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ABSTRACT

Decentralized autonomous systems have the potential to be more performant, resilient and sustainable than
classical systems under central control. For example, this includes vehicle routing problems in Industry
4.0 logistics system, courier services, and public transport. Here, we outline elements of a framework to
model, simulate, and assess the performance of such demand-driven directed transport (D3T) systems. Our
contribution is a common language based on the Discrete-Event System Specification, which facilitates
modelling and performance analysis of transportation systems across domains. We expect that our approach
is useful to identify universal mechanisms and to explore the intricate interplay of the transport system
structure at hand and its dynamics.

1 INTRODUCTION

Studying and designing transport systems is a multidisciplinary endeavor. The quest to optimize transportation
of goods and people in facilities, cities, regions, or whole nations, unites engineers, operation researchers,
mathematicians, computer scientists, urban and regional planners, policy-makers and physicists. They all
bring their expertise and disciplinary language to the table in the on-going extensive efforts to understand
distributed, self-organizing systems. These complex systems under study are themselves as diverse as the
disciplines involved, including autonomous production and distribution logistics, urban courier services,
and demand-responsive transport in human transit (Hülsmann et al. 2011, Pillac et al. 2013, Santi et al.
2014, Häme 2013). In general, models of these systems are analytically intractable, and the optimization
problems involved are NP-hard and dynamical (Berbeglia et al. 2010), such that the method of choice
to analyze these systems is discrete-event simulation. Seemingly, what the field has been lacking so far,
is a common high-level language: A language that allows to state the given transportation model and
the optimization problem at hand in an accessible but mathematically exact form, and at the same time
immediately translates into an executable simulation model. This way, attention focusses on the dynamics,
rather than on a purely structural optimization problem description. On the other hand, such a language
would add structure to simulation studies hitherto seemingly conducted in an ad-hoc fashion.

This Paper is a contribution towards such a language and implementation. In the following, we outline
elements of a modelling framework for demand-driven directed transport systems (Section 2) that utilizes
the mighty parallel DEVS language (Section 3).
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Figure 1: A trajectory of a simple D3T model with only 1 transporter and 3 transport requests (l,◯l,◻l). The
transporter is a myopic taxi that processes transport requests on the real line R on a first-come-first-served
basis, one at a time (thick red worldline). If all known requests have been served, the transporter remains
idle at its current position (dotted worldline). The taxi also needs to travel empty to pick-up a new load l
at its origin ◯l , and deliver it at its destination ◻l . The Figure shows origin and destination at the arrival
time tl . The point (tp

l ,●) in space-time marks the pick-up event at the load origin, and the point (td
l ,∎) in

space-time marks the delivery event at the load destination.

2 THE DEMAND-DRIVEN DIRECTED TRANSPORT (D3T) FRAMEWORK

2.1 Overview

The Demand-Driven Directed Transport framework is a framework for modelling transportation systems that
serve transport requests of discrete immotile loads in a physical transport space. In the system, transporters
process requests by travelling along paths of subsequent origins and destinations and transporting the loads.

In particular, demand-driven directed transport (D3T), has the following properties:

• Transportation is demand-driven: there are no fixed services
• Transported objects are discrete loads: there is no continuous quantity such as water or electricity,
• The transported loads are immotile: Loads do not move on their own,
• Loads are transported by discrete transporter units: there is no conveyer belt, or pipes (such as the

Internet distributes data packets on a continuous basis).
• Transportation is directed: there is no change of transporters.

This framework provides a unifying mathematical language to model D3T systems and assess their
performance. Formally, the D3T framework is a subset of the mighty, general Parallel Discrete Event-System
Specification (DEVS) language (Chow and Zeigler 1994). A crucial feature of the D3T framework is its
strict modularity: it specifies the abstract component classes and the protocol for interactions of component
modules. A D3T modeller may either implement her own component modules, or choose from a set of
pre-defined (and programmed) modules to specify a D3T simulation.

In fact, we aim to provide a solid technical foundation for D3T modelling and simulation such that
no further modelling and programming is needed to build a whole D3T model and run a full-scale D3T
simulation.

