
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

ANIMATION FOR SIMULATION EDUCATION IN R

Vadim Kudlay
Barry Lawson

Department of Mathematics and Computer Science
University of Richmond

Richmond, VA 23173, USA

Lawrence M. Leemis

Department of Mathematics
The College of William & Mary
Williamsburg, VA 23187, USA

ABSTRACT

R is freely-available software for statistical computing, providing a variety of statistical analysis functionality.
In prior work, we introduced and released the simEd package for R, focusing on functions for generating
discrete and continuous variates via inversion, for extensible single- and multiple-server queueing simulation,
and including real-world data sets for input modeling and analysis. In this current work, we significantly
enhance and extend the simEd package, primarily through the introduction of a variety of animation and
visualization utilities to aid in simulation education. These include animations of event-driven simulation
details for a single-server queueing model, of random-variate generation for a variety of distributions, of
a Lehmer random number generator, of variate generation via acceptance-rejection, and of generating a
non-homogeneous arrival process via thinning.

1 INTRODUCTION

In previous work, we argued for the use of R for a first course in discrete-event simulation that emphasizes
programming in a high-level language while also covering probabilistic and statistical aspects in simulation.
We first presented R functions for queueing-specific contexts (Lawson and Leemis 2015) and then discussed
the release of a publicly-available R package, simEd (Lawson and Leemis 2017a; Lawson and Leemis
2017b). We, the authors, have repeatedly used these utilities in undergraduate- and graduate-level courses
in simulation at our respective institutions, as well as in various external workshops we have offered. It
is in the context of using these primarily text-based utilities in teaching, while simultaneously discussing
concepts using hand-sketched board diagrams and/or slideshow presentations, that we realized the benefit
that easy-to-use interactive computer animations of these concepts would provide. Therefore, we have
developed a suite of new functions to add animation and visualization to the simEd package, and have
extended some of the previous functions to now include animation.

In this paper, we introduce significant animation capabilities for the simEd package, written with a
focus on simulation pedagogy. The updated package includes:

• an interactive function specifically focused on an event-driven implementation of an M/M/1 queue,
which includes animation of event calendar updates, of corresponding variate generation, of the
queue itself, and of time-persistent and observation-based statistics (see Table 1 in Appendix A);

• updates to text-only M/M/{1,k} queueing functions to now include animation (see Table 1);
• an interactive function for visualizing U(0,1) variate generation using a Lehmer random number

generator (see Table 2);
• interactive functions for visualizing variate generation via acceptance-rejection and for visualizing

generation of a non-homogeneous Poisson process via thinning (see Table 2); and



Kudlay, Lawson, and Leemis

• additional and improved functions for visualizing inversion for variate generation of various discrete
and continuous distributions (see Table 3).

These functions are described in more detail throughout this paper, with illustrative examples. The simEd
package is available on the Comprehensive R Archive Network (CRAN) 1 (The R Foundation 2017).

As before, our work does not focus on the practice of simulation, as other R packages do, e.g., the
process-oriented general simulation framework simmer (Ucar and Smeets 2020), or the arena2r package
for interactively visualizing results from Arena in R (de Lima 2018). Rather, we focus on tools specifically
to be used for teaching Monte Carlo and discrete-event simulation.

2 ANIMATION OF EVENT-DRIVEN QUEUING SIMULATION DETAILS

In the updated simEd package, we have developed a custom interactive animation of an event-driven
implementation of an M/M/1 queuing model. With the new function ssqvis, the user can rely on default
exponential interarrival and service functions, or can define and provide their own custom functions to pass
to ssqvis. The animation is split into three rows:

• the top row depicts the event calendar along with generating arrival and completion-of-service times
using inversion;

• the middle row depicts a fairly typical queue visualization (with customers arriving, queueing,
entering service, and departing the system), along with the simulation clock and progress meter;

• the bottom row depicts the number in system, queue, and service across time (i.e., so-called “skyline”
functions) along with observation-based statistics.

Via the R console, the user is able to proceed step-by-step from simulation initialization, through processing
various types of events; is able to inspect the statistics of individual customers; and is able to jump ahead
in simulated time to a particular customer.

