
An underwater buoyancy-driven glider simulator with Modelling &
Simulation as a Service architecture

Manlio Oddone1∗, Agostino Bruzzone2, Emanuel Coelho1,
Daniele Cecchi1, Bartolome Garau1,

1NATO STO Centre for Maritime Research and Experimentation,
Viale S. Bartolomeo 400, 19126 La Spezia, Italy,

2DIME, Univ. of Genoa, Genoa, Italy

∗E-mail: manlio.oddone@cmre.nato.int.

Abstract
This paper describes the architecture of an underwater
glider simulator applying the Modelling & Simulation as
a Service (MSaaS) paradigm. The simulator implements
a modular and scalable service-oriented architecture
where Web services are employed for the underwater
glider kinematic and hydrodynamic models, for the
Oceanographic models forecast data, for the glider
motion control system and for the motion behaviours.
The simulator itself is offered as a Web service, using
a browser based GUI to present the status and result
of the simulation. Two main problems are targeted: 1)
the estimation of the underwater trajectory of the glider
between two known (measured) surfacing points and
2) the prediction of the glider future surface position
given its past history, its motion behaviour and the
Oceanographic Model forecast. Considerations about
the estimation of the motion of the glider when the
corresponding motion control and behaviours algorithms
are not disclosed are done, capitalising on the work
described in a previous paper and an alternative approach
to simulating the unknown behaviours, considering the
hardware-in-the-loop, is discussed. The discussion also
involves architectural, and technological aspects such
inter-process and cross-language communication and
hardware-in-the-loop interfacing.

Keywords: Underwater glider, MSaaS, Web services,
AUV, Modelling & Simulation, M&S, REST

1 Introduction
This paper describes the architecture of an underwater
glider simulator implementing the Modelling & Simula-
tion as a Service (MSaaS) paradigm with Command and
Control (C2) and High Level Architecture (HLA) inter-
operability.
The simulator is provided as a Web service. The Graphi-
cal User Interface (GUI) is decoupled from the simulator
engine and is provided either in the form of a Web GUI:

a Javascript application with mapping display and graph-
ical capabilities, or as an HLA Virtual-Reality graphi-
cal console. The glider dynamic and kinematic models,
the models of the navigation control system (front-seat),
the mission behaviours (back-seat) and the environment
models are implemented as Web services.
The simulator output is provided using open standards for
maximum interoperability, with NATO simulators, C2
systems, navigation/mapping/GIS software, Web appli-
cations and scientific data analysis/processing tools.
The simulator engine implements a three-phase discrete
event processing core with a hybrid continuous/discrete
model approach that makes the simulation suitable for
constructive as well as virtual simulation applications. It
can be configured for a range of applications, including:

• Decision support tools for optimisation and risk
mitigation during mission planning and execution

• Post mission analysis and debriefing tool to anal-
yse, reproduce and explain what happened during a
mission in the post mission analysis phase

• Test bed for development and tuning of models,
path planning and optimisation algorithms

• Virtual reality applications for personnel training
and mission preparation

• Hardware in The Loop Virtual Simulation for
mission behaviours safe testing on the bench before
real deployment in the field

Despite the apparent complexity, the architecture is an
ensemble of simple subsystems that are easy to man-
age and to secure. The implementation as a Web service
makes the tool easily deployable and maintainable. Once
the system is deployed on a server (e.g. as a virtual ma-
chine or as a container-based virtualisation solution) user
may access it from workstations and mobile device with
a Web browser. No installation or configuration of the
tool is required by the user.
Flexibility and scalability makes the simulator en-
gine suitable for cloud deployment, remotely accessed
through a Wide Area Network (WAN) such as the Inter-

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

98

Figure 1: An underwater glider

net, or deployed on a local server and accessed by users
on from a Local Area Network (LAN).

1.1 What is an underwater glider
Underwater gliders (see figure 1) are a special class of
Autonomous Underwater Vehicle (AUV) that use small
changes in their buoyancy to achieve vertical movement.
Wings and control surfaces convert the vertical velocity
into forward velocity so that the vehicle glides downward
when denser than water and glides upward when buoyant.
Due to the buoyancy-driven propulsion their motion in
the vertical plane follows a saw-tooth profile as depicted
in figure 2.
Glider motion is extremely high energy efficient, for this
reason, despite the slow speed, they achieve particularly
long-range capabilities making them ideally suited for
scientific data collection subsurface missions, sampling
environmental parameters at regular intervals at a re-
gional or even larger scale.
They can be programmed to autonomously navigate for
weeks or months at a time. When they surface they
transmit the acquired data to shore, using satellite com-
munication. At the same time they download new mis-
sions with substantial cost savings compared to tradi-
tional ship-based research methods.
Glider motion is influenced by currents and changes in
the water density. Before starting a mission a glider must
be carefully ballasted to match the water density of the
mission scenario area. An improper calibration of the
buoyancy could compromise the glider capability to per-
form its mission and in the worst cases could even lead
to the loss of the glider.

1.2 Why a glider simulator
Underwater gliders operate in ocean environments char-
acterised by a complex spatial variability. Due to their
sensitivity to environmental parameter change, monitor-
ing of the glider state is essential to achieve mission suc-
cess by minimising risks due to adverse environments
[19]. By predicting environmental impact on glider nav-
igation, the pilot may decide to modify the mission plan

Figure 2: Saw-tooth motion pattern of an underwater
glider

in advance to operate with the minimum risk of asset loss
[13].
A simulator capable to accurately reproduce a glider be-
haviour within a scenario with a time-variable environ-
ment is considered and in particular two main problems
are targeted:

• The estimation of the underwater trajectory of the
glider between two known (measured) surfacing
points

• The prediction of the glider future surface position
given its past history, its motion behaviour and the
Oceanographic Model forecast

This work aims to improve a Decision Support
Framework[13] implemented at the NATO Science and
Technology Organization - Centre for Maritime Research
and Experimentation (STO-CMRE) by providing a simu-
lator tool that would allow extending the developed glider
model to the 3D case, taking into account the vertical
changes of water density, model the glider at the surface,
taking into account the effect of waves and winds and
finally implement the glider guidance system to compen-
sate for current prediction integration.
The simulator would also serve as a testing Framework
for Path Planning algorithms of AUVs in realistic ocean
environmental fields [15] and as a Virtual-Reality and en-
vironmental simulator with real Hardware in the Loop.

