

 FORMAL SPECIFICATION SUPPORTING INCREMENTAL AND FLEXIBLE AGENT-

BASED MODELING

Jang Won Bae

GeunHo Lee

Il-Chull Moon

Department of Industrial and Systems Engineering

KAIST, 291 Daehak-ro

Yuseong-gu, Daejeon 305-701, Republic of Korea

ABSTRACT

Agent-based models have been used for diverse domains such as military, sociology, and urban planning.

There is a growing concern about the incrementality and the flexibility of the agent-based models in fur-

ther sophisticated and large-scale utilization. To resolve this concern, we suggest that specifying agent-

based models formally will resolve the problems of incrementality and flexibility of the agent-based mod-

els through an organized composition of model components. To organize the composition of agent-based

models, we survey formalisms that are applicable to agent-based models, including formalisms from the

discrete event models, i.e., DEVS, MDEVS, and Cell-DEVS, as well as formalisms used in the communi-

ties of agent-based models, i.e., BDI, MDP, and Game Theory. Then, we compare, contrast, and propose

an overarching formal specification for agent-based models that embody the key nature of agents. As an

example, we show how to incrementally merge and flexibly manage traditional agent-based models

through proposed formal specifications.

1 INTRODUCTION

Agent-based modeling and simulation has been a successful approach in providing insights and predicting

the future in sociology (Sakoda 1971), biology (Auyang 1999), management (Robert 1999), military (mit-

tal et al 2007), urban-growth (Benenson 1998), logistics (Barbuceanu, Teigen, and Fox. 1997), etc. This

success has led to the development of a large number of agent-based models (Heath, Hill, and Ciarallo

2009). For further development and utilization of agent-based models, now the modelers should be able to

incrementally build their agent-based models by depending on other modelers’ models (Moon and Carley

2007). In the 1970s and 1980s, simple models, such as Schelling’s segregation(Schelling 1971), Epstein

and Axtell’s sugarscape (Epstein and Axtell 1996), and Carley’s construct (Carley 1991), provided pro-

found insights into our society. However, to show today’s complex socio-economic systems, we need

more modeling features that go over more than the coverage of a single model or a single modeler. Fur-

thermore, the sophistication of the modern agent-based models requires more systematic modeling and

implementation approaches, while in the past the algorithm, the pseudo-codes and even the source codes

of the traditional agent-based models are published in papers
1
. Such model description is now done by

utilizing flowcharts, UML notations, or simple textual descriptions. To create more comprehensive mod-

els for today’s applications, such as a city-scale epidemic model considering the traffic and the social

network effects, modelers from different discipline should collaborate and build their models on top of the

others’. This collaboration includes not only building incrementally, but also testing and modifying the

incrementally built models by changing the incremental composition of its dynamic execution. Enabling

such collaboration requires a common ground for their representation, modeling, implementation, and

model execution management. We propose that the common ground for modeling is a formal specifica-

tion for agent-based models.

1
 Traditionally, these modeling details were included in books and journal papers as listed in the Appen-

dix at the end of the contributions. For an example, Carley (Carley 1991) shows her model’s pseudo code

in her paper because they were simple enough to be included as an Appendix in the paper.

This paper discusses how to incrementally and flexibly develop and integrate agent-based models

through the formal specifications that we propose in this paper. The substance of our approach is specify-

ing a multiple agent-based model in our proposed formal specification in a distributed way that means

two modelers are individually developing the models by the same formal specifications. Then, we incre-

mentally compose the specified multiple agent-based models to execute them in the same simulation exe-

cution context. Also, we flexibly modify the composition of the multiple models to add and remove some

of the models. The incremental composition and the flexible management are enabled by the formal spec-

ification of the models because the formal specifications become the protocol in developing, running, and

managing the models.

As we point out the importance of the formal specification, to our knowledge, there is no single dom-

inant formalism in the agent-based modeling community. So far, some formalisms specifically designed

for agent-based models have been proposed, which will be compared to our approach in the discussion

section, yet theses formalisms are not widely used. Therefore, our underlying goal for the above incre-

mental and flexible modeling and simulation is proposing another, more usable formalism for the agent-

based modeling community. The existing formalisms for agent-based models can be categorized into two

types. First, there are formalisms in some theoretic domains of the agent-based models. For instance, par-

tially observable markov decision-process, or POMDP (Bertsekas 1976), has its own distinct formalism

though POMDP is limited in being utilized, i.e., modeling robotic behaviors in a simple environment. Se-

cond, there are formalisms reduced from a more general modeling and simulation theory, such as the the-

ory of discrete event system specification, or DEVS (Zeigler, Praehofer, and Kim 2000). For example,

DEVS community has suggested a number of formalisms, such as MDEVS (Kim and Kim. 2000), yet

these are not popularly used by the agent-based modeling community.

