
Proceedings of the 2017 Winter Simulation Conference

W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

ROUTING STRUCTURE OVER DISCRETE EVENT SYSTEM SPECIFICATION:

A DEVS ADAPTATION TO DEVELOP SMART ROUTING IN SIMULATION MODELS

María Julia Blas

Silvio Gonnet

Horacio Leone

Instituto de Diseño y Desarrollo INGAR

Universidad Tecnológica Nacional – Consejo Nacional de Investigaciones Científicas y Técnicas

Avellaneda 3657

Santa Fe, 3000, ARGENTINA

ABSTRACT

The Discrete Event System Specification (DEVS) formalism has become an engine for advances in

modeling and simulation technology. Many extensions of DEVS formalism have been developed across

the years in order to solve different types of situations. However, when the acceptance of input events and

the generation of output events are related with model capabilities, solutions developed with current

formalisms are too complex. This paper presents a new simulation formalism called Routed DEVS

(RDEVS) in which routing information is used to manage directed events. The behavior supported by the

new formalism is useful to create simulation models of web application architectures. However, it could

also be applied to other contexts. The RDEVS formalism is based on DEVS and is closure under coupling

(i.e. models can be built hierarchically). The formal specification of RDEVS formalism and a briefly

description of its framework implementation are presented in this work.

1 INTRODUCTION

The Discrete Event System Specification (DEVS) is a modeling formalism based on systems theory that

provides a general methodology for hierarchical construction of reusable models in a modular way. Since

its introduction in late 70s (Zeigler 1976), the formalism has been used to simulate several systems related

with multiple domains, including mobile applications (Kim et al. 2016), social networks (Bouanan 2015),

supply chain management (Godding and Sarjoughian 2003; Gholami et al. 2014), and software

engineering (Bogado, Gonnet, and Leone 2014; Risco-Martín et al. 2016; Blas, Gonnet, and Leone 2017).

 The core of DEVS includes a modeling and simulation (M&S) framework structured in three main

components: model, simulator and experimental frame (Zeigler, Praehofer, and Kim 2000). The model

describes the system specification, structure, and behavior. The simulator refers to the computational

system that executes the instructions detailed in the model. The experimental frame represents the

conditions under which the system is observed, building the experimentation and validation context to be

used on the model. Each component is specified as an individual element in order to maintain its

independence. Keeping independency between components provides multiple benefits to the framework,

such as: the same model can be executed by different simulators, or several experiments can be changed

to study different situations (Bogado, Gonnet, and Leone 2014). Given that components needs to interact

with each other’s in order to accomplish its functions, the framework includes a set of relationships that

allows defining these interactions. Some of the relations included involve modeling relation and

simulation relation. While modeling relation determines when a model can be said to be a valid

representation of a source system within an experimental frame, the simulation relation specifies what

constitutes a correct simulation of a model by a simulator (Wainer and Mosterman 2010).

Blas, Gonnet, and Leone

 Over the years, DEVS has finding an increasing acceptance in the model-based simulation research

community becoming one of the preferred paradigms to conduct modeling and simulation enquiries

(Wainer and Mosterman 2010). Following the approach proposed in the M&S framework, new variants,

extensions and abstractions have been developed using the core of concepts defined by the original

formalism. Several authors have improve the formalism capabilities in response to different situations,

giving solutions useful to a wide range of simulation problems. Some of these solutions include Cell-

DEVS (Wainer 2004), Dynamic Structure DEVS (Barros 1995), Fuzzy-DEVS (Kwon et al. 1996), Min-

Max-DEVS (Hamri, Giambiasi, and Frydman 2006), Parallel DEVS (Chow and Zeigler 1994), and

Vectorial DEVS (Bergero and Kofman 2014). Moreover, the separation of concerns in the

model/simulator components included in the M&S framework allowed researchers to develop alternative

simulations algorithms in order to complement the existent solutions (Kim, Kim, and Park 1998; Muzy

and Nutaro 2005; Shang and Wainer 2006; Liu 2010; Liu and Wainer 2010). So, it is evident that DEVS

formalism grows along with the evolution of the problems treated with discrete event simulation

techniques. As problems complexity increase, new mechanisms are required to deal with them.

 Cloud computing (CC) has recently emerged as a new paradigm for hosting and delivering services

over the internet (Zhang, Cheng, and Boutaba 2010). Conceived as a new discipline of software

engineering, CC presents a new set of problems that must be solve using new or improved techniques.

