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ABSTRACT 

The discipline of component-based modeling and simulation offers promising gains including reduction 
in development cost, time, and system complexity. It also promotes (re)use of modular components to 
build complex simulations. Many important issues in this area have been addressed, but composability 
verification is still considered a daunting challenge. In our observation most of the component modeling 
frameworks possess weak built-in support for the composability verification, which is required to guaran-
tee the correctness of the dynamic (behavioral) and temporal aspects of the composition. In this paper we 
stage a practical approach to alleviate some of the challenges in composability verification and propose a 
process to verify composability of real-time system models. We emphasize on dynamic semantic level 
and present our approach using Colored Petri Nets and State-Space analysis. We also present a Field Ar-
tillery model as an example of real-time system and explain how our approach verifies model composa-
bility. 

1 INTRODUCTION 

The Modeling and  Simulation (M&S) community has been conducting research on methods and technol-
ogies to construct complex simulation systems by combining new or reusing existing simulation compo-
nents. This paradigm of component-based modeling and simulation has gained growing motivation due to 
its promising gains including reduction in development cost, time, and the system complexity. It follows 
the principle of modularity which essentially helps to master the complexity of reality by decomposing it 
into parts (Hofmann 2003)and by enabling the designer to (re)use appropriate parts for different purposes. 

Composability is the capability to select and assemble components in various combinations (mean-
ingfully) to satisfy specific user requirements (Petty and Weisel 2004). It is an important quality charac-
teristic of the M&S discipline, yet difficult to achieve (Balci, Arthur and Ormsby 2011), (Davis and 
Anderson 2003). This is mainly due to the underlying intricacies and substantive subtleties of the compo-
nents. Composability is a property of the models, as it essentially contends with the alignment of issues 
on the modeling level (Tolk 2010), where it is viewed as creation of complex models from a collection of 
modular components, which might themselves be the abstraction of subsystems. Composability essential-
ly relies on a suitable component modeling framework that must provide accurate reasoning of correct-
ness and the ability to leverage certain component standard. One such standard that has been developed 
for M&S to support composability is the Base Object Model (BOM) (Gustavson 2005), which is a SISO 
standard. Composability is further divided into different sublevels, as discussed in (Moradi, et al. 2007) & 
(Tolk 2010).  

In this paper, our focus is centered on the correctness of composability at the Dynamic Semantic level, 
which is a necessary condition for the credibility of overall composability. Dynamic Semantic Composa-
bility implies that the components are dynamically consistent, i.e., they have correct behavior, necessary 
to reach the desired goals and subsequently satisfy user requirements. In essence, a set of components can 
possibly fit together (syntactically), and their communication is meaningful and understood (semantical-
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ly), but unless all components preserve essential behavior (dynamically), in order to reach the desired 
composition goals, the correctness of the composed model cannot be certified. We further elaborate that 
correctness of behavioral composability relies on two factors: firstly each component is at the right state 
while interacting with the others, and secondly the composition should satisfy required behavioral proper-
ties, as prescribed in the requirement specifications 

In M&S, verification is concerned with building the model right. It is typically defined as a process of 
determining whether the model has been implemented correctly (O. Balci 1997) and whether it is 
consistent with its specifications (Petty 2008). In principle, verification is concerned with the accuracy of 
transforming the model’s requirements into a conceptual model and the conceptual model into an execut-
able model (Petty 2008). We postulate that model’s requirements are identified by means of requirements 
specification which includes a set of verification goals, listed in terms of desired system behavior proper-
ties such as deadlock freedom, livelock freedom, mutual exclusion and fairness. In dynamic semantic 
composability verification, we show that the composed model satisfies its requirement specification. 
 Systems where the correctness of the system behavior depends not only on the logical results of the 
computations, but also on the physical time when these results are produced and within given time 
bounds, are known as Real-Time systems (Olderog and Dierks 2008). When models of such systems are 
composed, they may also require having certain time properties that should be satisfied for correct com-
posability.  

