
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

FASTER FLATTENING OF HIERARCHICAL DEVS MODEL FOR ACCELERATED
SIMULATION

Jang Won Bae
Su-Jin Shin

Il-Chul Moon

Department of Industrial and Systems Engineering
KAIST, 291 Daehak-ro

Yuseong-gu, Daejeon 305-701, Republic of Korea

ABSTRACT

DEVS formalism is a widely utilized representation for a discrete event model, and this formalism is
frequently adapted to specify the structure and the behavior of simulation models. One advantage of
DEVS is its hierarchy structure of flexible composition of models, but this hierarchy often becomes a
double-edge sword that might hinder a faster simulation because the simulation engine should navigate
the hierarchy. Hence, in practice, simulations are performed by a flattened model instead of a hierarchical
model. This article introduces a new matrix-based algorithm to create the flattened model rapidly to shorten
the flattening time. This algorithm exploits properties of coupling structure to limit the matrix element
changes to accelerate the process. This paper shows the competitiveness of this algorithm by comparing
to the tree based flattening. We expect that this algorithm is particularly useful when a model dynamically
changes its structure and the flattening should be redone repeatedly.

1 INTRODUCTION

Modeling and simulation (M&S) in discrete event systems have been adopted to understand, analyze and
predict sophisticated systems. After an object-oriented paradigm was introduced, there seemed to be a
trend about utilizing features of the object-oriented paradigm, such as encapsulation and inheritance to
M&S. One of the reasons might be that the object-oriented paradigm could support hierarchical modeling.
Hierarchical modeling describes a complex system as a simple model including multiple component models.
With hierarchical modeling, we could make use of several advantages, such as developing models with
ease, increasing reuse of models, and aiding in model validation (Sargent et al. 1993).

Discrete event system specification formalism enables hierarchical and modular descriptions of discrete
event systems and furnishes abstract simulation algorithms to execute DEVS models (Zeigler, Praehofer,
and Kim 2000). DEVS formalism have supported developing models in various domains, such as traffic
control (Lee, Lee, and Chi 2003), military field(Kim, Moon, and Kim 2011), crisis management (Lee,
Oh, and Moon 2012) and urban design (Palaniappan, Sawhney, and Sarjoughian 2006). However, DEVS
formalism causes overheads in executing DEVS models. These overheads are caused from a hierarchical
structure in DEVS. The hierarchical structure contains redundant models that describe hierarchical structures
of systems, which requires extra costs for message passing and time scheduling during component models

There have been many studies to reduce the overheads in DEVS formalism. In Lee and Kim’s
result, the overheads could be categorized into three parts: state transitions in DEVS models, message
passing and time scheduling among DEVS models (Lee and Kim 2003). They showed that message
passing and time scheduling are more significant factors to simulation performances, which directly come
from hierarchical structures. Most studies on improving the simulation performances branched out into

Bae, Shin, and Moon

mitigating these three overheads. One approach to tackle these problems is revising both DEVS formalism
and abstract simulation algorithms. However, these approaches do not essentially mitigate the overheads
from hierarchical structures. The other trend is revising only the abstract simulation algorithms without
modifications on DEVS formalism. Most studies of this trend focused on minimizing the overheads from
hierarchical structures using the f lattening method. The f lattening method removes the hierarchy of the
DEVS model so that the overheads from hierarchical structures would be minimized. The resultant model
of f lattening procedure is called a flattened model. In constructing a flattened model, reconstructing the
coupling structures in the flattened model could also be time consuming. In previous works, they used a
simple searching algorithm to construct a flattened model. The algorithm, which is called a naı̈ve method
in this paper, finds coupling structures in a flattened model by checking all coupling relations in original
DEVS models, which is similar to a depth-first search. Hence, the naı̈ve method might be vulnerable to
increasing hierarchy level and scalability of models. However, to our best knowledge, there are few studies
about considering how to efficiently develop flattened models from DEVS models.

In this paper, we propose a matrix-based representation of coupling structures in a DEVS model and
an algorithm for constructing a flattened model using matrix operations. In order to support the algorithm,
we define coupling relations of DEVS models as a relation matrix form, such as coupling structure matrix
(CSM) and flattened coupling structure matrix (FCSM). Constructing CSM could be performed using
coupling specifications of DEVS model, but constructing FCSM requires an additional method. That is
why we proposed an algorithm describes how to develop FCSM using multiple CSMs. The result of
our experiments illustrates that our algorithm shows about 10% speedup in simulation performances than
the naı̈ve method. Furthermore, the result is sufficient to estimate that our algorithm would show better
performance as increasing hierarchy level and number of component models.

