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Abstract:    Improving simulation performance using activity tracking has attracted attention in the modeling field in recent years. 
The reference to activity had been successfully used to predict and promote the simulation performance. But tracking activity only 
makes use of the inherent performance information contained in the models. In order to extend the activity prediction in modeling, 
we propose the Activity Enhanced Modeling with Activity Meta-Model at the meta level. The meta-model provides a set of 
interfaces to model activity in a specific domain. The activity model transformation in subsequence is devised to solve the simu-
lation difference due to the heterogeneous activity model. Finally, the Resource-Aware Simulation Framework is implemented to 
integrate the activity models in Activity-Based Simulation. The case study shows the improvement brought on by Activity-Based 
Simulation using DEVS. 
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1  Introduction 
 

Much work has been done to improve the per-
formance of simulation, especially parallel simulation. 
Simulation performance is predicted to make the 
partition of models more reasonable. The researches 
roughly are divided into two types: Dynamic Load 
Balancing and Model-Based Performance Predicting 
(Balsamo et al., 2004). The former researches focus 
on the performance data at run-time, the data is ob-
served and recorded to do the analysis using machine 
learning algorithms. The algorithms such as Q 
Learning and Simulated Annealing are applied to find 
the performance trend. The latter researches build 
performance models with the help of mathematical 
formalisms such as Queuing Networks (Petriu and 

Shen, 2002) and Petri-Nets. In some special cases, 
biological models like neural networks are imported. 
The performance model is built by the training proc-
ess. Lots of samples are needed to attain the precise 
parameters that cover all the possibilities in simula-
tion. In summary, the traditional algorithms are all 
performance centered. They try to predict the per-
formance at the simulation level, without touching 
anything in the modeling aspect. Recently, the study 
on activity has become a novel field in performance 
optimization. Different from the traditional method, 
activity is tightly bound up with models. With the 
help of an activity model, the partition of parallel 
simulation is adjusted at runtime to achieve higher 
performance. Activity Tracking (Muzy and Zeigler, 
2008) has been shown to contribute greatly in Forest 
Fire simulation (Xiaolin Hu, 2008), Pipeline of 
Product Transport (Shibata et al., 2012) and Pedes-
trian Crowd simulation (Qiu and Hu, 2013). The 
spatial activity information from tracking is used to 
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reallocate resources. The performance is improved by 
the more reasonable resource allocation. Furthermore, 
weighted activity proposed by (Hu and Zeigler, 2013) 
connects the information from models and the energy 
consumption. However, both the activity tracking and 
the quantization of activity discussed above are still 
limited in the DEVS (Zeigler et al., 2000) field. It 
does not apply the advantages of Domain Specific 
Modeling (DSM). The activity-based techniques still 
meet the problems list below: 
 How to quantify activity of models? 
 How to apply activity-based techniques in spe-

cific domains? 
 How to construct a simulation framework for 

activity-based techniques in domain specific 
modeling? 
We try to solve these problems in the paper. 

Resource usages such as CPU and memory occupa-
tions are used to quantify activity. So the prediction of 
activity can be implemented by calculating the com-
putation and memory occupation of the transitions in 
the near future. Activity Enhanced Modeling is 
proposed to support activity modeling in domain 
specific modeling. Model Transformation of activ-
ity solves the model difference between specific do-
mains and DEVS. Resource-Aware Simulation 
Framework is designed to implement Activity- 
Based Simulation in which a parallel DEVS simu-
lator is modified to meet the requirements from ac-
tivity prediction and Load Balancing. 

The rest of the paper is organized as follows: 
Section 2 introduces the definition of activity. Section 
3 presents Activity Enhanced Modeling. The Ac-
tivity Meta-Model in a specific domain and activity 
model transformation are detailed. Section 4 presents 
Activity-Based Simulation and the implementation 
of Resource-Aware Simulation Framework. Sec-
tion 5 gives the case study to show the improvement 
using Activity-Based Simulation. Section 6 con-
cludes the paper with the summary and discusses the 
future work. 
 
2  Activity 
 

2.1  What is Activity? 
 

It is known that activity should be taken into 
account in the modeling process. The sub-compo-
nents of models are usually running at different ac-
tivity levels during simulation. The activity is dis-

tributed in both the temporal and spatial dimension. 
So we give the definition of activity here. 

Activity is the rate of change of the parameter 
in the temporal and spatial dimensions. It is the 
notion of locality in space and time. 

Forest Fire (Hu et al., 2005; Hu, 2006) and 
Missile Launch are seen as typical examples to de-
scribe activity in both spatial and temporal dimen-
sions. Figure 1 shows the activity intensity of Forest 
Fire. The black and red spots represent the passive 
and active activity regions respectively. Similarly, 
Figure 5 gives an example to describe the activity 
trace with time elapsing. The activity of the model 
usually does not stay at the same level during the 
simulation. The different activity levels indicate the 
different resource needs. The initial static resource 
allocation cannot satisfy the resource needs for the 
whole simulation. The resource disequilibrium lowers 
the simulation performance. So, it is necessary to 
reallocate the resource under the instruction of  
activity. 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2  Activity Formalization 
 

The activity discussed here is the abstraction of 
the physical activity such as the Aircraft Taking Off, 
Missile Launch and Platoon Moving. The physical 
activity describes the active operations or status of 
real systems. Accordingly, we define the activity for 
models that are the abstraction of systems in the real 
world. The formalization of activity in Jamma-
lamadaka (2003), Zeigler et al. (2004), and Muzy et al. 
(2010a; 2010b) is given below: 

0

( )
( )

T t
A t t

t


 

                        (1) 

Φ(t) represents the mathematical abstraction of the 
real system that is either the continuous system or  

Fig. 1 Activity Region of Forest Fire (Hu, 2008)
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discrete system (Discrete Time / Event). In the com-
puter world, models are constructed on the basis of 
the mathematical description. All the continuous 
models are discretized to be discrete time or discrete 
event models. It is because models can only be si-
mulated in a discrete manner in a computer. Therefore 
the mapping from mathematical model to simulation 
model is an approximation process. Likewise, the 
continuous activity model A(t) is also discretized to 
meet the simulation requirements. Actually, the ac-
tivity is measured by the resource usage in the simu-
lation. So the activity model is also approximated by 
the activity of resource usage. According to the defi-
nition of activity, the activity model means the inten-
sity of evolution during the model's life cycle. The 
evolution consists of a large number of transitions in 
the model. So the transition frequency well reflects 
the quantum of activity of resource usage. The activ-
ity formalization by transition in the simulation view 
is listed below: 

( )
RR

H HH
A v t dt                           (2) 

where vH(t) is the frequency of transition i at t from 
physical time H to R. From the aspect of implemen-
tation, the integration is realized by the summary of 
the quantized function. Lots of algorithms have been 
devised to make the quantized results consistent with 
the original continuous models. In Muzy et al. (2008), 
quantization works well by quantizing the state va-
riables of a continuous system in equal quanta. As 
shown in Figure 3, four kinds of transitions (from 1 to 
4) are triggered from physical time H to R. The fre-

quencies of transitions are discrete in the computer 
world. So vH(i) is represented by a piecewise step 
curve along the physical time t. Referring to the 
weighted activity proposed by (Hu and Zeigler, 2013), 
we can also formalize activity in a quantized manner 
as 