Figure 1(a)’s top row depicts initialization of the event-driven simulation, in which the calendar is
updated using the first (inter)arrival time obtained by inversion. Note that the inversion figure depicts a
U(0,1) variate on the vertical axis, the corresponding interarrival time inverted across the exponential cdf,
with the corresponding arrival time depicted on the time axis displayed below the inversion figure. Specific
values and details are displayed on the right, with the arrival time ultimately pushed onto the calendar on
the left. In Figure 1(b), all three rows of the visualization are updated to demonstrate processing of that
first arriving customer, including advancing the system clock (top row), customer entering service (second
row), and statistics updating (third row). Note that the customer has entered service (orange), but no service
time has yet been generated.

Figure 2(a) proceeds to depict further processing of the first arriving customer, in which the service
time and completion time for the first customer in the system are generated. The top row shows generation
of the service time using inversion, and updating of the calendar. The middle row shows updating of the
first customer in service (now green), as a service time and completion time are now known. Figure 2(b)
continues the processing of the first arriving customer, in which the arrival time of the next customer is
generated. The top row shows generation of the (inter)arrival time and updating of the calendar. Note that
in the middle row, the next customer (on the left, yet to arrive) is also indicated by the future arrival time.
Note also that the skyline functions and observation-based statistics are updated in the third row.

Figure 3(a) depicts the animation after having skipped ahead to the 29th customer. Note that this
customer has been queued (middle row), the arrival time for the 30th customer has been generated and is
being placed on the calendar (top row), and skyline functions updated appropriately (third row). Finally,

1Note to Reviewers: As of submission, the fully-updated package is not yet posted to the CRAN, but is available at
http://bit.ly/simEd wsc2020.

http://bit.ly/simEd_wsc2020


Kudlay, Lawson, and Leemis

(a) (b)

Figure 1: Screen captures of the ssqvis animation depicting event-driven details of an M/M/1 queue
implementation. (a) The top row of the animation display depicts, interactively, event calendar initialization,
generating the first customer arrival time using inversion. (b) All three rows are updated to depict processing
of the first arriving customer, including advancing the system clock (top row), customer entering service
(second row), and statistics updating (third row).

(a) (b)

Figure 2: Screen captures of the ssqvis animation depicting event-driven details of an M/M/1 queue
implementation. (a) The first and second rows are updated to depict generating the service time and
completion time for the first customer in the system. (b) All three rows are updated to depict scheduling the
second arriving customer. Note also that observed statistics are updated based on the previously generated
service time.



Kudlay, Lawson, and Leemis

(a) (b)

Figure 3: Screen captures of the ssqvis animation depicting event-driven details of an M/M/1 queue
implementation. (a) Processing of the 29th customer to arrive, which waits third in the queue with a
customer already in service. (b) State of the simulation at the end of the specified maximum simulation
time of 40. Note that the skyline functions and observation-based statistics represent final values.

Figure 3(b) depicts the animation at the end, for a maximum simulated time of 40. Note that the skyline
functions and observation statistics are updated to represent the entirety of the simulation run (third row).

3 QUEUEING ANIMATION

In addition to the new function visualizing event-driven simulation discussed in the previous section, we
have also extended the previously text-only but extensible functions ssq (defaulting to M/M/1) and msq
(defaulting to M/M/k) to now include animation as an additional feature.

Figure 4(a) depicts queueing animation using the ssq function with default arrival and service processes
(λ = 1, µ = 10/9) and a maximum simulated time of 40. As shown in the top row of the visualization,
the 39th customer has arrived and been queued, as the 35th customer is still in service at time 40. The
skyline functions for number in the system, number in queue, and number in service are also displayed in
the bottom row. Similar to the ssqvis function, the user can interactively step one customer at a time.

Similarly, Figure 4(b) depicts queueing animation using the msq function with a default arrival process
(λ = 1) and a custom service process (µ = 1/2) having higher average service time than for ssq above,
but with three servers and a maximum simulated time of 40. In this example, the 37th and 39th customers
are still in service, the 38th customer has already departed, with corresponding skyline functions shown
below for the entire simulation run.

4 ADDITIONAL ANIMATION ROUTINES

In this section, we describe additional routines added to the simEd library that are particularly useful in
an introductory simulation course.

