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Abstract

DEVS ([7]) is a well known formalism for modelling
discrete-event, continuous-time systems, suitable for the
definition of efficient simulators of those systems. A
tool is presented which allows the graphical definition of
DEVS models. The tool is capable of generating a rep-
resentation suitable for simulation by the PythonDEVS
simulator, an implementation of the standard classic
DEVS simulation algorithm. The tool itself is automati-
cally generated from a meta-model. The simulator gen-
eration is realized by graph-transformation. The paper
demonstrates how dedicated modelling and simulation
environments can be easily generated from meta-models
and graph-transformation environments.

Keywords: DEVS, Graph-transformation, Meta-
modelling, simulation.

1 INTRODUCTION

The behaviour of many dynamic systems can be mod-
elled by describing how the system reacts to external
stimuli as a function of time. In particular, the behaviour
can be described by the internal changes of the system
and what output it generates. Complex dynamic sys-
tems are conveniently described in a compositional or
component-based fashion, that is, a complex system can
be described in terms of subsystems. This structure has
two central aspects: containment and connectivity.

One formalism that combines these features in systems
modelling is the so-called DEVS formalism [7]. Some
of the advantages of the DEVS formalism are that it
permits the hierarchical description of systems and that
there are efficient algorithms for their simulation.

The possibility of defining DEVS models in terms
of interconnected submodels makes it natural to de-
scribe such models in a graphical fashion. This would
naturally lead to a formal description of the opera-

tional semantics of the formalism by means of graph-
rewriting. However, this is beyond the scope of this
paper. Here, we present a tool constructed by means
of meta-modelling which uses graph transformation to
generate a simulator for specific models. The tool as a
whole can be seen as a visual modelling and simulation
environment.

The purpose of the paper is to show that graphical repre-
sentations and graph-transformation techniques are suit-
able to model and simulate complex systems. The rest
of the paper is organised as follows. Section 2 presents a
brief review of the DEVS formalism. Section 3 presents
the tool itself. Section 4 discusses the code generated
by the tool and the PythonDEVS framework. Section
5 reviews some basic concepts about meta-modelling
and graph-transformation. Section 6 presents the code
generation scheme. Section 7 has some concluding re-
marks.

2 THE DEVS FORMALISM
In this section we briefly recall the definition of DEVS
models [7]. A DEVS model is either atomic or coupled.
An atomic model describes a simple system. A coupled
model is the composition of several submodels which
can be atomic or coupled. Submodels have ports, which
are connected by channels. Ports have a type: they are
either input or output ports. Ports and channels allow
a model to receive and send signals from and to other
models respectively. A channel must go from an output
port of some model to an input port of a different model,
from an input port in a coupled model to an input port
of one of its submodels, or from an output port of a sub-
model to an output port of its parent model.

An atomic model has, in addition to ports, a set of states,
one of which is the initial state, and two types of transi-
tions between states: internal and external. Associated
with each state is a time-advance and an output.



Definition 1 (Atomic DEVS). 1

An atomic DEVS is a tuple
�
S � X � Y � δint � δext � λ � τ � where

S is a set of states, X is a set of input events, Y is a
set of output events, δint : S � S is the internal tran-
sition function, δext : Q � X � S is the external tran-
sition function, λ : S � Y is the output function and
τ : S �����0 is the time-advance function.

In this definition, Q
de f	�
 � s � e �� S ��� ��� 0 � e � τ

�
s ���

is called the total-state space, for each
�
s � e ��� Q, e is

called the elapsed-time.2

Informally the operational semantics of an atomic
model are as follows: the atomic model starts in its ini-
tial state, and it will remain in any given state for as long
as its corresponding time-advance specifies or until in-
put is received on some port. If no input is received,
when the time of the state expires, the model sends out-
put as specified in the state (before changing the state),
and then it jumps to the new state as specified by the
internal transition for that state. On the other hand, if
input is received before the time for the next internal
transition expires, then it is the external transition func-
tion which is applied. The external transition depends
on the current state, the time elapsed since the last tran-
sition and the inputs from the input ports.

