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Abstract: The Discrete Event System Specification (DEVS) is a modeling formalism with
sound theoretical background, enabling to construct discrete event models in a hierarchical
and modular way. Several variants of it have been developed during the years. This paper
reviews two of them, in particular the original Classic DEVS, and the Parallel DEVS.
We briefly summarize the modeling approach, and then provide an explanation of the
simulation algorithms which is not easy to find in the literature. We also survey the
parallel discrete event simulation (PDES) approaches to DEVS simulation.

1 Introduction

The Discrete Event System Specification (DEVS) formalism has been introduced in the
early 1970s with the aim to enable constructing discrete event models in a hierarchical,
modular manner. Beside this practical contribution, it is of importance also from the
theoretical point of view. Its sound formal foundation allows to reason about various
aspects of discrete event modeling and simulation, and about its relationships to other
types of models. Due to its strengths, it is receiving increasing attention from different
branches of the scientific community.

The basic DEVS formalism allows to describe the inputs, outputs and states of a model,
and the relationships among them. Models expressed in this way are called atomic. They
can be used as building elements to construct larger, coupled models. A coupled model
describes its children components and their interconnections. DEVS strictly enforces mod-
ularity of the models, i.e. all model’s interactions with the outside world occur through
its input and output ports. No direct access to internal state is allowed. An important
property of DEVS models is the closure under coupling. It ensures that all models (i.e.
both atomic and coupled ones) use the same interface protocol. This allows to use a model
as a component in another, larger model, leading to hierarchical model construction.

Since the time of the inception of the original DEVS formalism, several extensions
of it have been developed. Some of them are meant as specialized formalisms for certain
model classes (e.g. the Cell DEVS [10]), others are to resolve some shortcomings of the
original. Beside the original formalism called Classic DEVS [12], the most notable general
extension is the Parallel DEVS [1]. We describe these two kinds of DEVS in the following
sections.

2 Classic DEVS

The atomic DEVS model is a tuple

M = 〈X, S, Y, δint, δext, λ, ta, s0〉
where 1



X = {(p, v) such that p ∈ InPorts, v ∈ Xp} is the set of input ports and values
S is the set of (sequential) states
Y = {(p, v) such that p ∈ OutPorts, v ∈ Yp} is the set of output ports and values
δint : S → S is the internal transition function
δext : Q × X → S is the external transition function,

where Q = {(s, e) such that s ∈ S, 0 ≤ e ≤ ta(s)},
and e is the time elapsed since the last state transition

λ : S → Y is the output function
ta : S → R+

0 is the time advance function
s0 ∈ S is the initial state

The definition of the set X of inputs allows for multiple ports. The model has a set
of input ports InPorts where each port p has defined the set of possible values Xp which
can appear in the port p. The situation is similar for the outputs.

The model transits among the states enumerated in the set S, using the transition
functions δext and δint. The external transition function δext computes the new state in
the case of external events, the internal transition function δint is similarly applied to the
internal events1. The external events are triggered by external inputs to the model. The
new state depends on the input x ∈ X, the current state s ∈ S, and the time e for which
the model has been in this state. When no external event occurs, an internal event is
triggered after time ta(s) since the last state transition (either external or internal). The
new state is given by the internal transition function applied to the old state. Right before
any internal event, the model can generate an output y ∈ Y given by the output function
λ applied to the current (i.e. old) state. This is the only possibility how the model can
generate outputs.

To illustrate the modeling approach, consider a DEVS model of a G/G/1 server with
zero-length queue [14]. It has a single input port and a single output port, thus, for the
sake of simplicity, we can omit ports altogether. Let all the jobs be identical. Then the
input to the model can be any value, e.g. ”J” (standing for ”Job”), and the set of inputs
and outputs are X = {”J”} and Y = {”J”}, respectively. The state information consists
of two variables. One of them, phase, is a boolean status of the server, i.e. busy or idle. The
other one, σ maintains the time remaining to the next internal state transition. Then, in
mathematical terms, the set of states S = {”idle”, ”busy”}×R+

0 . The σ variable allows to
define the time advance function simply as ta(phase, σ) = σ. The external state transition
function defines the behavior upon a job arrival:

δext(phase, σ, e, x) =

{

(”busy”, SERV TIME) if phase = ”idle”
(phase, σ − e) otherwise

If the server is idle, it becomes busy. Otherwise the new job is ignored (lost). The
SERV TIME value is a parameter of the model. The job departure is accomplished through
the internal state transition with the transition function defined as δint(phase, σ) =
(”idle”,∞). Right before the internal transition, an output is generated via the out-
put function λ(”busy”, σ) = ”J”. The server is initially idle with no departure scheduled,
thus the initial state s0 = (”idle”,∞).