4.1 Animation of a Lehmer Random Number Generator

Although outdated for modern simulation applications, because of its simplicity, a Lehmer (multiplicative
linear congruential) random number generator provides an ideal entry point for students to understand



Kudlay, Lawson, and Leemis

(a) (b)

Figure 4: The (a) ssq function and (b) msq function, each with animation activated, depicting the queueing
node and the “skyline” functions of time-persistent statistics for an M/M/1 and M/M/k queue respectively.
In interactive mode, the node and skyline functions are updated with each arriving and departing customer.

details of random number generation. Visualizing the period of the generator as a virtual circle (based on
the choices of multiplier a, modulus m, and initial seed x0) allows student to easily grasp the notions of
generator periodicity, period length, choice of initial seed, and drawing integers without replacement to
produce U(0,1) random variates. In our experience, a general understanding of a Lehmer generator helps
students with an implicit understanding of more modern generators (e.g., Mersenne twister) even without
fully exploring the underlying complex details of the latter.

For this reason, we have provided the lehmer function for visualizing a Lehmer random number
generator. Figure 5(a) depicts a Lehmer generator with multiplier a = 13, prime modulus m = 31, and
initial seed x0 = 1. The sequence of integers drawn without replacement from {1,2, . . . ,m−1} are depicted
in the circle on the right, with red indicating the initial seed and yellow indicating the current state of the
generator. The box on the left shows the generation of the current integer state using the previous state,
and also shows mapping of that integer into a real-valued number in (0,1). As each new random variate
is generated, it is depicted by a filled circle at the corresponding location on the (0,1) axis at the bottom,
with teal indicating the current value, and (eventually) red indicating the reappearance of the initial seed.
Figure 5(b) demonstrates how the lehmer function can be used to experiment with periodicity, in this
case changing the multiplier to a = 14, which results in a less-than-full period corresponding to m = 31.

4.2 Animation of Variate Generation via Acceptance-Rejection

When discussing variate generation, an instructor might typically cover inversion via closed-form expression
(e.g., for uniform or exponential), convolution (e.g., for Erlang), as well as numerical approximation (e.g,
for normal). Other distributions, such as Beta, motivate an acceptance-rejection approach, for which we
have provided the arsample function in simEd. With the arsample function, the user can rely on the
default pdf (i.e., Beta(α = 3, β = 2)) and default constant majorizing function, or can specify custom pdf
and/or majorizing function — see Table 2. The function then interactively demonstrates variate generation
via acceptance-rejection.



Kudlay, Lawson, and Leemis

(a)

(b)

Figure 5: The lehmer function depicts, interactively, the generation of a U(0,1) random variate using a
multiplicative linear congruential generator. The user can select the choice of multiplier a, modulus m, and
initial seed x0. This figures depicts interactively generating variates using a small prime modulus m = 31
with (a) full-period multiplier a = 13 and initial seed x0 = 1 or (b) less-than-full-period multiplier a = 14
and initial seed x0 = 11.



Kudlay, Lawson, and Leemis

(a) (b)

Figure 6: The arsample function interactively demonstrates variate generation via acceptance-rejection,
here using the default Beta(α = 3, β = 2) distribution. The user can specify the distribution from which
to generate, as well as a corresponding majorizing function. (a) A constant λ ∗ majorizing function. (b) A
piecewise-constant λ ∗(t) majorizing function.

Figure 6(a) depicts the generation of 100 Beta(α = 3, β = 2) variates using acceptance-rejection with a
constant majorizing function λ ∗(t). At each step, a u1 =U(0,1) variate is generated (yellow) to determine
location on the horizontal axis, and then a u2 = U(0,λ ∗(u1)) variate is generated. If u2 is below the
provided pdf (green curve), the u1 variate is accepted (indicated by an open green circle) and contributes
to the updated histogram in the bottom row. If u2 is above the provided pdf, the u1 variate is rejected
(indicated by a red X). Note that the total number accepted and rejected is shown in the top of the display.

Figure 6(b) depicts the generation of 100 variates from the same Beta(α = 3, β = 2) distribution but
using a piecewise-constant majorizing function instead. Notice that in this case, the number of rejections
is improved, even with a simple change in efficiency to “squeezing” the majorizing function.

4.3 Animation of NHPP Generation via Thinning

We also provide a function thinning to visualize the generation of a non-homogeneous Poisson process
using the thinning method. The function provides a default intensity function (meant to mimic a typical
24-hour set of rush-arrival periods), but custom intensity functions can be specified by the user. Similarly,
a default constant majorizing function is provided, but custom piecewise-constant majorizing functions can
also be specified by the user.