The following definition formalises the concept of cou-
pled DEVS models3.

Definition 2 (Coupled DEVS).
A coupled DEVS named D is a tuple�
X � Y � N � M � I � Z � select � where X is a set of input

events, Y is a set of output events, N is a set of com-
ponent names such that D �� N, M 	�
 Mn � n � N � Mn

is a DEVS model (atomic or coupled) with input set
Xn and output set Yn � is a set of DEVS submodels,
I 	�
 In � n � N � In � N � 
 D ��� is a set of influencer sets
for each component named n, Z 	�
 Zi � n ��� n � N � i �
In  Zi � n : Yi � Xn or ZD � n : X � Xn or Zi �D : Yi � Y � is
a set of transfer functions from each component i to
some component n, and select : 2N � N is the select
function.

1For the sake of simplicity, we do not present a formalisation of
the concept of “ports”.

2 !#"
0 denotes the positive reals with zero included.

3For the sake of simplicity, this “formalisation” leaves out many
important details. In particular, as in the atomic case, it does not deal
with the subtleties of ports in the formalism, and it leaves out the proof
of well-definedness for coupled models, which relies on the fact that
DEVS models are closed under coupling, i.e. for each coupled DEVS
one can construct a bisimilar atomic DEVS. For the purposes of this
paper these definitions suffice.

Connectivity of submodels is expressed by the influ-
encer set of each component. Note that for a given
model n, this set includes not only the external models
that provide inputs to n, but also its own internal sub-
models that produce its output (if n is a coupled model.)
Transfer functions represent output-to-input translations
between components, and can be thought of as channels
that make the appropriate type translations. The select
function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the
parallel composition of all the submodels. This is, each
submodel in a coupled model is assumed to be an in-
dependent process, concurrent to the rest. There is no
explicit method of synchronization between processes.
Blocking does not occur except if it is explicitly mod-
elled by the output function of a sender, and the exter-
nal transition function of a receiver. There is however a
serialization of events whenever there are two submod-
els that have a transition scheduled to be performed at
the same time. Logically, the transitions are assumed to
be done in that time instant, but its implementation on
a sequential computer is serialized. If the two models
are connected by a channel, then the model which is the
source of the channel, will undergo the transition before
the target model. If they are not interconnected, the cou-
pled model has a select function which chooses one of
the models to undergo the transition first.

3 THE TOOL

The two types of DEVS models introduced in the previ-
ous section can be viewed in terms of graphs. Coupled
models have a very evident graphical structure, more
precisely that of a higraph. There are different vari-
ants of higraphs, but the simplest form consists of two
graphs, or in this case, a tree and a graph. The tree repre-
sents the containment relation between submodels. The
graph, represents the connectivity between the compo-
nents (given in the previous definition by the influencer
sets and the transfer functions.)4 This is not completely
accurate, as we allow the models to have ports. Thus, a
coupled model is really an enriched hi-graph, associat-
ing to each hyper-edge, not only the sets of input com-
ponents and output components connected by it, but sets
of port-components pairs.

An important subset of atomic DEVS models, namely

4There are several formal characterizations for higraphs, of which
perhaps the most general, as given in [5], is that a higraph is an object
in the functor category Func $&%(')% * Poset + where %,'-% is the category
with only two objects and two morphisms between them and Poset is
the category of partially-ordered sets and monotonic functions.



finite-state models, can also be described to an extent
as a graphical structure. This structure can be seen as
that of a finite-state automaton enriched with ports, two
kinds of transition edges (internal and external), and
states labelled with their corresponding time-advance
and output. In this representation, external transition
edges are also labelled with a boolean expression which
depends on its source state, some input ports, and the
special variable e which represents the time elapsed
since the last transition.

Such graphical structure calls for a graphical modelling
environment, so that the modeller can focus on the de-
sign of the system rather than its formalisation. The en-
vironment and an example of a DEVS model are shown
in Figure 1.