This paper aims to present a third type of formal specification that is adapted more to the agent-based

models with its root in DEVS formalism, and we expect more facilitated adoption of it by the agent-based

modelers. We present the formal specification in terms of how the specification inherits two cores of the

agent-based models and DEVS. We subsequently show a demonstration of our formal specification by

applying the specifications to two well-known tradition agent-based models, and then we illustrate how to

incrementally compose the fusion model by inheriting the specification of the two models.

2 PREVIOUS RESEARCH

For supporting incrementality and flexibility in the model composition, the formal specifications of mod-

els are critical. Since the formal specifications rely on a strict specification basis, such as mathematics, the

formal specification becomes the common, comprehensive and accurate protocol in model representing

and implementation. Also, if the formal specifications support modular and hierarchical compositions, the

specified models are easier to incrementally and flexibly compose as an over-arching model. Then, the

question is whether or not the existing formalisms in the agent-based modeling community are 1) com-

prehensive in modeling agents and 2) hierarchical and modular in composing more than two agent models.

2.1 Existing formalisms from discrete event models and agent models

Agent-based models describe that individual agents interact with other agents and space. In detail, the

agent-based models have three main components: agents, space, and interactions between them. We sur-

veyed existing formalisms by categorizing the elements of the formalisms into the three categories of the

components. This categorization becomes one axis of our survey on formalisms. The second axis of the

survey is the origins of the formalisms. Some formalisms adapted to the agent-based models are directly

inherited from the cellular automata from the Von Neumann era (Neumann 1966). Another set of formal-

isms are specialized formalisms from the general discrete event modeling formalism, or DEVS. Finally,

some formalisms originated from the AI field to model the details of the agents, such as POMDP,

BDI(Bratman 1987), and Game Theory (Neumann and Morgenstern 1944) .

 Table 1 is the result of our survey and is organized with the row axis for key components of agent-

based models and the column axis for the origins of the formalism. From the table 1, we recognize that

Table 1 : Surveyed formalisms in agent-based modeling, the words in bold and italics are from the general taxonomy of agent-based models

Categories

of tuples

in formalisms

Cellular

Automata

Formalism

DEVS oriented formalisms Formalisms used for agent modeling in AI

DEVS

formalism

Mobile-DEVS

formalism

Cell-DEVS

formalism

BDI based

Formal

representation

POMDP based

formalism

Game theory

Formal

representation

Agent

Input, or

Percep-

tion

Set of states

of neigh-

borhood

Set of input events

Set of Input events

Set of structure-change

events

Set of input events

Values of input

events

Observation Observation
Action set of oth-

er agents

Output, or

Action

State of au-

tomaton
Set of output events Set of output events Set of output event Set of action Set of action Action of agents

State

Set of states

of automa-

ton

Set of states Set of states

State variables and

values

Delay

Neighborhood size

Set of belief

states
Set of states

State

Transi-

tion, or

Decision

Automa-

ton’s state

transition

function

External transition

function ,

Internal transition

function

External transition func-

tion ,

Internal transition func-

tion

External transition

function ,

Internal transition

function ,

Local computation

function ,

Set of inference

rules

Set of condi-

tional transition

probability ,

Set of condi-

tional observa-

tion probability

Equilibrium algo-

rithm

Output

Function,

or Behav-

ior

Output function,

Time advanced

function

Output function,

Time advanced function

Output function,

Transport delay,

State’s duration

function

Plan generator

function

Reward func-

tion
Pay-off matrix

Objective Desire

Maximizing the

utility from the

reward function

Maximizing the

utility in the pay-

off matrix

Space Space
Interconnec-

tion graph
 Cell space

Multi-
Agent

Coupling

Structure,
or Inter-

actions

Compo-

nent, or

Popula-

tion

Set of au-

tomatons

Set of component

models

Activated models set

Model activation func-

tion ,

Neighborhood set

and size

Set of agents par-

ticipating games

Coupling

Relation,

Neigh-

borhood,

or

Boundary

Neighbor-

hood defini-

tion

External input cou-

pling relation,

External output

coupling relation,

Internal coupling

relation

Structure-state set

Structure transition func-

tion

External input coupling

relation,

External output coupling

relation,

Internal coupling relation,

Change coupling relation

List of input cou-

pling,

List of output cou-

pling

Modular model in-

terface

Translation function

Set of border cell

there is no single formalism that comprehensively covers modeling features of agents, spaces, and interac-

tions. For instance, Cell-DEVS (Wainer 1998) is one of the most comprehensive formalisms, but it lacks

the objective component, such as the desire in BDI agents. Furthermore, we suspect that a more signifi-