1

( ) ( )
n

R
H H phys

i

A v i t i


                        (3) 

where vH(i) is the frequency of the transition i at 
physical time interval Δtphys(i). But in the view of 
implementation, the transitions of models bring the 
computational intensity which is reflected by the CPU 
and memory occupations in the computer. So the 
resource usage such as CPU and memory occupations 
are also considered in the quantification of vH(i). It 
will be discussed later in our work. n is the total 
amount of the different kinds of transitions. Δtphys(i) is 
the physical time cost of transition i from physical 
time H to R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Activity Formalization, from real world to simulation

Fig. 3 Approximation of vH(i) 
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Corresponding with Figure 3, Figure 4 gives a 
simple example of a car moving in a 5*3 map. The 
moving from start point to end point is composed of 
four transitions (vH(1), vH(2), vH(3), and vH(4)) rep-
resented in different colors. The frequency of transi-
tions is computed by the number of the atomic tran-
sition Move from one grid to another. So the values of 
vH(1), vH(2), vH(3), and vH(4) are four, two, three and 
one respectively, the corresponding Δtphys(i)s are 
shown in Figure 3. Obviously, the larger the transition 
frequency, the longer the physical time cost will be. 
The physical time cost is decided by the computa-
tional intensity of transition. It is worth noting that the 
computational intensity of atomic transition Move is 
an important parameter in the quantification of the 
activity model in the moving car example. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 illustrates the whole story of activity 
formalization in a global view. Parallel with the 
modeling of real systems, the idea of how to model 
activity is shown in the bottom of the figure. Based on 
study of the real systems such as Aircraft, Missile and 
Platoon, the modelers are also able to find physical 
activities. The behaviors like aircraft taking off, mis-
sile launch, and platoon moving are considered to be 
the physical activities of real systems. As discussed 
before, the physical activities are modeled in Equa-
tion 1 in the modeling view. Similar to the approxi-
mation from continuous model to discrete event or 
discrete time model, the activity model is also defined 
in Equation 2 by approximation. Because the per-
formance is measured by the resource usage in the 
computer, the activity model is finally formalized in 
Equation 3 with vH(i) represented by resource usage. 
The quantified definition is considered to be equal to 
the abstraction of physical activities in the simulation 
view. 

2.3  Activity in Compositional Model 
 
The activity model defined before only considers 

the activity in the temporal dimension at atomic level. 
It does not take account of the compositional model. 
So we propose Activity Set to define the integral 
activity for the compositional model. Activity Set is 
the integration of activity from active sub-compo-
nents in the physical time span (from H to R). The 
definition of Activity Set is given as: 

{ | ( ( )) 0},

( , , )

j

j

cR AC
H c H

j s

AS A v t

c C s AC H t R

 

   
             (4) 

where AC is the subset of the compositional model's 
state space. It represents the active coordinate collec-
tion for sub-components. s is a collection of 
sub-components' states. It belongs to AC. Cs is the set 
of the active sub-components with state s. cj is an 

active sub-component belonging to Cs. ( )jc

Hv t  repre-

sents the transition intensities (frequencies) of cj in 

the state belongs to s. R
HAS  gives a generalized ac-

tivity representation relying on the AC. AC is a gen-
eral abstraction for active components. It contains the 
relationship between activity and computational in-
tensity of transition. Furthermore, the definition il-
lustrates a principle for the modeler to predict the 
transition intensity in future. 

Additionally, in the view of visual modeling, the 
geographically spatially connected atomic compo-
nents constitute the more complex model. The geo-
graphical locations are also information of the model 
outside the components. Consequently, the activity in 
the spatial dimension is defined corresponding to 
these spatial connection emphasized models. Region 
is a smaller group of the atomic components with 
similar activities. Activity Region defines how these 
regions evolve with time. The definition is given as 
follows: 

( , )

( , )

( , )

{ | ( ( )) 0},

( , , )

x y

x y

cR AC
H c H

x y s

AR A v t

c C s AC H t R

 

   
              (5) 

where C(x,y) is a sub-component at location (x, y). 
Activity Region can be refined with spatial informa-
tion from the atomic activity model in the temporal 
dimension. Take the Missile Launch for example in 
Figure 5, the activity evolves with time elapsing. The 
activity stays zero before the launch time and after the 
exploding time, but jumps to a high level at launch 

Fig. 4 A simple Moving Car example of vH(i)
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time or exploding time. Obviously, the missile activ-
ity at different levels (intensities) is located at dif-
ferent locations respectively. So the X axis is a com-
plement to the description of missile activity that 
evolves with distance to launch position. The bottom 
of the Figure 5 shows the Refinement by distance 
information. The Activity-Time-Distance axis is used 
to show the activity evolution along both the time and 
distance. Actually, the activity spots with time and 
distance are the Activity Regions. In the opposite 
way, the concise and portable activity expression is 
more appropriate in some specific cases. So the ab-
straction named Collapse from Activity Region to 
temporal atomic activity is necessary. Collapse can 
be seen as the projection from Activity Region to 
temporal dimension. As shown in the figure, the Ac-
tivity Region is projected to the Activity-Time plane 
with the loss of distance information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3  Activity Enhanced Modeling 
 

On the basis of the activity formalization dis-
cussed before, we build the model to predict the ac-
tivity in temporal or spatial dimension. Instructed by 
the activity prediction, the computational resource is 
reallocated to improve the simulation performance. It 
is the principle of Activity Enhanced Modeling. The 
activity models come from the frequency and inten-
sity of transition associated tightly to models. So it is 
necessary to build it together with the model itself. 

Domain Specific Modeling (DSM) minimizes acci-
dental complexity of modeling. The models in the 
domain are smaller, more efficient, and easier to un-
derstand. Likewise, the activity models built by 
modelers are attached in the domains too. According 
to the theory of the meta-model, it is a good way to 
build the Activity Meta-Model to extract the com-
mon features in the activity. Then the Activity Me-
ta-Model can be merged into the domain meta-model. 
Therefore the Activity Combined Meta-Model is 
capable of modeling activity for the models in the 
domain. Actually, the Activity Meta-Model provides 
the interfaces for modelers to implement the methods 
to do the activity prediction. 

 
3.1  Activity Meta-Model 

 
Considering the hierarchical cases in the domain, 

the Activity Meta-Model consists of two super 
classes: Atomic Activity (AA) and Model Activity 
(MA). AA is the atomic component that cannot be 
decomposed again. It only supports the temporal 
activity prediction for the atomic component. On the 
other hand, MA predicts the activity of the whole 
model in an entire manner. The hierarchy, structure 
and spatial information are considered in MA. MA 
receives the sub-activities from AA models by asso-
ciation Reporting, then synthesizes the sub-activities 
with the structural information. The activity of the 

 whole model is finally presented by MA. The Ac-
tivity Meta-Model packages represented in UML are 
shown in the left of Figure 6. 