Numerous other example models can be found in the book [14].

1 In the context of DEVS, events are often referred to as “state transitions”.
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DEVS models with ports can be connected together to form larger structures. The
formal foundation for such modeling is provided by the coupled DEVS. The coupled
DEVS model is a structure

N = 〈X, Y, D, {Md}, {Id}, {Zi,d}, Select〉
where

X = {(p, v) such that p ∈ InPorts, v ∈ Xp} is the set of input ports and values
Y = {(p, v) such that p ∈ OutPorts, v ∈ Yp} is the set of output ports and values
D is the set of component names
Md is the DEVS specification of model d ∈ D

Id is the influencer set of model d ∈ D ∪ {N}, where Id ⊆ D ∪ {N} \ {d}
Zi,d is the i to d output translation function, where d ∈ D, i ∈ Id and

Zi,d : X → Xd, if i = N

Zi,d : Yi → Y , if d = N

Zi,d : Yi → Xd, if d 6= N and i 6= N

Select : 2D \ ∅ → D is the tie-breaking function to arbitrate occurrences of simulta-
neous events

The coupled model groups several DEVS models as components into a composite. The
coupling between the components and between the components and the coupled model
N itself is expressed by means of the influencer sets of each model. The influencer set of
a model d is the set of models which can send values to d. Three kinds of coupling can be
distinguished, corresponding to the three cases of the Zi,d function:

– External input coupling which connects external inputs to component inputs. This is
the way how the inputs coming to the composite N can get to its components d ∈ D.

– External output coupling which connects component outputs to external outputs. This
coupling enables to transmit output values from the components to the outside of the
composite N .

– Internal coupling which connects component outputs to component inputs. Note in the
definition of Id that the component itself is excluded from its influencer set, meaning
that no direct feedback loops are allowed in the internal coupling.

All the coupling information is part of the coupled model specification. As a consequence,
data sent from one component to another via the internal coupling is actually routed
through the coupled model N . Before delivering the data to the target component, it
is translated using the Zi,d function. This allows to map the output specification of the
source to the input specification of the target. Similar translation takes place in the
external coupling.

As a result of coupling of concurrent components, there may be multiple components
with simultaneous events. Thus, there may be multiple components which are candidates
for the next internal state transition. Such components are called imminents in the DEVS
terminology. The set of imminent components is some subset of the set D from which the
Select function chooses a unique one to be executed next. This is analogous to priority-
based ordering of simultaneous events in common discrete event simulators.

2.1 Simulation of Classic DEVS Models

In order to simulate DEVS models, a framework of abstract simulators has been pro-
posed [14]. The framework consists of a hierarchy of simulator objects which mirrors the
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hierarchical structure of the DEVS model being simulated. There is a DEVS simulator

corresponding to each atomic model, and a DEVS coordinator corresponding to each
coupled model. At the top of the hierarchy, a root coordinator is in charge to control
the progress of the simulation. The correspondence between the model and the simulator
objects is illustrated by an example in Figure 1.

Coupled model Atomic model Simulator

SimulatorAtomic model Atomic model Simulator

Coordinator

Coordinator

coordinator

Root

Coupled model

Fig. 1: Mapping a hierarchical DEVS model onto a hierarchical simulator

The DEVS simulator has no event calendar. Instead, it maintains two variables tl and
tn. The former holds the simulation time when the last event occurred, and the latter
holds the time of the next scheduled (internal) event. The simulator makes the tn variable
available to its parent coordinator.

The coordinator maintains an event calendar which is a list of pairs (d, t) where d is
the name of a subordinate component and t is the time of its next internal event. It is
sorted by the event times t and, when the times are equal, according to the Select function
of the coupled model. Thus, the head of the calendar determines the selected imminent
component which is the next to execute.

The root coordinator maintains a tn variable containing the time of the next scheduled
event within the entire model.