1.3 HLA interoperability
High Level Architecture (HLA)[14] is a general purpose
architecture for the interoperability between distributed
simulation systems. It is the subject of the NATO stan-
dardization agreement (STANAG 4603)[8] for modelling
and simulation. In an HLA architecture multiple feder-
ates are composed into a federation exchanging object at-
tributes and interactions through a Run-Time Infrastruc-
ture (RTI). An RTI is basically a bus connecting the fed-
erates with a publish-subscribe model.
Federates joining a federation may subscribe to an object
class and then discover objects of such class and receive
attribute value updates. Interactions are similar to objects
except that an object is persistent (e.g. a tanker) while an
interaction is only used once (e.g. an ammunition deto-
nation, or a collision between vehicles).
HLA requires a shared reference data exchange model

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

99

used as an agreement about the data (objects and inter-
actions along with their attributes and parameters) that
will be exchanged within the federation. Such model
is called Federation Object Model (FOM). The modu-
lar RPR FOM (Real-time Platform Reference FOM) and
the more recent NETN FOM (NATO Education Training
Network FOM) provide building blocks for creating fed-
eration agreements.
HLA interoperability has been achieved by simulators
developed at CMRE within the MCWS-MSTPA feder-
ation [5].
Interoperability between High Level Architecture (HLA)
with Robot Operating System (ROS) [17] based au-
tonomous systems has been achieved in CMRE in the
work described in [3] where an HLA-based link between
simulation and a SPARUS II AUV has been implemented
and the integration into an HLA federation has been
tested in a port protection scenario. For such scenario
the hardware and software of the AUV has been included
in the federation together with a virtual simulator. This
works aims to extend such architecture by integrating the
service-oriented concept.

1.4 Service-Oriented Architecture
The simulator architecture follows MSaaS paradigm that
is a means of delivering Modelling & Simulation (M&S)
applications, capabilities and associated data on demand
by providers to consumers.
It has been designed according with the “MSaaS as a
SOA” perspective described in the study on Service-
Oriented Architectures for Modelling and Simulation[6]
provided by the NATO Modelling and Simulation Group
(NMSG) Specialist Team MSG-131.
The “MSaaS as a SOA” perspective looks to use Service-
Oriented Architecture as the architectural approach for
connecting and combining M&S service whose central
aspects are:

• Communication following standards
• Loose coupling
• Interoperability and composability of services (to

form new and maybe more complex services)

The implementation of the architecture has been done us-
ing Web services. The simulation engine itself is imple-
mented as Web service.
Web services are server applications, that can be queried
on a network (Internet or private) by client applications in
order to provide a service, in the form of an exchange of
information, and are not tied to any one operating system
or programming language.

1.4.1 Types of Web Services
There are two main implementations of Web services:
SOAP based and REST Web services.
Web services based on the Simple Object Access Proto-
col (SOAP) are commonly known as Web Services (WS
or WS-*). WS exchange structured information using an
eXented Markup Language (XML) Information Set for

its message format, and relies on application layer pro-
tocols, most often HyperText Transfer Protocol (HTTP)
or Simple Mail Transfer Protocol (SMTP), for message
negotiation and transmission.
WS technologies have been successfully used for sim-
plifying interoperability while providing scalability and
flexibility in multiple applications, including distributed
simulation software[16] however they have been su-
perseded by the more modern and lightweight REp-
resentational Stat Transfer (REST) or RESTful Web
services[23].
REST is not a protocol but an architectural style that al-
lows to manipulating textual representations of Web re-
sources using a uniform and predefined set of stateless
operations. A “Web resource” is any entity that can
be identified, named, addressed or handled, in any way
whatsoever, on the Web, identified by its Unique Re-
source Identifier (URI).
REST employs the uniform and predefined set of HTTP
operations (GET, POST, PUT, DELETE) to allow a Web
service to access and manipulate Web resources through
their textual representation: requests made to a resource
URI will produce a response in XML, HTL or JSON. Use
of such well known and widely supported text formats,
transmitted over the most widely used internet HTTP
protocol is well digested by the most complex network
configurations employing firewalls and proxies and al-
lows for the maximum interoperability between systems
over the internet.
REST operations are stateless, each request from client
to server must contain all of the information necessary
to understand the request, and cannot take advantage of
any stored context on the server. Session state is therefore
kept entirely on the client and has to be passed to the Web
service when it’s functionality is invoked.
The main advantages of REST over SOAP are:

• REST services are easier to write and use since they
implement the architectural style of the Web itself

• a RESTful Web service response may be in XML,
HTML, JSON or any other defined format while
SOAP only allows XML

• REST doesn’t have the overhead of headers and ad-
ditional layers of SOAP elements on the XML pay-
load and thus requires less bandwidth and is faster
to decode

The disadvantages of REST with respect to SOAP are:

• SOAP can use almost any transport protocol while
REST uses only HTTP/HTTPs

• REST uses transport level security inheriting the se-
curity measures from the transport layer, such as
Transport Layer Security (TLS) or Secure Socket
Layer (SSL) encryption protocols using HTTPs,
while SOAP, in addition, can use its own secu-
rity mechanism, WS-Security, that offers protection
from the creation of the message to its consumption

• SOAP has comprehensive support for ACID (Atom-
icity, Consistency, Isolation, e Durability) for short-

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

100

lived transactions and Compensation Based Trans-
action Management for long-running transactions
and also supports two-phases commit across dis-
tributed resources while REST doesn’t

• SOAP support WS-ReliableMessaging for a guaran-
teed level of reliability of message exchanging while
REST expects clients to deal with communication
failures by retrying

• SOAP has a formal mechanism to describe the ser-
vice using the Web Service Description Language
(WSDL) thah allows to discover the service and
generate a usable client proxy automatically

RESTful design is therefore appropriate when the follow-
ing conditions are met:

• The Web services are completely stateless. A good
test is to consider whether the interaction can sur-
vive a restart of the server

• The service producer and service consumer have a
mutual understanding of the context and content be-
ing passed along

• Bandwidth needs to be limited
• A caching infrastructure can be leveraged for per-

formance
• Easy of service delivery or aggregation is a require-

ment

1.5 Organisation of the paper
In Chapter 2 we will present an overview of the glider
model requirements including considerations for Hard-
ware in the Loop simulation, helping to explain the target
architecture presented in Chapter 3; in Chapter 4 we will
better detail the architecture of a Web service; in Chap-
ter 5 we will see an extension of the architecture from
the point of view of security; finally in Chapter 6 we will
give an overview to the Graphical User Interface;

2 Glider model requirements
A glider simulator my come to hand in several applica-
tions, such as:

• Decision support tools where the simulator is used
during planning and execution phases of a mission
to explore the possible outcomes in a safe simulated
environment, in order to optimize the mission goals
while minimising the risk of asset loss or mission
failure

• Post mission analysis and debriefing tool to repro-
duce and analyse what happened during a mission
and to explore what would have happened if differ-
ent decisions or conditions were applied

• Test bed for development and tuning of models,
where the simulator is used to reproduce with fi-
delity the behaviour of a real unit in order to test
path planning, motion control and optimisation al-
gorithms under development