cant barrier in adopting DEVS-oriented formalisms in the general agent-based modeling community is the

difficulty in matching and mapping DEVS formalism elements to the features in the agent-based model-

ing field. For instance, the agent model should autonomously perceive, decide, and act upon the outside

stimuli. DEVS oriented formalisms model these critical components, such as perception, action, and deci-

sion-making; as input events, output events, and state transition functions. However, this mapping is not

well communicated among the agent-based modelers who do not have knowledge of DEVS. In spite of

the difficulties in mapping between DEVS and agent-based model, There are many researches solving

agent-based models using DEVS. For example, (Sarjoughian, Zeigler and Hall 2001) adopted a layered

architecture which is used in DEVS community to agent-based models, (Akplogan et al. 2010) developed

agent-based models in agriculture based on DEVS and (Zhang, Chan and Ukkusuri 2011) developed

transportation evacuation models using hybrid simulation based on DEVS. Furthermore, there is a recent

research about formal semantics of multi-agent simulations based on DEVS formalism, called M-DEVS

(Müller 2009).

 On the other hand, the formalisms in modeling the agent behavior are often limited to the detailed de-

scription of the agent itself. Table 1 shows that the formalisms from the AI have a limited collection of

space- and interaction-related features. Furthermore, the formalisms model one action of an agent, which

is just one facet of multiple actions that the agent might exhibit. Also, these formalisms are often used for

developing prescriptive models that generate behavior through inferences, rather than descriptive models

that have fixed behavior details. Therefore, modelers using simple rules or detailed descriptions of behav-

ior may not be able to use the AI oriented formalisms for the agent models. Having said this, the formal-

isms from AI are more adaptable to the agent-based models in terms of the taxonomy wording of the for-

malisms. They name the elements as actions, observations, utility, etc., which are naturally understood by

the agent-based modelers unlike DEVS’s taxonomy. Formal specification

3 FORMAL SPECIFICATION

This section illustrates 1) how agent-based models are structured in general and 2) key elements, which

are actions, agents, and multi-agents, in our formal specification.

3.1 Hierarchical Structure of Agent-Based Model

Before introducing the formal specification for agent-based models, we illustrate a general structure of

agent-based models. Traditionally, the big picture of agent-based models is described as two dia-

grams(Russel and Norvig 1995)(Michael Batty 2005) in Figure 1. The diagrams show how agents and

spaces interact with each other, and one of the diagram shows the simplified internal architecture of

agents. As these diagrams capture the key elements, i.e., agents, perceptions, actions, spaces, etc., of the

agent-based models, our specification should be accommodated to specify the captured elements.

Figure 1: (Left) Simplex agent and space and (Right) Interactions between agents and land

 From the perspective of model composition, Figure 2 shows the hierarchy of the general structure of

the agent-based models. Generally, the agent-based models have agents and spaces. The interactions be-

tween agent models and between an agent model and a space model are enabled through the composition

of agents and space by the multi-agents models and the agent-based model, respectively, in Figure 2. This

means that the agent-based model takes a role of a collective model propagating interactions between the

multi-agents model and the space. The multi-agents model contains multiple agent models, and the multi-

agents model becomes the broker to transfer interactions between agent models. This composition and

role goes same to the space model. The agent model can perform multiple actions as modeled in action

models. We limited our description on the space models because this paper is limited to introducing only

the action, the agent, and the multi-agents models’ specifications.

Figure 2: Hierarchy of the general structure of agent-based models

3.2 Formal Specification of Action Model

The action model in Figure 2 describes an agent’s behavior in a single facet under the assumption that

agents may exhibit multiple actions in different domains. For example, let’s imagine. an ambulance as a

car in the traffic and as a rescue resource in the emergency medicine. The ambulance may exhibit the ma-

neuver action and the health-care action, simultaneously. This action model describes a single action out

of two facets of the agent’s action. In order to specify an action model, we consider the general proce-

dures of the agent’s actions. According to agent’s skeleton in Figure 1, the action of an agent can be ex-

pressed into three stages: the perception stage, the decision stage and the action stage.

 Perception stage: Agents recognize the external information from spaces or other agents

 Decision stage: Agents decide his next actions as response

 Action stage: Agents affect the space or other agents with their actions

 Such procedures of action take parameters from the state of action model. In order to specify the

states, we split the states into three types : situation awareness, action, and condition. This separation of

states is one of the distinct aspects of our formal specification. As we separate the actions into three stages,

some states are exclusively used for a certain action stage, i.e., situation awareness in perceiving the stim-

uli of agents. Therefore, we separated the states into three sets to further specifically describe the action

model rather than having a single state set.