That is the case of web applications (WA). Actually, the main research topics related to WA involve

different areas, such as: requirements elicitation (Valderas and Pelechano 2011, Breaux and Rao 2013),

architectural evaluation (Kossmann, Kraska, and Loesing 2010; Wallis, Henskens, and Hannaford 2010)

and testing (Artzi et al. 2010; Nguyen, Kästner, and Nguyen 2014; Li, Andreasen, and Ghosh 2014). In

this context, this paper proposes a DEVS adaptation called Routed DEVS (RDEVS) designed to support

the simulation of WA components in order to study its behaviors. This new formalism defines a set of

models that use routing information to identify the events source and destinations. According to this

information, models determines the acceptance of input events before execute its instructions. Also,

models are capable to send output events to a specific group of receptors or the same event to different

receptors according to its actual state. Although the proposal is centered on WA, the RDEVS formalism

can be also applied to similar problems from other contexts (e.g. mobile applications and systems-of-

systems).

 The remainder of this paper is organized as follows. Section II describes the CC environment,

highlighting the WA context and the problems detected when WA community requires discrete event

simulation models. Section III presents the RDEVS formalism including the models formal specifications.

Section IV proves the closure under coupling of the RDEVS formalism in order to guarantee the

hierarchical composition of the models. Section V introduce the software framework developed to support

the RDEVS formalism. Finally, Section VI is devoted to conclusions and future work.

2 RELATED WORK

CC is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider interaction (Mell

and Grance 2011). Usually, CC architectures are designed using the layered architecture pattern. Blas et

al. (2016a) have proposed a five layers architecture (adapted from literature) in which end users interact

with WA located at the application layer. This layer is at the top of the proposed architecture and allows

consumers access to applications installed on the data-centers of a cloud provider. Then, WA

architectures should be deployed on this layer.

 The software architecture design can be considered the earliest design specification of any software

product. Since this design is composed of a set of components and its connections, it can be used as a

vehicle to predict and estimate the final behavior of a software product (Kruchten, Lago, and Van Vliet

2006; Giesecke, Hasselbring, and Riebisch 2007; Koziolek et al. 2008; Roldán, Gonnet, and Leone 2013;

Blas, Gonnet, and Leone

Li, Liang, and Avgeriou 201; Bogado, Gonnet, and Leone 2014). Applying this approach at CC level, an

integrated approach to analyze the behavior of WA can be built by combining architectural designs and

simulation techniques. If the set of available elements to specify a WA architecture is defined (e.g. using a

metamodel), a simulation model can be build applying a systematic transformation from each

architectural component into a simulation model. Then, designers could evaluate different WA

architectures over the same infrastructure before to move to the next step of the development process.

Also, they could analyze the impact of architectural changes over the final product quality and make

recommendations based on this evaluation. Given that WA systems are discrete event systems, DEVS

formalism can be used to define such simulation models. Then, WA architectures can be study using

discrete event simulation models. A full description of this approach was presented in a previous work

(Blas, Gonnet, and Leone 2016b).

 A quick analysis of the DEVS simulation models proposed in (Blas, Gonnet, and Leone 2016b),

reflects immediately the complexity of their structure. Bass et al. (2012) defines software architecture as

the structure, or structures, of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them. According to this definition, software

architectures illustrates a set of components linked by connections. These connections are based on the

software elements relationships required to solve all possible requests. Then, connections are derived

from the components interaction that have place when software needs to solve an specific request. So, the

connections specification is defined at architectural level but its definition is attached to the request types

involved in the software. When software architecture is used as unique source of the software

specification to build a simulation model, the final simulation model reflects all connections without

knowing which components are required to solve a specific request type. Then, the simulation models

instantiated during the transformation process must manage the complexity of the requests flows. This is

the approach used by Blas et. al (2016b). However, although this is a good approach, is not scalable.

When the number of architectural components grow, the configuration of the simulation models involved

in the transformation becomes a problem since the designer must know the flows of the requests. Clearly

a new mechanism, that allows to manage this type of behavior inside the models without increasing the

complexity of the structure, is required.

 To this purpose, the following sections introduce an adaptation of DEVS formalism called Routed

DEVS (RDEVS) in which models are capable to manage the flow of events using their state information.