In this tool, the user can create coupled or atomic DEVS
models by clicking the corresponding button on the left
and then clicking in the canvas. The same applies for
each element that forms a DEVS model (states, ports,
channels, and transitions.) To create a channel between
ports, or a state transition, the user clicks on the Con-
nect button, then clicks on the source and finally on the
target. If the link is a state transition, the user is asked
to select whether it is an internal or an external transi-
tion. To specify that a component is part of another (e.g.
a submodel, or a port,) the user clicks on the Connect
button, then clicks on the “parent”, and finally on the
“child”. Each graphical element, which is not a link,
has a label with its name. This can be edited using the
Edit button.

Ports are labelled as either input or output ports. Each
state has two attributes apart from its name. These are
two fields which may contain an arbitrary Python script
to specify the time-advance and output for the state. Ex-
ternal transitions between states also have an additional
attribute which may contain some Python script to spec-
ify whether the transition is enabled or not. This script
has as parameters the source state, the elapsed time, and
the values at the input ports, and it should return true or
false. For example, if there is an external transition link
between two states s0 and s1, labelled with a condition
such as e � 1  0 and x1

	 3, where e is a variable repre-
senting the elapsed-time since the last transition, and x1

is the name of some input port, then the external tran-
sition will take place if the condition is true. All these
attributes for ports, states and external transitions can be
specified by using the Edit button.

The Generate simulator button is used to produce the
Python code for the DEVS model on the canvas. The

generated code is a suitable representation of DEVS
models that can be used by the PythonDEVS frame-
work, which is briefly described in section 4.

4 PythonDEVS AND THE GENERATED SIMU-
LATORS

The PythonDEVS Modelling and Simulation Pack-
age provides an implementation of the standard clas-
sic DEVS simulation algorithm as introduced in [7].
Python is an interpreted, high-level, object-oriented pro-
gramming language. The package consists of two files,
the first of which (DEVS.py) provides a class architec-
ture that allows hierarchical classic-DEVS models to
be easily defined by subclassing the AtomicDEVS and
CoupledDEVS classes. The simulation engine (SE) itself
is implemented in another file (Simulator.py). Based
on the DEVS simulator described in [7], it uses the same
message-passing mechanism. Both the modelling archi-
tecture and the SE are described in detail elsewhere (see
[1].)

The package was originally meant as a simple API to
design and experiment with DEVS models. As an early
prototype it still has important limitations. For instance
a model cannot be thoroughly validated using the meth-
ods provided. More importantly, the SE offers limited
means to terminate a simulation and provides no easy
model-reinitialization possibilities yet. Further versions
of the package will also support sets declarations and
extended type-checking as well as information methods
to help debugging.

The code generated by the tool described in the previous
section follows the standard approach for the implemen-
tation of DEVS models. Each model (atomic and cou-
pled) is compiled into a class, which is a subclass of
AtomicDEVS or CoupledDEVS.

The simulation algorithm of PythonDEVS calls the
methods in the generated classes for the models,
according to the operational semantics of DEVS.
The subclasses of AtomicDEVS implement the meth-
ods extTransition, intTransition, outputFnc and
timeAdvance (for δext � δint � λ � and τ respectively.) The
subclasses of CoupledDEVS specify the model’s compo-
sition and connectivity, including the ports and submod-
els.

As an example, consider the model in Figure 2. In the
atomic model A, there is an external transition labelled
evt from state s0 to state s1. This transition has as
condition the following script:

if e < 1.0:
if i1 == ’a’ and i2 == 0 or i1 == ’b’
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Figure 1: A coupled DEVS model.
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Figure 2: Another coupled DEVS model.

or i2 > 0: return 1
else: return 0

elif e < 2.0: return i2 >= 1
else: return 0

where 0 stands for false and 1 for true, following
Python’s convention. Then, an excerpt of the code gen-
erated for A looks like
class A(AtomicDEVS):

def __init__(self):
AtomicDEVS.__init__(self)
self.state = ’s0’
self.elapsed = 0.0
self.i1 = self.addInPort()
self.i2 = self.addInPort()
self.o1 = self.addOutPort()
self.o2 = self.addOutPort()

def extTransition(self):
s = self.state
e = self.elapsed
i1 = self.peek(self.i1)
i2 = self.peek(self.i2)
if s == ’s0’:

def guard1_condition(e, i1, i2):
if e < 1.0:

if i1 == ’a’ and i2 == 0 or i1 == ’b’
or i2 > 0: return 1

else: return 0
elif e < 2.0: return i2 >= 1
else: return 0

if guard1_condition(e, i1, i2):
return ’s1’