2.2 D3T phenomenological transport dynamics

In D3T systems, vehicles transport discrete loads (or passengers) in the transport space from their respective
origin to their respective destination. These loads arrive to the system according to a stochastic birth process,
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with their origin and destination determined and fixed at arrival time (see Figure 1 for a simple example).
A D3T model is a dynamic model in the sense of a dynamic optimization problem: not all information is
available, but only reveils in the course of the evolution of the system: a load arrival is only known at the
arrival time, and not before.

Load arrivals are independent of load transport. While load arrivals are stochastic, load transport is
deterministic. Load arrivals are the only external events influencing the transportation dynamics: the load
arrival process feeds into the deterministic transportation dynamics.

A transporter picks up a load at its origin, and delivers a load at its destination. Once picked up,
loads remain on-board the transporter until it reaches the destination of the load. Loads do not change
transporters.

Which of the transporters picks up a given load, is subject to the control policy. The D3T framework
allows the control policy to reject load requests. If rejected, a load leaves the transport system immediately.
The travel time between any two points of the transport space is the metric distance. In geodesic geometries,
transporters travel at unit speed along geodesic segments. In networks, transporters jump along the nodes
of the shortest path, where the jump duration is the arc weight.

Even though loads arrive according to a continuous-time stochastic process, and transporters move
continuously in geodesic geometries, it is discrete-time events governing the transportation dynamics.
Transporters pick-up and deliver loads, depart and arrive at positions, at intrinsically discrete instants of
time.

2.3 The transport space

Demand-driven directed transport (D3T) takes place in a physical space. The mathematical model of such
a transport space is a hemimetric space M with a hemimetric d (Deza and Deza 2013). In particular,
a hemimetric is a metric that does not need to be neither discernible nor symmetric. Additionally, the
transport space M shall be either “continuous” (geodesic), or discrete (a network).

A geodesic hemimetric space M is a hemimetric space for which any two distinct points x,y are
connected by a geodesic directed segment (or shortest path) from x to y. For example, the Euclidian space
Rn with the standard metric d(x,y) =

√
∑

n
i=1(yi−xi)

2 is a geodesic metric space for all n ∈N.
While geodesic metric spaces allow for continuous movements along geodesic segments, networks are

discrete metric spaces which only allow jumps along paths of links (arcs) between their elements (nodes
or vertices). A network G = (V,E,ω) is a weighted digraph which is simple and strongly connected. The
network is undirected, if ∀e = (v,v′) ∈E ∶ e′ = (v′,v) ∈E,ω(e′) =ω(e). A network G = (V,E,ω) is endowed
with the hemimetric of the shortest-path length, yielding a hemimetric space.

2.4 Transport requests and loads

Each transport request (l,◯l,◻l) defines a point-like material entity: a load. A load l is immotile and
demands active transport from its origin ◯l ∈M to its destination ◻l ∈M in the transport spaceM. At time
of arrival, a load requests transport immediately, The load index l ∈N enumerates the transport requests
in order of arrival. Transport requests arrive to a D3T system according to a stochastic process, and
precisely, according to a marked point process {(Tn,Yn) ,n ∈N} (Jacobsen 2006). The random variable Tn
is the arrival epoch of the n-th load. If Tn =∞ for some n, no more loads arrive. The random variable
Yn denotes the mark (◯n,◻n,σn) of the n-th load, from the augmented mark space M×M×Σ ∪{∇}.
The elements of Σ are additional marks that the control policy and/or performance analysis may take into
account. For example, there a D3T model may specify a mark for priority customers. Note that Yn =∇ if
and only if Tn =∞.
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2.5 Transporters

General properties A transporter is a point-like motile object in the transport space M. Its purpose is
to actively transport immotile loads. Each transporter i is endowed with an integer (or infinite) capacity Ci,
which is the maximum number of loads it can transport at the same time. A D3T model has fixed number
N of transporters which might differ in their capacity but are otherwise identical.

In the D3T framework, transporters are actively transporting the loads, but nevertheless they are myopic
passive agents that merely execute the control policy. A transporter typically lacks any but short-term
knowledge about its own queue of loads to transport and positions to travel to. Furthermore, transporters
do not interact with other objects in the transport space, i.e. loads or other transporters. Transporters are
also ideal in the sense that they are always in service, and they do not need to refuel or the like, unless
explicitly told to do so. A transporter either moves at unit velocity, or remains at its current position v ∈M.
In geodesic spaces, transporters move continuously along geodesic segments. In networks, transporters
perform discrete jumps along nodes of shortest paths, where each jump takes a time given by the weight
of the respective arc.