 States of situation awareness: States from the external information from space and other agents

 States of action: States of executing a certain action

 States of condition: States describing condition-action rules in the decision-making process

 The above characterization of actions results in the formal specifications for action model below. An

action model is formally specified by five sets and four functions. Below, X means an input event set from

external models, such as other agents and spaces. Y means an output event set which is generated by the

action model. The states of the action model are divided into three types : states of situation aware-

ness(Saw), states of actions(Sact), and states of conditions(Scond). Using these state sets, four functions need

to be specified, and the four functions include three basic functions from the agent’s skeleton in Figure 1

and a time advance function that is essential in discrete event system. The perceive function (P) means,

when the external events come in, an action model changes its situation awareness states by the external

inputs. The decision function (D) specifies the transition of its action states according to its situation

awareness, action in progress, and decision conditions. The action function (A) describes an action model

generating an output event from the action states. Lastly, the time advance function defines the time of the

action completion by the chosen output action. While the mathematical notations are described below,

Figure 3 shows the structure of the action model in the formal specification .

ACT = <X, Y, Saw, Sact, Scond, P, D, A, ta>

X = Set of input event

Y = Set of output event

Saw = Set of states about situation awareness

Sact = Set of states about action

Scond = Set of states about the agent’s conditions

P : (X ⅹ Saw) → Saw ⅹScond = Perceive function

D : (Saw ⅹ Sact ⅹ Scond) → Sact = Decide function

A : (Sact) → Y = Action Function

ta : (Sact) → R
+
 = Time Advance Function

3.3 Formal Specification of Agent Model

The agent model in Figure 2 specifies an agent entity performing multiple actions specified in its action

models. When the model is executed, the agent model performs the actions dynamically composed with

respect to the agent model’s states and external events generated by either other agents or spaces. This

dynamic action composition is enabled by the coupling structure between the action models within the

agent model. To express this action composition in an agent, the following is a formal specification of an

agent model

AM = < X, Y, S, A, δ, C, SELECT >

X = Set of input event

Y = Set of output event

S = Set of states about coupling structure

A = Set of action models

δ : (XⅹS) → S = State Transition Function

C = {sEIC, sEOC, sIC}, Coupling Structure set

 sEIC ⊆ S × X × ∪Xi, where Xi ∈ X of A, state based External Input Coupling

 sEOC ⊆ S × X × ∪Xi, where Xi ∈ X of A, state based External Output Coupling

 sIC ⊆ S × ∪Yi × ∪Xi , where Xi ∈ X of A and Yi ∈ Y of A, state based Internal Coupling

SELECT : 2
{A}

 – ø → A, Select Function,

 An agent model consists of seven tuples. X and Y mean the sets of the inputs and the output events of

the agent model, respectively. S means the set of the states about coupling structure. A means the set of

actions in the agent model. C describes coupling relations between an agent model and its action models.

The coupling relations consist of sEIC, sEOC, and sIC,. sEIC describes relations between an input event

of the agent model and an input event of one of its action models. sEOC is similar to sEIC while sEOC

handles the outputs. sIC describes relations between an input event and an output event of action models

in the agent model. The state transition function (δ) determines the composition state of the actions of the

agent model. The select function (SELECT) determines the priority of executing an action when multiple

actions are required to be executed by an input. This select function is adapted from DEVS formalism

with minimal change, so further details is in (Zeigler, Praehofer, and Kim 2000).

3.4 Formal Specification of Multi-Agents Model

The multi-agents model in Figure 2 describes interactions between agents. The multi-agents model in-

cludes multiple agent models with a coupling structure. This coupling structure might be changed by ei-

ther output of agent models (i.e. the movement of an ambulance) or input events from space models. The

coupling structure at a certain moment is determined by the coupling structure state. If we substitute 1)

the agent models with the action models and 2) the multi-agents model with the agent models, the compo-

sition of the multi-agents model is same to the composition of the agent model in the previous section ex-

cept one difference. The difference is that the multi-agents model changes its coupling structure by the

output events generated by its agent models, while the agent model changes its coupling structure by in-

put events to the agent model itself. This difference is annotated in Figure 3.

MAM = < X, Y, S, AM, C, δ, SELECT>

X = {Xcs∪Xin}, where Xcs = Set of structure change events and Xin = Set of input events

Y = Set of output events

S = Set of states about coupling structure

AM = Set of agent models

δ = Xcs × S → S, Coupling Structure transition function

C = {sEIC, sEOC, sIC, sCS}, Coupling Structure set

 sEIC ⊆ S × X × ∪Xi, where Xi ∈ X of AM, state based External Input Coupling

 sEOC ⊆ S × X × ∪Xi, where Xi ∈ X of AM, state based External Output Coupling

 sIC ⊆ S × ∪Yi × ∪Xi , where Xi ∈ X of AM and Yi ∈ Y of AM, state based Internal Coupling

 sCS ⊆ S ×∪Yi × Xcs, where Yi ∈ Y of AM, Coupling Structure Relation

SELECT : 2
{AM}

 – ø → AM, Select Function,

 To explain the formal specification of the multi-agents model, we only explain the different elements

compared to the formal specification of the agent model. Coupling structure relation (sCS) is added to

link the outputs of the agent model to the multi-agents model’s state-changing inputs (Xcs). Following fig-

ure 3 show the structures of the action, the agent and the multi-agents model specifications.