• Virtual reality applications where the simulator
is used to reproduce the behaviour of a real glider

introducing at the occurrence particular events,
such as hardware/software failures or environmen-
tal anomalies, in order to train the personnel for a
particular mission or to respond to particular events

• Hardware in The Loop Virtual Simulation to
safely test missions and behaviours of a real glider
hardware and software before deployment in the
field

By an analysis of the use-cases provided, it is clear that
the simulator has to be able to work either in fast-time
mode and in real-time mode. Furthermore it should be
able to work either as a virtual simulator with Man in
The Loop or as a constructive simulator. The problems
that it should be able to respond to are then ascribable to
two main general cases:

• The prediction of glider future surface positions
given its past history, its motion behaviour and the
Oceanographic Model forecast

• The estimation of the underwater trajectory of the
glider between two known (measured) surfacing
points

Montecarlo simulation is required to account for the
stochastic process in presence of noise or disturbance on
the models inputs (e.g. assuming a variability on the envi-
ronmental inputs due to the estimation errors of the envi-
ronmental models or to account for the simulated sensors
measurements noise).
For the estimation of the motion between two know
points, forward and reverse techniques of smoothing
could be used, in particular is interesting the application
of the Unscented Rauch-Tung-Striebel Smoother[18] in
which a separate backward smoothing pass is used for
computing suitable corrections to the forward filtering re-
sult in order to obtain the smoothing solution.

2.0.1 Glider model
There is not a unique model that fits all the possible use-
cases, for example for the accurate motion estimation in
the three dimensional ocean environment within a vir-
tual simulator, a 6 degree of freedom non linear hydro-
dynamic and kinematic model would be suitable to offer
the required accuracy, while for a Decision Support tools,
a faster, simplified stochastic model as used by [13] may
offer better performances.
Depending on the use case the most appropriate model
should be used.
Several 3D motion models are available in the literature
[2] [11] [10] [22]. These models carefully describe how
the glider moves as a result of the forces acting on it.
However to describe accurately the motion of the glider is
also necessary to take into account the behaviour of the
glider navigation control loop, usually called the front-
seat and the higher level scripted mission behaviours
which, all together, form the mission and are called the
back-seat.
For the maximum accuracy, it’s necessary to include
models that, with the maximum degree of fidelity, repro-

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

101

duce the front-seat control loop and the back-seat algo-
rithms.
The front-seat acts as a closed loop control that reads the
navigation sensors on board the glider and generates con-
trol outputs toward the actuators of the rudder, ballast and
bladder in order to obtain the desired motion of the glider.
Gliders Sensor should also be modelled along with their
measurement errors.
On top of the front-seat, an additional control layer, the
back-seat is responsible to impose the glider a set of
pre-programmed behaviours that together form the glider
mission.
For back-seat modelling is also necessary to simulate
glider communications and GPS fix readings.
For example communications would only be available
after surfacing and GPS fix would only be taken after
a variable acquisition time is elapsed during surfacing,
with time to fix and communication ranges being affected
by the weather conditions.
When the glider surfaces, a different dynamic/kinematic
describes the gliders drifting as subject to wind, waves
and surface currents.
Therefore a rather complete glider model is represented
in figure 3 including the following sub-models:

• Glider Hydrodynamic Model: describe the forces
acting on the glider while diving and climbing as
a result of its buoyancy.

• Glider Surface Model: describe the motion of the
glider while surfacing as a function of wind, waves
and currents.

• Glider Kinematics Model: describe the motion of
the glider.

• Glider Front Seat Model: describe the navigation
control algorithms of the glider

• Glider Back Seat Model: describe high level mis-
sion behaviours of the glider: e.g. how it compen-
sate a current.

• Simulated Sensor Outputs: provides the glider sen-
sor outputs. E.g. pressure level, compass read-
ing, Inertial Measurement Unit Output, GPS and the
noise associated to the readings.

• Communications: long-range/low-bandwidth satel-
lite communication and short-range/high-bandwidth
HF radio communication.

2.1 Hardware in the Loop requirements
Unmanned Vehicles integrate a large number of complex
hardware and software subsystem to manage the naviga-
tion and the execution of their missions. This level of
complexity may be difficult if not impossible to describe
with simplified models. Hardware in the Loop simula-
tion comes to hand to test the real vehicle into a virtual
environment before deployment in the real environment.
Significant work has been done at CMRE for the integra-
tion of HiL within the PARC project[3] for a SPARUS
II AUV where the hardware and software of the AUV
has been included in an HLA federation together with a
virtual simulator. SPARUS II AUV is not a glider but a

propeller powered underwater autonomous vehicle, it has
a limited time/range autonomy and is less sensible to en-
vironmental conditions. Its software is implemented on
top of the Robotic Operatin System (ROS)[17]. The ap-
proach used in this work was to bridge the ROS bus with
the HLA federation by a ROS node which converts the
information from ROS to HLA and vice versa.
Our approach to HiL capitalize on the work previously
done within the PARC project, extending the concept by
introducing a Web service that connecting to the glider
hardware, feeds the sensors inputs (e.g. pressure, com-
pass, GPS, IMU...) with simulated data, and uses actua-
tors outputs to calculate the forces acting on the AUV to
reproduce its motion in the virtual environment. Changes
in water density, sea state, currents, wind and waves in-
tensity and direction are considered by the dynamic and
kinematic models to reproduce in the most accurate way
the motion of the glider in the simulated environment.
How well the HiL simulation reproduce the motion of
the glider depends on the accuracy of the environmental
and on the motion models of the glider.
HiL simulation could be used to test the correct function-
ality of the real glider subsystems, including its hardware
components; to verify the correct implementation of the
behaviours; to understand if a planned mission is feasible
or not; and finally to train the personnel to the use of the
systems in the most possible realistic conditions.
HiL simulation contributes to speed up develop-
ment/test/validation time, reduce test/development costs
and greatly minimize the risk during real missions exe-
cution.
HiL is also of great help when the algorithms of the be-
haviours and the navigation control loop are not known in
the detail (for example for commercial AUV whose soft-
ware is undisclosed) and have to be reproduced. In such
cases, differences between the real and the reproduced
behaviours and the control loop could lead to simulation
results differ significantly from the real result.
A drawback of HiL simulations is that they are very slow.
In most cases, unless the AUV implements a specific sys-
tem to enable time acceleration, simulations with HiL
requires to run in Real-Time. In the case of underwa-
ter glider missions, these could last for weeks or even
months and the Real-Time execution may be inappropri-
ate. In such cases HiL could still be used to explore a
range of particularly significant cases that could be used
to tune and then validate the parameters of the equivalent
models which could then reproduce the AUV behaviours
in fast-time simulations.