Jobs This framework describes transporter operation as a sequence of jobs. Each job j = (P, ṽ,D) is
a tuple of

1. a pick-up set P of loads to pick up at the current location v of the transporter,
2. the scheduled destination ṽ to travel to,
3. a delivery set D of loads to deliver at the new location ṽ.

At any time t, a transporter either has a current transporter job to process, or it is idle. The set P̃
denotes the loads scheduled for pick-up at the current position v, the position ṽ ∈M the destination to
travel to, and the set D̃ denotes the loads scheduled for delivery at the destination ṽ.

Picking up and delivering loads Picking up and delivering loads takes the transporter a certain
amount of time. The pick-up period and delivery period may depend on the position v ∈M and on the set of
loads to pick-up (P) or deliver (D). The period does not depend on the particular transporter. The pick-up
period function (delivery period function) τP(v,P) (τD(v,D)) determines the time it takes a transporter to
pick up (deliver) loads P (D) at the position v.

Queue Each transporter has a queue Q of transporter jobs to process. Formally, at any time t the
queue Q = ( j̃n)n is a finite sequence of transporter jobs j̃n = (P̃, ṽ,D̃) scheduled for the transporter to
process sequentially in ascending order. The job that the transporter currently processes is not part of the
queue (any more).

Dispatcher action As stated before, the transporters merely execute the control policy. In practice,
they receive commands from the dispatching unit (called dispatcher). In the D3T framework, there are the
following dispatcher actions a transporter willingly accepts at any time:

1. appending a sequence of jobs J to the transporter queue Q↦ (Q,J) (submit),
2. replacing the queue Q↦ J with a new sequence of jobs J (submit and replace)
3. emptying the queue Q↦∅ (submit and replace empty job sequence),
4. canceling the current job c↦ 1 (cancel). This implies also emptying the queue (Q↦∅) and makes

the most sense if the dispatcher submits a new sequence of jobs at the same time.

Note that the first 3 actions only modify the queue, but do not affect the current job. The last action
is the most intrusive, regarding the ongoing operation of the transporter.

Transporter states and state transitions At any time t, the state of a transporter is given by the
variables in Table 1. A transporter experiences the following state transitions (see Table 2 and Figure 2):
A transporter starts a job (∗), when it has an non-empty queue (Q ≠∅) and either has just ended a job (†)
or has been idle (I). Starting a job, a transporter transits to the pick-up phase (P) when the set of loads
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Table 1: Transporter state

Symbol State variable
v ∈M Current position
w ∈R0 Waiting time (remaining jump time) to arrive at ṽ
L Current cargo (set of loads on-board the transporter)
Q Current queue of transporter jobs
P̃ Current job: Set of loads scheduled for pick-up at current position
ṽ ∈M Current job: Destination
D̃ Current job: Set of loads scheduled for delivery at destination
M Current mode, see Table 2.
c ∈ {0,1} A Boolean variable that indicates whether the dispatcher ordered the transporter to cancel

its current job.

Table 2: Transporter modes. We introduce the pseudo-modes for the start of processing the current job (∗)
and end of processing the current job (†). The lifetime of a mode is the period a transporter spends in that
mode before it advances to the next mode. The idle mode is only left at external input from the dispatcher,
when it adds jobs to the transporter queue. At the end of a mode, the transporter state autonomously
changes according to the effects column.

Symbol Mode Lifetime Entry condition Effect
I idle ∞ Q =∅∧w = 0∧ ṽ = v∧ P̃ = D̃ =∅

∗ (job start) 0 Q ≠∅ (P̃, ṽ,D̃)↦ j̃1,Q↦ ( j̃n)
∣Q∣
n=2

P pick-up τP(v,P̃) P̃ ≠∅∧¬c L↦L∪ P̃,P̃↦∅

T travel d(v, ṽ) P̃ =∅∧ ṽ ≠ v∧¬c v↦ ṽ
D delivery τD(ṽ,D̃) P̃ =∅∧ ṽ = v∧w = 0∧D̃ ≠∅∧¬c L↦L∖D̃,D̃↦∅