Figure 3: Structure of the action model (left), agent model (mid) and multi-agents model (right)

3.5 Reduction to DEVS formalisms

In this section, we prove that our formal specification is reducible to DEVS formalism. The reducibility to

DEVS will show that the suggested formal specification is sufficient for modeling in the hierarchical and

modular fashion, and our formal specification belongs to a special case of DEVS formalism. Table 2

shows that our formal specification has matching and more elements to DEVS formalism. This means

that our formal specification is reducible to DEVS formalism by removing some information in our speci-

fication. In detail, the action model is reducible to the atomic model in DEVS. These two models are

same except our specification splits the state set of DEVS into three sets in our model. The agent model is

reducible to the coupled model in DEVS while our model has its own state set and transition function de-

termining the coupled structure. Having the state set and the transition function is first introduced by the

MDEVS formalism (Kim and Kim 2000) that we surveyed before, yet we simplified and reorganized the

formalism to match the agent-based modeling context. The multi-agents model is another extension of

DEVS coupled model, and the result of the reduction is the same as the agent model’s reduction.

Table 2: Reduction from the proposed formal specification to DEVS formalism
 DEVS Formalism Formal Specification for Agent-Based Models

 Atomic

Model

Coupled

Model

Action

 Model

Agent

 Model

Multi-Agents

Model

Input Event X X X X Xcs∪Xin

Output Event Y Y Y Y Y

States S Saw × Sact × Scond S S

External Transition

Function
δext : (X × S) → S

P : (X × Saw) → Saw ×

Scond
 δ = (X × S) → S,

δ = (Xcs × S) →

S

Internal Transition

Function δint : S → S
D : (Saw × Sact ×

Scond) → Sact

Output Function λ : S → Y A : Sact → Y

Time Advance

Function
ta : S → R+ ta : Sact → R+

Component Model M A AM

Coupling Structure

{EIC, IC,

EOC}

{sEIC, sEOC,

sIC}

{sEIC, sEOC,

sIC, CS}

SELECT Function SELECT SELECT SELECT

3.6 Example : Construct-Spatial Model

We give an example to demonstrate the formal specification of agent-based models. Whereas there are

few agent-based models that incrementally and flexibly integrates existing models, some integration

models (Moon and Carley 2007) are created by manually integrating two existing models without any

support from formalisms. Construct-spatial is one attempt to create a mixture of two agent-based models

in the spatial and the network domains. Construct-spatial model is an agent-based model of mixing 1) the

action of the sugarscape agent (Epstein and Axtell 1996) that moves in a physical space and 2) the action

of the construct agent (Carley and Hill 2001) that communicates on a social network space. Figure 4 is a

collection of three snapshots of the execution of construct-spatial model.

Figure 4: Progress of simulating Construct-spatial model

3.6.1 Action Model : Sugarscape Action Model

The sugarscape action model describes moving toward resources (i.e. sugar). This action model gets the

location of resources within their vision and generates their updated position. If the action model finds the

location of resource, it goes toward the resource. Otherwise, it stays. Although the action model finds the

resource, it may not move by the condition set. the formal specification of the sugarscape action model is

below.

Sugarscape Action Model (SA) = < X, Y, Saw, Sact, C, P, D, A, ta>

X = { Gridres , Agentres | Gridres = (xgrid, ygrid, sgrid), xgrid = x coord. of grid space in vision range,

ygrid = y coord. of grid space in vision range, sgrid = amount of sugar distribution ,

 Agentres = (xi, yi, si, ai), xi, yi and si are same definitions in Gridres,

 ai = index of agent who sends the information of sugar to agent including CA }

Y = { Locagent | Locagent = (xagent, yagent, aagent)

 , xagent, yagent =x, y coord. of grid space where agent is located, aagent = index of the agent including SA }

Saw = { Targetres= (xtar, ytar, star) | xtar, ytar, and star use the same definitions in X }

Sact = { (movement_action) | movement_action=either GoResource(x,y (x,y coord. of resource)) or Stay}

Scond = { (xloc,yloc, health) | xloc, yloc =x, y coord. of the agent location, health=either hungry or full}