3 Simulation Engine architecture
The work done on the definition of the target architec-
ture follows the recommendations of MSG-131[6] on de-
velopment of MSaaS target architectures. The resulting
target architecture is derived from the SD VIntEL NATO
Reference Architecture and has the following character-
istics:

• Interoperable

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

102

Figure 3: Glider model block diagram

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

103

Figure 4: VIntEL Reference Architecture

• Deployable
• Maintainable
• Scalable
• Reusable: services can be used by multiple pro-

cesses or composed into other services
• Independent units of business functionality: each

service provides a business function that is indepen-
dent of other services.

• Loosely coupled
• Platform-independent
• Based on open standards
• Low-Cost

3.1 SD VIntEL NATO Reference Architec-
ture

MSG-131 final report on MSaaS: New Concepts and
Service-Oriented Architectures [6] presents a number of
reference architectures to use for MSaaS implementa-
tions.
Reference architectures are generic blueprints that may
be used for deriving specific target architectures. When
possible, building target architectures for specific simula-
tion systems or simulation environments on foundations
from established reference architectures will increase not
only the efficiency of work in time and budget, but also
the quality of the results, and will lead to improved inter-
operability.
The SD VIntEL reference architecture, depicted in figure
4, defines four buses for Data Exchange:

• Simulation bus, to exchange simulation data using
HLA Evolved [14]

• Service bus, to connect with services using an En-
terprise Service Bus.

• Data bus, for high volume/bandwidth data (such as
camera streams or sensor data)

• Tactical bus, for C2 Interoperability.

It also classifies services into three different types:

• Domain Services: services that fulfil a specific task
within the simulation

• Infrastructure Services: services used to control the
infrastructure

• Adaptor Services: services that connect features
outside the infrastructure

SD VIntEL has been used as a high level reference for the
target architecture implementation, however significant
deviations have been taken from the reference design.

3.2 CMRE Distributed Simulation Frame-
work - Target Architecture

The target architecture, design fully embeds the recom-
mendations contained in the MSG-131 final report on
MSaaS [6] on System Design (SD) and on Simulation
Environment Data (DA) and in particular:

• SD-1: Design and Document for Interoperability
• SD-2: Design and Document for Modularity and

Composability
• SD-3: Favour Open Standards
• SD-4: Design for Securability
• DA-1: Enforce “Single Source of Truth” Principle

As depicted in figure 5 it has been designed in order to
create a distributed simulation framework extending the
work previously done in CMRE on interoperable M&S
applications [3] [5].
The main feature of this architecture is that the simulator
engine is structured as a Web service and is completely
decoupled by the GUI that is optional and could be pro-
vided as a Web GUI complemented, in case of virtual
simulation applications, by a Virtual-Reality Console.
The result is a flexible, modular, scalable and interopera-
ble architecture that could be easily reused and expanded
to quickly respond to upcoming requirements.
The architecture of the simulation engine is composed by
the following functional blocks:

• Communication buses
• Time Manager and Real Time Clock
• Event Generators
• Discrete Event Processor
• Simulation Engine Core
• Locator
• Storers
• Rest Control Interface
• Services Facade

3.2.1 Communication buses
The target architecture uses four communication buses as
the VIntEL architecture:

• Service bus, based on HTTP to connect with REST-
ful Web services. Ideally the simulation engine,
should be connected only to the Service bus, del-
egating to specific Web services the role of inter-
facing with the other buses in order to encapsulate
specific bus functionality into well defined, reusable
Web services. However, mainly for a performances
matter this is not always feasible.

• Simulation bus, to exchange simulation data using
HLA Evolved [14]

• Tactical Data Link (TDL), using Over The Horizon
- Gold (OTH-Gold)[26])messages over TCP for C2
Interoperability

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

104

Figure 5: CMRE Distributed Simulation Framework - Target Architecture

• Data bus, TCP/UDP for high volume/bandwidth
data (such as streaming sensors data)

Service bus: considering that HTTPs transport provides
an adequate level of security for the type of application
the Service bus has been implemented using RESTful
Web services over HTTP/HTTPs rather than implement-
ing a much more complex and cumbersome Enterprise
Service Bus (ESB) solution as in the VIntEL architec-
ture. An alternative to RESTful Web services is to use
the more structured and secure SOAP based Web services
but, REST has been preferred because of its lightweight
and better performances.
Simulation bus: it is using the standard IEEE 1516-2010
known also as HLA Evolved[14]. Ideally HLA connec-
tivity should be provided as a Web service, however it
was estimated that, due to the intense interactions be-
tween the federate and the RTI (due to time management
message exchange, object attributes updating and inter-
actions firing), the HLA/REST conversion would have
resulted in a sensible degradation of performances. For
this reason the simulation engine is directly connected to
HLA rather than through an HLA Web service.
Tactical Data Link bus: it is based on the OTH-
Gold[26] protocol, using TCP/IP as transport. OTH-Gold
provides a standardized method for transmitting selected
data between C2 Systems. It is the primary message for-
mat for Tactical Data Processor (TDP) exchange. It is de-

signed to be easily man readable for the non specialized
user. Other, more powerful, but also more complex Tac-
tical Data Link systems exist, such as the Link 11/16/22,
but are not considered by the current architecture. They
could however be included, when requested, by adding
appropriate interface modules. Interface to the TDL is
done by a specific Web service. The simulation engine
connects to such service to subscribe to Tactical Data
feeds available on the TDL bus. The TDL Web service
then forwards data feeds on the TDL bus to the simula-
tion engine by using a specific Application Programming
Interface (API) provided by the simulation engine REST
Control Interface.
Data bus: relies on a TCP/IP transport to interface with
Real Systems. For example the Automatic Identification
System (AIS) that provide streaming data on commercial
shipping traffic.
As for the TDL bus, specific Web services would nor-
mally interface with the Data bus, however, in case of
special requirements a direct connection to these buses
from the simulation engine is always possible (dashed
lines).

3.2.2 Time Manager and Real-Time Clock
The Time Manager manages simulation time in multiple
ways:

• Real-Time: events are executed at the same speed of
a Real-Time Clock (RTC),

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

105

• Accelerated-Time (2x, 3x...) is as the Real-Time
case except that the Real-Time Clock output is ac-
celerated by a factor.

• Fast-Time: events are processed as soon as possi-
ble, the Time Manager doesn’t respect the interval
between two events, but just execute the next event
available in the queue as soon as the previous one is
completed

Time Manager supports HLA time regulation to provide
synchronization of federates progress.
HLA Federates may be designated as regulating feder-
ate. Regulating federates regulate the progress in time
of federates that are designated as constrained. In gen-
eral, a federate may be “regulating”, “constrained”, “reg-
ulating and constrained”, or “neither regulating nor con-
strained”. By default, federates are neither regulating nor
constrained.
The RTI recognizes every federate as adapting one of
these four approaches to time management. A federation
may be comprised of federates with any combination of
time management models. That is, a federation may have
several federates that are regulating, several federates that
are constrained, or several federates that are regulating
and constrained.
A federate that becomes “time regulating” may asso-
ciate some of its activities (e.g., updating instance at-
tribute values and sending interactions) with points on
the federation time axis. Such events are said to have a
“time-stamp”. A federate that is interested in discovering
events in a federation-wide, time-stamp order is said to be
“time constrained”. The time management services coor-
dinate event exchange among time-regulating and time-
constrained federates.
Real-Time application with Man in the Loop, e.g. a mis-
sion control console to set the gliders missions, turn the
simulator into a virtual simulator.
Time Manager is responsible of triggering the Discrete
Event Processor.