Kudlay, Lawson, and Leemis

Figure 7 depicts visualization of the thinning process using the default intensity function (green) and
default constant majorizing function (red). In this example, an interarrival time is generated as an ei =
Exp(λ ∗) variate, resulting in the corresponding (cumulative) arrival time Ti. Then a ui =U(0,λ ∗) variate is
generated. If ui is less than the intensity function evaluated at Ti, then Ti is accepted, denoted as an arrival
time by a green tick at the horizontal axis with corresponding open green circle at height ui above. If ui
is greater than the intensity function evaluated at Ti, then Ti is rejected. The corresponding realization of
the non-homogeneous Poisson process is given by the left-to-right sequence of ticks above the horizontal
axis (which, in general, should be consistent with the rise and fall of the intensity function), and the
corresponding time values are returned by the function to the R console.

Figure 7: The thinning function visualizing the generation of a non-homogeneous Poisson process
via the thinning process, based on acceptance-rejection. This example depicts a custom default intensity
function (green) and default constant majorizing function (red). Accepted arrival times are indicated by
green ticks above the horizontal axis with corresponding open circles above, while rejected times are
indicated by corresponding red X’s above.

5 VARIATE GENERATION VIA INVERSION

5.1 Animation of Variate Generation via Inversion

In the updated version of simEd, we also have eight new functions for visualizing variate generation via
inversion (e.g., ibeta, icauchy, etc. — see Table 3) and have improved the animation of the previous
“i*” functions.

With our “i*” functions, the user can visualize variate generation by inversion using user-specified
U(0,1) values or by allowing runif or vunif to generate variates automatically. The user can also
specify which of the following to display: (i) inversion across the cdf, (ii) corresponding histogram versus
population pdf, and (iii) corresponding ecdf versus population cdf. The functions also allow the user
to choose to interactively proceed step-by-step with each variate generated, in which case the inversion,
histogram, and ecdf update immediately with each new variate generated.



Kudlay, Lawson, and Leemis

Figure 8(a) depicts the ilogis function for one and for twenty variates generated, with only the
inversion display shown. Note that in the case of one variate only, the value of the U(0,1) variate and the
inverted value are both displayed. In the case of multiple variates, an inverted histogram is displayed below
the horizontal axis. Figure 8(b) depicts the same ilogis function for 200 variates generated, with all
three displays shown. Note that in the case of many variates generated, the upper row displays the dashed
inversion lines at quantile values only, resulting in a cleaner display. In each case, the function returns to
the console all variates generated. Similar results hold for the other discrete and continuous distributions
in Table 3.

(a) (b)

Figure 8: (a) The ilogis function visualizing the generation of 1 and 20 Logistic(µ = 0, s = 1) random
variates via inversion. (b) The ilogis function visualizing the generation of 200 Logistic(µ = 0, s = 1)
random variates via inversion. The middle row depicts the resulting histogram versus the population pdf,
while the bottom row depicts the resulting ecdf versus the population cdf. In interactive mode, the inversion,
histogram, and ecdf update immediately with each new variate generated.

5.2 Variate Generation via Inversion

Consistent with the “i*” functions, in the updated simEd package we have also introduced eight new
“v*” functions for directly generating random variates. As in our previous work, we have chosen naming
and parameter conventions similar to the variate generation functions available by default in R via the
stats package, but replacing the leading ‘r’ in each function name with ‘v’ (for variate) instead. Each of
the functions generates n U(0,1) random variates, and then inverts using the appropriate quantile functions
available in stats. Each of the functions also provides the capability for independent streams of random



Kudlay, Lawson, and Leemis

numbers, based on the rstream package implementation (Leydold 2020), and for antithetic variates.
Details are discussed in our previous simEd work (Lawson and Leemis 2017a).

6 CONCLUSIONS

In this paper, we have discussed significant enhancements to our simEd package for R, having a focus
on simulation pedagogy. These enhancements focus primarily on, but are not limited to, animation and
visualization for teaching simulation. We have included a function for animating and visualizing the details
of an event-driven implementation of an M/M/1 queue, and have updated existing queueing functions to
include more traditional-style queuing animations. We have included animation functions for visualizing,
and experimenting with the parameters of, a Lehmer random number generator; for visualizing variate
generation via acceptance-rejection; and for visualizing generation of a non-homogeneous Poisson process
using thinning. In addition, we have expanded the set of, and improved the animation of, various “i*”
functions for visualizing variate generation via inversion; and correspondingly have expanded the set of
“v*” functions for generating variates, with streams and antithetic variates capabilities. These additions
significantly enhance the simEd package for use in an introductory simulation course.