P : (X × Saw× Scond) → S
‘
aw × S

‘
cond

 (xgrid, ygrid, sgrid) ×(xtar, ytar, star)×(xloc, yloc, Full) → (xtar, ytar, star)×Hungry

 (xgrid, ygrid, sgrid) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xgrid, ygrid, sgrid)×Hungry , if (sgrid > ssa)

 (xgrid, ygrid, sgrid) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xsa, ysa, ssa)×Hungry , if (sgrid <= ssa)

 (xi, yi, si, ai) ×(xtar, ytar, star)×(xloc, yloc, Full) → (xtar, ytar, star)×Hungry

 (xi, yi, si, ai) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xgrid, ygrid, sgrid)×Hungry , if (si > ssa)

 (xi, yi, si, ai) ×(xtar, ytar, star)×(xloc, yloc, Hungry) → (xsa, ysa, ssa)×Hungry , if (si <= ssa)

D : (Saw × Sact × Scond) → S
‘
act

 (xtar, ytar, star)×Sact×(xloc, yloc, Full) → Stay

 (xtar, ytar, star)×Sact×(xloc, yloc, Hungry) → GoResource(xtar, ytar)

A : Sact → Y

 Go_Resource(x,y)→ (x’,y’)

 Stay→ (x,y)

ta : Sact → R
+

 Go_Resource(9,10) → tgo ∈ R
+

 Stay → ∞

3.6.2 Action Model : Construct Action Model

The construct action model describes communicating their knowledge about resources with other agents.

This action model communicates with other agents within vision range. The construct action model has a

list of agents within vision range and it can communicate with them. According to the condition set of the

action model, the action model decides whether it communicates with other agents or not. Once it decides

to communicate, it generates an event to change coupling structure to a multi-agents model which the ac-

tion model is in. The formal specification of the construct action model is below.

Construct Action Model (CA) = < X, Y, Saw, Sact, C, P, D, A, ta>

X = { Gridres , Agentres, Listagent| Gridres = (xgrid, ygrid, sgrid), xgrid = x coord. of grid space in vision range,

ygrid = y coord. of grid space in vision range, sgrid = amount of sugar distribution

 , Agentres = (xi, yi, si, ai), xi, yi and si are same definitions in Gridres,

 ai = index of agent who sends the information of sugar to agent including CA

 , Listagent = List of indexes of agents who are possible to communicate in the vision range }

Y = { (Agentres, NetworkChange |

 Agentres = (xca,yca,sca,aca) same definition in X, NetworkChange = (aca, ai), ai = index of agenti }

Saw = { Agentres × Listagent | Agentres = (xca,yca,sca,aca), xca,yca,sca,aca are same definition in X

 , Listagent = index of agents who are in the vision range }

Sact = { CommAction | CommAction = either Communicate(xca,yca,sca,aca, aagent),

 xca,yca,sca,aca, aagent are same definition in Saw or Wait }

Scond = { Characteristic | Characteristic = either Friendly or Selfish }

P : (X × Saw× Scond) → S
‘
aw×S

‘
cond

 (xgrid, ygrid, sgrid) × ((xca,yca,sca,aca) × Listagent) × Scond → ((xgrid, ygrid, sgrid, aca) × Listagent) × Scond

 (xi, yi, si, ai) × (xca,yca,sca,aca) × Friendly → ((xi,yi,si,ai) × Listagent ∪{ai}) × Friendly ,if (si > sca)

 (xi, yi, si, ai) × (xca,yca,sca,aca) × Friendly → ((xca,yca,sca,aca) × Listagent ∪{ai}) × Selfish ,if (si <= sca)

 (Listagent) × ((xca,yca,sca,aca) × aagent) × Selfish → ((xgrid, ygrid, sgrid, aca) × Listagent × Friendly

D : (Saw × Sact × Scond) → S
‘
act

 (Saw × Sact × Selfish → Wait

 ((xca,yca,sca,aca) × Listagent) × Sact × Friendly → Communicate(xca,yca,sca,aca, aagent), aagent∈ Listagent

A : Sact → Y

 Wait → { }

 Communicate(xca,yca,sca,aca, aagent) → Networkchange(aca,aagent), Agentres(xca,yca,sca,aca)

ta : Sact → R
+

 Wait → ∞

 Communicate → tcomm ∈ R
+

3.6.3 Agent Model : Construct-spatial Agent Model

Construct-spatial agent model is generated by composition of the sugarscape action model and Construct

action model. According to the states of the agent model and the external events from other agents or

space models, the agent model decide an action model to be executed at certain time, which is regulated

by changing coupling structure of the agent model. The formal specification of Construct-spatial agent

model is below.