Atomic Activity (AA) is designed on the basis 
of Equation 3. The equation defines the activity in two 
aspects: frequency with intensity of transition vH and 
physical time (Δtphys) consumed by each type of 
transition. AA concerns the types of transitions and 
the transition frequency with intensity. So we define 
the TransitionType to enumerate the types of transi-
tions. The AtomicTransitionTypes in AA are typed 
by TransitionType. This attribute lists all the types of 
transitions in the sub-component. PredictAtomi-
cActivity is the virtual interface for modelers to give 
the function to predict the transition frequency and 
intensity. The results returned by the interface are the 
transitions which will be triggered in future. Last-
TransitionType is used to indicate the last transition 
type in order to match the physical time cost when the 

Fig. 5 Temporal Activity of Missile Launch
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simulation is running. Model Activity predicts activ-
ity in a global perspective. The TransitionTypes 
contain all the transition types occurring in this model. 
The transition types are marked with the sub-com-
ponent. They represent the different activity fre-
quency and intensity, compared to AA, MA empha-
sizes the ActiveSet that is the projection of Active 
Region in the spatial connected models. ActiveSet 
holds the model's current active part to indicate the 
resource need. On the contrary, PassiveSet means  the 
models that will not be active again. Meanwhile, 
UnknownSet consists of the uncertainty in activity 
prediction. ReflectSubActivity is used to receive 
activity from sub-components. PredictActivity cal-
culates the activity of the entire model, including the 
spatial and hierarchical information. LastTransi-
tionAtomic and LastTransitionType output the in-
formation of the last active transitions. They are used 
to construct the Mapping Table (MT) between re-
source usage and transition, which will be discussed 
in the next section together with LastTransitionType 
in AA. Atomic Activity is linked to Model Activity 
by the association Reporting. As a result, all the AA 
models report their activities to the MA model after 
each transition. 

 
3.2  Activity Combined Meta-Model 

 
We combine Activity Meta-Model and the Ar-

bitrary Meta-Model with the meta-model merge 

techniques (Emerson and Sztipanovits, 2006; Lager-
ström et al., 2008). The two packages are merged to 
be the Activity Combined Meta-Model, which is 
shown in the right of Figure 6. The merge operations 
are list below: 
 Atomic Activity (AA) is merged into each 

atomic class in Arbitrary Meta-Model. The 
attributes and operations are directly copied to 
the newly atomic class. AA does not exist in the 
Activity Combined Meta-Model any more. 

 Model Activity (MA) and TransitionType are 
kept in the Activity Combined Meta-Model.  

 The Reporting associations between AA model 
and AA model are resumed. All the atomic 
classes within activity parts are linked to MA by 
Reporting associations. 

 The associations in Arbitrary Meta-Model are 
still kept in Activity Combined Meta-Model. 
We execute the operations as shown in Figure 6, 

MA and TransitionType are copied to Activity 
Combined Meta-model. The activity attributes from 
AA are embedded into the atomic class X and Y. The 
association Reporting is linked to each atomic class 
to connect Model Activity. The association Link1 
between atomic class X and Y is retained. 

 
3.3 Activity Combined Model in General 
Purpose Simulation Formalism (GPSF) 

 
Activity Combined Meta-Model is still an ap-

plication of Domain Specific Modeling (DSM). DSM 

Fig. 6 Activity Meta-Model
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reduces the modeling complexity but bring out the 
difference in simulation (Kelly, 2008). It is impossible 
to establish a universal simulator to run all kinds of 
models in the domain. Compared to solving the dif-
ferences in the simulator, model transformation is 
more immediate and a lot of work has been done 
(D'Abreu and Wainer, 2005). Figure 7 shows the idea 
of how to do the modeling with activity from the 
domain to efficient simulation. The wide top of the 
sand glass indicates plenty of activity combined with 
modeling formalisms in the domains, the narrow 
middle of the glass means the multi-formalisms have 
to be transformed to unified GPSF, and the wide glass 
bottom represents the Resource-Aware Simulator 
that is implemented with many techniques to improve 
efficiency. The resource can be aware of simulators 
under the instruction of the activity model. As a result, 
we have to find a General-Purpose Simulation 
Formalism with highly efficient simulator. Thanks to 
the precise definition, modularity and hierarchy, 
Discrete EVent Specification system (DEVS) is 
chosen to be the General-Purpose Simulation 
Formalism. The introduction of DEVS is detailed in 
Concepcion and Zeigler (1988) and Vangheluwe 
(2000). This portable formalism can be expanded 
more than a discrete event field. Lots of work has 
been done on the modeling of continuous and discrete 
time systems using DEVS. Thus the transformation 
from domain to DEVS is inherently convenient 
compared to other formalisms. Obviously, the model 
transformation from Activity Combined Meta- 
Model to DEVS is composed of two parts: trans-
formation from meta-model in a specific domain to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DEVS and transformation from Activity Meta- 
Model in a specific domain to DEVS. The former part 
has been discussed in Sendall and Kozaczynski 
(2003), Syriani and Vangheluwe (2007), and K. and S. 
(2003). We discuss the activity model transformation 
in detail in the next section. 

 
3.4  Activity Model Transformation 

 
As discussed in section 3.2, the Activity 

Meta-Model consists of Atomic Activity (AA) and 
Model Activity (MA). Therefore, activity model 
transformation is also composed of AA transforma-
tion and MA transformation. It is worth noting that 
AA has been merged into the atomic class of Activity 
Combined Meta-Model. So the source part of AA 
transformation is composed of the activity attributes 
(such as AtomicTransitionTypes) and operations 
(such as OutputAtomicActivity()) while the target 
part consists of the corresponding attributes and op-
erations imbedded inside the atomic DEVS models. 
In the meantime, MA transformation obtains a default 
activity DEVS model called Activity Predictor 
transformed from the MA in a specific domain. Ac-
cording to the theory of model transformation 
(Czarnecki and Helsen, 2003) (Hans Vangheluwe, 
2004), the transformation rules for AA and MA are 
listed respectively. AA transformation rules are: 
 Find the attributes such as AtomicTransition-

Types belonging to AA in each class of Activity 
Combined Meta-Model. 

 Find the corresponding target atomic DEVS 
models transformed from the original class in the 
meta-model in a specific domain. 

 Add these attributes to the states of correspond-
ing atomic DEVS models. 

 Map the operation PredictAtomicActvity() of 
AA to a sub function in internal transition in the 
corresponding atomic DEVS model. 

 Map the operations OutputAtomicActivity() 
and LastTransitionType() of AA to the sub 
functions in the λ function in corresponding 
atomic DEVS model. 

 Transform the type TransitionType to the 
built-in type in DEVS model. 