During the initialization of the simulation, each atomic simulator initializes its state,
calculates the tn value, and makes this value available to the parent coordinator. The
coordinator, after receiving the tn values from all subordinates, sets up the event calen-
dar, and makes the timestamp of the calendar head available to its parent. In this way,
the initialization progresses bottom-up the tree until the root coordinator receives the
minimum timestamp of the whole model.

After the initialization has been completed, the simulation proceeds in iterations. An
iteration consists of the following steps:

1. The root coordinator initiates each iteration by issuing a message with its tn value as
the timestamp. The message propagates down the tree. At each tree level, it is routed
to the selected component, according to the associated coordinator’s calendar. All of
these selected components have the minimum timestamp equal to the root’s tn value.
Eventually, the message reaches the selected atomic component.

2. The selected atomic component invokes its output function λ, and computes its new
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state using the internal transition function δint.
3. If there is an output message generated by the λ function immediately before the

internal transition, this message propagates through the tree. In each coordinator
which it passes on the way, it is translated by means of the Zi,d functions of the
corresponding coupled model, as mentioned above. Eventually, the message affects
some atomic model in the form of its external input. The corresponding external
state transition function is then applied. In general, the component coupling may
specify for a message to propagate to multiple routes, thus there may be multiple
atomic components affected. All of these external state transitions occur at the same
simulation time as the internal transition from which they originated.

4. All atomic models which underwent a state transition update their tl and tn times and
the new values are propagated up the tree. The coordinators update their calendars
using these values and eventually the root coordinator gets the new global minimum
timestamp. This completes the simulation iteration and the simulator is ready to
execute the next one.

The execution of Classic DEVS simulation is purely sequential. In each iteration, there
is just one selected atomic component which executes its internal transition. This internal
transition can cause zero or more external state transitions in other atomic components.
All of them occur at the same simulation time, i.e. simulation time does not change during
an iteration.

A more formal description of the simulation algorithm can be found in [14].
From the modeling perspective, the major drawback of Classic DEVS is how it handles

the so called conflicts. A conflict arises in an atomic component when both an internal
and an external transition occur at the same time instant. Consider two atomic compo-
nents A and B and let both of them be imminent. Assume that when A executes its
internal transition, it generates an output which arrives as input to component B. Then
the component B experiences a conflict. To resolve the conflict, Classic DEVS allows to
determine the order in which the two conflicting state transitions occur. The execution
order of the conflicting transitions in B is given by the order in which the imminents A and
B are scheduled to execute their respective internal state transitions. The latter can be
user-specified by the Select functions. Since, in general, the resulting state of component
B is different for one execution order than for the other, this may seem as a satisfactory
solution. However, there are some flaws:

– The decision about the internal behavior of a component is made on the global level,
outside the component itself. This contradicts to the principle of modular modeling.

– To achieve a desired execution order, the Select function of multiple coupled models
may have to be “tuned”. This is a cumbersome approach.

– The setting of the Select functions appropriate for solving collisions in one component
may contradict to the desired solution for other components.

– For the case of a collision, the modeler may wish to define a different behavior than that
which can be expressed by any execution order of the internal and external transition
function.

From the simulation perspective, the deficiency of the Select function is that it serial-
izes independent simultaneous events, which leads to less efficient simulation, especially
for large scale models.
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All of these problems are solved in the Parallel DEVS formalism which is described
next.

3 Parallel DEVS

Parallel DEVS [1] differs from Classic DEVS in allowing all imminent components to
be activated simultaneously and to send their output to other components. The receiver
is responsible for examining this input and properly interpreting it. Because of multiple
imminents, the inputs take the form of bags of elements. A bag Xb of elements in X is
similar to a set except that multiple occurrences of an element are allowed. Similarly to
sets, bags are unordered. Using bags as the message structures for collecting inputs sent
to a component enables that inputs can arrive in any order and that more than one input
with the same identity may arrive from one or more source components.

Another important difference is that Parallel DEVS introduces the confluent tran-
sition function. It gives the modeler complete control over the collision behavior when
a component receives external input at the time of its internal transition. Rather than
serializing model behavior at collision times through the Select function at the coupled
model level, it resolves the collisions locally within the component. It can do so with or
without serializing the internal and external state transitions.