2 BACKGROUND

In this section, we introduce several backgrounds of our work. Firstly, we briefly review DEVS formalism
and abstract simulation algorithms. Secondly, we illustrate previous studies related to improving simulation
performance.

2.1 DEVS Formalism

Discrete event system specification (DEVS) formalism is a general method of developing discrete event
models (Zeigler, Praehofer, and Kim 2000). DEVS formalism provides a modular and hierarchical mod-
eling framework and supports to realize models with abstract simulation algorithms. DEVS formalism
is composed of two models: atomic model (AM) and coupled model (CM). AM describes behaviors
of component models in a target system and CM describes coupling structures between CM itself and
component models. The detailed specifications of AM and CM are in Figure 1:

Figure 1: Atomic and Coupled Model.

Bae, Shin, and Moon

Hierarchy structure of a DEVS model could be represented by a tree structure, which is called as a
decomposition tree. Figure 2 shows a DEVS model, its flattened model, and their associated decomposition
tree. For the result of the flattening procedure, intermediate coupled models, which are component models
at the level of a coupled model, are removed from the original DEVS model. The removed models are
easily discovered using decomposition trees in Figure 2.

Figure 2: An example of a DEVS model, its flattened model and related decomposition trees.

In the abstract simulation algorithms, simulators and coordinators are assigned to each AM and CM.
Simulators and coordinators execute assigned DEVS models by transmitting four messages, such as (∗, t),
(done, tN), (x, t) and (y, t); Each message relates to computing output and next state, noticing next event
time, receiving input “x” and sending output “y” at time t, respectively. Although only AMs generate and
consume event messages, all of the messages are transmitted through coupling relations of CMs. Eventually,
this simulation protocol of the abstract simulation algorithms causes the overheads in executing DEVS
simulation.

2.2 Related Work

To improve simulation performance in DEVS models, many studies have been performed with two directions:
extending DEVS formalisms and applying flattening procedure.

Extended DEVS formalisms were branched out into 1) parallel and distributed simulation and 2) hybrid
simulation. Because DEVS formalism assumes sequential simulation execution, parallel and distributed
simulation would reduce simulation costs. Chow firstly invented PDEVS and its abstract simulation
algorithms (Chow 1996). PDEVS approach was applied to improving DEVS simulation environment
(Zeigler et al. 1997), developing parallel Cell-DEVS (Troccoli and Wainer 1997), and realizing a DEVS
environment on GPU (Liu and Wainer 2012). On the other hand, hybrid simulation is one of methods
for reducing simulation costs by fast calculations from analytic models (Shanthikumar and Sargent 1983)
(Goswami and Iyer 1993). Hybrid simulation environments are often developed in HLA/RTI (Venkateswaran,
Son, and Jones 2004) and in plug-in manners (Bae and Kim 2010). Because these works are focused on
improving computation power, they could not achieve a significant improvement of simulation performances.

In order to achieve a significant improvement in simulation performances, the overheads from message
passing and time scheduling should be reduced. Kim and Kim developed a meta-model for optimizing
hierarchy level of DEVS models to minimize the overheads of message passing and time scheduling (Kim

Bae, Shin, and Moon

and Kim 1997). According to their result, lower-level hierarchy does not always imply better simulation
performances. However, in general cases, simulation performances are getting worse as the hierarchy level
of models are increasing (Kwon and Kim 2012). As reflecting this tendency, there have been many studies of
removing the hierarchy of models by f lattening procedures for better simulation performances. Kim et al.
suggested a DEVS cluster for distributed simulation and applied flattening method to the DEVS cluster (Kim
et al. 2000). Lee and Kim applied composition-based compilation, the same as the f lattening method, using
formal specifications (Lee and Kim 2003). Wainer and Giambiasi applied flattening methods to Cell-DEVS
models and showed better simulation performances (Wainer and Giambiasi 2001). Additionally, there are
several studies employing an event-oriented paradigm to DEVS models using the flattening method (Muzy
and Nutaro 2005) (Kwon and Kim 2012). Although the flattening method was applied to many studies and
showed improvements in simulation performances, there are few studies of how to efficiently get a flattened
model from a DEVS model. Most previous studies developed a flattened model using a naı̈ve method.
However, as hierarchy level of model or the number of component models is increased, a performance
of the naı̈ve method is getting worse. Therefore, this paper proposes matrix-based representations and
manipulations of the coupling structure in DEVS models to develop flattened models from DEVS models
efficiently and robustly.