The rules of MA transformation are listed below: 
 Build an atomic DEVS model Activity Predic-

tor, the model is the target model of MA. 
 Copy the attributes in MA to the model state in 

Activity Predictor. 
Fig. 7 Activity Modeling: From Modeling Domain to 
Efficient Simulation 
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 Transform the operation PredictActivity() to a 
sub function in the internal transition. 

 Embed the operations ReflectSubActivity() and 
ReceiveTrackData() into the external transi-
tion. 

 Integrate LastTransitionType() and Outpu-
tActivity() into the λ function. 
The Reporting associations between activity 

model and sub-components are mapped to the activity 
connections. These connections between activity 
ports are used to report atomic activities to Activity 
Predictor. 

These rules are generated on the basis of source 
target relationship. The rules application scope is 
limited in the models typed by Activity Combined 
Meta-Model. Additionally, activity model transfor-
mation also covers the model related intrinsic activity 
model. The intrinsic model does not evolve with the 
changes of states. Take Missile model for example; 
the activity before launch time and exploding time is 
zero, without regard to the model states evolution. 
The model characteristics of activity are named 
model related intrinsic activity model; it is also ex-
tracted in the process of transformation. These in-
trinsic activity prediction algorithms are finally 
merged together with the attributed related activity 
sub-functions in the internal transition of Activity 
Predictor.  

After activity model transformation, the standard 
definition of Activity Predictor is listed below: 

δP={XP, SP, YP, δint, δext, λ, ta} 
XP={Sub-Activity, Query, TrackData}. SP=ActiveSet 
∪PassiveSet∪UnknownSet∪AllTransitionsMap-
pings. YP={LastTransitionActivity, ActivityPredic-
tion}. δint={PredictActivity()} Internal activity pre-
diction calculation. δext={ReflectSubActivity(), Re-
ceiveTrackData()} The sub-activities collection or 
activity prediction calculation use track data. 
λ={LastTransitionAtomic(), LastTransitionType(), 
OutputActivity()}. Output results are after activity 
prediction. ta: Return the time stamp for the next 
prediction. With the support of activity model trans-
formation, the models in the specific domain are 
transformed to the models within atomic activity and 
Activity Predictor represented in DEVS. Activ-
ity-Based Simulation using DEVS is proposed to 
simulate these models in order to improve the simu-
lation performance. It will be discussed in detail in the 
next section. 

4  Activity-based Simulation using DEVS 
 

The principle of Activity-Based Simulation is 
described in the left part of Figure 8. Models, Simu-
lation Environment and Resource are the basic 
elements in simulation. Load Balance module is 
added as the management part to find the most rea-
sonable partition dynamically at runtime. Simulation 
Environment is used to simulate both the Models 
within Atomic Activity and Activity Predictor. 
Therefore Simulation Environment is composed of 
Original Simulator, Resource Predictor and 
Tracker. Original Simulator simulates the Models 
within Atomic Activity while Resource Predictor 
simulates the Activity Predictor. Tracker is a 
tracking system which tracks the resource usage by 
transitions of models at runtime. 
It is worth noting that the implementation of Original 
Simulator supports parallel simulation so that Load 
Balance module is able to reallocate the Resource. 
Resource such as CPU and memory occupations is 
considered in Activity-based Simulation because the 
performance is mainly measured by the indexes. 
Based on the principle discussed before, it is neces-
sary to answer four questions in order to implement 
the Activity-Based Simulation. The questions are 
listed below: 
 How to track activity in Activity-Based Simu-

lation? 
 How to quantify resource usage in order to 

compute activity? 
 How to predict the activity with the support of 

Activity Predictor at runtime? 
 How to construct the Resource-Aware Simu-

lation Framework? 
 

4.1  Activity Tracking 
 
Activity Tracking discussed in (Muzy and 

Zeigler, 2008) is used to collect the activity data; the 
track data of activity includes: 
 Resource Usage. The resource that has been 

occupied by models evolves with physical time. 
 Performance. The model activity with physical 

time, such as the frequency of model transitions. 
 Resource Allocation. The current resource allo-

cation status. 
 Resource Available. The resource still available 

can be allocated. 
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The query and answer mechanism of Activity 
Tracking is illustrated in the right part of Figure 8. 
The interactions between Load Balance module and 
Resource Predictor are used to obtain the most op-
timal resource allocation. As mentioned before, Re-
source Predictor is a specific simulator to simulate 
Activity Predictor at runtime. Resource Predictor 
provides two types of predictions: static analytical 
prediction and statistical prediction. Static analytical 
prediction comes from the modelers in activity mod-
eling. Take Missile Launch for example; the activity 
before launch and after exploding stays at zero. Sta-
tistical prediction is computed with the help of track 
data from Tracker. Track data indicates the resource 
usage of transitions during the whole simulation, so 
the activity can be obtained by the computation of 
statistical track data of transitions. 

At the beginning of simulation, Load Balance 
module queries the static analytical prediction from 
Resource Predictor. The predictor calculates the 
whole activity trace in the preparation phase. Then the 
static activity distribution along the simulation is 
obtained. Load Balance module allocates the re-
source based on the static analytical prediction replied 
to by Resource Predictor. 

At runtime, Resource Predictor queries the 
track data from Tracker first. Then it generates the 
activity prediction including activity trace, active set, 
passive set and unknown set. The computation of 
prediction is supported by the combination of ana-
lytical and statistical prediction. The static analytical 
prediction is corrected by the statistical track data 
during the simulation. When the query from Load 
Balance module is received, the prediction is fed 
back and a new partition is obtained by the mapping 
from activity to resource usage. 

4.2  Quantization of Resource Usage 
 
As discussed in Activity Tracking, track re-

source usage of transitions of models in simulation is 
a key technique in Activity-Based Simulation. So it is 
important to find measurement of resource usage. In 
the computer world, the computing power is decided 
by the performance of the CPU and the memory, 
especially the CPU. Therefore, the quantification of 
resource usage is realized by the tracking of the CPU 
and memory occupations. 
Because the DEVS is chosen to be the target formal-
ism in implementation, the activity model is also 
realized in a compositional manner. Thus the defini-
tion of Equation 4 can be rewritten below: 

( ){ ( ) | ( ( )) 0},

( , (1, )

jA sR
H j H

j

AR A s v t

s S j m

 

      
  (6) 

where ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}j j j jA s A s A s A s

Hv t F i C i M i  . Aj is 

an atomic DEVS model in Models. m is the count of 
atomic DEVS models in Models. s is a sub state of Aj 

while Sj is the state space of Aj. 
( ) ( )jA sF i is the fre-

quency of transition i in Aj in state s. It is the kernel 
parameter in the activity model. The prediction of 
activity is the prediction of transition frequency. 