3.2.3 Event Generators
The Event Generators is an aggregation of asynchronous
(living on different threads) event generators which spe-
cialize the EventGenerator interface as visible in
figure 6.
The available event generators are:

• HLAEventGenerator: generates events when
objects attributes updates or interactions are fired by
a federate on the HLA bus

• TDLEventGenerator: generates event upon re-
ceiving data on the Tactical Data Link

• RealTimeEventGenerator: generates events
upon receiving data on the Data Bus

• HiLEventGenerator: generates events upon
receiving data from the AUV hardware (either
though the Data Bus or the HLA)

• LocalEventGenerator: generates events from
the Simulation Engine Core

• ScriptedEventGenerator: generates a pre-
defined set of events from a script file, an example of
this could be a predefined list of waypoints to follow
at given times, or other scripted information such as
behaviours changes, alarms, HW failures...).

Multiple event generators can be active at the same time.
Changing the configuration of the event generators al-
lows to match the behaviour of the simulator to the in-
tended use, e.g. as constructive simulator providing in-
formation to a decision support suite or as a virtual simu-
lator with Man in the Loop and/or Hardware in the Loop
for personnel training and/or HW/SW testing and valida-
tion purpose.
Event generators generate events asynchronously. Gener-
ated events are pushed into a synchronized (thread safe),
time ordered queue so that they can be consumed by the
Discrete Event Processor.

3.2.4 Discrete Event Processor
The Discrete Event Processor is designed to process
events that multiple, asynchronous event generators push
in a queue. Events in the queue are ordered by their time-
stamp, not by arrival order, which is not equivalent since
events generation time can in general be different from
the time they are supposed to be executed (time-stamp).
The Discrete Event Processor is triggered by the Time
Manager. At time ticks, provided by the Time Manager it
processes timed events using a three-phase approach[25]:
in the first phase it jumps to the next chronological event
in the queue occurring at the time provided by the Time
Manager; in the second phase it executes all events that
unconditionally occur at that time (B-events); finally, in
the third phase, it executes all the events that condition-
ally occur at that time (C-events). For maximum perfor-
mances events can be processed concurrently applying a
Parallel Discrete Event Simulation[24] approach .
Timed events can be of multiple types such as:

• model-update events, high frequency events that
cause an update of the position, models and inter-
nal status

• federation-update events, coarser events that cause
the Simulation-Engine to fire object attributes up-
dates to the federation

• external events, coming from outside, such as the
change of behaviours or mission, the order to re-
lease emergency ballasts, the turning on/off of sen-
sors, the occurring of radio transmission, colli-
sions with external assets or bottom structures, com-
manded hardware/software failures, events, not re-
lated to gliders that could be of interest by the
simulation community such as ammunition detona-
tion/hit/miss, radio transmission disruption...

• internal events such as collisions with the bot-
tom, pressure alarms, low battery alarms, surfac-
ing/diving of the glider

• timed events such as alarms or specific actions to be
executed at a predefined time

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

106

Figure 6: EventGenerators is an aggregation of EventGenerator objects

Events can be inserted with any orders, however they are
always executed in order of time-stamp
Events are dispatched to the underlying Simulation En-
gine Core which updates the simulation status using a
combined Discrete/Continuous models approach: the be-
haviour of the model is simulated by computing the val-
ues of the state variables at small time steps while the
values of attributes and global variables is calculated at
coarser event times.

3.2.5 Simulation Engine Core
The Simulation Engine Core calculates and stores the sta-
tus of the simulator. It is event driven and uses the under-
lying models and the event information to update the sta-
tus of the simulated unit e.g. last position, battery level,
sensors/actuators status, HW/SW failures, alarms, dam-
age level, collisions...
UML structure of the Simulation Engine Core and re-
lationship with the Event Generators and the Discrete
Event Processor is visible in figure 7.
The Simulation Engine Core is triggered by events re-
ceived from the Discrete Event Processor and it may in
turn generate events (e.g. diving/surfacing, collisions
with the Sea bottom, depth/pressure alarms, HW/SW
failures....) and dispatch them back to the Event Queue
or to the buses through the Storers interface.
Events are dispatched to HLA in form of HLA interac-
tions. Updates of the internal status are published to HLA
through the Storers interface as HLA objects attributes
updates.
Events and attribute updates may also cause information
dispatching on the TDL or the Data Bus such as platform
position updates to C2 or other real systems (e.g. inter-
nal status information, sensor performance predicted data
calculated by underlying models...)
It has to be noted that The Simulation Engine Core
doesn’t calculate the location of the platform since this
is the main responsibility of the Locator model.

3.2.6 Locator
The Locator model is responsible of calculating the six
degrees of freedom location of the simulated platform
along with it’s bearing and speed. It is implemented as
an interface. Multiple implementation of such interface
are available, depending on the wished use/application of

the simulator. However only one locator instance, per
simulator, may be active at the time. The implementa-
tions are:

• HLA locator: interface with HLA to provide the lo-
cation, speed and bearing calculated from an exter-
nal dynamic/kinematic simulator engine.

• TDL locator: receive surfacing points or last known
coordinates of the glider from the Tactical Data Link
and uses its internal models to compute the coordi-
nates of the glider (dead-reckoning) in between two
known points or to predict the most probable surfac-
ing point given the last know diving point. It works
either in Real-Time and in Fast-Time.

• Real-Time locator: it works as the TDL locator ex-
cept that receives the platform coordinates from the
glider when surfacing through a TCP/IP dedicated
connection.

• Hardware in the Loop (HiL) locator: interfaces
directly with the glider sitting on the bench, to
test the glider motion control algorithms (front-
seat) and mission programmed beahaviors (Back
Seat) complementing and extending the work pre-
viously done at CMRE within the context of the
Persistent Autonomous Reconfigurable Capability
(PARC) project with the Sparus II AUV reported in
[3] and as in such implementation it may as well
include an HLA interface as a bridge between the
Robotic Operating System (ROS) of the AUV and
the HLA federation: while the glider believe to be
navigating in the ocean, its actuators control values
are sent to this locator that uses them to estimate the
glider position in the 3D environment, returning to
the glider the simulated sensor readings (e.g. com-
pass value, inertial navigation units values and wa-
ter pressure). In this type of simulation the human
glider pilot, controlling remotely the glider from the
glider mission control room is as well included in
the loop and the simulator can be used either to
train the glider pilot as in a real mission but with
the glider safely operating in the workshop bench.