3 MATRIX REPRESENTATION OF COUPLING STRUCTURE

In this section, we illustrate matrix representations of coupling structures in DEVS models and in flattened
models. Before introducing matrix representations of coupling structures, we summarize frequently used
notations in Table 1.

Table 1: Summary of Notations.

Notation Description
M DEVS model set
M.X Input event set in M
M.xi ith input event in CM.X , i is an index of M.X(1≤ i≤ |M.X |)
M.Y Output event set in M
M.yi ith output event in CM.Y , i is an index of M.Y (1≤ i≤ |M.Y |)
CM.M Component model set in CM
CM.mi ith component model in CM.M, i is an index of CM.M(1≤ i≤ |CM.M|)
CM.AM Component model set containing leaf node models (i.e. atomic model) of decomposition

tree of model CM
CM.ami ith component model in CM.AM, i is an index of CM.AM(1≤ i≤ |CM.AM|)
(ei,e j) Coupling relation from ei to e j, where ei and e j are events
RM Candidate set of source events in the relation matrix M
CM Candidate set of destination events in the relation matrix M
CSMm Coupling Structure Matrix of model named m
FCSMm Flattened Coupling Structure Matrix of model named m
Hm Height of decomposition tree of model m

3.1 Coupling Structure Matrix

CSM of a DEVS coupled model cm (CSMcm) is a relation matrix which represents coupling structures
in the DEVS model cm. Coupling structures in a DEVS model mean how the model and its component
models are interconnected. An (i, j) element of CSMcm, which is (CSMcm)i j, represents whether there is a
coupling relation from an event ri to another event c j. When we construct the coupling structure matrix, we

Bae, Shin, and Moon

should define source events (e.g. ri) and destination events (e.g. c j) of the DEVS model. The source events
and destination events of the DEVS model could be found in the specifications of coupling relations in the
DEVS model. Therefore, we can derive a set of candidates for source and destination events using coupling
relations in EIC, EOC, and IC in the DEVS model. In detail, a set of source events in CM (RCM) would be a
union set of CM.X and

⋃|CM.M|
i=1 (CM.mi).Y and a set of destination events in CM (CCM) would be a union set

ofCM.Y and
⋃|CM.M|

i=1 (CM.mi).X . Based on this understanding, we could mathematically defineCSMcm in (1).

Let CSMCM(∈M(m,n)) be an m×n matrix : (1)

RCM =CM.X
⋃(|CM.M|⋃

i=1

(CM.mi).Y

)
, CCM =CM.Y

⋃(|CM.M|⋃
i=1

(CM.mi).X

)
CM.X = {CM.X1:l} , where l = |CM.X | , CM.Y = {CM.y1:p} , where p = |CM.Y |
(CM.mi).X =

{
(CM.mi).x1:qi

}
, where qi = |(CM.mi).X | f or 1≤ i≤ |CM.M|

(CM.mi).Y = {(CM.mi).Y1:ki} , where ki = |(CM.mi).Y | f or 1≤ i≤ |CM.M|

∴ RCM = {r1:m}=
{

CM.x1:l,(CM.m1).y1:k1 , · · · ,(CM.m|CM.M|).y1:k|CM.M|

}
, where m = l +

|CM.M|

∑
i=1

ki

∴ CCM = {c1:n}=
{

CM.y1:p,(CM.m1).x1:q1 , · · · ,(CM.m|CM.M|).x1:q|CM.M|

}
, where n = p +

|CM.M|

∑
i=1

qi

For example, CSM of the model cm (CSMcm) would be an “m by n” matrix. “m” is equal to the sum of
the number of input events of the model cm (|cm.X |) and the number of output events of component models
in the model cm (∑

|cm.M|
i=1 |(cm.Mi).Y |). “n” is equal to the sum of the number of output events of the model

cm (|cm.Y |) and the number of input events of component models in the model cm (∑
|cm.M|
i=1 |(cm.Mi).X |).

(csmCM)i j =

1 i f (ri,c j) ∈ EIC in CM

else i f (ri,c j) ∈ EOC in CM
else i f (ri,c j) ∈ IC in CM

0, otherwise

(2)

An (i, j) element of CSMcm, (csmcm)i j, is defined by EIC, EOC and IC in model CM (2). If a coupling
relation from an ri event to another c j event is existing in the model cm, (csmcm)i j is set to one. Otherwise,
(csmcm)i j is set to zero.