A ASSOCIATED FUNCTIONS IN THE simEd PACKAGE

The following tables provide overviews of function signatures of each of the functions associated with
animations presented earlier.

Table 1: Queueing simulation functions with animation. The ssqvis function is new, and animates details
of an event-driven implementation. The ssq and msq functions have been enhanced to include animation
of the queue and “skyline” functions.

Queue Model Function Signature
Event-Driven Details ssqvis(maxArrivals = Inf, seed = NA,

for Single-Server interarrivalFcn = NA, serviceFcn = NA,

arrivalType = "M", serviceType = "M",

maxTime = Inf, maxDepartures = Inf,

maxInQueue = Inf, maxInSkyline = 15,

showSkylineQueue = TRUE, showSkylineSystem = TRUE,

showSkylineServer = TRUE, showSkyline = NULL,

customerImage = NA, plotDelay = -1)

Single-Server ssq(maxArrivals = Inf, seed = NA,

interarrivalFcn = NA, serviceFcn = NA,

arrivalType = "M", serviceType = "M",

maxTime = Inf, maxDepartures = Inf, . . . ,
showSkylineQueue = TRUE, showSkylineSystem = TRUE,

showSkylineServer = TRUE, showSkyline = NULL,

customerImage = NA, plotDelay = 0, respectLayout = FALSE)

Multiple-Server msq(maxArrivals = Inf, seed = NA, numServers = 2,

serverSelection = c("LRU", "LFU", "CYC", "RAN", "ORD"), . . . )



Kudlay, Lawson, and Leemis

REFERENCES

de Lima, P. N. 2018. “Arena2R: Discrete-Event Simulation for R”. https://cran.r-project.org/package=
arena2r/.

Lawson, B., and L. Leemis. 2015. “Discrete-Event Simulation Using R”. In Proceedings of the 2015 Winter
Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and
M. D. Rossetti, 3502–3513. Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc.

Lawson, B., and L. Leemis. 2017a. “An R Package for Simulation Education”. In Proceedings of the 2017
Winter Simulation Conference, edited by W. K. V. Chan, A. DAmbrogio, G. Zacharewicz, N. Mustafee,
G. Wainer, and E. Page, 1–12. Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc.
Article No. 346.

Lawson, B., and L. Leemis. 2017b. “simEd: Simulation Education”. https://cran.r-project.org/package=
simEd, version 1.0.3.

Leydold, J. 2020. “rstream: Streams of Random Numbers”. https://cran.r-project.org/package=rstream.
The R Foundation 2017. “The Comprehensive R Archive Network”. https://cran.r-project.org/.
Ucar, I., and B. Smeets. 2020. “simmer: Discrete-Event Simulation for R”. http://r-simmer.org/.

AUTHOR BIOGRAPHIES

VADIM KUDLAY is currently a third-year undergraduate student majoring in Computer Science and in
Mathematics at the University of Richmond. His email address is vadim.kudlay@richmond.edu. Examples
of his project work are available on his GitHub site at https://github.com/VKudlay.

BARRY LAWSON is Professor of Computer Science at the University of Richmond. He received Ph.D.
and M.S. degrees in Computer Science from William & Mary, and a B.S. in Mathematics from UVA’s
College at Wise. His interests are in agent-based simulation with biological applications, and in simulation
education. His email address is blawson@richmond.edu.

LAWRENCE M. LEEMIS is Professor in the Department of Mathematics at The College of William &
Mary. He received B.S. and M.S. degrees in Mathematics and a Ph.D. in Industrial Engineering from Purdue
University. His interests are in reliability, simulation, and computational probability. He is a member of
ASA and INFORMS. His email address is leemis@math.wm.edu.

Table 2: Other animation utilities in the simEd package.