Various approaches have been suggested concerning the model verification of real-time systems. A 
formal model of hierarchical time system is presented in (David, Möller and Yi Wang ) and adjoined with 
an ‘Uppaal tool’ for formal verification. Another interesting approach uses DEVS for real-time system 
development, and transforms it to Timed Automata for verification using Uppaal tool (Saadawi and 
Wainer 2009 ). A rather different approach focuses on the formal validation of semantic composability of 
time based systems (Szabo, Teo and See 2009).  
 In this paper, we present composability verification of real time system models, where time con-
straints are defined as requirement specification properties and their behavior is evaluated to guarantee re-
sponse within the required time constraints. In our approach, we suggest to use BOM as a conceptual 
modeling standard, and Colored Petri Nets (CPN) as an executable modeling framework. We propose a 
formal Time CPN-based component model, which is used for implementation and execution of BOM 
components. After implementing BOM components (using our automatic transformation method) the 
generated CPN-component models are composed and subjected to the verification process for the evalua-
tion of composability at dynamic semantic level. A verified composition of CPN-component models as-
serts that the composability of their respective conceptual model is correct, with respect to the given re-
quirement specifications. We also present a Field Artillery model as an example to illustrate  how our 
approach verifies a composed model. 

The rest of the paper is organized as follows: Section 2 covers basic definitions and concepts used in 
this paper. Section 3 furnishes the details of our composability verification process. In Section 4 we dis-
cuss a case study of a Field Artillery model to explain our approach, whereas section 5 frames summary 
and conclusion. 

2 DEFINATIONS AND BASIC CONCEPTS  

In this section we briefly discuss some essential concepts that are used later in this paper.  

2.1 Base Object Model 

 Conceptual modelling is an iterative process of abstracting an appropriate simplification from a real 
(or proposed) system, to form a model (Robinson, et al. 2010) according to the given requirements and 
modeling objectives.  
 The SISO standard BOM (SISO-I 2006) is defined as, “a piece part of a conceptual model, composed 
of a group of interrelated elements, which can be used as a building block in the development and exten-
sion of simulations and simulation environments” (Gustavson 2005). BOM includes the aspects of a con-

http://www.uppaal.org/
http://en.wikipedia.org/wiki/DEVS
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ceptual model that captures static descriptions of elements abstracted from the real system (simuland), de-
scribed in terms of conceptual entities and events, and contains information on how these elements inter-
act with each other in terms of Patterns of Interplay and state-machines. Entities and Events represent da-
ta about the real world objects and their interaction, whereas the pattern of interplay and state-machine 
collectively represents the dynamic behavior of the component. In this paper, we harness the capability of 
BOM as a conceptual modeling framework, because it provides a component standard as a basis of model 
documentation; gives guidelines for the further development of the executable model and helps determine 
the appropriateness of the model or its parts for model reuse; and most importantly, it strongly supports 
composability. 

2.2 Colored Petri Nets 

 A conceptual model is by definition vague and ambiguous. It is then refined into a more concrete ex-
ecutable model. The process of model design involves the development and refinement of this vague and 
ambiguous model and creating the model code (Fishwick 1995), we refer to it as an executable model. In 
this paper, we incorporate Colored Petri Nets formalism (developed at the University of Aarhus), as an 
executable modeling framework, focusing on its Time extension in particular and propose to utilize its 
strength by implementing BOM based conceptual model into a Timed-CPN based executable model. 
 CPN is a general purpose discrete event graphical language for constructing models of concurrent 
systems and analyzing their properties. It combines the capabilities of Petri nets, as a foundation of the 
graphical notation, and a programming language CPN ML (an extension of Standard ML) that provides 
the primitives for the definition of data types and for specifying functional routines. TCPN is an extension 
to CPN, in which tokens can carry timestamps in addition to the token color, which implies that the mark-
ing of a place where the tokens carry timestamps become timed multi-sets. Also, the model has a global 
clock, representing model time. The distribution of tokens on the places, together with their timestamps 
and the value of the global clock, is called a timed marking. For detailed explanation of the concepts of 
Timed CPN, interested readers are recommended to consult (Jensen and Kristensen 2009).  
 ‘CPN Tools’ is a modeling and execution environment based on CPN language, and is used for the 
editing, simulation, state space analysis, and performance analysis of CPN models. It also comes along 
with a bundled simulator that handles the execution of both untimed and timed nets. The most important 
features of CPN tool from our point of view are hierarchal CPN modeling and the generation and analysis 
of state spaces.  Hierarchal CPN modeling offers modular development. CPN model can be organized as 
a set of modules; where modules can be seen as ‘components’ and can be composed in a separate model. 
CPN tools offer facility to construct hierarchal CPN models, by replacing an entire CPN model with a 
substitute transition that can be connected to a main model. In (Mahmood, et al. 2012) and in this paper, 
we have utilized this feature, and develop a CPN based hierarchal “Component Model”, for implementa-
tion and execution of a conceptual model.  
 Some of the important CPN related terms, that we use in this paper are briefly described as follows: 
• A marking is a function M that maps each place p ∈ P into a multi-set of tokens M(p) ∈ C(p)MS. 