• Glider Simulator locator: making use of the dy-
namic and kinematic models of the glider, repro-
duce the glider motion in the complex ocean envi-
ronment. It also employs models to simulate the
glider motion control algorithms (front-seat) and the

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

107

Figure 7: The Simulation Engine Core is event driven and implements a “Command” design pattern

Figure 8: Locator UML diagram

glider mission programmed behaviours (back-seat).

The interchangeable Locator model is a flexible mecha-
nism to adapt the locator to the application requirements.
By changing the Locator model the Simulator may be-
have either as a Constructive Simulator providing infor-
mation to a decision support suite or as a Virtual Simu-
lator with Man in the Loop and/or Hardware in the Loop
for personnel training and/or HW/SW testing and valida-
tion purpose.

3.2.7 Storers
The Storers module is in charge of the output of the Sim-
ulator and follows recommendation SD-3: Favor Open
Standards of the MSG-131 final report on MSaaS [6].
Output data is provided in a variety of formats, however
open standards are preferred to favor interoperability. For
example the glider position is provided in the KML for-
mat to be displayed by any mapping/chartographic sys-
tem compatible with such format (e.g. GIS software or
Google Earth), in HLA format to interface with the ma-
jority of NATO Simulators and in the OTH-Gold Tactical

Data Link format for compatibility with the majority of
NATO Command and Control systems.
Other open data formats provided include the Open
Geospatial Consurtium (OGC) data formats, NetCDF,
GeoTIFF and the Matlab. HTML dynamically generated
Web pages could be also provided.
Storers is a composition of classes which specialize the
Storer interface as visible in figure 9. A storer is a
module that dispatch information received from the Sim-
ulation Engine Core onto an output channel. Different
storer models specialize the behaviour of the Storer
interface.
Storers are called in cascading using a flavor of the Chain
of Responsibility design pattern, so that only the storer
responsible for a certain type of information will be able
to forward such information toward the appropriate chan-
nel. A channel may be one of the buses, the internal
queue or even a file such as a log file, or a specific format
file, such as an HTML page to be displayed by a Web
browser or a Matlab file to undergo further processing in
an external tool.

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

108

Figure 9: Storers is a composition of Storer objects

The available storers are:

• HLAStorer: send objects attributes updates (such
as the glider location) or interactions to the HLA
federation as a consequence of an internal status
change or a generation of an internal event (e.g. a
collision with the bottom, a HW fault, an alarm such
in case the maximum depth is exceeded...)

• TDLStorer: send own track position to the Tacti-
cal Data Link

• HiLStorer: provide simulated sensors output to
the HiL (either though the Data Bus or the HLA)

• EventStorer: generates events received from
the Simulation Engine Core and sends them to the
Event Generator to be inserted in the queue

• FileStorer: produces various types of files (e.g.
HTML, KML, Matlab, JSON, CSV, XML, NetCDF,
GeoTIFF...) and pushes the to a local Web server,
available for download from a client application
such a Web browser.

• OGCStorer: its an extension of the FileStorer that
pushes geo-spatial files (e.g. NetCDF GeoTIFF...)
to the Geospatial Data Service that in turn will pro-
vide them to a client application in the form of as
OGC Web services such as Web Feature Services
(WFS) or Web Map Services (WMS).

3.2.8 REST Control Interface
This is the REST front-end interface of the simulation
engine. It makes the simulation engine available on the
Services bus just as any other REST service. API avail-
able in the REST Control Interface include functionality
to for:
Simulation instances management

• Create a new simulation
• List created simulations
• Destroy a created simulation
• Join a simulation

Simulation execution management

• Start simulation
• Pause simulation
• Stop simulation

Simulation status and parameters editing manage-
ment

• Get simulation status
• Edit simulation parameters (e.g. real-time/fast-time,

montecarlo runs, file/services outputs...)
• Edit models and environment parameters

Feed data from external sources

• Push in data e.g. coming from subscribed services
(TDL, AIS...)

REST Control Interface runs in an Independent Process
from the simulation engine. In this way it may create or
destroy instances of a simulation engine as required.

3.2.9 Services Facade
The services facade module provides a unified interface
to the set of underlying services defining a higher-level
interface that makes the subsystem easier to use. This
module hides the complexities of the larger system and
provides a simpler interface to its clients: the Locator
and Simulation Engine Core. It includes a single wrapper
class that contains the set of member methods required
by the clients. These members access the underlying ser-
vices on behalf of the clients, hiding the implementation
details.

3.3 Web Services
The glider models, environmental services and data ser-
vices required by the simulator engine are provided
in the form of Web services. For optimal perfor-
mances and since the transport layer security provided by
HTTP/HTTPs is considered to be satisfactory, RESTful
Web services are used.
Basically the types of services that can be found are:

• Glider models such as the glider dynamic and kine-
matics, front-seat, back-seat, sensor models...

• Environmental services (bathymetry, climatology
and weather forecasts)

• Data services to connect with external systems (e.g.
Hardware in the Loop connection services; Auto-
matic Identification System (AIS), that returns nav-
igation information of maritime commercial traf-
fic...)

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

109

• Geospatial Data services
• Map services

Some of these services have been implemented from
scratch, some others are Open Standard services such as
the Geospatial Data services or the Map services, based
on Open Source Projects (e.g. GeoServer, Thredds or
Mapnik).

4 Web services architecture
Web services architecture is represented in figure 10: a
REST front-end servlet (an application, running on the
server side, capable to respond to HTTP requests) written
in Java and running into a Servlet container such as the
Apache Tomcat represent the service front-end; it is con-
nected through a Remote Method Invocation (RMI) or a
Remote Procedure Call (RPC) to one ore more Micro-
Services.

Figure 10: RESTful service architecture

Micro-Services may return directly their result to the
Front-end, that would return it to its client or in alter-
native, in case of GeoSpatial data, they could publish
it onto a Geospatial Data Server (such as Geoserver of
the Open Source Geospatial Foundation or the Unidata
Thredds), returning to the client the Unified Resource Lo-
cator (URL) of the published data. In such way the data
becomes available to the Client using the OGC standards
such as WMS or WFS.
REST is a good compromise to create lightweight,
loosely coupled, language and operating system indepen-
dent, distributed architectures. Behind the REST front-
end a number of Micro-Services, written in different lan-
guages, represent the back-end of the service.