Following the RDEVS formalism, simulation models can be designed to reflect only the desired behavior

of the component without define explicitly all possible connections between them. In the WA context, if

input events represent different end-user requests that navigate inside the architectural components, the

RDEVS architectural model will manage the flow of each request type using the set of connections

specified at architectural level. RDEVS internal models will reflect architectural components that can

decide to accept/deny requests using routing information. Then, by using RDEVS formalism, simulation

models will have the knowledge to determinate the treatment of the requests.

3 ROUTED DEVS FORMALISM

The Routed Discrete Event System Specification (RDEVS) formalism is an extension of the DEVS

formalism based on the premise that a simulation model must process only the set of events that comes

from authorized senders and have been sent specifically to it. To guarantee this premise, the formalism

requires that each simulation model have an unique identifier that defines its existence as part of the

routing process. A simulation model will accept input events if and only if: i) the sender identifier is an

authorized model; ii) the model identifier is included in the set of possible receptors of the event. Then, all

events of RDEVS include the information required to identify its sender and all possible receptors.

 The RDEVS formalism defines three types of models: essential model, routing model and network

model. Each model represent an abstraction level used to define different elements required as part of the

routing process.

Blas, Gonnet, and Leone

3.1 RDEVS Essential Model

Essential model specifies the behavioral description of a simulation model that represents a component

involved in the routing process. Formally, essential models are defined in the RDEVS formalism, as an

atomic model of the DEVS formalism, by the structure

M = < X, S, Y, δint, δext, λ, τ >

where

 X ≡ set of input events,

 S ≡ set of sequential states,

 Y ≡ set of output events,

 δint: S → S ≡ internal transition function,

 δext: X Q → S ≡ external transition function, where

 Q = { (s,e) | s Є S, 0 ≤ e ≤ τ(s) } ≡ total state set,

 e ≡ time elapsed since last transition,

 λ: S → Y ≡ output function,

τ: S → Ro
+ ≡ time advance function.

3.2 RDEVS Routing Model

Routing model defines the basic simulation model where the routing process has place. In order to

accept/deny input events and redirect output events, the model includes a set of elements that depicts the

routing information. It uses the behavioral specification of an essential model in order to define its own

specification over the routing process. That is, the routing model encapsulates the description of an

essential model with the routing specification required to determine the events occurrence. Multiple

routing models can use the same essential model with different routing information in order to create

different events routing processes.

 Formally, routing models are defined by the structure

R = < 𝜔, E, M >

where

 ω = (u, W, δr) ≡ routing information, where

 u Є N0 ≡ model identifier,

W = { w1, w2,…, wp | w1, w2,…, wp Є N0 } ≡ set of source model identifiers that represents the

allowed routing models of R (from which can receive events),

 δr: SM → T ≡ routing function used to direct output events, where SM is defined on M and

 T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } ≡ set of destination model identifiers,

 E = < XE, SE, YE, δint,E, δext,E, λE, τE > ≡ essential model used by R,

 M = <XM, SM, YM, δint,M, δext,M, λM, τM> ≡ DEVS atomic model that specifies the routing process, where

XM = { (x, h, T) | x Є XE, h Є N0, T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ set of identified input

events, with

 x ≡ input event defined in E,

 h ≡ sender model identifier,

 T ≡ set of target model identifiers,

 SM = SE ≡ set of sequential states,

YM = { (y, h, T) | y Є YE, h Є N0, T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ set of identified output

events, with

 y ≡ output event generated by E,

Blas, Gonnet, and Leone

 h ≡ sender model identifier (that is, the u value),

 T ≡ set of target model identifiers,

 δint,M: SM → SM = δint,E ≡ internal transition function,

δext,M: QM XM → SM ≡ external transition function that only accepts events that have been sent to

R from some allowed model or from an external source (when u=0 and W=ø), defined as

δext,M(s,e,x') = {
δext,E(s,e,x) if (u Є T ˅ u = 0) ˄ (h Є W ˅ W = ø) with x'=(x ,h ,T)

s otherwise

 with

 QM = { (s,e) | s Є SM, 0 ≤ e ≤ τM(s) } ≡ total state set,

 e ≡ time elapsed since last transition,

 λM: SM → YM ≡ output function that generates identified events, defined as

λM(s) = (λE(s), u, δr(s))

 τM: SM → Ro
+ ≡ time advance function.

3.3 RDEVS Network Model

Network model describes a complex simulation model with an specific objective that requires

send/receive identified events over a routing process. Its definition includes a set of routing models and,

indirectly, the couplings between them in order to identify its influences. It also requires two translation

functions in order to match the events from other models with the identified events used in the model.