CPN places represent the state of the modeled system and place can be marked with one or more to-
kens, and each token has a data value attached to it. This data value is called the token color. It is the 
number of tokens and the token colors on the individual places which together represent the state of the 
system. This is called a marking of the CPN model. 

• The initial marking M0 is defined by the initial data value of tokens for all places p ∈ P at M0(p). 
• The variables of a transition t are the arc variables that appear on arcs connected to t. 
• A binding of a transition t is a function b that maps each variable v ∈ Var(t) into a value b(v) ∈ Type[v]. 

The set of all bindings for a transition t is denoted B(t). 
• A binding element is a pair (t,b) such that t ∈ T and b ∈ B(t).  
• For a binding element (t,b) to be enabled in a marking M, there must be sufficient tokens on the input 

places of the transition and the guard (exit condition) should be satisfied.  

http://en.wikipedia.org/wiki/Standard_ML
http://cpntools.org/
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• When an enabled binding element (t,b) occurs, it removes tokens from the input places of transition t 
and adds tokens to the output places of t. For details we refer to (Jensen and Kristensen 2009). 

2.3 State Space Analysis 

 State space analysis is one of the most prominent approach for conducting formal analysis and verifi-
cation. The basic idea in this approach is to calculate all possible system states and represent them as ver-
tices in a directed graph and represent the transitions of one state to another state by directed edges.  
 In theory a state space is a directed graph where we have a node for each reachable marking and an 
arc for each occurring binding element. There is an arc labeled with a binding element (t,b) from a node 
representing a marking Mi to a node representing a marking Mi+1 if and only if the binding (t,b) is enabled 
in Mi and the occurrence of (t,b) in Mi leads to the marking Mi+1. 
 A constructed state space can answer a large set of analysis and verification questions concerning the 
behavior of the system such as absence of deadlocks, the possibility of being able to reach good state(s), 
and never reach bad state(s) and the guarantee of reaching goal state(s). A step by step tour of state space 
analysis using CPN tools can be located at (Jensen, Christense and Kristensen 2006).  
 The main advantages of state space methods is that they can provide counter examples and reasoning 
as to why an expected property does not hold. Furthermore, the automatic calculation and generation of 
state-space provides an ease of use, due to the fact that the computer tool hide a large portion of the un-
derlying complex mathematics from the user, who is only required to formulate the property which is to 
be investigated and a suitable query function to evaluate it (Kristensen 2000).  
 The main disadvantage of using state spaces is the state explosion problem. Even relatively small sys-
tems may have an astronomical or even infinite number of reachable states. This problem escalates se-
verely, when the models include Time. A lot of effort has been invested in the development of reduction 
methods to alleviate this problem. Reduction methods avoid representing the entire state space of the sys-
tem or represent the state space in a compact form. The reduction is done in such a way that properties of 
the system are preserved and can still be derived from the reduced state space. However, due to the com-
plexity and diversity in verification, there is no single reduction method which works well in all situa-
tions, therefore the choice of a reduction method, depends on the nature of the system being verified 
(Kristensen 2000). Some of the important reduction methods are Sweep line method (Christensen, 
Kristensen and Mailund 2001), Hash Compaction Method (Westergaard, et al. 2007), Symmetry Method 
(Elgaard July 2002) and Equivalence Method (Jensen and Kristensen 2009). The detail discussion of the-
se methods is out of scope of this paper, however we rely on these methods, to alleviate the state explo-
sion problem, if the model under consideration becomes large and resource intensive.  