CSMCM =

(
(CSMCM)11 (CSMCM)12
(CSMCM)21 (CSMCM)22

)
=

(
Sel f − loopMCM EICMCM

EOCMCM ICMCM

)
(3)

We divided CSMcm into four sub-matrices under the constraints with |cm.X | as a row size and |cm.Y | as
a column size, four sub-matrices are generated. Figure 3 shows four divided sub matrices from CSMcm. The
top-left sub matrix represents coupling relations between input events and output events in the model cm,
which is called as sel f − loop coupling relations. In DEVS formalism, these self-loop relations are forbidden
in CM (Zeigler, Praehofer, and Kim 2000). Hence, we suppose that self-loop matrix (sel f − loopMcm) is
a zero matrix. The top-right sub matrix represents coupling relations between input events in model cm
and output events in component models of the model cm, which is referred as EIC in the model cm. We
could understand that the bottom-right sub matrix and the bottom-left sub matrix represent IC and EOC
in the model cm in the similar way. Therefore, the top-right, bottom-left, and bottom-right sub matrices
are identical to EIC matrix (EICMcm), IC matrix (ICMcm) and, EOC matrix (EOCMcm) in the model cm,
respectively (3).

Bae, Shin, and Moon

Figure 3: Coupling Structure Matrix (CSM) divided into four sub-matrices.

3.2 Flattened Coupling Structure Matrix

FCSM of a DEVS model cm (FCSMcm) is also a relation matrix that represents coupling relations in the
flattened model of the model cm. Because the flattened model should contain only AMs as component
models, FCSMcm illustrates coupling relations between the model cm and AMs in recursive-component
models in the model cm, which indicate all leaf nodes of the decomposition tree of the model cm (CM.AM).
Similar to defining CSMCM, RCM of FCSMCM would be a union set of CM.X and

⋃|CM.AM|
i=1 (CM.ami).Y

and CCM of FCSMCM would be a union set of CM.Y and
⋃|CM.AM|

i=1 (CM.ami).X . FCSMCM could be math-
ematically defined in (4).

Let FCSMCM(∈M(m,n)) be an m×n matrix : (4)

RCM =CM.X
⋃(|CM.AM|⋃

i=1

(CM.ami).Y

)
, CCM =CM.Y

⋃(|CM.AM|⋃
i=1

(CM.ami).X

)
CM.X = {CM.x1:l} , where l = |CM.X | , CM.Y = {CM.y1:p} , where p = |CM.Y |

(CM.ami).X =
{
(CM.ami).x1:qi

}
, where qi = |(CM.ami).X | f or 1≤ i≤ |CM.AM|

(CM.ami).Y = {(CM.ami).y1:ki} , where ki = |(CM.ami).Y | f or 1≤ i≤ |CM.AM|

∴ RCM = {r1:m}=
{

CM.x1:l,(CM.am1).y1:k1 , · · · ,(CM.am|CM.AM|).y1:k|CM.AM|

}
, where m = l +

|CM.AM|

∑
i=1

ki

∴ CCM = {c1:n}=
{

CM.y1:p,(CM.am1).x1:q1 , · · · ,(CM.am|CM.AM|).x1:q|CM.AM|

}
, where n = p +

|CM.AM|

∑
i=1

qi

Similar to defining CSMcm, sel f − loopMcm, FEICMcm, FEOCMcm, and FICMcm in FCSMcm could
be defined except elements of RCM and CCM (4). Although elements in CSMcm can be extracted from the
specifications (EIC, EOC ,and IC) of model cm, elements in FCSMcm could not be extracted directly.
Accordingly, we propose an algorithm for constructing FCSMcm using CSMcm in the next section.

Bae, Shin, and Moon

4 CONSTRUCTION OF FLATTENED COUPLING STRUCTURE MATRIX

In this section, we introduce an algorithm for constructing FCSM of a DEVS model. In order to handle
multi-level hierarchy models, the algorithm contains a sub algorithm handling the case that the hierarchy
level of a model is equal to two. In that case, FCSM of the model could be constructed using multiple
CSMs of the model and its component models. However, the algorithm deals with constructing multi-level
hierarchy models using the sub algorithm. In other words, the algorithm generates FCSM of a multi-level
hierarchy model using 1) CSM of the model and 2) multiple FCSMs and CSMs of its component models.
Moreover, The FCSMs of the component models are resultant of the sub algorithm, which means that the
algorithm works in a recursive manner. Following subsections would explain these algorithms in detail.