For example a mix of Matlab and Python processes
would provide the glider mathematical models.
Interconnection between the Java front-end and the back-
end of the service could be implemented using a number
of different technologies:

• for C, C#, C++ (on POSIX systems), D, Delphi,
Erlang, Go, Haxe, Haskell, JavaScript, node.js,
Ocaml, Perl, PHP, Python, Ruby, Smalltalk back-
ends, the Open Source Apache Thrift[21] frame-
work for cross-language remote Procedure Calls
(RPC), developed at Facebook to expedite devel-
opment and implementation of efficient, scalable,
cross languages services, has been highlighted as
the optimal choice.

• when the back-end is Java, the most appropriate so-
lution is the Java Remote Method Invocation (RMI).
Apache Thrift represents however a suitable alterna-
tive.

• Matlab back-ends could be integrated with the Java
front-end using the Matlab Compiler System Devel-
opment Kit (SDK) which provide a Java library to
interface directly with the Matlab Runtime engine.

In addition to the simulator engine a number of support-
ing Web services is included in the target architecture.

4.1 Environment Services
Environmental data services provide the simulation sce-
nario with the following information:

• Bathymetry
• Climatology: historical seasonal/monthly average

sea water temperature and salinity
• Weather forecast: sea state, waves height/direction,

wind, rain, water salinity and temperature

Environmental services can be used either to: reproduce
the conditions found during a real mission using recorded
historical data; to plan a new mission, using either fore-
cast data or typical seasonal data (climatology); and also
to explore what would happen by applying or superim-
posing certain conditions on the scenario area (e.g. forc-
ing a sea state or wind direction, applying a current field
or introducing an anomaly in the salinity of the water at a
certain depth that could severely impact on the navigation
capabilities of the glider).

4.2 Glider models
Include a number of services that implement glider mod-
els or models used by glider models described in Chapter
2. The simulator aim also to become a test-bed and tun-
ing tool for dynamic and kinematic gliders models.

4.3 File Services
Files produced during the simulation execution, such
as HTML, KML, Matlab, JSON, CSV, XML, NetCDF,
GeoTIFF are pushed to a local Web server and become
available for download from a client application such a
Web browser and can be further processed by external
tools.

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

110

4.4 Geo Spatial Data Services
Geo-spatial files (e.g. NetCDF GeoTIFF...) are provided
by the Geospatial Data Service in the form of OGC Web
services such WFS or WMS.

4.5 Map Services
Map Services are used to provide map tiles to a mapping
application. Such services are used by the Web GUI to
display the map with the geo-referenced positions of the
Glider. The availability of a map-service prevent the need
to connect to an online map data service provider making
the simulation engine independent from the availability
of an internet connection.

5 Notes about securing the system
Exposing Web services to Wide Area Networks such as
the Internet requires that a number of precautions are
taken against malicious attacks. NATO accreditation
must be obtained before the service is made available on
the Internet. The main aspects of the security accredita-
tion are based on the NATO Communication and Infor-
mation Agency (NCIA) requirement to follow the Open
Web Application Security Project (OWASP) Application
Security Verification Standard including:

• Authentication
• Session Management
• Access Control
• Input Validation
• Cryptography
• Error Handling and Logging
• Data Protection
• Communication Security
• HTTP Security
• Business Logic
• Files and resources
• Miscellaneous requirements

The original architecture shown in figure 10 was subse-
quently expanded to that shown in figure 11. It may be
seen that the original architecture now forms only a sub
section of the revised architecture. In particular the re-
vised architecture includes firewalls, Web server, Service
Provider, Identity Provider, Directory Server and a users
database.
A user that need to access a service connects to the Ser-
vice Provider hosted on the Web server in the Demil-
itarized Zone (DMZ), the area comprised between the
two firewalls in which no data or software is stored ex-
cept the Web server own log files. If the user has not
been already authenticated it is redirected to the Iden-
tity Provider. The Identity Provider performs the user
Authentication checking the supplied credentials against
those stored in the Users Database through the Directory
Server (usually a Lightweight Directory Access Protocol
(LDAP) service). Once authenticated the user is redi-
rected to the proper Web service. This process is further
filtered according with the Authorizations that each user
owns that are contained in the Users Database.

Confidentiality and Integrity of the data are granted on
the Client side by the HTTPs transport protocol. Fire-
walls filter the input/output traffic. The Web server in the
DMZ acts as a secure front-line for the incoming requests
redirecting clients traffic to the back-standing Web ser-
vices. Communication between the Web server and the
Web services could be done using the lighter and faster
HTTP protocol (with no encryption) however communi-
cation on the client side is always protected by HTTPs
TLS/SSL encryption.
Such architecture allows enforcing the security require-
ments required to undergo the accreditation process that
includes the following phases (extracted from Communi-
cation and Information Services (CIS) Security Technical
and Implementation Directive for the Security of NATO’s
Internet Presence):

• Security Level Review
• Design and Architecture Review
• Vulnerability Scans
• Health Checks
• Code Walk-through
• Application Penetration Testing
• Code Review
• Create and Review UML Models:
• Create and Review Threat Models:
• Test Configuration Management

6 Graphical User Interface
The GUI is decoupled from the simulation engine and is
optional: for applications where the simulation engine is
used as a computation engine the GUI may not be used
at all and the hosting application would just interface to
the simulation engine directly.
For end user applications where a Graphical User Inter-
face is required a Web application is the optimal solution.
Web applications do not need to be installed or config-
ured. The user just need to know the URL address of the
application to be able to use it.
The main components of the Web GUI are:

• Simulation Management Controls: to create, list,
join or destroy a simulation.

• Simulation Time Management: to start, pause, stop
the simulation execution

• Simulation status: display the simulation status in
various forms: tables, plots, graphs...

• Simulation parameters editing: to edit simulation
parameters

• Simulation models editing: to edit the models pa-
rameters

• Map View: to display a Map with the simulator
graphical output data overlaid

Web GUI components may be combined into different
views. Authorizations provided by an external Identity
Provider define which controls and features are available
to authenticated users.

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

111

Figure 11: Securing Web Services

6.1 Virtual-Reality console

For Virtual-Simulation use cases, a standalone applica-
tion with HLA interface represents the most natural solu-
tion but moves a little bit out of the MSaaS concept since
it would not be provided anymore as a service in the more
strict sense of the term but would require the installation
of the application package on the client terminal. On the
other side, implementing the Virtual-Reality console as a
Web application, in order to provide it as a service to the
end user, would introduce aspects related to graphics and
communication performances from within a browser that
are not in the scope of this paper.
The Virtual-Reality Console stand alone application con-
nects as a federate to the HLA federation and subscribe to
the objects attribute updates and interactions of interest.
In case of multiple simulator federates, an additional fed-
erate would be required to manage the interactions be-
tween the federates, such as collisions between the sim-
ulation entities and/or static features e.g. an underwater
structure.
To avoid interoperability issues between federates due to
the use of uncorrelated environmental data, it is neces-
sary to enforce the MSG-131[6] recommendation DA-
1 Enforce Single Source of Truth Principle through the
whole federation that requires that each environmental
data source is unique and all application-specific data
items or formats are derived from such source data item.