The formal specification of the atomic Parallel DEVS is a structure

M = 〈X, S, Y, δint, δext, δcon, λ, ta, s0〉

where

X = {(p, v) such that p ∈ InPorts, v ∈ Xp} is the set of input ports and values
S is the set of sequential states
Y = {(p, v) such that p ∈ OutPorts, v ∈ Yp} is the set of output ports and values
δint : S → S is the internal transition function
δext : Q × Xb → S is the external transition function,

where Q = {(s, e) such that s ∈ S, 0 ≤ e ≤ ta(s)},
e is the time elapsed since the last state transition,
and δext(s, e, ∅) = (s, e)

δcon : S × Xb → S is the confluent transition function with δcon(s, ∅) = δint(s)
λ : S → Y b is the output function
ta : S → R+

0 is the time advance function
s0 ∈ S is the initial state

Parallel DEVS models can be composed similarly to the Classic DEVS. The formal
modeling means for doing this is the coupled model specification. It is a structure

N = 〈X, Y, D, {Md}, {Id}, {Zi,d}〉

It is the same as in the Classic DEVS except that the Select function is omitted. Visually,
this seems to be a tiny change. However it has substantial meaning for the semantics of
the model in that all imminents are activated in parallel, as mentioned above.
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3.1 Simulation of Parallel DEVS Models

As in the Classic DEVS, the abstract simulator for Parallel DEVS consists of simulator
objects arranged in a tree structure mirroring the hierarchical structure of the model. The
simulator objects use the same data structures, except that the ordering of simultaneous
event records in coordinators’ calendars is not defined, since there are no Select functions.
Similarly to Classic DEVS, the simulation proceeds in iterations. However, in contrast to
Classic DEVS, in a simulation iteration, all imminent components execute their internal
state transitions simultaneously.

An important point in Parallel DEVS simulation is to decide for each atomic model
component that is to make a state transition, which of the three transition functions to
apply. The decision depends on the presence of internal and external events:

– If the component is imminent, and has no external events, the internal transition
function applies.

– If the component just receives an external input, and no internal events are scheduled
for it, the external transition function applies.

– If the component has simultaneous internal and external events, the confluent transi-
tion function is applied to determine the new state.

For the decision to be correct, all messages have to be delivered to their destinations
prior to actually applying the transition functions. Then the steps of an iteration of the
simulation algorithm are as follows:

1. The root coordinator initiates the iteration by issuing a message with its tn value as
the timestamp. The message propagates down the tree. At each level, it is routed to
all imminent components, until it eventually reaches all imminent atomic components.

2. All imminent atomic components invoke their output functions λ. The generated mes-
sages propagate through the tree structure until they reach their respective target
atomic components.

3. All imminent atomic components and also those which have received one or more
messages in the previous step execute their state transitions. They apply the three
rules listed above to select the appropriate state transition function.

4. All atomic models which underwent a state transition update their tl and tn times and
the new values are propagated up the tree. The coordinators update their calendars
using these values and eventually the root coordinator gets the new global minimum
timestamp. This completes the simulation iteration and the simulator is ready to
execute the next one.

The Parallel DEVS solves the modeling flaws of the Classic DEVS approach, and,
at the same time, opens the possibility to employ multiple processors in its simulation.
However, the parallel execution relies on the central role of the root coordinator and
is strictly synchronous. Just the state transitions occurring at the same time can be
executed in parallel. In spite of that, there can be significant performance improvement
in comparison to the Classic DEVS, especially in large scale models. This can be further
improved if some small temporal inaccuracy of the simulation can be tolerated. Then the
set of imminent components includes not just those which have the next event scheduled
exactly at time tn, but also those which are within a small interval ahead of tn. This
markedly increases the degree of concurrency [14]. Still, the root coordinator dictates the
synchronous advance of the simulation and thus is a principal bottleneck.
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4 PDES Approaches to DEVS Simulation

In order to extend the time and/or memory limits of DEVS simulations, the techniques
developed in the area of Parallel Discrete Event Simulation (PDES) [2] can be applied2.
There are studies involving both conservative and optimistic methods known from the lit-
erature. However, just few of them belong to the conservative class. In [14], a simulation
framework is described for DEVS models with no hierarchy using conservative synchro-
nization. For each atomic component, there is a DEVS simulator, as in the sequential
case. Each DEVS simulator has a conservative simulator associated with it which controls
the DEVS simulator. Such simulators are aggregated into submodels, each of which has
a component responsible for message distribution to other submodels. Each conservative
simulator maintains the estimates for the earliest input time (EIT), and earliest output

time (EOT). The component never receives an input with time less than its EIT. Based on
this estimate and the local state, it can determine the lookahead which serves to calculate
the EOT value. The EIT/EOT values are propagated among the components by means of
null messages. Whenever the EOT value of a component changes, it sends null messages
to all of its influencees. Real messages carrying inputs originating in other components
are not processed immediately but stored in an event calendar, so that the timestamp
order of their processing is ensured.