4.1 Algorithm for constructing FCSM with H = 2

In order to design an algorithm for constructing FCSM, it is practical to consider a simple model. Therefore,
we confined our research question to generating FCSM of a model cm (FCSMcm) with Hcm = 2. Because
FCSMcm represents coupling structures in the flattened model of the model cm, we should illustrate how we
construct the flattened model from the model cm. In order to generate the flattened model, the f lattening
procedure, which is comprised of two processes, is required: 1) removing intermediate CMs in the model
cm, and 2) redirecting coupling structures linked with the intermediate CMs. For removing intermediate
CMs in the model cm, we could simply get rid of them from the set of component models in the cm.
However, for redirecting coupling structures, we should consider coupling relations between the model cm
and the intermediate CMs. In this paper, we introduce an algorithm that carries out the two processes and
generates FCSMcm in Algorithm 1.

Algorithm 1 ConstructFCSM withH2, fG FCSM

Input: CSMs of CM and component models in CM
Output: FCSMCM

1: Set IntEOCMCM to EOCMCM.D1 ⊕ ·· · ⊕ EOCMCM.D|CM.D| ; IntEICMCM to EICMCM.D1 ⊕ ·· · ⊕
EICMCM.D|CM.D| ; IntICMCM to ICMCM.D1⊕·· ·⊕ ICMCM.D|CM.D|

Begin
2: procedure DEFINE FICMCM(CSMCM,CSMCM.D1 , · · · ,CSMCM.D|CM.D|)
3: iFICMCM ← IntEOCMCM · ICMCM · IntEICMCM

4: FICMCM ← iFICMCM + IntICMCM

5: end procedure
6: procedure DEFINE FEOCMCM(CSMCM,CSMCM.D1 , · · · ,CSMCM.D|CM.D|)
7: FEOCMCM ← IntEOCMCM ·EOCMCM

8: end procedure
9: procedure DEFINE FEICMCM(CSMCM,CSMCM.D1 , · · · ,CSMCM.D|CM.D|)

10: FEICMCM ← EICMCM · IntEICMCM

11: end procedure
12: procedure GENERATE FCSMCM(FEOCMCM,FEICMCM,FICMCM)
13: (FCSMCM)11 = 0|CM.X |,|CM.Y |; (FCSMCM)21 = FEOCMCM

14: (FCSMCM)12 = FEICMCM; (FCSMCM)22 = FICMCM

15: end procedure
16: return FCSMCM

End

Before detailed explanation of Algorithm 1, let us introduce a matrix operator called direct sum (⊕).
Let A be an “m by n” matrix and B be a “p by q” matrix. By the direct sum of A and B (A ⊕ B), we can get
a “(m + p) by (n + q)” matrix formed as ((A 0), (0 B)). Algorithm 1 needs multiple CSMs of the model cm

Bae, Shin, and Moon

and its component models in the model cm as inputs and generates FCSMcm as an output. Firstly, Algorithm
1 defined three matrices called as 1) Integrated EOC matrix of the model cm (IntEOCMcm), 2) Integrated
EIC matrix of the model cm (IntEICMcm), and 3) Integrated IC matrix of the model cm (IntICMcm).
All three matrices can be defined by 1) direct sum of multiple ICMs, 2) direct sum of multiple EOCMs,
and 3) direct sum of multiple EICMs (ICMs, EOCMs and EICMs come from component models in the
model cm). Because FCSMcm consists of four sub matrices, sel f − loopMcm, FEOCMcm, FEICMcm and
FICMcm, Algorithm 1 calculates each sub matrix independently, except sel f − loopMcm (sel f − loopM is
always zero matrix). Each sub matrices of FCSMcm, except sel f − loopMcm, is constructed by three sub
functions in Algorithm 1. FEOCMcm is constructed by matrix multiplication of IntEOCMcm and EICMcm
by a sub function named “construct FEOCMcm”. FEICMcm is constructed by matrix multiplication of
EICMcm and IntEICMcm by a sub function named “construct FEICMcm”. FICMcm is also constructed by a
sub function named “construct FICMcm”. In this sub function, Intermediate FICMcm (iFICMcm) matrix is
a resultant matrix from matrix multiplication of IntEOCMcm, IntICMcm, and IntEICMcm. Then, FICMcm
is constructed by matrix addition of iFICMcm and IntEICMcm.