6.2 The Map View
The Map View allows to display geo-referenced output of
the simulator onto a map. In figure 12 it is possible to see
the Map View with the AUV icon in Mil STD 2525D[9]
AUV icon and a sea velocity field WMS layer overlay.
Information that can be displayed as map overlay in-
clude:

• Platforms positions(e.g. the simulated glider icon or
other entities received from HLA/TDL/AIS) along
with their routes and tracks using the KML format

• environment data layers such currents, winds,
waves, water temperature/salinity as WMS data lay-
ers

• Models/simulation produced data layers (e.g. sensor
ranges, risk areas....)

• Navigation charts
• Elevation and bathymetric contours
• Weather forecast data

Additional layers can be displayed as WMS layers, vec-
tor layers (e.g. KML or GeoJSON) or as tiled layers.

References
[1] D. Pochazka, J. Hodiky, “Modelling and Simulation

as a Service and Concept Development and Experi-
mentation”, 2017 International Conference on Mil-
itary Technologies (ICMT)

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

112

Figure 12: The Graphical User Interface MapView with a sea water velocity field and a Mil STD 2525D AUV icon
overlayed

[2] U. Latifa, T. W. O. Putri, B R Trilaksono, E. M. I.
Hidayat, “Modelling, Identification and Simulation
of Autonomous UnderwATER Glider in Longitudi-
nal Plane for Control Purpose”, 2017 2nd Interna-
tional Conference on Control and Robotics Engi-
neering

[3] A. Carrera, A. Tremori, P. Caamao, R. Been, D. C.
Pereira, A. G. Bruzzone, “HLA interoperability for
ROS-based autonomous systems”, 2016, Interna-
tional Workshop on Modelling and Simulation for
Autonomous Systems (pp. 128-138). Springer In-
ternational Publishing.

[4] “Operational Concept Document (OCD) for the Al-
lied Framework for M&S as a Service: DRAFT
v0.28”, 09 November 2016

[5] A. Bruzzone, A. Tremori, M. Oddone, D. Cre-
spo Perreira, M. Scapparone, S. Vasoli, M. Corso,
I. Piccini, “HLA based interoperable simulation:
MCWS-MSTPA federation”, La Spezia: CMRE,
2015/01. (CMRE Memorandum Report (MR se-
ries) CMRE-MR-2015-002

[6] Final Report of Specialist Team MSG-131, “Mod-
elling and Simulation as a Service: New Concepts
and Service-Oriented Architectures”, 2015, STO
Technical Report

[7] NATO STO: Final Report of NATO MSG-086
“Simulation Interoperability”, STO Technical Re-
port, STO-TR-MSG-086-Part-I, January 2015.

[8] “Modelling And Simulation Architecture Standards
For Technical Interoperability: High Level Archi-
tecture (HLA)”, 2015, North Atlantic Treaty Orga-
nization

[9] “MIL-STD-2525D”, 10 June 2014, Department of
Defense interface Standard, Joint Military Symbol-
ogy

[10] E. Cayirci, “Modelling and Simulation as a Cloud
Service: a Survey”, Proceedings of the 2013 Winter
Simulation Conference

[11] K. Isa, M. R. Arshad, “Buoyancy-driven underwa-
ter glider modelling and analysis of motion con-
trol”, Indian Journal of Marine Science, Vol 41(6),
December 2012

[12] C. Wang, A. Anvar, “Modelling and Simulation of
Motion of an Underwater Robot Glider for Shallow-
water Ocean Applications”, World Academy of
Science, Engineering and Technology, Interna-
tional Journal of Mechanical, Aerospace, Indus-
trial, Mechatronic and Manufacturing Engineering,
Vol:6, No 12, 2012

[13] R. Grasso, D. Cecchi, M. Cococcioni, C. Trees, M.
Rixen, A. Alvarez, C. Strode, “Model based deci-
sion support for underwater glider operation moni-
toring”, OCEAN 2010 MTS/IEEEE, Seattle

[14] “IEEE Standard for Modelling and Simulation
(M&S) High level Architecture (HLA) Framework

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

113

and Rules”, IEEE std 1516-2010 (Revision of IEEE
Std 1516-2000), pp. 1-38, 2010.

[15] B. Garau, M. Bonet, A. Alvarez, S. Ruiz, A. Pas-
cual, “Path planning for authonomous underwater
vehicles in realistic oceanic current fields: applica-
tion to gliders in the western Mediterranean sea”,
2009, Journal of Maritime Research Vol. VI N. II

[16] K. Al-Zoubi, G Wainer, “Using REST Web-
Services Architectures for Distributed Simulation”,
2009, ACM/IEEE/SCS 23rd Workshop on Princi-
ples of Advanced and Distributed Simulations

[17] M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T.
Foote, J. Leibs, R. Wheeler, n. Andrew, “ROS:
an open-source Robot Operating System”, 2009,
ICRA Workshop on Open Source Software

[18] S. Sarkka, “Unscented Rauch–Tung–Striebel
Smoother”, 2008, IEEE Transactions on Automatic
Control (Volume: 53, Issue: 3, April 2008)

[19] O. Schofield, et al, “Slocum gliders: robust and
ready” Journal of Field Robotics, 24(6), 473-485
(2007), Wiley InterScience.

[20] “NATO Consultation, Command and Control Board
(NC3B): NATO Architecture Framework”, Version
3, AC/322-D(2007)0048-AS1, 2007

[21] M. Slee, A. Agarwal, M. Kwiatkowski, “Thrift:
Scalable Cross-Language Services Implementa-
tion”, 2007, Facebook, 156 University Ave, Palo
Alto, CA

[22] Bhatta, Pradeep, “Nonlinear stability and control of
gliding vehicles”, 2004, Diss. Princeton University

[23] R.T. Fielding, “Architectural Styles and the Design
of Network-based Software Architectures”, 2000,
UNIVERSITY OF CALIFORNIA, IRVINE, Dis-
sertation

[24] A. Cassel, M. Pidd, ”Distributed discrete event sim-
ulation using the three-phase approach and Java”,
2001, Simulation Practice and Theory 8 (2001)
491-507

[25] M. Pidd, “Computer Simulation in Management
Science”, 1998, ISBN : 978-0-470-09230-9

[26] “Operational Specification for Over-The-Horizon
Targeting Gold”, Revision D, OS-OTG (Rev D), 1
September 2000, published under the direction of
CNO (N62) by Navy Center For Tactical System
Interoperability

[27] T. Buckman, “NATO NETWORK ENABLED CA-
PABILITY FEASIBILITY STUDY EXECUTIVE
SUMMARY”, Version 2.0, 2005, NATO Consulta-
tion, Command and Control Agency

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

114