The overhead of this approach due to the null messages can be large in comparison
to event execution. It can be reduced using an approach known from the conservative
methods, such as null messages sent with a delay, or on demand, etc. Even with such
improvements, the performance is low when the real message traffic is low. Further, as with
conservative methods in general, good lookahead is needed for reasonable performance.

Another conservatively synchronized DEVS simulator has been reported in [3], and
[8]. It allows for hierarchical models, but its performance is rather low too. Since DEVS
is a general modeling formalism, and the aim is to construct a high performance general
purpose simulator for it, conservative methods are not likely to be the right choice.

Optimistic parallel execution of DEVS models is possible through combining Time

Warp with hierarchical scheduling of the conventional DEVS simulator [14]. The model
is partitioned so that each submodel is a single coupled model. Then the hierarchical
scheduling is used locally within a simulation processor as in conventional abstract simu-
lator, with extensions supporting state saving and rollback. Additionally, each submodel
has a root coordinator which realizes the Time Warp mechanism.

The extension of the DEVS simulator includes a queue to store the state information
together with the tl and tn times. The simulator processes conventional messages in usual
way. Additionally, it reacts to a rollback message by searching the queue for the appro-
priate state and tl, tn values, and restoring them. The extended coordinator processes a
rollback message by simply forwarding it to all children with tl value greater than the
timestamp of the rollback message.

The Time Warp root coordinator performs the optimistic synchronization itself. It
optimistically initiates hierarchical simulation cycles. It stores input and output messages
from and to other submodels and takes care of anti-messages. When it receives an output

2 Beside the performance-focused parallel simulation of DEVS models, this modeling formalism can serve
as a basis also in the interoperability-focused distributed simulation [13, 15]. Probably the most notable
effort in this area was the development of the DEVS/HLA simulation framework [6]. It is based on a
more general concept for interoperability called DEVS Bus [7]. Recently, an approach to interoperability
of models written in multiple programming languages has been proposed [11].
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message from the child, the message is stored in the output queue, marked as transient,
and sent to the influenced submodels. At the receiving submodel, the message is stored
in the input queue, and its transient mark is cleared. Messages from the input queue are
processed in timestamp order. If the incoming message is a straggler, a rollback message is
sent to the child and anti-messages are sent for all outputs in the output queue with later
time. When an anti-message requests cancellation of an input event, the corresponding
input message is deleted from the input queue and a rollback is performed. In addition to
this local responsibilities, the root coordinator is involved in global GVT computation,
based on which fossil collection is performed.

Beside the sketched solution, other variants of the optimistic DEVS simulation are pos-
sible. One of them is a risk free optimistic simulator, where a globally derived information
is used to decide when to transmit a message [14]. Other known solution eliminates the
hierarchy from the run-time structure of submodels. This leads to reduction of message
overhead, and subsequently to better performance [8, 3]. An optimistic PDES approach
to discrete event simulation of continuous systems based on their DEVS representation
has been designed in [9]. According to the cited literature, performance of the optimistic
DEVS simulation is significantly better in comparison to the conservative one.

Any PDES simulation with Classic DEVS as the modeling approach runs into trouble
when the processing order of simultaneous events of the sequential counterpart has to
be preserved. The local causality constraint is obeyed with any processing order of such
events. If they are to be processed in a particular order, special care needs to be taken
[4, 5]. Parallel DEVS is not subject to this problem.

5 Conclusions and Future Work

We have presented a high level view of the simulation algorithms for DEVS models, which
we believe may be helpful to better understand the algorithms themselves, and in turn, the
modeling approach (the modeling interface) too. The brief survey of the PDES approaches
to DEVS simulation assumes some degree of familiarity with the area of PDES.

In the future, this work may be continued by a detailed, formal description of the
algorithms. However, the latter should not be understood as a replacement of the former.
The two formulations of the algorithms complement each other. Although the formal
description contains every detail, the high level description can help to understand the
details in the overall algorithm context.
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