4.2 Algorithm for constructing FCSMcm with multi-level hierarchy

In this section, we present an algorithm for constructing FCSM for a multi-level hierarchy model. Partic-
ularly, the algorithm contains a sub algorithm, which is introduced in section 4.1 and works in a recursive
manner.

Figure 4: Constructing flattened model by a recursive manner.

Figure 4 illustrates the f lattening procedure for multi-level hierarchy model. In a model of multi-level
hierarchy, the model needs multiple FCSMs (when a component model is at the coupled model level)
or CSM (when a component model is at the atomic model level) of component models of the model.
Therefore, the f lattening procedure starts from constructing multiple FCSMs of component models at the
(H = 2) using the sub algorithm. Then, FCSMs of component models at the level of higher hierarchy
could be constructed using the FCSMs constructed at the previous step. This processes are repeated, until
constructing FCSM of the outmost coupled model. For example, Model ABCDEF (HABCDEF = 3) has two
component models, such as model ABCD and EF . In order to construct FCSM of ABCDEF , FCSM of
ABCD should be constructed using the sub algorithm. Then, with the FCSM of ABCD and CSM of EF ,
we could construct FCSM of ABCDEF .

Algorithm 2 describes a function named “ConstructFCSM”. In order to construct FCSM of a model
cm, Algorithm 2 utilizes multiple CSMs of the model cm and recursive-component models in the model
cm as parameters and generate FCSMcm as an output. In Algorithm 2, there are three cases: 1) Hcm = 1
case, 2) Hcm = 2 case ,and 3) Hcm > 2 case (except Hcm = 0 case, because it means that the cm is an AM).
If Hcm is equal to one, the cm has only AMs as component models. Hence, FCSMcm is identical to CSMcm.
If Hcm is equal to two, FCSMcm could be constructed by Algorithm 1. If Hcm is greater than two, FCSM

Bae, Shin, and Moon

can be constructed using Algorithm 1 in a recursive manner. At first, we set h = 2 and define a set of
models (Mh) whose height of decomposition tree in the cm is equal to h. Then, we can construct FCSM
of elements in Mh (mi) using Algorithm 1 with parameters as multiple CSMs of component models of mi.
After constructing all FCSM of all mi, h is increased by 1 and Mh is redefined with respect to h. Similarly,
we can construct FCSM of elements in Mh (mi) using Algorithm 1. However, parameters, multiple CSMs,
of this case could be changed to FCSMs constructed in the previous step. This recursive manner keeps
until h is equal to Hcm. Eventually, we can obtain only one FCSM and the FCSM is identical to FCSMcm.

Algorithm 2 ConstructFCSM with multi-level hierarchy
Input: CSMs of CM and component models in (M) in CM, M =

{
m | Hm

CM > 0
}

Output: FCSMCM

1: Set h to a height of DT ; i to an index of model; Mh to a set of models with height of DT h; mi to an
ith model in Mh; mi.D to a set of component models in mi; mi.D j to an jth component model in mi.D;
pFCSM to {FCSMmi from previous stage | i = 1, · · · , |Mh|}; p f csmm to an FCSM of model in pFCSM

Begin
2: if HCM = 1 then
3: FCSMCM ←CSMCM

4: else if HCM = 2 then
5: h := 1; Define Mh with respect to h
6: FCSMCM ← fG FCSM(CSMCM,CSMm1 , · · · ,CSMm|Mh|

)

7: else
8: h := 2; pFCSM := Ø
9: while h≤ HCM do

10: i := 1; Define Mh with respect to h
11: while i≤ |Mh| do
12: if Hmi = 1 then
13: FCSMmi ←CSMmi

14: else
15: if m∗ ∈ mi.D and FCSMm ∈ pFCSM then
16: CSMm∗← p f csmm

17: end if
18: FCSMmi ← fG FCSM(CSMmi ,CSMmi.D1 , · · · ,CSMmi.D|mi .D|

)

19: end if
20: pFCSM← pFCSM∪{FCSMmi}; i← i+1
21: end while
22: h← h+1
23: end while
24: end if
25: return FCSMCM

End

5 CASE STUDY

In this section, we illustrate experiments to prove our algorithm is more efficient than a conventional
method, i.e. naı̈ve method. We have performed experiments for two objectives: 1) comparing simulation
execution time in the non-flattened model and the flattened model and 2) comparing speed performances

Bae, Shin, and Moon

of the naı̈ve method and our algorithm. For these objectives, we developed a target model called Single
Server Queuing Model (SSQ). Figure 5 shows DEVS diagrams and a decomposition tree of the SSQ model.