Then, a RDEVS network model can interact with (one or more) RDEVS network models or, simply, with

DEVS models, according the purpose of the simulation.

 Formally, network models are defined by the structure

N = < X, Y, D, { Rd }, { Id }, { Zi,d }, Tin, Tout, Select >

where

 X ≡ set of input events,

 Y ≡ set of output events,

D ≡ set of model identifiers (routing model references), where d Є N0, ∀d Є D,

For each d Є D, Rd is a routing model, defined as

Rd=< ωd, Ed, Md >

 where ud = d,

For each d Є D ∪ { N }, Id is the set of influences over d where d ∉ Id,
For each i Є Id, Zi,d is a translate function between output events of i and input events of d, where

 Zi,d = Tin if i = N,

 Zi,d = Tout if d = N,

 Zi,d: YM,i → XM,d if i ≠ N ˄ d ≠ N,

Tin: X → { (x, h, T) | x Є X, h Є N0, T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ input translation function

that takes an input event and returns an identified input event, where

 x ≡ input event defined in N,

 h = 0 ≡ sender model identifier where zero indicates that the event came from an external source,

 T ≡ set of target model identifiers that must process the input event,

Blas, Gonnet, and Leone

Tout: { (y, h, T) | y Є Y, h Є N0, T = { (t1, t2,…, tk) | t1, t2,…, tk Є N0 } } → Y ≡ output translation

function that takes an identified output event and returns an output event, where

 y ≡ output event allowed in N,

 h ≡ sender model identifier,

T = ø ≡ set of target model identifiers where an empty set indicates that the event is sent to an

external destination,

Select: 2
D
 → D ≡ function for tie-breaking between simultaneous events.

4 ROUTED DEVS CLOSURE UNDER COUPLING

According to Zeigler (2000), a system formalism is closed under coupling if the resultant of any network

of systems specified in the formalism is itself a system in the formalism. The proof of this property is a

very important key in a system formalism because it ensures the hierarchical composition of the models.

That is, it allows to build models recursively with any arbitrary levels of hierarchy in a modular manner.

 To prove that RDEVS formalism is closed under coupling and, therefore, models can be built in

hierarchical manner, is necessary to obtain:

 The equivalent RDEVS routing model from the RDEVS network model (Proof #1).

 The equivalent RDEVS essential model from the RDEVS routing model (Proof #2).

 If both models can be obtained, the hierarchical composition will be allowed because a network

model (treated as its behaviorally equivalent to a routing model) will be able to become component of

larger network models. The same will happened with the routing model and its essential model, since the

routing model (treated as its behaviorally equivalent to the essential model) will be able to be use as part

of larger routing models. Then, by transitivity, a dynamic system specified by a network model will be

behaviorally equivalent to an essential model and will be able to be use as part of larger routing models.

 Sections 4.1 and 4.2 detail the equivalences required to ensure RDEVS closure under coupling.

4.1 Proof #1: RDEVS Network Model to RDEVS Routing Model

The network model described by the structure

N = < X, Y, D, { Rd }, { Id }, { Zi,d }, Tin, Tout, Select >

where each d Є D references a routing model Rd defined as

Rd= < ωd, Ed, Md >

defines an equivalent routing model structured as

R = < 𝜔, E, M >

in which:

 ω = (u, W, δr) = (0, ø, δr) | δr: SM → T ˄ T = ø ≡ routing information that represents R as

equivalent model of N. Zero is used to identify the new model. Since N uses the translation

functions to determine events sources and destinations, W and T are specified as an empty set.

 E = < XE, SE, YE, δint,E, δext,E, λE, τE > ≡ essential model used by R in which:

o XE = X ≡ set of input events of E defined as the set of input events of N. Given that R and

N are equivalent and R is composed by E, the inputs must be the same.

Blas, Gonnet, and Leone

o SE = iЄDQi | Qi = { (si, ei) | si Є SM,i, 0 ≤ ei ≤ τM,i(si), ∀i Є D ≡ set of sequential states of E

specified as the product of the Qi sets defined for each model that compose N. Each Qi is

defined as an ordered pair that contains the state and the elapsed time of the Ri model.

o YE = Y ≡ set of output events of E defined as the set of output events of N. As in the input

events, the outputs must be the same.