† (job end) 0 (P̃ =∅∧ ṽ = v∧w = 0∧D̃ =∅)∨c c↦ 0

scheduled for pick-up is non-empty (P̃ ≠∅). After pick-up, the transporter starts moving (T), unless it has
been ordered to cancel (c). If there are not any loads to pick up (P̃ =∅), the transporter directly transits
to the travel phase (T). After travelling, the transporter transits to the delivery phase (D), unless there are
not any loads to deliver (D̃ =∅), or it has been ordered to cancel (c = 1). A transporter ends a job (†) after
delivery, unless there have not been any loads scheduled for delivery, or the transporter was ordered to
cancel. If the queue is empty (Q =∅) after ending a job, the transporter becomes idle.

When the dispatcher orders to cancel a job, the transporter queue is emptied. Furthermore,

1. if the transporter is picking up loads (P), it regularly finishes pick-up and, prematurely, ends the
current job thereafter;

2. if the transporter is travelling (T), it stops as soon as possible (in a geodesic geometry this means
immediately, in a network this means when the current jump to the next node is completed);

3. if the transporter is delivering loads (D), it regularly finishes delivery and ends the current job
thereafter.

2.6 Control policy

The control policy D is a set of rules that determine the instructions for the transporters given the load
arrivals up to the current time. The control policy covers each load arrival: it either rejects a load request,
or assigns the load to a transporter (at least eventually). It is the control policy that governs the transporter
queues. In the light of new load arrivals, the control policy may modify transporter queues, or even cancel
the job currently processed by any transporter.
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Figure 2: Transition diagram of a transporter, see Table 1 for the state variables and Table 2 for the modes.
Labels at the transition arcs are the entry condition for the successive mode.

In a simulation model, the dispatcher is the component that embodies the control policy. In a D3T
model, the dispatcher contains all the model-specific logic of the D3T transport. Therefore, its internal state
is typically rather intricate and highly model-specific. For sophisticated control policies, the dispatcher
will even contain an own concept of the world: in this framework, the dispatcher does not “own” the
transporters, their states are hidden from the dispatcher. The only way to know about the transporter states
is via signalling.

2.7 Summary: Parameters of a D3T model

To conclude this Section, a D3T model M = ((M,d),Σ ,(T ,Y) ,N,{Ci }
N
i=1 ,{v0

i }
N
i=1 ,τP,τD,DD,O) ∈ M̂

is specified by the following parameters:

• the transport space M (either geodesic or network) and the associated hemimetric d,
• the set Σ of additional load marks and the load arrival process (T ,Y) = {(Tn,Yn) ,n ∈N} on the

mark space M×M×Σ ,
• the number N of transporters,
• the capacities {Ci }

N
i=1 of the transporters with Ci ∈N∪{∞},

• the initial positions {v0
i }

N
i=1 of the transporters with v0

i ∈M,
• the pick-up period function τP,
• the delivery period function τD,
• the control policy D (the dispatcher model DD),
• and additionally, we also include the set of observer modelsO = {O j } j that record simulation data

for performance analysis.

3 THE D3T SYSTEM SPECIFICATION (D3TS)

3.1 Overview

A D3TS model is a formal mapping of a D3T model onto a system of interacting components in the
system-theoretic sense (Wainer 2009, Zeigler, Praehofer, and Kim 2000). The DEVS description of a D3TS
model is the complete description for simulation of a D3T model (cf. Figure 3). The D3TS specification
defines generic component classes of specific D3T model components. There are four pairwise disjoint
component classes:
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high-level description D3T model

structural description D3TS model

full simulation model DEVS model

Figure 3: Three-tier description of a D3T model, which maps unto a D3TS model as described in this
Section, and ultimately, unto a low-level but fully-fledged DEVS simulation model.

• Load source class L̂, containing the load sources, the simulation components which embody the
load arrival process;

• Dispatcher class D̂,
• Transporter class T̂,
• Observer class Ô.

One of the characteristic design traits of DEVS and the D3T Specification is that each simulation
component is modelled as a black box: Internal states are inaccessible, the only way of knowing about the
system and its other components is via input and output events. This specification provides several event
types. Examples of events are load arrivals (requests) or a transporter delivering loads (delivery).

