system discerns the three system classes, beginning
with well-formed class E systems, then describing characteristics of a system that slipped
from class E to class S, and ending with some thoughts on class N systems.
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Any system ϕ is a class E system, if it adheres to the following characteristics:

1. T̃ and M̃ relations are defined with KT̃ ≤ 7, KM̃ ≤ 7, and therefore KTM ≤ 7, with
each existing variable vi being part of a T or A class.

2. The value creation W is defined. An algorithm with linear complexity for the determi-
nation of the value creation indicator w exists.

3. For each state transition ϕ→ ϕ′ , a transitional energy ∆e is defined, with a feasible
method to calculate ∆e being available.
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4. The set of transitions G does not contain any g with temporal uncertainty.

Characteristic 1 prescribes that class E systems can only have a certain maximum
size that is based on the cognitive limits of human understanding (see Section 1). The
permissible number of variables and edges is de facto not a limitation; however, a maximum
of seven T and M classes exists. That clearly limits the degree of structural complexity for
companies. The long-term viability and controllability of companies therefore requires a
deliberate limitation of its structural complexity. Characteristic 2 translates to the demand
that operators and management can actually understand how to achieve the organization’s
purpose—value creation. Characteristic 3 prescribes that for any potentially planned
alteration of the system state, the cost of transition is known or can at least be estimated—if
a manager wants to change a department’s organizational structure, they should be able to
understand the cost of such a move. Characteristic 4 ascertains that a valid assessment of the
duration of transitions is possible, therefore excluding transitions that lead to uncontrollable
bifurcations.

A system ϕ is a class S system, if it adheres to all of the following characteristics:

1. ϕ is not a class E system.
2. T̃ and M̃ relations are defined with KT̃ ≤ |V| and KM̃ ≤ (|V|)2/4.
3. The value creation W is defined, but whether an algorithm to determine the value

creation indicator w exists is inconsequential.
4. For each state transition ϕ→ ϕ′ , a transitional energy ∆e is defined, with a feasible

method to calculate ∆e being available.
5. The set of transitions G does not contain any g with temporal uncertainty.

Characteristic 1 (in combination with characteristics 3, 4, and 5) prescribes for a class S
system an organizational structure that does not adhere to Miller’s rule of a maximum of
seven structural units at any given location in the structure. Then, characteristic 2 reins in
structural requirements a bit, and prescribes that the organization is structured in some
meaningful way, even if it does not adhere to class E requirements. In comparison to the
corresponding class E demand, characteristic 3 requires a value creation chain to exist in
principle, thereby making it at least possible to realize the organization’s purpose. It is not
necessary, though, that value creation indicators are defined. Characteristics 4 and 5 are
carried over from the class E system definition.

In case a system ϕ is neither class E nor class S, then it is class N. It is possible that
systems were designed as class E systems, evolved into class S systems, and finally reached
a state where no value creation W can be calculated for them—so they end up as class N.
An example of this can be a failed state with collapsing central authorities, in which several
groups with different interests fight for regional or local dominance.

4. Typical Symptoms of Slipped Systems

To illustrate the application of NES and TAM, and to further highlight the risk of
organizations gliding from class E to class S over time, and thus becoming more prone to
suffer from high complexity as a factor contributing to underperformance, we describe
a number of examples of typical symptoms of slipped systems. The scenario and the
observations are only slightly abstracted; they are found regularly in any number of
companies examined as part of our consulting projects. To each example we add a potential
countermeasure aimed at reduce complexity and to re-establishing on-par performance.
However, these potential countermeasures are for illustration only, and should not be
regarded as scientifically justified recommendations.

In research, the design and selection of countermeasure actions and action plans
against a lack of performance are considered a part of normative decision theory [58],
with its long research tradition [59,60]. While advanced methods and models are actively
researched [61–63], for our specific purpose, a short discussion of the specific complex-
ity “hot spots” provided by TAM and their contexts is sufficient to illustrate potential
countermeasures. Often, we encounter these recurring observations in medium-sized
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companies with historically grown structures. Typically, a closer investigation shows
the lack of a unifying structure in process and task definition, rules, qualifications, and
communication—individual efforts by employees and management exist, but, in business
practice, an overarching and universally accepted approach is often missing. This histori-
cally grown but inadequate structure induces extra complexity, which burns a significant
share of the resources of the company.