o δint,E(s) = s’ ≡ internal transition function of E that transforms different parts of the state,

where s = (…,(sj, ej),…) and s’ = (…,(s’j, e’j),…). Given that the state of E is defined

using the set of models included in N, an internal transition of E may involve

simultaneous internal transitions of multiple components. Then, considering that the

imminent components are collected in a set structured as

 IMM(s) = { i Є D | σi = τE,i(s) }

one model i
*
 must be selected in order to execute its internal transition. This selection can

be done using the tie-breaking function of N. Then i
*
 = Select(IMM(s)) and, therefore, the

imminent internal transition to be executed belongs to the Ri* model. However, the

execution this transition will bring the execution of all external transitions of the

components influenced by Ri*. So, the state transformation is specified as

 s'j= {

δint.M,j(sj) si j=i*

δext,M,j(sj,ej+τE(s),xj) si i*∈Ij ˄ xj≠ø with xj=Zi*,j(λM,i*(si*))

sj otherwise

 while the elapsed time transformation is defined as

e'j= {
0 si (j=i*) ˅ (i*∈Ij ˄ xj≠ø)

ej+ τE(s) otherwise.

o δext,E(s, e, x) = s’ ≡ external transition function of E that modifies the set of state pairs that

belongs to Ri models linked to N inputs, where s = (…,(si, ei),…) and s’ = (…,(s’i, e’i),…).

Considering that components are collected in a set C = { i Є D | N Є Ii ˄ xi ≠ ø }, then

si
*= δext,M,i(si,ei+e,xi) with xi= ZN,i(x), ∀ i ∈ C

so the state transformation is defined as

(si
' ,ei

') = {
(si

*,0) si (N ∈ Ii ˄ xi ≠ ø)
(sd, ed+e) otherwise.

o λE(s): SE → YE ≡ output function of E that generates an output event if and only if the

model that is going to execute its internal transition (that is, i
*
 model) is linked the

outputs of N, specified as

 λE(s) = {
Zi*,N (λM,i*(si*)) si N∈Ii*

ø otherwise.

Blas, Gonnet, and Leone

o τE: SE → Ro
+ ≡ time advance function of E that select the most imminent event time of all

the components included in N. This function is defined as τE(s) = min { σi | i Є D } where

σi = σM,i(si) – ei.

 M = < XM, SM, YM, δint,M, δext,M, λM, τM > ≡ DEVS atomic model that specifies the routing process

of R. M definition is depicted at routing model level, specifying the routing process using

components of E as M elements. Then, the equivalence transformation of N into R, it cannot

change this specification. M must follow its definition using the components of E defined above.

4.2 Proof #2: RDEVS Routing Model to RDEVS Essential Model

The routing model described by the structure

R = < ωR, ER, MR >

with MR = < XM,R, SM,R, YM,R, δint,M,R, δext,M,R, λM,R, τM,R >, defines an equivalent essential model structured as

M = <X, S, Y, δint, δext, λ, τ>

in which X = XM, S = SM, Y = YM, δint = δint,M, δext = δext.M, λ = λM and τ = τM.

 According to this equivalence proof, each component of the MR model that composes a RDEVS

routing model can be directly mapped to a new model component that defines a RDEVS essential model.

This equivalence is valid because both models (M and MR) are based on the structure of a DEVS atomic

model. Since the specification of MR uses the content of ωR y ER, all the information required to execute

the routing process will be also included in M.

5 ROUTED DEVS SOFTWARE FRAMEWORK

A software framework implementation of the RDEVS formalism was developed in order to provide a

modeling and simulation environment to fully support the implementation of routing structures over

discrete event systems. Given that RDEVS is based on DEVS formalism, RDEVS models can be

executed using DEVS simulation algorithm and experimental frame. Then, RDEVS implementation can

extend existent implementations of DEVS formalism.

 In this context, the proposal was to develop the RDEVS software framework (RDEVS_SF) as an

extension of DEVSJAVA (Arizona Center for Integrative Modeling and Simulation 2005). The set of

Java classes implemented involve several concepts related to RDEVS formalism, such as:

 EssentialModel.java, NetworkModel.java and RoutingModel.java to define the types of models

detailed as part of RDEVS.

 RoutingFunction.java and RoutingFunctionElement.java to define the δr required as part of the

routing information in RDEVS routing model.

 IdentifiedEvent.java to define the structure of all the events manipulated by the simulator.

 TranslationFunction.java, InputTranslationFunction.java and OutputTranslationFunction.java to

define the processes required in RDEVS network model to adjust external events.