3 COMPOSABILITY VERIFICATION PROCESS 

 In this section we revisit our previously proposed approach of dynamic semantic composability veri-
fication (Mahmood, et al. 2012), [available here] and extend it with additional features, particularly to 
support the verification of real-time system models. Before we discuss these additional features, we sum-
marize our previous contributions as follows: 

We proposed a process for the verification of BOM based composed models at the dynamic semantic 
level. We suggested to extend the BOM components into Extended BOMs (E-BOM) using our E-BOM 
editor, to include state-variables and more detailed transitions, with events, guards and actions, in the 
model. Once a standard BOM component is extended into E-BOM, it is transformed it to our CPN based 
component model. We proposed an automatic transformation method to convert E-BOM into CPN model. 
When all components are transformed, modeler can assemble them as a composed model using CPN hier-
archy tools. The resultant model is executable in CPN environment and can be analyzed using state space 
analysis. For the purpose of verification, we proposed to use a Verification Template that consists of a set 
of properties representing Goal states, Generic system behavioral properties and scenario centric proper-
ties as requirements specification. When the verification is performed, the composed model is said to be 

http://web.ict.kth.se/~imahmood/FieldArtillery
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verified at dynamic semantic level if it satisfies all the properties in the verification template. Figure 1 il-
lustrates the entire process.  

 
 In this paper, we upgrade the entire verification process by extending its different parts, described as 
follows. 
• Since standard BOM doesn’t support Time, so we present additional features in E-BOM to let the 

modeler specify time functions, to capture time specific system behavior. 
• We upgrade our automatic transformation tool, to generate Time based CPN models 
• We formally define our CPN component model and include Time functions in the formalism. 
• We upgrade our CPN-Component Model by marking all the Color-Sets as “Timed”, which is a re-

quirement for their corresponding places to carry tokens with timestamps. 
• We extend our Behavioral Layer and allow Time inscriptions in the transitions, which are either con-

stant non-negative numerical values or random numbers based on an assigned probability distributions. 
(Time inscriptions include delay or interval functions, discussed later in this section). 

• We develop a library of state space query functions for the verification of our model specific properties 
mentioned in verification template. 

• Also we include time properties as specification in our verification template. (We provide examples in 
our case study section). 

• Beside time related extensions, we provide modifications at different parts to improve the overall veri-
fication process.  

3.1 Formal definition of CPN-based Component Model 

In our model, each component has three layers and is formally defined as: 
CPN-CM = (SL, BL, CL) where: 

Structural layer SL =  〈SV, ΣSV , CSV, VSV , ISV〉 where 
• SV is a set of places  (that represent state-variables of the Conceptual Model) 
• ΣSV  represents a set of color sets that represent state-variable data types 
• CSV : SV→ΣSV is a function that assigns a timed color set to each state-variable 
• VSV is a finite set of typed variables, assigned to each SV such that Type[VSV] = Type[SV]. (Note that 

these variables are CPN-ML variables that are used to transport tokens; and are different from our notions of state-
variables) 

• ISV: SV → EXPR is an initialization function that assigns an initial value expression of type Type[SV] 
to each state-variable. 

The structural layer represents physical attributes, properties or variables of the component. In this layer, 
State-Variables are defined in form of places, to model important physical changes during the execution 
of a component. 
 
Behavioral layer BL = 〈S, T , AT , ASV , AC , G, Act, TD, TI 〉 where 
• S is a set of places, called states of Type = INT (timed) and represent the states of the state-machine (of 

the respective Conceptual Model). 
• T is a set of transitions (representing the events of the state-machine) 

Figure 1. Composability Verification Process 
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• AT is the set of arcs, called transiting-arcs that connect a state s∈S to a transition t∈T, and t to another 
state s`∈S, if s → t → s`. All the arcs in AT are assigned a common variable v of Type=INT, so that a 
token is transited from one state to another, to reflect a change of state in the state-machine.  

• ASV is another set of arcs, called “sv-arcs” that connect state-variables (of the structural layer) to the 
transitions. A transition t is assigned a binding b = [In | Out] with a state-variable sv∈SV such that if 
b=In then sv→t and if b=Out then t→sv. A variable v is also assigned to each arc, such that Type[v] = 
Type[SV(sv)]. 

• AC is another set of arcs, called “communication-arcs”, that connect a communication port cp∈CP (of 
the communication layer) to a transition t, such cp→t if t is a receive event and t→cp if t is a send 
event. A variable v is assigned to this arc, such that Type[v] = Type[CP(cp)]. 

• G : T→EXPR is a guard function that assigns a guard to a transition t such that Type[G(t)] = Bool 
• Act: T→EXPR is an action function written in CPN-ML and assigned to a transition t. It is executed 

when t is fired. 
• TD: T→EXPR is a time function, called transition delay that assigns a delay to a transition t, such that 

Type[TD(t)]=TIME (a non-negative integer). TD can be constant or a random function based on some 
probability distribution.  