Load source class L̂

Dispatcher class D̂

Transporter class T̂

Observer class Ô

{?}

{+,−}

{✓,×,↻,●}

{☀,∗,p,↗,↘,d,†,∅}

Figure 4: The D3T system framework

Given an event type e, all event instances e ∈ e of that type originate from component instances C of
only one class Ĉe. For example, only load source instances output request events, and only transporter
instances output delivery events. The component classes and their event types define the D3TS framework
(Figure 4).
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3.2 Event types

Table 3: Event types and their instance data tuples, names, and producing component classes

Name e Ĉe Instance e ∈ e
request ? L̂ (l,σ ,◯,◻)

assign ✓ D̂ (l, i)
reject × D̂ (l)
submit + D̂ (i, j̃,r)
cancel − D̂ (i)
busy ↻ D̂ (i)
idle ● D̂ (i)
init ☀ T̂ (i,v,C)
job start ∗ T̂ (i, j)
pick-up p T̂ (i, j,P)
departure ↗ T̂ (i, j, ṽ, τ̃)
arrival ↘ T̂ (i, j,v)
delivery d T̂ (i, j,D)
job end † T̂ (i, j)
empty queue ∅ T̂ (i)

This Section introduces all event types e of this framework (Table 3).
Request event A load source instance L outputs an event instance e? of the request event type ?

whenever a load arrives. The mark is (σl,◯l,◻l). The output event instance is e? = (l,σ ,◯,◻) with the
load index l, the load origin ◯ =◯l and the load destination ◻ = ◻l .

Assign event A dispatcher instance D outputs an event instance e✓ = (l, i) of the assign event type
✓ whenever it assigns a load l for transport by transporter i. This event confirms the load request, i.e.
assignment implies acceptance of the load request.

Reject event A dispatcher instance D outputs an event instance e× = (l) of the reject event type ×
whenever it rejects a load request l.

Submit event A dispatcher instance D outputs an event instance e+ = (i, j̃,r) of the submit event type
+ to submit a sequence of jobs j̃ to a transporter i. If the boolean replace variable r is true, the submitted
jobs replace the transporter queue Qi. Otherwise, the submitted jobs are appended to the queue.

Cancel event A dispatcher instance D outputs an event instance e− = (i) of the cancel event type
+ to order a transporter i to cancel processing its current job. Hence, this command is particularly useful
in combination with a submit event that replaces the current transporter queue. In this combination, the
transporter receives new instructions to follow immediately.

Busy event A dispatcher instance D outputs an event instance e↻ = (i) of the busy event type ↻ to
report that a transporter i has become busy.

Idle event A dispatcher instance D outputs an event instance e● = (i) of the idle event type ● to report
that a transporter i has become idle.

Init event At the begin of the simulation, a transporter instance Ti outputs an event instance e☀ = (i,v,C)
of the init event type ☀ to report initialization of transporter i at position v with capacity C. Together with
the init event instance, the transporter instance outputs an empty queue event instance (see below).

Job start event A transporter instance Ti outputs an event instance e∗ = (i, j) of the job start event
type ∗ when transporter i starts processing job no. j.

Pick-up event A transporter instance Ti outputs an event instance ep = (i, j,P) of the pick-up event
type p when transporter i finishes picking up the loads P̃ of its current job j.
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Departure event A transporter instance Ti outputs an event instance e↗ = (i, j, ṽ, τ̃) of the departure
event type ↗ when transporter i departs from its current position v to travel to the destination ṽ of its
current job j. The expected travel time is τ̃ = d(v, ṽ).

Arrival event A transporter instance Ti outputs an event instance e↘ = (i, j,v) of the arrival event
type↘ whenever transporter i arrives (and stops) at a position v. The transporter either stops at its scheduled
destination ṽ, or when the dispatcher canceled its current job j.

Delivery event A transporter instance Ti outputs an event instance ed = (i, j,D) of the delivery event
type d whenever transporter i finishes delivering the loads D̃ of its current job j.

Job end event A transporter instance Ti outputs an event instance e† = (i, j) of the job end event type
† when transporter i ends processing the current job j. This also includes jobs that have been prematurely
canceled by the dispatcher instance.