 In order to use the DEVS simulation algorithm and the graphical tools available, some of the classes

defined in RDEVS_SF were hierarchically related to DEVSJAVA classes. This dependency allows to use

DEVS Suite (Arizona Center for Integrative Modeling and Simulation 2009) as graphical environment for

RDEVS models defined in RDEVS_SF. Figure 1 shows a screenshot of a basic example implemented in

RDEVS_SF where: i) project explorer shows the set of classes implemented as part of the framework; ii)

DEVS Suite is used to depict models structures.

http://acims.asu.edu/software/devsjava/
http://acims.asu.edu/software/devsjava/
http://acims.asu.edu/software/devs-suite/
http://acims.asu.edu/software/devs-suite/

Blas, Gonnet, and Leone

Figure 1. Simulation model example implemented in RDEVS_SF.

6 CONCLUSIONS AND FUTURE WORK

The DEVS formalism gives several benefits when is used to develop simulation models related to

software engineering. However, when architectural designs must be mapped into simulation models, the

complexity of manage the events flow becomes a problem. In this paper, an adaptation of DEVS was

described in order to provide a scalable solution to this problem. The RDEVS formalization and its

closure under coupling are the main properties of the formalism presented in this work. Also, a brief

description of the software framework implemented to support the formalism proposed has been included.

 Although RDEVS was developed to solve a specific modeling problem detected when web

applications architectures are mapped to simulation models, it can be applied to other contexts. Similar

contexts include mobile applications and hardware architectures. Another possible areas involve

communication protocols and systems-of-systems.

 Since RDEVS essential models are equivalent to DEVS atomic models, considering the closure under

coupling of RDEVS formalism, is possible to combine RDEVS models with DEVS models. Then, more

powerful simulation models can be built by combining both formalisms. Even more, existent DEVS

models can be used as part of RDEVS models. The same approach can be applied to other DEVS

extensions that can be reduced to DEVS atomic models.

 Given the independence of components identified as part of the M&S framework proposed in DEVS,

the RDEVS models can be executed using DEVS simulation algorithm. However, the design of an

adapted algorithm that take advantage of the routing properties is proposed as future work.

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support received from CONICET and Universidad

Tecnológica Nacional – Facultad Regional Santa Fe.

Blas, Gonnet, and Leone

REFERENCES

Arizona Center for Integrative Modeling and Simulation. 2005. DEVSJAVA.

http://acims.asu.edu/software/devsjava/.

Arizona Center for Integrative Modeling and Simulation. 2009. DEVS-Suite.

http://acims.asu.edu/software/devs-suite/.

Artzi, S., A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst. 2010. “Finding Bugs in Web

Applications using Dynamic Test Generation and Explicit-State Model Checking”. IEEE

Transactions on Software Engineering 36(4):474-494.

Barros, F. 1995. “Dynamic Structure Discrete Event System Specification: A New Formalism for

Dynamic Structure Modeling and Simulation”. In Proceedings of the 1995 Winter Simulation

Conference, edited by C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, 781-785.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Bass L., P. Clements, and R. Kazman. 2012. Software Architecture in Practice. Addison-Wesley

Professional.

Bergero, F., and E. Kofman. 2014. “A Vectorial DEVS Extension for Large Scale System Modeling and

Parallel Simulation”. Simulation 90(5):522-546.

Blas, M. J., S. Gonnet, and H. Leone. 2016a. “Especificación de la Calidad en Software-as-a-Service:

Definición de un Esquema de Calidad basado en el Estándar ISO/IEC 25010”. In Proceeding of the

2016 Argentine Symposium on Software Engineering included in the Argentine Conference on

Informatics 135-146.

Blas, M. J., S. Gonnet, and H. Leone. 2016b. “Building Simulation Models to Evaluate Web Application

Architectures”. In Proceedings of the 2016 Latin American Symposium of Software Engineering

included in the Latin American Computing Conference 647-657.

Blas, M. J., S. Gonnet, and H. Leone. 2017. “Modeling User Temporal Behaviors Using Hybrid

Simulation Models”. IEEE Latin America Transactions 15(2):341-348.

Bogado, V., S. Gonnet, and H. Leone. 2014. “Modeling and Simulation of Software Architecture in

Discrete Event System Specification for Quality Evaluation”. Simulation 90(3):290-319.

Bouanan, Y. M. Forestier, J. Ribault, G. Zacharewicz, B. Vallespir, and N. Moalla. 2015. “Simulating

Information Diffusion in a Multidimensional Social Network using the DEVS Formalism”. In

Proceedings of the 2015 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S

Symposium 63-68.