( ) ( )jA sC i  and ( ) ( )jA sM i  are the quantifications of the 

computation intensity of transition i. The quantifica-
tions are represented by computation and memory 
occupation of transition i. Firstly, the definition of the 
transition computation is listed as  

  
( ) ( )( ) ( )

(0 ,0 , )

j j
RA s A s

proc occH

j

C i K p i dt

i n j m s S

 

    
                (7) 

i: A transition belongs to Aj. There are n transitions in 
Aj in total. Aj(s): An atomic DEVS model with state s, 

Fig. 8 Activity Tracking
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s∈Sj. δi: The internal function of Aj with transition i. 
δe: The external function of Aj with transition i. H: 
The physical time just before δi or δe. R : The physical 
time after δi or δe. Kproc: The coefficient of CPU per-
formance; it is used to quantify the CPU’s computa-

tional capability. ( ) ( )jA s

occp i : The CPU occupation by 

transition i changing with time of model Aj. 

The precise values of H, R and ( ) ( )jA s

occp i  can be 

measured at run time. But Kproc is not a measurable 
parameter that can be represented by the performance 
data such as a million instructions per second (MIPS) 
(MacNeil, 2004) and the CPU clock speed. Due to the 
inconsistency of measurements, MIPS and CPU clock 
speed are not the reliable parameters to represent the 
computational capability. They are not operation 
system independent. The same test case will give 
different results in different operation systems. To 
solve the problem, we use a common standardized 
test model to acquire Kproc. According to the Equation 
7, Kproc is calculated as 

( )

( )

( )

( )

j

j

A s

proc R A s

occH

C i
K

p i dt




                 (8) 

Here the computation of the common standardized 
test model is known while other parameters can be 
collected in testing. All the machines involved in 
simulation are tested to get the performance coeffi-
cient. Moreover, the standardized test models are 
customized to satisfy the requirements from the 
models in different categories. The customized mod-
els are able to obtain accurate Kproc with the consid-
eration of the computation types such as float point 
operation and integer operation. 
In another respect, the memory occupation is also an 
important resource factor. The performance will be 
lowered greatly when the available memory cannot 
handle the memory requirements from the models. 
The memory occupation for transition i of Aj is de-
fined below: 

( ) ( )( ) ( )j j
RA s A s

occH
M i m i dt                   (9) 

( )jA s

occm : The memory occupation that changes with 

time. The memory is occupied by transition i of model 
Aj. 

Based on these definitions, the measurement 
becomes manipulable. Mapping Table is constructed 
to apply the activity model in the simulation. The 
table matches the activity intensity and resource us-

age. The activity intensity is determined by the tran-
sition types while the resource usage is measured at 
run time. Mapping Table holds and updates the 
mapping relationships when the resource is allocated 
or reallocated. It is worth noting that the mapping 
relationship is organized by the unique activity id 

( )j

C
A iID . The definition of Mapping Table (MT) and 

id are listed as 
( ) ( )

( )

( )

{( , ( ( ), ( )))}

"_" "_"

j j

j

j j

A s A sC
A i

C
A i C A i

MT ID C i M i

ID N N N



        

(10) 

where NC: The name of the coupled DEVS model C. 
NAj: The name of the atomic DEVS model Aj. Ni: The 
name of the transition i. During the simulation, CPU 
and memory occupations of transition i are tracked 
first. Then the quantified results are computed by the 
Equation 7 and Equation 8. Finally the two-tuples are 

assigned to each ( )j

C
A iID  in Mapping Table. The 

generation of the table is finished when all the transi-
tions are covered. With the help of the quantization, 
the resource needs can be calculated by the activity 
prediction and Mapping Table. The prediction out-
puts the activity frequency which lists the transitions 
to be triggered from H to R. With the track data in 
Mapping Table, the transition intensities represented 
by resource usages such as CPU and memory occu-
pations of each transition are found. By the calcula-
tion of transition information and resource usages, the 
resource need from H to R is obtained in the end. 

 
4.3  Resource-Aware Simulation Framework 

 
Figure 9 proposes the framework of resource- 

aware simulation. The framework is divided into two 
steps: modeling and simulation. In the Activity En-
hanced Modeling step, the meta-model for both the 
model itself and activity are built for the Activ-
ity-Based Simulation. Instantiated by the me-
ta-model, the generated model in the domain is 
composed of the original model and activity model. 
With the help of model transformation, the model is 
transformed to GPSF (DEVS) domain. The model in 
GPSF consists of the original model within atomic 
activity models represented in DEVS and the activity 
model called Activity Predictor with connections 
with atomic activity models inside the original model. 
Activity Predictor includes the model attributed 
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related activity model and model related intrinsic 
activity. As discussed in Section 3.4, modelers don't 
have to describe the intrinsic activity features in the 
Activity Meta-Model in the specific domain, the 
transformation collects the instinct information and 
adds them to the activity model in GPSF (DEVS). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the Activity-based Simulation step, the 

original parallel DEVS simulator is extended to con-
struct the Resource-Aware Simulator. Tracker 
module, Resource Predictor module and Local Pool 
are added to the new simulator. Original models in 
DEVS are still simulated by the original parallel 
DEVS simulator. Tracker module tracks the CPU and 
memory occupations (resource usage) by models' 
computation. The track data are stored in Local Pool 
and reported to Resource Predictor. As a specific 
simulator for Activity Predictor, Resource Predic-
tor receives the track data, makes the activity predic-
tion and answers the activity query from Load Bal-
ance module. It is worth indicating that the activity 
discussed here is the activity of an LP (Local Process) 
in parallel simulation. Load Balance module collects 
the activity information from all LPs in parallel 
simulation. Meanwhile, the activity information is 
stored in Activity Data Pool in case of global activity 

computation for Load Balance module. Repartition 
is made by Load Balance module when the condi-
tions of overload are met at runtime. Additionally, 
Global Models States Pool is implemented to store 
the states for models located at all LPs. When the 
Load Balance module triggers the repartition, the 
states of all models are stored in the pool. The states 
are restored from the pool after repartition. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Resource Reallocation with Activity Pre-
diction 

 
With the help of activity prediction in Resource 

Aware Simulation Framework, Load Balance 
module is able to make resource realloca-
tion(Repartition) during simulation in order to avoid 
LP overload and improve the performance. Load 
Balance module queries activity predictions from 
Activity Predictor. Activity predictions provide the 
resource usage of each LP in future. So the resource 
usage of all LPs can be predicted by Load Balance 
module. Then the module adjusts the resource allo-
cation to find the most optimal partition. The work 
process is illustrated in detail in Figure 10. 

Different from the original simulation shown in 
the left part of the figure, activity prediction and re-
source reallocation are coupled into the resource- 
aware simulation. Just after the starting of simulation, 
Resource Predictor and Tracker are activated. 