• TI: T→EXPR is a time function, called transition interval, which assigns a temporal interval to a transi-
tion t. The interval starts when t is enabled, and it remains enabled until TI expires. 
(It should be noted that the assignments of G, Act, TD and TI are optional) 

The Behavioral Layer represents state-machine behavior of a component in form of CP-Net, where 
each BOM state becomes a CPN place, each BOM event becomes a CPN transition, and the flow of 
INT type token(s), through variable v, represent the change of component’s state. If specified by the 
modeler, the state-variables of the structural layer are connected to the transitions of this layer, to read 
or write a variable value when a transition occurs e.g., in Figure 2, T0 reads “value0” from SV0, action 
Act0, processes it and outputs the result to SV1. (It should be 
noted that actions can also be used for data marshaling, if the 
types of input and output places are not the same. We define 
some generic data-marshaling functions for this purpose, which 
type-cast a token values, e.g., from type0 to type1 at T0 in figure 
2). The arcs can be directed in or out of the transitions, depend-
ing upon the specified bindings. The time functions TimeFx are 
responsible to control the transitions time (delay or interval), 
based on which the timestamps of the tokens are updated in the 
output places (of all layers). 

Communication layer CL =  〈CP, ΣCP , CCP, VCP, PT〉 
• CP is a set of port-places (that connect to the ports of other components through sockets) 
• ΣCP represents a set of timed color sets that represent communication ports data types, and represent the 

structure of the message the parameters (as modeled in BOM). 
• CCP : CP→ΣCP is a function that assigns a timed color set to each port-place. 
• VCP is a finite set of typed variables, assigned to each CP such that Type[v] ∈ Type[CP].  
• PT : CP→{In, Out, I/O} is a port type function that assigns a port type to each port place. 

The Communication Layer is responsible for communication with the other components. It provides 
interface for connecting the inputs and outputs of the components through “port places” and also provides 
information about the data exchange (i.e., the tokens of complex data-types that carry message parameters 
contents, as modeled in BOM). The transitions of behavioral layer are connected to the port places of this 
layer. The arc direction depends on the type of the transition (send or receive). In figure 2, each layer is 
initialized with required initial markings (labeled 1, 2 & 3), which fulfills the condition for the enabling of 
the transition T0 and hence the component can make progress by firing T0.  

1 

2 

3 

Figure 2. CPN-Component Mod-
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3.2 E-BOM Extension 

BOM framework does fundamentally poses a satisfactory potential for effective model composability 
and reuse; even so it falls short of required semantics and necessary modeling characteristics of behavior-
al expressiveness, which are essential for modeling complex behavior of the system. Therefore we need 
some external specification methods that can provide essential modalities required to express additional 
behavioral semantics. In this paper, we propose the following extensions (in addition to the previously 
proposed ones). This includes state-variable bindings with the transitions and some time-functions, to 
capture time behavior of real-time system:  

State | Event | Guard |{SVIn}|{SVOut}| Action | Next State (1) 
  We suggest to specify transitions according to (1), where {SVIn} means a set of input state-
variables, and {SVOut} means a set of output state-variables, that a modeler wants to bind with this transi-
tion. It means when the system being at a state, receives or sends an event, and if the guard is satisfied, 
then it takes values from a set of In-bound state variables, process them in the execution of an action, out-
put new values to the set of out-bound state-variables, and then the system will transit to the next state. 
 Time modalities do not exist originally in standard BOM. But when the modeling of a real-time sys-
tem is under consideration, where time plays a key role, we need to provide time functions. We define 
two types of time functions, which can be assigned to a transition:  

Transition | Time-Delay  | Time-Interval (2) 
 Time-Delay means the time taken by the transition to occur. It can be a constant non-zero integer or a 
random function based on any probability distribution. CPN tools provide this feature of assigning time 
delay to a transition.  Time-Interval means the time between the enabling of a transition and a certain 
specified future time, during which it will remain enabled. If other components are interacting with a 
component having a transition with Time-Interval, they can only progress if they communicate just within 
this interval. (We provide example in our case study section). This feature is not available in CPN. There-
fore for its implementation, we propose to attach a “timer” to the tran-
sition for evaluating the lapse of the specified interval as shown in 
figure 3. The shaded area represents our implementation of a timer, in 
CPN. Whenever the place A receives token(s), it enables the transi-
tion, which when fired sets the timer to run, starting from the current 
model time. This transition will remain enabled and can be fired mul-
tiple times, until TI is reached.  
3.3 Transformation 

When all BOMs are extended to E-BOMs with the proposed additional elements, our automatic trans-
formation tool, transforms them into corresponding TCPN-component models (producing TCPN code for 
the three layers). The output is a .CPN file, with all the components generated as sub-modules. The mod-
eler then composes all the components into a TCPN-Composed Model using CPN hierarchical tool. Then 
the model can be executed using CPN simulator and analyzed by performing state-space analysis.  