To address the efficiency of the flattened model and our algorithms, we have designed two experiment
cases using the SSQ model. Table 3 illustrates experimental design specifications of the two experiments.
In the first experiment, we have focused on comparing simulation execution time in two model types: a
flattened model and a non-flattened (original) model of SSQ model by varying the hierarchy level of SSQ
model. In the second experiment, we have compared efficiencies of our algorithm and a naı̈ve method
with varying hierarchy level and degree of internal nodes of the SSQ model (e.g. degree of internal nodes
in Figure 5 is equal to one. When the degree is changed to two, the number of generator and transducer
in the EF and buffer and processor in the BP would be twice). For the second experiment, we have
defined a measurement called Flattening Speed Ratio (FSR), which represents a ratio of execution time
of constructing the flattened model between using matrix and naı̈ve methods. With the definition of FSR,
FSR greater than one means the matrix method is more efficient than the naı̈ve method.

Figure 5: DEVS diagrams and a decomposition tree of SSQ.

Table 2: Specifications of two experimental designs.

Objectives Variable Variation Cases Implications

Comparing
simulation
execution time

Height
Original, 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000 (11 cases)

Hierarchy level of SSQ model

Model Flattened or Non-Flattened (2 cases) Simulated model types

Total 11 × 2 = 22 cases 300 replications in each case

Comparing
efficiencies of
algorithms

Height 4, 5, 6 (3 cases) Hierarchy level of SSQ model

Degree 1, 2, 3, 4 (4 cases)
Degree of internal nodes in
SSQ model

Methods Naı̈ve or Matrix (2 cases) Flattening procedures

Total 3 × 4 × 2 = 24 cases 300 replications in each case

Figure 6 shows result graphs of the two experiments. The top graph in Figure 6 represents that the
flattened model shows, at most, 500 times better performance than the non-flattened model. In the top
graph, simulation execution time of the non-flattened model is increasing, as the hierarchy level of the SSQ
model is increasing. However, simulation execution time of the flattened model is invariable according to
the hierarchy level of the SSQ model. This result means flattened models could guarantee robustness in
simulation effectiveness with respect to varying the hierarchy level of models. This is because flattened
models are not changed as model hierarchy of original models is varied. The left and right graph in Figure

Bae, Shin, and Moon

6 represent result graphs of the second experiment. The left graph illustrates changes of FSR with respect
to varying hierarchy level and degree of internal nodes in the SSQ model. The left graph represents that as
the hierarchy level and the degree increases, FSR also increases. To change a perspective of the experiment,
we converted the hierarchy level and the degree in the SSQ model to the number of nodes in the SSQ
model. The right graph represents that the performance of our algorithm is at most 10% better than the
naı̈ve method. According to these results, we could estimate that the performance of our algorithm would
increase as the number of nodes in the SSQ model increases.

Figure 6: Result of experiments: Simulation execution time according to the height (Top), FSR according
to the degree and the height (Left) and number of models (Right).

6 CONCLUSION

To improve simulation performance, most studies have utilized a flattened model. However, There are few
studies about how to efficiently construct the flattened model. In this paper, we proposed a matrix-based
algorithm to efficiently construct a flattened model. With the result of experiments, our algorithm shows
10% better performance than the naı̈ve method and robustness to large-scaled models.

ACKNOWLEDGMENTS

This research was supported by the NRF of Korea funded by the MEST(20120006571).

REFERENCES

Bae, J. W., and T. G. Kim. 2010. “DEVS based plug-in framework for interoperability of simulators”. In
Proceedings of the 2010 Spring Simulation Multiconference, 127:1–127:7. San Diego, CA, USA.

Bae, Shin, and Moon

Chow, A. C.-H. 1996. “Parallel DEVS: a parallel, hierarchical, modular modeling formalism and its
distributed simulator”. SCS Transactions in Simulation 13 (2): 55–67.

Goswami, K. K., and R. K. Iyer. 1993. “Use of Hybrid and Hierarchical Simulation to Reduce Computation
Costs”. In Proceedings of the International Workshop on Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems, MASCOTS ’93, 197–202. San Diego, CA, USA.

Kim, J., I.-C. Moon, and T. G. Kim. 2011, August. “New insight into doctrine via simulation interoperation
of heterogeneous levels of models in battle experimentation”. SIMULATION 88 (6): 649–667.