Fig. 10 The Work Process of Activity Predictor 

Fig. 9 The Framework of Resource-Aware Simulation 
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Tracker tracks the resource usage of transitions of 
models simulated in the original simulation. The track 
data are reported to Activity Predictor simulated by 
Resource Predictor. Mapping Table, which records 
the mapping between the transitions and resource 
usage, is built gradually along the simulation. When 
all the transitions defined in activity models are cov-
ered, the preparation of activity prediction is finished. 
In response to the query from Load Balance module, 
Activity Predictor makes the prediction of the cur-
rent LP and sends it back. If the current partition 
cannot meet the requirements of activities received 
from all the LPs, Load Balance module finds the 
overload and available LPs. Then the resource allo-
cations are triggered. The process of reallocation falls 
into five steps: Pause the simulation, Save the states 
of models in Global Models States Pool, Repartition 
the models according to the activity, Restore the state 
from Global State Pool, and Continue the simulation. 
However, there are two problems still not interpreted 
by Figure 10: How to do the Load Balance and how 
to find the overload LP in resource-aware simulation. 
For the former problem, we reuse the Load Balance 
algorithms in Deelman and Szymanski (1998) in the 
implementation of Resource-Aware Simulator. It is 
because our case study is a typical spatial distribution 
model. For the second problem, we give the defini-
tions of average computation and memory occupation 
of LP with support of quantification of resource us-
age. 

( ) ( )

1 1

( ) * ( )

( , )

j j

l

n mR A s A s

H
i jAve

LP

F i C i dt

C H R
R H

 
 





 

(11) 

( )

1 1

( )

( , )

j

l

n mR A s

occH
i jAve

LP

m i dt

M H R
R H

 




    

(12) 

1

( )
k

i

Partition P l


 
         

(13) 

LPl: A LP in parallel simulation; there are k LPs in 
total. P(l): The partition located in LPl. Aj(s): A atomic 
DEVS model belongs to P(l) with state s. i: A transi-
tion of Aj. H: The input start time of LPl for compu-
tation. R: The input end time of LPl for computation. 
Overload means the resource need exceeds the LP 

limitations. With the help of 
l

Ave
LPC  and 

l

Ave
LPM , the 

conditions of LP overload from time H to R are de-
fined below: 

( , ) { ( , ) 1,

( , ) ( )}

l

l

O Ave
l LP

Ave
LP l

LP H R C H R

M H R Mem LP

 


    

(14) 

Mem(LPl): The memory allocated for LPl. 
It means the LP is overloaded when the average 

CPU occupation is much larger than one hundred 
percent or the average memory occupation is much 
larger than the allocated memory. The reallocation is 
triggered when the LPs are in the conditions men-
tioned before. It is worth indicating that the realloca-
tion is sometimes time consuming, so the reallocation 
cost is possibly larger than the improved performance. 
We have to take account of it before reallocation, 
otherwise the simulation performance is even de-
creased. 

 
 

5  Case Study 
 

5.1  Model Description 
 
We model the March Map and its activity to 

testify the performance improvement brought on by 
Activity Enhanced Modeling and Activity-Based 
Simulation using DEVS. March Map constituted by 
Grids is usually a typical case to simulate the combat 
simulation. The composition of Grids is seen as the 
battlefield, the platoons move, rest and fight in the 
transitable Grid with the terrain such as field, pool 
and road. When a Grid meets the collision by Pla-
toons in different colors, the fight happens. In the 
modeling view, March Map is modeled in the spa-
tial-oriented representation. Grid is an atomic model 
that cannot be decomposed again. The Grids are 
spatially linked together to construct the March Map. 
Platoons are modeled as the events sent and received 
by Grids. 

 
5.2  Activity Model of March Map 

 
Obviously, March Map is a typical spatial composi-
tional model. So the quantified definition of activity 
model in Equation 6 can be improved with the help of 
Activity Region definition in Equation 5. The defi-
nition for the activity model of March Map is listed 
as 

( , ) ( )

( , )

( , )

{ ( ) | ( ( )) 0},

, (1, ), (1, )

x yG sR
H x y H

x y

AR G s v t

s S x m y n

 

     
  (15) 
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where  
( , ) ( , ) ( , ) ( , )( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}x y x y x y x yG s G s G s G s

Hv t F i C i M i   

G(x,y)is an atomic Grid model with location (x,y). The 
width of Grids is m while the length is n. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to the description of March Map, a 
Grid can be linked with other Grids in four directions. 
The states of Grid are composed of Terrain, Platoons, 
Platoon State and Abut Grids. It is easy to build the 
meta-model of March Map with these attributes. In 
the view of Activity Enhanced Modeling, the Grids 
with Platoons inside are active because of the com-
putation for Platoon tasks. So the transitions of Grid 
are the basic elements in Atomic Activity for the 
activity model. Based on the merge operations dis-
cussed in section 3.2, activity combined meta-model 
of March Map is devised as Figure 11. The attributes 
are listed in Table 1. The complementary activity 
attributes and operations are merged inside the Grid 
model. Grid is linked to Model Activity by the as-

sociation Reporting as discussed in section 3.2. 
Platoon is modeled to be the events with attributes 
such as Size, DamageState, Task, Direction, CurState. 
The model of March Map is instantiated by the me-
ta-model as shown in  Figure 12. The red and blue 
Platoons move on the 6*6 March Map, they happen 
to meet at some Grid and the fighting is triggered. 

 
 
 
 
 
 
 
 
 
 
 
 

 
5.3  DEVS Representation of March Map 

 
Based on the Activity Enhanced Modeling, 

models with activity model have to be transformed 
into the GPSF. Therefore the models of March Map 
in a specific domain are transformed into DEVS be-
fore simulation. According to the rules of Model 
Transformation, March Map represented in DEVS 
is shown as 

δG={XG, SG, YG, δint, δext, λ, ta} 
XG={Platoons}. SG={Terrain, Platoons, AbutGrids, 
ActiveState,  GridTransitionTypes}. YG={Platoons, 
NextGrid, LastTransitionType}. 
δint={ExecutePltoonsTasks()} Internal Grid function. 
δext={GetLeavingPlatoons(), LastTransitionType(), 
GetActiveState()} External Grid sub functions in-
cluding the leaving platoons and atomic activity in-
formation. λ={SendPlatoons(), SendLastTransition-
Type(), SendActiveState(), SendNextGrid()} 

Send Platoons to other Grid, Output activity 
information to Activity Predictor. ta: Return the time 
stamp for the next prediction. The atomic activity 
model is imbedded in Grid model. ActiveState de-
pends on the attributes Terrain and Platoon Task. 
GridTransitionTypes are decided by the Platoon 
Task and the activity prediction is made by NextGrid 
calculated by the moving directions of Platoon. 
These value sets of the Grid states are list in Table 1. 

Fig. 11 the Activity Combined Meta-Model 

Fig. 12 the Model of March Map 

Table 1 Grid Attributes 

Attribute Name Value Set 

Terrain Road, Field, River, Mountain 

Platoon 
Null, Red Platoon, Blue Platoon, 

Red and Blue Platoons 
Platoon State Moving, Resting, Fighting 

Abut Grids 
Left, Left-up, Left-down, Down, 

Right-down, Right, Right-up, Up

Grid Transition Type
Null, Move_Road, Move_Field, 

Rest_Road, Rest_Field, 
Fight_Road, Fight_Field 
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In other words, the Platoon Task and Platoon Di-
rection decide the next active Grid and its state. The 
next possible Grid is one of the eight neighbors listed 
in the Abut Grids. So the atomic activity prediction 
outputs both the current and next active state of Grid. 
Moreover, Activity Predictor is also obtained from 
the Model Transformation, the model is listed be-
low: 

δP={XP, SP, YP, δint, δext, λ, ta} 
XP={GridTransitionTypes, Query, TrackData, 
NextGrids}. SP=ActiveSet∪PassiveSet∪Unknown-
Set∪AllTransitionsMappings. 
YP={LastTransitionActivity, ActivityPrediction}. 
δint={MakeTransitionMappings(), PredictActivity()} 
Internal activity prediction calculation. 
δext={ReflectGridTransitions(), RecieveNextGrids(), 
ReceiveGridActiveState(), ReceiveTrackData()}. 