The code generated for the coupled model C, is as fol-
lows:
from A_devs_model.A import *
class C(CoupledDEVS):

def __init__(self):
CoupledDEVS.__init__(self)
self.p0 = self.addInPort()

self.p1 = self.addOutPort()
self.p2 = self.addOutPort()
self.A = self.addSubModel(A())
self.connectPorts(self.A.o1, self.p1)
self.connectPorts(self.p0, self.A.i1)
self.connectPorts(self.A.o2, self.p2)
self.connectPorts(self.p0, self.A.i2)

5 META-MODELLING AND GRAPH-
TRANSFORMATION

Having described the tool, we turn our attention to how
meta-modelling is used to create the DEVS graphical
environment and graph-transformation is used to gener-
ate custom simulators.

5.1 Meta-modelling
Meta-modelling refers to the definition or description of
modelling languages or formalisms. A meta-model is a
structure that describes a class of models in a formalism
or language. For instance, an Entity-Relationship dia-
gram can be used to describe the set of possible DEVS
models. This meta-model is pictured in Figure 3.

name type=String init.val
visible type=Boolean init
auto_adjust type=Boolean 

atomic_devs

name type=String init.val
time_advance type=Constra
output type=Constraint in
initial type=Boolean init

state

name type=String init.val
port_type type=Enum init.

portname type=String init.val
visible type=Boolean init
auto_adjust type=Boolean 

coupled_devs

contains_state

internal_transition

contains_model contains_port

channel

external_transition

Figure 3: The DEVS meta-model.

The modelling and simulation of complex systems re-
quires the use of possibly many different formalisms to
describe them or their components. A meta-modelling



tool allows the user to design such different formalisms
by creating meta-models for them and generate, from
these meta-models, tools for manipulating models in
the corresponding formalisms. The DEVS modelling
environment was created using AToM3 ([4]), a meta-
modelling environment.

In AToM3 the models (and the meta-models) are plain
graphs. The description of DEVS models graphically
requires higraphs as mentioned in section 3. Since a
higraph consists of two graphs over the same set of
nodes (a tree representing containment and a graph rep-
resenting connectivity,) the meta-model from Figure 3
can correctly describe the class of higraphs correspond-
ing to hierarchical DEVS models. There is nonetheless
one practical difficulty: AToM3’s visual primitives only
provide support for the manipulation of plane graphs,
not higraphs. This difficulty is resolved by associating
which each node, actions that can be triggered by GUI
events5. For instance, when a coupled model is con-
nected to a submodel to represent a containment rela-
tion, an action is triggered which changes the physical
shape of the coupled model to enclose the submodel.

5.2 Graph Transformation
An approach to manipulate graphical structures, such as
our representation of DEVS models, is graph transfor-
mation. Graph transformation extends the idea of term
rewriting to arbitrary graphs. The theory behind graph
transformation has been thoroughly studied (see for ex-
ample [6],) but there are still few practical software tools
that support it. AToM3 is one such tool.

The central notion in graph transformation is that of
a graph-grammar. A graph-grammar is a collection
of productions or rules specifying how a (sub)graph
of a so-called host graph can be replaced by another
(sub)graph.

Some graph-grammars are enriched by associating with
each rule, some additional conditions and actions.
These can be used to model side-effects.

Informally, the semantics of a graph-grammar is as fol-
lows. We start from a host graph and a graph-grammar.
A direct derivation is the result of matching some sub-
graph of the host graph to the left-hand side of some
rule in the grammar, checking if the additional condi-
tion is true, and if so, replacing that subgraph by the
corresponding right-hand side of the rule, and perform
any additional actions associated with the rule. Some
graph-rewriting systems associate priorities to the rules,

5This is a feature supported by AToM3.

so that if more than one rule matches the host graph, the
priorities act as tie-breakers. An execution or trace is a
sequence of direct derivations. 6

Graph transformation has been used for many different
applications, such as specifying the operational seman-
tics of graphical languages, and specifying formalism
translations.