Construct-Spatial Agent Model (CSA) = < X, Y, S, A, C, δ, SELECT>

X = { Gridres , InAgentres, Listagent | same definitions in CA, SA }

Y = { OutAgentres, NetworkChange, Locagent | same definitions in CA, SA }

S = { Construct, Sugarscape, Both }

A = { CA, SA}

C = {sEIC, sEOC, sIC }, Coupling structure set

 sEIC ⊆ {S ×(CSA, Gridres) × (CA, Gridres), S× (CSA, Gridres) × (SA, Gridres),

 S × (CSA, InAgentres) × (CA, Agentres), S × (CSA, InAgentres) × (SA, Agentres),

 S× (CSA, Listagent) × (CA, Listagent) }

 sEOC ⊆ { S × (CA, Agentres) × (CSA, OutAgentres), S ×(SA, Locagent) × (CSA, Locagent),

 S× (CA, NetworkChange) × (CSA, NetworkChange) }

 sIC ⊆ { S× (CA, Agentres) × (SA, Agentres) }

δ : (Gridres × S) → Both

(InAgentres × S) → Both

(Listagent × S) → Construct

SELECT : 2
{A}

 – ø → Ai, Aj ∈ A

3.6.4 Multi-Agents Model : Construct-spatial Multi-Agents Model

Construct-spatial multi-agents model contains multiple developed Construct-spatial agent models and

specify the coupling structure of the agent models. on the contrast to Construct-spatial agent models, this

multi-agents model changes its coupling structure by the output events from its agent models. The formal

specification of the multi-agents model is below.

Construct-spatial Multi-agents Model (CSMA) = < X, Y, AM, S, C, δ, SELECT>

X = {Xcs∪Xin}, Xcs = { NetworkChange }, Xin = { Gridres , Listagent}, same definitions in CSA model

Y = { Locagent }, same definitions in CSA model

AM = {Mi | Mi is a CSA model with indexing i }

S = { Mi | Mi ∈ AM , Mi is an activate agent }

C = {sEIC, sEOC, sIC, CS}, Coupling structure set

 sEIC ⊆ (S × (CSMA, Gridres) × (Mi, Gridres)), (S × (CSMA, Listagent) × (Mi, Listagent)), Mi ∈ AM

 sEOC ⊆ (S × (Mi, Locagent) × (CSMA, Locagent)), Mi ∈ AM

 sIC ⊆ (S × (Mi, OutAgentres) × (Mj, InAgentres)), Mi and Mj ∈ AM

 CS ⊆ (S × (Mi, OutAgentres) × (CSMA, NetworkChange), Mi ∈ AM

δ = Xcs × S → S’

 NetworkChange(ai, aj) × S → S’ , ai, aj ∈ AM

SELECT : 2
{AM}

 – ø → Mi, Mj ∈ AM

 Figure 5 shows the structure of Construct-spatial agent model and multi-agent model as the formal

specifications of the models.

Figure 5: Structure of Construct-spatial agent model (left) and multi-agents model (right)

4 CONCLUSION

This paper proposes a formal specification of agent-based models to support the incremental and the flex-

ible models development. Our formal specification, which is reducible to DEVS formalism, enables the

hierarchical and the modular modeling of the action, the agent, and the multi-agents models. Particularly,

the action models are expressed by common taxonomy in the agent-based modeling community, i.e., per-

ception, decision, and action. Additionally, we organize a simple, yet sufficient formal specification in the

dynamic composition of 1) action models in an agent model and 2) agent models in a multi-agents model.

To demonstrate the expressive power of our formal specification, we show an example of construct-

spatial model that is composed of two well-known traditional agent-based models: sugarscape and con-

struct. To sustain this formal specification, we plan to provide a model implementation platform support-

ing this formal specification.

REFERENCES

Akplogan, Mahuna, Gauthier Quesnel, Alexandre Joannon, and Roger Martin-clouaire. 2010. Towards a

deliberative agent system based on DEVS formalism for application in agriculture. In Proccedings of

the Summer Computer Simulation Conference SCSC10 (2010).

Auyang, Sunny Y.. 1999. Foundations of Complex-System Theories: In Economics, Evolutionary Biology,

and Statistical Physics. Cambridge University Press.

Batty, Michael. 2005. Cities and Complexity: Understanding Cities with Cellular Automata, aGent-Based

Models, and Fractals. 1st ed. Cambridge, MA: MIT Press.

Barbuceanu, Mihai, Rune Teigen, and Mark S. Fox. 1997. Agent based design and simulation of supply

chain systems. In Proceedings of IEEE 6th Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises, 36-41. IEEE Comput. Soc. doi:10.1109/ENABL.1997.630787.