Eternal activity functions include the sub-ac-
tivities collection or activity prediction calculation 
using track data. λ={OutputActivity()} Output results 
after activity prediction. ta: Return the time stamp for 
the next prediction. Activity Predictor collects the 
activity from all the Grids via the Reporting asso-
ciation. Activity Region including ActiveGridSet, 
PassiveGridSet and UnknownGridSet are gener-
ated by assembling the separated Grid activity. Ac-
tiveGridSet is composed by the Grids within Pla-
toon. PassiveGridSet consists of the Grids where the 
terrain is mountain or river. The remaining Grids 
compose the UnknownGridSet. The Activity Re-
gion is changing by the movements of Platoons 
during the simulation. AllTransitionsMappings 
which are implemented by Mapping Table are built 
by the GridTransitionTypes and TrackData from 
Tracker mentioned before. When the Query from 
Load Balance module is received, Activity Predic-
tor replies to the activity predictions. 

 
5.4  Activity Prediction in Resource-Aware 
Simulation 

 
The Resource-Aware Simulation runs on a 

computer with a four cores Intel i5-2300 CPU @2.8 
GHz and 4GB RAM. The models of March Map 
represented in DEVS are programmed in C++ in an 
object oriented fashion. The DEVS simulator of tool 
OneModel (Guo, 2013) and (Boukerche and Das, 
1997) is used as the Original Parallel DEVS Simu-

lator. The communications between simulators in 
different LPs use the MPI message passing library. 
Tracker, Resource Predictor and Load Balance 
module are also implemented in C++. Local Pool, 
Track Data Pool and Global Models States Pool are 
all implemented by MySQL (WELLING and 
THOMSON, 2005). 

As discussed in Section 4.4, Mapping Table is 
built in simulation to store the track data for Activity 
Predictor. The table is shown below within the track 
data of transitions in Grids. 

(1,1)

(1,1)

(1,1)

(1,1)

(2,2)

(2,2)

_ _ (0.014,232K)

_ Re _ (0.009,240K)

_ _ (0.023,241K)

_ Re _ (0.008,220K)

_ _ (0.001,217K)

_ Re _ (0.003,249K)

... ...

G Move Road

G st Road

G Move Field

G st Field

G Move Road

G st Road

 
 
 
 
 
 
 
 
 
  

    

(16) 

The left column of Mapping Table lists transition 
IDs which are composed according to Equation 10. 
The right column is the two-tuples including compu-
tation and memory occupation. Memory occupations 
are directly assigned by track data, but the transition 
computations recorded directly by the operation sys-
tem need to be corrected because of the measurement 
errors. The correction is made by the average of CPU 
occupations. Base on Equation 7, the computation of 
transitions are quantified below:

 ( , )

( , ) ( , )

( , )

( )

( )
1

1
( ) * ( )

( )

G x y
pas

x y x y

x y

n i
G G

proc OCC rG
rpas

C i K p i
n i 

 

 

(17) 

G(x,y) is a Grid in March Map, (x,y) is the location of 
the Grid while m is the size of the Grids. i is a tran-

sition of Grid such as Move_Road. ( , ) ( )x yGC i  is the 

computation usage by transition i. ( , )

( )( )x yG

OCC rp i is the 

rth (1≤r≤ ( , ) ( )x yG

pasn i ) record of CPU occupation by 

transition i of G(x,y). These values of CPU occupation 
are recorded by the task manager of the operation 

system at runtime. ( , ) ( )x yG

pasn i  is the number of transi-

tion i which has been executed by G(x,y). ( , )

( )( )x yG

OCC rp i  

and ( , ) ( )x yG

pasn i  are restored in the Track Data Pool 

mentioned before. They are tracked to predict the 
computation for the transition i in model G(x,y). 

Figure 13 and Figure 14 present two snapshots of 
activity prediction and partition during simulation. In 

un
ed
it
ed



Chen et al. / J Zhejiang Univ-Sci C (Comput & Electron)  in press 15

Figure 13, both Platoons in red and blue just finished 
the first step in their initial Grids. They will be sent to 
the next Grids in the next step. Based on the current 
states of Grids and activity model, the ActiveSet, 
PassiveSet and UnknownSet are generated by activ-
ity prediction. As shown in the Figure, G(2,2) and 
G(6,2)in red compose the ActiveSet. Meanwhile, the 
possible Grids for Platoons are filled by green be-
longing to the UnknownSet. The rest Grids filled by 
grey compose the PassiveSet. The partition is still in 
its initial state in which the 36 Grids are distributed 
evenly to four LPs. With the help of Equations 11, 12 
and 13, the activity of Grids can be predicted as 

( , ) ( , )

( , ) ( ) 1

1
( , ) ( )* ( )*x y x y

l

x y

n
G GAve

LP
G P l i

C H R F i C i t
t  

 
    

 
(18) 

( , )
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1
( , ) ( )*x y

l

x y

n
GAve

LP occ
G P l i

M H R m i t
t  

 
  

  

(19) 

( , ) ( )x yGC i  is the computation by transition i of G(x,y), 

the value is computed by Equation 17. ( , ) ( )x yGF i  is the 

transition frequency predicted for i of G(x,y). The fre-
quency is predicted by internal activity prediction 
function in Activity Predictor. In our case, this in-
formation is acquired with the help of current loca-
tions and simulation scenario. The Platoons follow 
the assigned tasks in scenario, so the next actions can 
be predicted according to the tasks and current states. 
∆t is the physical time cost for each step. Because 
March Map is a typical chess-like model, the models 
are computed step by step. So the time cost of com-
putation is recorded according to the time step in 
simulation. In another words, the time factor in the 
computation of LP is seen as an average value for 
transitions. As a result, the computation and memory 
occupation of LPs are listed below: 

( , ) ( , )

( , ) ( ) 1

( ) ( ) * ( )x y x y

l

x y

n
G GAve

LP
G P l i

C t F i C i 
 

   
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n
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Obviously, the models located in LP3 and LP4 all 

belong to PassiveSet. So the ( , ) ( )x yGC i  and the tran-

sition frequencies ( , ) ( )x yGF i predicted by Activity 

Predictor in LP3 and LP4 are all zero. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So the predictions of the computation of LPs are 
listed below: 

1 3

2 4

( ) ( ) 0

( ) ( ) 0

Ave Ave
LP LP

Ave Ave
LP LP

C t C t

C t C t

   