Utility Signature
Lehmer Generator lehmer(a = 13, m = 31, seed = 1, plotDelay = -1)

Acceptance-Rejection arsample(n = 10, pdf = function(x) dbeta(x, 3, 2),

majorizingFcn = NULL, support = c(0,1),

seed = NA, plot = TRUE, plotDelay = -1)

Thinning thinning(maxTime = 1440, majorFcn = NULL,

intensityFcn = defaultCustomerProcess,

seed = NA, plot = TRUE, plotDelay = -1)

https://cran.r-project.org/package=arena2r/
https://cran.r-project.org/package=arena2r/
https://cran.r-project.org/package=simEd
https://cran.r-project.org/package=simEd
https://cran.r-project.org/package=rstream
https://cran.r-project.org/
http://r-simmer.org/
mailto://vadim.kudlay@richmond.edu
https://github.com/VKudlay
mailto://blawson@richmond.edu
mailto://leemis@math.wm.edu


Kudlay, Lawson, and Leemis

Table 3: Functions for visualizing inversion of variate generation. (The last 10 parameters are consistent in
all functions, indicated by ellipses.) A null value for u displays distribution plots only, without inversion.
Here, there are 8 new functions in the simEd package, and the animation in all 15 has been improved.

Distribution Function Signature
Beta ibeta(u = runif(1), shape1, shape2, ncp = 0,

minPlotQuantile = 0.01, maxPlotQuantile = 0.99, plot = TRUE,

showCDF = TRUE, showPDF = FALSE, showECDF = FALSE, show = NULL,

maxInvPlotted = 50, plotDelay = 0, respectLayout = FALSE)

Binomial ibinom(u = runif(1), size, prob, . . . )

Cauchy icauchy(u = runif(1), location = 0, scale = 1, . . . )

Chisquare ichisq(u = runif(1), df, ncp = 0, . . . )

Exponential iexp(u = runif(1), rate = 1, . . . )

Gamma igamma(u = runif(1), shape, rate = 1, scale = 1/rate, . . . )

Geometric igeom(u = runif(1), prob, . . . )

Lognormal ilnorm(u = runif(1), meanlog = 0, sdlog = 1, . . . )

Logistic ilogis(u = runif(1), location = 0, scale = 1, . . . )

Negative Binomial inbinom(u = runif(1), size, prob, mu, . . . )

Normal inorm(u = runif(1), mean = 0, sd = 1, . . . )

Poisson ipois(u = runif(1), lambda, . . . )

Student’s t it(u = runif(1), df, ncp = 0, . . . )

Uniform iunif(u = runif(1), min = 0, max = 1, . . . )

Weibull iweibull(u = runif(1), shape, scale = 1, . . . )

Table 4: Variate generation functions available in simEd. Associated with new package functionality,
there are 8 new variate generation functions in the package, shown above the dividing line below. All these
generating functions use inversion and provide capabilities for streams and for antithetic variates.

Distribution Function Signature
Beta vbeta(n, shape1, shape2, ncp = 0, stream = NULL, antithetic = FALSE)

Cauchy vcauchy(n, location = 0, scale = 1, stream = NULL, antithetic = FALSE)

Chisquare vchisq(n, df, ncp = 0, stream = NULL, antithetic = FALSE)

Lognormal vlnorm(n, meanlog = 0, sdlog = 1, stream = NULL, antithetic = FALSE)

Logistic vlogis(n, location = 0, scale = 1, stream = NULL, antithetic = FALSE)

Negative Binomial vnbinom(n, size, prob, mu, stream = NULL, antithetic = FALSE)

Poisson vpois(n, lambda, stream = NULL, antithetic = FALSE)

Student’s t vt(n, df, ncp = 0, stream = NULL, antithetic = FALSE)

Binomial vbinom(n, size, prob, stream = NULL, antithetic = FALSE)

Geometric vgeom(n, prob, stream = NULL, antithetic = FALSE)

Exponential vexp(n, rate = 1, stream = NULL, antithetic = FALSE)

Gamma vgamma(n, shape, rate = 1, scale = 1/rate, stream = NULL, antithetic = FALSE)

Normal vnorm(n, mean = 0, sd = 1, stream = NULL, antithetic = FALSE)

Uniform vunif(n, min = 0, max = 1, stream = NULL, antithetic = FALSE)

Weibull vweibull(n, shape, scale = 1, stream = NULL, antithetic = FALSE)


	INTRODUCTION
	ANIMATION OF EVENT-DRIVEN QUEUING SIMULATION DETAILS
	QUEUEING ANIMATION
	ADDITIONAL ANIMATION ROUTINES
	Animation of a Lehmer Random Number Generator
	Animation of Variate Generation via Acceptance-Rejection
	Animation of NHPP Generation via Thinning

	VARIATE GENERATION VIA INVERSION
	Animation of Variate Generation via Inversion
	Variate Generation via Inversion

	CONCLUSIONS
	ASSOCIATED FUNCTIONS IN THE simEd PACKAGE