Kim, K., W. Kang, B. Sagong, and H. Seo. 2000. “Efficient distributed simulation of hierarchical DEVS
models: transforming model structure into a non-hierarchical one”. In Simulation Symposium 2000(SS
2000) Proceedings. 33rd Annual, 227–233. Washington, DC, USA: IEEE Computer Society 2000.

Kim, Y., and T. Kim. 1997. “Optimization of model execution time in the DEVSim++ environment”. In
proc. of 1997 Eurpean Simulation Symposium, Serial. 9, 215–219. Passau, Germany.

Kwon, S. J., and T. G. Kim. 2012. “Design and implementation of event-based DEVS execution environment
for faster execution of iterative simulation”. In Proceedings of the 2012 Symposium on Theory of Modeling
and Simulation, TMS/DEVS ’12, 14:1–14:8. San Diego, CA, USA.

Lee, G., N. Oh, and I.-C. Moon. 2012. “Modeling and simulating network-centric operations of organizations
for crisis management”. In Proceedings of the 2012 Symposium on Emerging Applications of M&S in
Industry and Academia Symposium, EAIA ’12, 13:1–13:8. San Diego, CA, USA.

Lee, J.-K., M.-W. Lee, and S.-D. Chi. 2003, August. “DEVS/HLA-Based Modeling and Simulation for
Intelligent Transportation Systems”. SIMULATION 79 (8): 423–439.

Lee, W. B., and T. G. Kim. 2003. “Simulation speedup for DEVS models by composition-based compilation”.
In Summer Computer Simulation 2003, 395–400. Montral, Canada.

Liu, Q., and G. Wainer. 2012. “Multicore acceleration of Discrete Event System Specification systems”.
SIMULATION 88 (7): 801–831.

Muzy, A., and J. Nutaro. 2005. “Algorithms for efficient implementations of the DEVS & DSDEVS
abstract simulators”. In 1st Open International Conference on Modeling & Simulation (OICMS),
401–407. ISIMA/Blaise Pascal University, France.

Palaniappan, S., A. Sawhney, and H. Sarjoughian. 2006, December. “Application of the DEVS Framework
in Construction Simulation”. In Proceedings of the 2006 WinterSim, 2077–2086. Monterey, CA.

Sargent, R. G., J. H. Mize, D. H. Withers, and B. P. Zeigler. 1993. “Hierarchical modeling for discrete event
simulation”. In Proceedings of 1993 Winter simulation conference, 569–572. New York, NY, USA.

Shanthikumar, J. G., and R. G. Sargent. 1983. “A Unifying View of Hybrid Simulation/Analytic Models
and Modeling”. Operations Research 31 (6): 1030–1052.

Troccoli, A., and G. Wainer. 1997. “Implementing Parallel Cell-DEVS”. In Proceedings of the 36th annual
symposium on Simulation, ANSS ’03, 273–280. Washington, DC, USA: IEEE Computer Society.

Venkateswaran, J., Y.-J. Son, and A. Jones. 2004. “Hierarchical production planning using a hybrid
system dynamic-discrete event simulation architecture”. In Proceedings of the 2004 Winter Simulation
Conference, Volume 2, 1094–1102. Washington, DC, USA: IEEE Computer Society.

Wainer, G. a., and N. Giambiasi. 2001, January. “Application of the Cell-DEVS Paradigm for Cell Spaces
Modelling and Simulation”. Simulation 76 (1): 22–39.

Zeigler, B. P., Y. Moon, D. Kim, and G. Ball. 1997. “The DEVS environment for high-performance modeling
and simulation”. Computational Science Engineering, IEEE 4 (3): 61–71.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation. 2 ed. Academic
Press.

AUTHOR BIOGRAPHIES

JANG WON BAE is a Ph.D candidate student at KAIST. repute82@kaist.ac.kr
SU-JIN SHIN is a master candidate student at KAIST. sj-shin@kaist.ac.kr
IL-CHUL MOON is an assistant professor at KAIST. icmoon@kaist.ac.kr.

	INTRODUCTION
	BACKGROUND
	DEVS Formalism
	Related Work

	MATRIX REPRESENTATION OF COUPLING STRUCTURE
	Coupling Structure Matrix
	Flattened Coupling Structure Matrix

	CONSTRUCTION OF FLATTENED COUPLING STRUCTURE MATRIX
	Algorithm for constructing FCSM with H = 2
	Algorithm for constructing FCSMcm with multi-level hierarchy

	CASE STUDY
	CONCLUSION