Assume the following scenario based on a mid-sized company with an IT department
of approx. 150 employees. At first glance, the number of employees seems adequate based
on the usual key performance indicators (KPIs). Nevertheless, department performance
is continuously rated poorly, and there is a large backlog of delayed activities. Many
employees show signs of overload and stress, and most customers are unsatisfied with the
services provided. Department management states the need for more personnel to improve
the service level and to clear the backlog. However, several past increases in the budget
and employee numbers have not improved KPIs—the department’s issues do not seem to
disappear with any increase in personnel.

Observation A: Tasks are not well defined. In many of the examined IT departments,
the process of handling customer requests and their resulting activities is not well defined—
a TAM model of the department would show that the “tasks” aspect is not managed
very well (see Figure 5). As no systematization exists for customer requests, resulting
personnel tasks, and potentially internal projects, each customer request (out of the number
r of customer requests) is treated individually. This produces additional complexity and
consumes additional resources for repetitive task analysis.
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Figure 5. Simplified model of tasks and engaged personnel of an IT support department: (a) without
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leading to a sparsely populated matrix.

Measures: A mandatory aspect including all the tasks resulting from customer requests
is established for the IT department. That means that task definitions are created for
activities such as system operations, IT security, and application development and support.
To reduce the TM complexity from KTM ≤ r down to K′TM ≤ 7, and thus fulfill characteristic
1 of a class E system, there should not be more than seven different categories.

Observation B: Roles and responsibilities are not well defined. We often find that
no explicit definition of the roles and responsibilities of the department personnel exist. As
best as they can, the employees practice impromptu “teamwork” where everybody tries to
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help as much as possible (see Figure 6). Each employee is working on all kinds of tasks
because they feel responsible for the whole group. Typically for those cases, more than
30% of the working time is invested to arrange the work into these “teams.”. In the worst
case, this management principle requires keeping up to e2/2 communication channels
for e employees, to ensure that everybody is in the loop and enabled to accomplish their
respective tasks. This extremely high degree of complexity leads to an organization mainly
busy with continuously organizing and re-organizing itself—such a way of structuring
teams obviously does not contribute to an organization’s competitiveness.
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Figure 6. Simplified model of tasks and and roles of an IT support department: (a) no meaningful
roles and responsibilities are defined, individual employees help out as much as they can; (b) the
re-organized department with well-defined task hierarchies (columns) and roles (rows).

Measures: To reduce organizational complexity by better defining roles and responsi-
bilities, a small TAM aspect containing mandatory job categories is established, typically
including roles such as supporter, administrator, operator, and project manager. Mandatory
regulations regarding roles and responsibilities are established by assigning specific tasks
to specific job profiles. At the same time, a qualification roadmap is established for each job
profile, thereby enabling each employee to fulfil their task more effectively and efficiently
over time. No employee is assigned to more than two job categories. With α representing
the number of distinct roles, this simple restructuring reduces organizational complexity
from KTM = α ∗ e2/2 to K′TM = α ≤ 7.

Observation C: No clear understanding by customers. Because of the overall TM
complexity of KTM = r ∗ e2/2 of the—still unreformed—department, its value creation
chain is hard to understand and barely manageable. More specifically, the department
is unable to release valid and robust forecasts for cost, project schedules, and resource
usage. Stakeholders and customers fail to understand the department head’s overall
strategy and lines of thinking because of the spaghetti ball of dependencies. IT employees
are demotivated because each management decision is seen as ad-hoc and—without any
clearly recognizable strategy—has a smack of being despotic.

Measures: The task categories (see Observation A) are systematically applied to estab-
lish standard support and request interfaces towards users. The top-level aspects capturing
the department’s organization are communicated to users and stakeholders to facilitate
their understanding of the IT department’s structures and services. In addition, operative
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human resources planning is based on the task and job profiles, ensuring the availability
of services. Individualized work on tickets and services outside of established categories
is only taken up if important needs exist—thereby further reducing the complexity of
day-to-day task organization.

The application of these—or similar—basic management mechanisms should be a
matter of course—however, we observe quite often that that is not the case. For small teams
of only a very few members, ad-hoc management of individual issues may make sense,
e.g., for an IT department of a very small company. However, if these structures are not
readjusted once the company grows to a certain size, organizational complexity is sneaking
in without being perceived. For a company growing in such a way, originally sleek and
competitive tasks and processes become more and more complex, eating up more and more
resources—reducing the organization’s competitiveness. In short: companies that, over
time, slip from class E to class S suffer from a growing risk to underperform in comparison
to the market.