6 CODE GENERATION

In order to generate simulators from DEVS models rep-
resented graphically we use graph transformation. Code
generation can be understood in terms of formalism
transformation where the original representation is the
source formalism and the language of the generated
code is the target formalism. While it is theoretically
possible to provide a pure graphical translation from a
formalism such as DEVS into a real programming lan-
guage such as Python, it is not a very practical approach,
since it would require defining a meta-model for the tar-
get language. Real programming languages have too
many constructs and special cases to make this approach
feasible in practice. However, we can still have a graph-
transformation approach since rules in a graph-grammar
can have associated actions encoding side-effects. In
our approach we use the graphical nature of the source
formalism to traverse and annotate the model which is
being translated, while the rule actions generate the as-
sociated code.

To apply a graph-grammar in order to generate code we
must introduce some extensions to the meta-model. In
particular we need some “pointers” or “markers” to tra-
verse the DEVS model and mark which submodels have
been already processed. There are two equivalent ap-
proaches to this: 1) use a graphical pointer, or 2) use an
attribute in the nodes to represent the fact that a node
has already been visited. Our graph-grammar uses the
second approach.

Another issue in the code generation scheme is that for a
given model node we might require access to several of
its neighbour nodes to generate its code. For instance,
when generating code for any model we need to know
which are the node’s ports, or when generating code for
a coupled model we need to know which are its submod-
els. None of these situations can be handled by a single
rewriting rule, since the left-hand side of a rule always
has a fixed number of nodes, but we need to apply the

6This informal definition, as implemented in AToM3, is most
closely related to the so-called SPO approach to graph-transformation
([6], [2]).
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Figure 4: A typical code generation rule.

rule of interest for an arbitrary number of neighbours.
One possible solution is to create a special “collecting”
node, and have a rule that adds the neighbours to a list
in this collecting node. This rule, when applied, marks
each neighbour as visited so that it is not added twice.
The rule also should have a priority higher than that of
the actual code generation of the model of interest, since
code generation should happen only after all the relevant
neighbour’s information has been collected.

The code generation rules themselves do not perform
any important rewriting aside from getting rid of anno-
tations such as the collecting nodes mentioned above.
The code generation is performed by the actions, which
can access the annotations.

An example of the code generation rule of a coupled
model, showing the collecting nodes is depicted in Fig-
ure 4. The collecting nodes (S and P) each contain a list
of the names of the submodel nodes and port nodes re-
spectively. The rule simply deletes the annotations (the
collecting nodes,) and its action is to call an external
function passing it the model and the relevant annota-
tions. The action is executed before the graph rewriting
takes place. The rule also marks the model’s node as
visited so that it will not be applied again to that node.

7 CONCLUSIONS

The DEVS formalism allows the rigorous description of
complex dynamic systems. Its main advantages are the
definition of component-based models and the efficient
simulation algorithms for these models. The graphi-
cal structure of such component-based models naturally
leads to graph-based representations. This in turn, mo-
tivates the construction of a visual modelling and sim-
ulation environment. In this paper we have introduced
such an environment, which generates well-structured
dedicated simulators for the models. We also empha-
sise meta-modelling and graph-transformation as suit-
able frameworks for the construction of such modelling
tools.

Praehofer and Pree [3] proposed a similar modelling
and simulation tool. The main difference from our ap-
proach is that the modelling component and the sim-

ulation component of our tool are explicitly decou-
pled. The simulator generator is independent of the
modelling environment. This generator, specified by a
graph-grammar, can be easily replaced in order to target
other DEVS simulation tools such as ADEVS, CD++,
DEVS/C++, JDEVS, etc. 7

Future work will address the extension of the tool to
other variants of the DEVS formalism, in particular par-
allel DEVS. Another line of work that needs attention is
the use of graph-transformation to formally describe the
operational semantics of DEVS.
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