Breaux, T., and A. Rao. 2013. “Formal Analysis of Privacy Requirements Specifications for Multi-tier

Applications”. In Proceeding of the 2013 Requirements Engineering Conference 14-23.

Chow, A. C., and B. P. Zeigler. 1994. “Parallel DEVS: a Parallel, Hierarchical, Modular Modeling

Formalism”. In Proceedings of the 1994 Winter Simulation Conference, edited by J. D. Tew, S.

Manivannan, D. A. Sadowski, and A. F. Seila, 716–722. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers, Inc.

Gholami, S., H. S. Sarjoughian, G. W. Godding, D. R. Peters, and V. Chang. 2014. “Developing

Composed Simulation and Optimization Models using Actual Supply-Demand Network Datasets”. In

Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O.

Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, 2510-2521. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers, Inc.

Giesecke S., W. Hasselbring, and M. Riebisch. 2007. “Classifying Architectural Constraints as a basis for

Software Quality Assessment”. Advanced Engineering Informatics 21(2):169-179.

Godding, G., H. Sarjoughian, and K. Kempf. 2003. “Semiconductor Supply Network Simulation”. In

Proceedings of the 2003 Winter Simulation Conference, edited by S. E. Chick, P. J. Sanchez, D. M.

Ferrin, and D. J. Morrice, 1593-1601. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

http://acims.asu.edu/software/devsjava/
http://acims.asu.edu/software/devs-suite/

Blas, Gonnet, and Leone

Hamri, M., N. Giambiasi, and C. Frydman. 2006. “Min–Max-DEVS Modeling and Simulation”.

Simulation Modelling Practice and Theory 14(7): 909-929.

Kim, K. H., T. G. Kim, and K. H. Park. 1998. “Hierarchical Partitioning Algorithm for Optimistic

Distributed Simulation of DEVS Models”. Journal of Systems Architecture 44(6):433-455.

Kim, Y. J., J. Y. Yang, Y. M. Kim, J. Lee, and C. Choi. 2016. “Modeling Behavior of Mobile Application

Using Discrete Event System Formalism”. In Proceeding of the 2016 Asian Simulation Conference

40-48.

Kossmann, D., T. Kraska, and S. Loesing. 2010. “An Evaluation of Alternative Architectures for

Transaction Processing in the Cloud”. In Proceedings of the 2010 International Conference on

Management of Data 579-590.

Koziolek H., S. Becker, J. Happe, and R. Reussner. 2008. “Evaluating Performance of Software

Architecture Models with the Palladio Component Model”. In Model Driven Software Development:

Integrating Quality Assurance, IDEA Group Inc. 95–118.

Kruchten P., P. Lago, and H. Van Vliet. 2006. “Building Up and Reasoning About Architectural

Knowledge”. In Proceedings of the 2006 International Conference on Quality of Software

Architectures 43–58.

Kwon, Y., H. Park, S. Jung, and T. Kim. 1996. “Fuzzy-DEVS Formalism: Concepts, Realization and

Application”. In Proceedings of the 1996 Conference on Artificial Intelligence, Simulation and

Planning In High Autonomy Systems 227– 234.

Li, G., E. Andreasen, and I. Ghosh. 2014. “SymJS: Automatic Symbolic Testing of JavaScript Web

Applications”. In Proceedings of the 2014 International Symposium on Foundations of Software

Engineering 449-459.

Li Z., P. Liang, and P. Avgeriou. 2013. “Application of Knowledge-based Approaches in Software

Architecture: A Systematic Mapping Study”. Information and Software Technology 55(5):777–794.

Liu Q. 2010. “Algorithms for Parallel Simulation of Large-Scale DEVS and Cell-DEVS Models”. Ph.D.

thesis, Systems and Computer Engineering Department, Carleton University, Ottawa. http://cell-

devs.sce.carleton.ca/publications/2010/Liu10/Algorithms.pdf.

Liu, Q., and G. Wainer. 2010. “Accelerating Large-Scale DEVS-based Simulation on the Cell Processor”.

In Proceedings of the 2010 Symposium on Theory of Modeling and Simulation: DEVS Integrative

M&S Symposium 191-198.

Mell, P. and T. Grance. 2011. The NIST definition of cloud computing.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

Muzy, A., and J. Nutaro. 2005. “Algorithms for efficient implementations of the DEVS & DSDEVS

abstract simulators”. In Proceeding of the 2005 Open International Conference on Modeling &

Simulation 273-279.