As described, countermeasures can be taken against that complexity increase: in the
above example, the implementation of the measures A to C based on the introduction
of TAM aspects reduces complexity from KTM = r ∗ e/2 (with r denoting the number of
requests and e the number of employees) down to K′TM = ct ∗ cj (with ct ≤ 7 denoting the
number of task categories and cj ≤ 7 as the number of job profiles). The organizational
structure supporting the business’ value-creating activities becomes understandable and
easy to communicate, procedures and tasks are replicable and do not call for individualized
decision making, and job training becomes more structured. In short: the organization
becomes more competitive.

We do not claim that the described measures were highly innovative in themselves:
instead, they are applications of standard management measures derived from the point of
view of complexity reduction—with the specific aim to move the examined organization
from class S back to class E, and thus to increase its competitiveness.

In most cases, complexity-reduced management leads to smaller teams with more,
but clearly defined, categories of tasks. These tasks are synchronized by a small but
mandatory set of scheduling principles. With the division of labor thus increasing, the
work profiles of the employees become smaller, increasing their specialization and level
of training [3]. Compared to the naïve concept of ad-hoc teams, where everybody helps
out with everything, it seems as if the attractivity and broadness of the jobs is reduced by
mandatory regulations. However, we observed the opposite effect: broadness and a lack of
focus induce stress because there are no supporting guidelines and clear responsibilities [64].
Reducing complexity in the described way facilitates the growth of excellence and the
experience of successful teamwork.

5. Conclusions

This paper examined a high degree of organizational complexity as a potential reason
why organizations underperform. Following an introduction on aims and scope, it pre-
sented the NES classification method that classifies human-designed organizations of high
complexity as class S slipped systems. The paper then recapped the TAM modeling method
as a means to measure organizational complexity—and thus to operationalize NES—and
presented specific characteristics on how to discern natural, engineered, and slipped sys-
tems. It then highlighted several typical examples of specific “hot spots” of complexity in
such slipped systems, and outlined potential countermeasures and their impact.

Generally, a degree of organizational complexity lying above the cognitive limits of
employees and management can contribute to sub-standard organizational performance.
As often noticed in the consulting practice, businesses that grew “organically” over time
tend to slip into structures of a high organizational complexity—that complexity leads
to typical symptoms that increase the ratio of the available resources necessary for a
continuous and ad-hoc reorganization, and thus to a reduction in competitiveness. As a
first step towards mitigation, organizational complexity—both the general complexity of
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an organization as well as specific points of high complexity—can be assessed using the
NES classification and TAM assessment methods. Then, complexity-reducing measures
can be systemically applied that mitigate the diagnosed symptoms and help to reduce that
complexity, moving systems from the “slipped” back to the “engineered” state. For an
organically growing organization, it is therefore beneficial to undertake an active approach
to complexity management.

Those measures are, as described above, typically not outside of standard management
methods—and, therefore, no significant effort has to be taken to convince management and
employees of their benefit. However, they are derived and applied with the specific aim of
complexity reduction, of moving the organization from class S to class E, and thus aim at
increasing its competitiveness and reducing its risk of failure in the market.

We foresee two main areas as a focus for further research.
First, we plan to further validate to what degree the application of the NES toolset

increases the effectiveness and efficiency of organizations. As organizational success is
dependent on a variety of diverse factors such as general economic trends, local or national
policy decisions, the personality of singular entrepreneur figures, or sheer good or bad luck,
a data-driven validation approach would be of enormous complexity, involving surveys
with a large sample size. Instead, we aim to perform a model-based validation process,
where we examine the business processes of a typical organization, decompose them into
individual steps or elements, and weigh these elements by their frequency of occurrence
and impact on operations. Next, each element is run by the NES toolset; simply put, we
examine whether its efficiency would increase or decrease from reductions in organizational
complexity. By summing up the product of the increase/decrease and weight, an indicator
for the general improvement of effectiveness and efficiency can be calculated.

Second, we plan to extend and systemize the presented collection of observations into
a pattern language [41] for typical organizational inefficiencies. Here, the main challenges
include structuring, generalizing, and systemizing the observations perceived as typical
symptoms, so they adhere to the criteria of patterns without losing their specific validity.
Such a structured collection of connected patterns, including archetypical examples and
pathways to solve the inefficiencies, would be based on the validation approach described
above, and would be beneficial for the research community and managers, as well as
consulting practitioners.
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