Benenson, tzhak. 1998. “Multi-agent simulations of residential dynamics in the city.” Computhers, Envi-

ronment and Urban Systems 22 (1): 25-42. doi:10.1016/S0198-9715(98)00017-9.

http://www.sciencedirect.com/science/article/pii/S0198971598000179.

Bernard, Robert N.. 1999. Using Adaptive Agent-Based Simulation Models to Assist Planners in Policy

Development: The Case of Rent Control. SANTA FE. http://www.santafe.edu/research/working-

papers/abstract/0cbe9b4e0fc8061589e453dea9f7721e/.

Bertsekas, D. P.. 1976. Dynamic programming and stochastic control. New York: Academic. 111-128.

Bratman, Michael E.. 1987. Intention, Plans, and Practical Reason. Cambridge, MA: Harvard University

Press.

Carley, K. M. 1991. A Theory of Group Stability, American Sociological Review 56 (3): 331-354.

Epstein, Joshua M. and R. Axtell. 1996. Growing artificial societies: social science from the bottom up.

Cambridge MA: MIT Press.

Gaupp, Martin P. and R.R. Hill. 1999. Using adaptive agents in Java to simulate U.S. air force pilot re-

tention. In 1999 Winter Simulation Conference (WCS’99) - volume 2. Phoenix, AZ, USA.

Heath, Brian, Raymond Hill, and Frank Ciarallo. 2009. “A Survey of Agent-Based Modeling Practices

(January 1998 to July 2008).” Journal of Artificial Societies and Social Simulation 12 (4): 9.

Kim, Jae-Hyun and Tag Gon Kim. 2000. FRAMEWORK FOR MODELING/SIMULATION OF MOBILE

AGENT SYSTEMS. In Proceedings of 2000 Conference on AI, Simulation and Planning in High Au-

tonomy Systems, 53-59. http://smsl.kaist.ac.kr/paper/CF/CF-63.pdf.

Mittal, Saurabh, Bernard P Zeigler, Jose L Risco, and Jesús M De. 2007. WSDL-BASED DEVS AGENT

FOR NET-CENTRIC SYSTEMS ENGINEERING. In DEVS Integrative M&S Symposium

DEVS’07.

Moon, Il-Chul and Kathleen M Carley. 2007. Self-Organizing Social and Spatial Networks under What-if

Scenarios. In Autonomous Agent and Multi-Agent Systems 2007, 127-134. Honolulu, Hawaii.

http://seslab.kaist.ac.kr/xe/321.

Müller, Jean-pierre. 2009. Towards a Formal Semantics of Event-Based Multi-agent Simulations. In 10th

International Workshop on Multi-Agent-Based Simulation, 110-126.

Neumann, John von and Oskar Morgenstern. 1944. Theory of Games and Economic Behavior. 60th ed.

USA: Princeton University Press.

Neumann, John Von. 1966. Theory of Self-Reproducing Automata. Ed. Arthur W. Burks. Urbana and

London: University of Illinois Press. http://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf.

RUSSEL, S. and P. Norvig. 1995. Artificial Intelligence: A Modern Approach. Prentice Hall. Upper Sad-

dle River. NJ.

Schelling, T.. 1971. "Dynamic Models of Segregation." Journal of Mathematical Sociology 1:143-86.

Sakoda, J. M.. 1971. The checkerboard model of social interaction. J Math Social 1: 119–132.

Sarjoughian, H S, B P Zeigler, and S B Hall. 2001. A layered modeling and simulation architecture for

agent-based system development. Proceedings of the IEEE. Vol. 89. IEEE. doi:10.1109/5.910855.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=910855.

Wainer, Gabriel A.. 1998. Discrete events cellular models with explicit delays. Universidad Nacional de

Buenos Aires. http://www.emis.ams.org/journals/SADIO/vol.2.1/tesis3.html.

Zhang, Bo, Wai Kin Chan, and Satish V. Ukkusuri. 2011. Agent-based discrete-event hybrid space mod-

eling approach for transportation evacuation simulation. In Proceedings of the 2011 Winter Simula-

tion Conference (WSC), 199-209. http://www.informs-sim.org/wsc11papers/017.pdf.

Zeigler, Bernard P, Herbert Praehofer, and Tag Gon Kim. 2000. Theory of Modeling and Simulation.

Simulation. Vol. 132. Academic Press. doi:10.1159/000074301.

AUTHOR BIOGRAPHIES

JANG WON BAE is a doctoral student at Department of Industrial and Systems Engineering, KAIST.

His email address is repute82@kaist.ac.kr.

GEUNHO LEE is a master candidate at Department of Industrial and Systems Engineering, KAIST. His

email address is geunho@kaist.ac.kr.

IL-CHUL MOON is an assistant professor at Department of Industrial and Systems Engineering, KAIST.

His email address is icmoon@kaist.ac.kr.