Nguyen, H., C. Kästner, and T. Nguyen. 2014. “Exploring Variability-Aware Execution for Testing

Plugin-based Web Applications”. In Proceedings of the 2014 International Conference on Software

Engineering 907-918.

Risco-Martín, J. L., S. Mittal, J. C. Fabero, P. Malagón, and J. L. Ayala. 2016. “Real-time

Hardware/Software co-design using Devs-Based Transparent M&S Framework”. In Proceedings of

the 2016 Summer Computer Simulation Conference 45-52.

Roldán M. L., S. Gonnet, and H. Leone. 2013. “Knowledge Representation of the Software Architecture

Design Process based on Situation Calculus”. Experts Systems 30(1):34–53.

Shang, H., and G. Wainer. 2006. “A Simulation Algorithm for Dynamic Structure DEVS Modeling”. In

Proceedings of the 2006 Winter Simulation Conference, edited by L. F. Perrone, F. P. Wieland, J.

Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 815-822. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers, Inc.

Valderas, P., and V. Pelechano. 2011. “A Survey of Requirements Specification in Model-Driven

Development of Web Applications”. ACM Transactions on the Web 5(2):10-61.

http://cell-devs.sce.carleton.ca/publications/2010/Liu10/Algorithms.pdf
http://cell-devs.sce.carleton.ca/publications/2010/Liu10/Algorithms.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Blas, Gonnet, and Leone

Wainer, G. 2004. “Modeling and Simulation of Complex Systems with Cell-DEVS”. In Proceedings of

the 2004 Winter Simulation Conference, edited by R.G. Ingalls, M. D. Rossetti, J. S. Smith and B. A.

Peters, 45-56. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wainer G., and P. Mosterman. 2010. Discrete-Event Modeling and Simulation: Theory and Applications.

CRC Press. Taylor and Francis.

Wallis, M., F. Henskens, and M. Hannaford. 2010. “Expanding the Cloud: A Component-based

Architecture to Application Deployment on the Internet”. In Proceedings of the 2010 International

Conference on Cluster, Cloud and Grid Computing 569-570.

Zeigler, B. P. 1976. Theory of Modelling and Simulation. New York: John Wiley and Sons, Inc.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modelling and Simulation: Integrating

Discrete Event and Continuous Complex Dynamic Systems. 2nd ed. London: Academic Press.

Zhang, Qi, L. Cheng, and R. Boutaba. 2010. “Cloud Computing: State-of-the-Art and Research

Challenges”. Journal of Internet Services and Applications 1(1):7-18.

AUTHOR BIOGRAPHIES

MARÍA JULIA BLAS received her Information Systems Engineering degree from Universidad

Tecnológica Nacional in 2014. She has a PhD Research Fellowship from the Consejo Nacional de

Investigaciones Científicas y Técnicas and works at Instituto de Desarrollo y Diseño INGAR. Her

research interests include discrete-event simulation applied to software products and software quality

evaluation using software architectures. Her e-mail address is mariajuliablas@santafe-conicet.gov.ar.

SILVIO GONNET received an Engineering degree in Information Systems from Universidad

Tecnológica Nacional in 1998, and obtained his PhD degree in Engineering from Universidad Nacional

del Litoral in 2003. He currently holds a Researcher position at Consejo Nacional de Investigaciones

Científicas y Técnicas and works at Instituto de Desarrollo y Diseño INGAR. Also, he works as an

Assistant Professor at Universidad Tecnológica Nacional. His research interests are models to support

design, software architectures, and semantic web. His e-mail address is sgonnet@santafe-conicet.gov.ar.

HORACIO LEONE is a Full Professor at the Department of Information Systems Engineering of

Universidad Tecnológica Nacional. He also holds a Researcher position at the Consejo Nacional de

Investigaciones Científicas y Técnicas, working at Instituto de Desarrollo y Diseño INGAR. He obtained

his PhD degree in Chemical Engineering from Universidad Nacional del Litoral in 1986 and was a

Postdoctoral Fellow at the Massachusetts Institute of Technology (MIT). His current research activities

focus on software architectures, models for supporting the design process, semantic web applications to

supply chain information systems, and enterprise modelling. He has supervised several PhD students. His

email address is hleone@santafe-conicet.gov.ar.

mailto:mariajuliablas@santafe-conicet.gov.ar
mailto:sgonnet@santafe-conicet.gov.ar
mailto:hleone@santafe-conicet.gov.ar