Empty queue event A transporter instance Ti outputs an event instance e∅ = (i) of the empty queue
event type ∅ whenever transporter i has ended processing its current job and finds its queue empty, Qi =∅.
It also outputs an empty queue event instance at time of initialization (as transporter instances are initialized
with empty queues).

Transporter events We refer to the event types {☀,∗,p,↗,↘,d,†,∅} as transporter events.

3.3 Mapping a D3T model to a D3T system

A D3T system contains a certain number of instances of the underlying D3TS component model classes,
as specified by mapping the D3T model. Note that the behavior of a component model C(M) for a given
D3T model M depends on the other component models and the other parameters of the D3T model.

Load sources Given a D3T model M, the load source model L(M) embodies the marked point process
{(T σ

n ,Y σ
n ) ,n ∈N}. A D3T system can contain multiple load sources at the discretion of the modeler. Load

sources do not have any input events.
Dispatcher A dispatcher component model DD ∈ D̂ implements a specific control policy D. In each

D3T system, there is only one instance DD(M) of the dispatcher model. The framework requires each
dispatcher model to output submit, assign, busy, and idle events. The dispatcher model may further output
cancel and/or reject events, depending on the control policy.

Transporter This framework specifies exactly one transporter component model T ∈ T̂. For a given
D3T model M, there is a transporter instance Ti ∈ T(M) for each of the N transporters. An instance Ti is
initialized with initial position v0

i and empty cargo L =∅ at time t = 0.
Observer An observer listens to simulation events but does not interfere with the simulation: it is the

simulator’s tool to record simulation statistics, instead of accessing simulation components’ states directly.
This design pattern facilitates and enforces encapsulation and the black-box paradigm. There are various
observer component models O ∈ Ô. Each D3T model M may specify multiple observer models Oi ∈ Ô, and
in the D3T system there will be exactly one instance Oi ∈ Oi(M) of each observer model. As observers
are passive, they do not affect the dynamics of the D3T system. For a D3T model, the observer models
merely specify which observables are accessible for recording.

3.4 A D3T model example

Let us illustrate the technicalities of the D3TS component and event framework with a concrete example
M1 of a D3T model. As there is only one load source model L ∈ L̂ and one transporter model T ∈ T̂,
we only need to specify the dispatcher model D1 ∈ D̂ and the observer models O. Specifically, let the
number of transporters be N = 3. Let the dispatcher model be D = D1, and let the set of observer models
be O = {Oload,Otrapo }.

Let us consider a control policy which cancels transporter jobs (− event type), and reacts upon
transporters reporting empty queues (∅ event type). Let observer model Oload record load statistics of
arrivals, assignments, pick-ups and deliveries, and let observer model Otrapo record transporter statistics
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Load source model L

Dispatcher model D1

Transporter model T

Observer model Oload

Observer model Otrapo

{?}

{+,−}

{✓}

{↗,↘}

{p,d}

{∅}

Figure 5: D3TS model graph of the example D3T model with the component models as nodes and arcs
labelled by the event types

such as departures and arrivals. These component input/output ports determine the D3TS model graph
(Figure 5) which is a directed graph without loops.

4 CONCLUSION AND FUTURE WORK

In this Paper, we outlined our approach to a unifying language to model demand-driven directed transport
systems (Section 2) across disciplines and domains. We further introduced elements of a formal description
of such systems based on the parallel discrete-event system specification (Section 3). What we did not
include here is a fully-fledged formal mapping of such a D3TS model to the underlying DEVS model, as this
is straightforward and becomes rather technical. We also omitted actual control policies and performance
measures. A comparative analysis of various control policies implemented in the D3T framework is work
in progress. Furthermore, we envision a modular simulation program, which accepts the parameters of
the transport system such as number of vehicles, the topology, or the stochastic arrival process, and the
algorithmic control policy as input and provides a unified API to the practitioner. A prototype implementation
in Python (pyd3t) based on a Python port of Jim Nutaro’s excellent C++ implementation of DEVS is being
developed in our group. Such further extensions notwithstanding, we expect the present Paper to provide
the sound theoretical foundation for a unifying framework for demand-driven directed transport, useful to
modelling and simulation practitioners across disciplines.
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