   
 

As a result, the resource allocated to LP3 and LP4 is 
wasted in the current partition in this step; it is nec-
essary to repartition the models. Figure 14 gives the 
activity prediction and new partition of the next step. 
With the help of move directions of Platoons, Ac-
tiveSet, PassiveSet and UnknownSet are updated by 
the activity model. According to the activity infor-
mation, Load Balance module reallocates the re-
source, the new partition ignores the Grids in the 
bottom which will not be activated in the near future. 
Now the number of Grids located in each LP is six. 
24 Grids are maintained in the simulation with four 
LPs. According to Equation 13, the new partition is 
listed below: 

Partition={P(1), P(2), P(3), P(4)} 
P(1)={G(x,y)|(1≤x≤3, 1≤y≤2)}, 
P(2)={G(x,y)|(4≤x≤6, 1≤y≤2)}, 
P(2)={G(x,y)|(1≤x≤3, 3≤y≤4)}, 
P(3)={G(x,y)|(4≤x≤6, 3≤y≤4)}. 

Fig. 14 The Activity Prediction and Partition of Second Step

Fig. 13 The Activity Prediction and Partition of First Step
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The new partition distributes ActiveSet and 
UnknownSet into four LPs evenly. Theoretically, 
without the consideration of cost by activity predic-
tion and load balance, the load from models is 
two-thirds of the static partition case. 

In addition, Figure 15 presents the activity pre-
diction supported by analytic prediction. Usually, the 
dynamic activity predictions are limited inside the 
moving windows because of the non-deterministic 
and randomness of models when the simulation is 
being made. But in our case, the Platoon routes are 
assigned in initialization at the beginning of the si-
mulation. The chess like models that follow the cer-
tain rules do not bring randomness into the simulation. 
The moving windows are extended to the whole si-
mulation process without bringing errors. So the ac-
tivity prediction for the whole simulation can be made 
for the March Map. In consequence, ActiveSet and 
PassiveSet are reported to Load Balance module to 
find the optimal partition shown in Figure 15. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.5  Results Analysis 
 
Figure 16 shows the experimental results of the 

March Map. As shown by the curve, activity com-
bined simulation is more efficient in the comparison 
with the original simulation. With the increase in 
Grids size, the physical time cost by activity com-
bined simulation increases linearly while the original 
simulation reflects a quadratic increase of physical 
time needed. The great performance improvement 
comes from the activity prediction which indicates 
the active Grids. Though the Grids size increases in a 
quadratic manner, the Platoons are still limited in 
some fixed area according to the assigned tasks. The 
range of the active area relies on the length of the 
March Map. In consequence, the Grids that Platoons 
will not enter are seen as passive so that the simulator 
can ignore them. The overhead of these Grids is saved. 
As a result, the performance is improved a lot. 

From another aspect, the curve in Figure 17 il-
lustrates the accuracy of the transition computation. 
The Grid transitions are categorized into several 
levels such as Move_Road and Fight_Field list in 
Table 1. Because the models of Grids are all iso-
morphic, the transitions are summarized together in 
order to show the obvious change in experiment re-
sults. The computation of transition Move_Road of 
Grids is predicted in the equation below: 

 

( , ) ( , )

1 1

( , ) ( , ) * ( , )x y x y

m m
G GGrids

m m m
x y

C i T F i T C i T  
 

 
 

(20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 the Partition with Analytic Activity Prediction

Fig. 16 the Performance of the Activity Combined Simulation 
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T is the simulation time. im is the transition 

Move_Road. ( , )Grids
mC i T  is the prediction of integral 

computation by transition Move_Road of the whole 

Grid models at simulation time T. ( , ) ( , )x yG

mC i T is the 

computatio n by transition Move_Road of G(x,y) 
computed by Equation 17 at simulation time T. 

( , ) ( , )x yG

mF i T is the frequency of transition Move_ 

Road in G(x,y). The frequency is predicted by internal 
activity prediction function in Activity Predictor at 
simulation time T. 

Based on Equation 20, the experiments show 
how to obtain the accurate transition computation. 
The straight red line is the real computation for the 
Move_Road transition. The real value collected at the 
end of the simulation is used as an accurate datum line 
for the prediction. The blue curve shows the predicted 
computation by Move_Road during the simulation. 

The curve indicates that the prediction at the 
beginning stays at the zero because of the inaccuracy 
of measurement (The tracked CPU occupation of 
Move_Road approximates to the zero). Thanks to the 
accumulation of the track data, the prediction ap-
proaches the accurate value along the simulation.  
According to the figure, the predicted value oscillates 
closely to the datum line after the 1400 s. The pre-
diction is favored by the correct transition frequency 
prediction and the growing accuracy of the average 
CPU occupation by the transition. 

In summary, the March Map case shows how to 
implement the activity combined model in our  
Resource-Aware Simulation Framework. The  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

information from separated Atomic Activity is inte-
grated by Model Activity to obtain Activity Region. 
The region focuses on the locations of active Grid and 
finds the active area for the simulation. With the 
feedback of activity, resources can be allocated more 
reasonably and the performance is improved. It can be 
concluded that the larger the March Map, the better 
the performance that will be acquired from the activ-
ity prediction. 

 
 

6  Conclusions 
 
Modeling activity has been shown to be a good 

method for modelers to make a great contribution in 
the improvement of simulation efficiency. The activ-
ity definition is given in a continuous system first and 
extended to discrete expression later. Considering the 
model structure, the activity in the compositional 
model is discussed. Furthermore, the spatial activity 
model is defined to add spatial information to the 
formalization. Activity Enhanced Modeling starts 
with the Activity Meta-model, the meta-model in a 
specific domain will be transformed to the GPSF 
representation. The transformation not only trans-
forms the attributed related activity model, but also 
generates the model related intrinsic activity model. 
We present the Resource-Aware Simulation 
Framework to drive the activity model in simulation. 
Activity tracking and quantization are implemented in 
the framework. The case study gives an example to 
apply the activity model in simulation. It testifies that 

Fig. 17 the prediction of computation of Move_Road Transitions 
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the modeling considered activity improves the simu-
lation performance. 

In summary, the features of activity-based 
simulation are listed below: 
 Activity Enhanced Modeling gives a method to 

define the activity model in a specific domain. 
 Domain specific activity modeling maintains the 

advantages in minimizing the modeling acci-
dence. 

 The quantization of activity and resources make 
possible the application of the activity model in 
the simulation.  

 Resource-aware Simulation Framework im-
plements the activity-based simulation, the 
framework integrates the activity in both mod-
eling and simulation aspects. 
In future, more cases are needed to extract the 

more refined Activity Meta-Model. The meta- 
modeling of intrinsic activity information should be 
considered in Activity Enhanced Modeling. We also 
have to do more work on resource reallocation in 
Resource-Aware Simulation Framework. The ob-
servation and measurement of the reallocation costs 
are needed so that we can decide whether the per-
formance is indeed improved. 
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