3.4 State Space Analysis 

In order to generate state-space of the entire model we use CPN state space calculation tool. When the 
state-space is generated, different query functions can be used to probe the state space graph for various 
verification questions. CPN tools provide some built-in-functions for the common query tasks. We addi-
tionally proposed functions to perform our model specific queries. In order to verify a composed CPN 
model, we propose a verification template that consists of the verification questions inform of three 
groups of properties: 
A. General System Properties 

State-Space analysis technique is very useful technique to verify general system properties such as 
freedom of deadlock, livelock, starvation, or existence of boundedness, mutual exclusion, fairness, se-
quentiality, time-synchronization etc. Choice of these properties as a verification criteria depends on the 

Figure 3. Transition with Time Interval 
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modeling objectives and their fulfillment become necessary conditions for the correctness of the composi-
tion. The solution for verifying a generic property involves specification of the property in CPN terms, 
and definition of a query function (or algorithm), to reason its satisfiability or violation e.g., freedom of 
deadlock property is specified in CPN terms as: “An absence of a marking with no-out going arcs, in the 
entire state-space graph”. Its solution is provided inform of a built-in library function: ListDead-
Marking() which returns a set of all those markings (if any) which have no outgoing arcs. If the result 
of this query is an empty list, then we assert that the model is deadlock free. Similarly CPN-tool has built-
in solutions for other properties such as liveness, fairness and boundedness etc.  
B. Goal Reachability 
 We propose to define the desired outcome of the composed model in form of a “Goal state”,  and use 
a “Goal reachability” function to assess if it is reachable in the state space or not. The goal-state can be 
viewed as a CPN based translation of the requirements specification. A typical goal state could be certain 
desirable values of state-variables in structural layer, reaching of particular state(s) in behavioral layer or 
producing some required data at output port(s) of the communication layer (or a combination of all the 
three), in one or more components of the composition. A composed model may have multiple goals.  

C. Scenario Centric Properties 
We also propose to define some safety (or unsafe) assumptions, which are particular to the scenario. 

They represent certain desirable (or un-desirable) situations which must (or must not) occur in order to 
satisfy (or violate) the requirements. These properties are not the ultimate goal(s), but they may become 
necessary conditions in order to reach the goals.  

3.5 State space Query Functions 

 We develop a library of custom functions, using CPN-ML to perform verification of the properties, 
specified in the verification template. Some of these functions are explained as follows : 
 GoalState(): Finding goal state reachability is not a standard operation, and depends on the way 

Goal-State is defined. Most commonly, we make use of our library functions: IsEqual(), IsNot 
equal(), IsBetween(), IsUpperBound() or IsLowerBound() to define a “predicate”, 
that serves as a goal state reachability condition, and then use SearchNode()function to find those 
nodes, which satisfy the predicate. If one or more nodes are found, then it is verified that the goal is 
reachable. In cases, where it is important to know “how a goal is reachable”, and which sequence(s) of the 
occurrence of transitions, lead to the goal(s), we use SearchArc()function with the predicate.  
 minTime()/maxTime()/Interval(): Finding nodes, having timed multi-sets with 

timestamps greater or lesser then a certain value, or between a certain time interval. These functions work 
on Timed CPN models. 
 ExportGraph(): We develop an export function, that creates a .DOT file of the entire state-space 

and can be viewed in graph tools such as GraphViz or Gephi, for visualization and  performing further 
tests on the graph such as finding certain paths/shortest paths/longest paths between two particular nodes.  

When, a composed model satisfies all the required system properties, qualifies its goal state reachabil-
ity, and fulfills the scenario centric safety criteria, we say that it is verified at dynamic semantic composa-
bility level.  

 

4 CASE STUDY: FIELD ARTILLERY 

In (Mahmood, et al. 2012) we presented a case study of a Field Artillery model, to explain our verifi-
cation process. In this paper we revise this case study to explain how time properties are defined and veri-
fied. This case study consist of two scenarios, based on two modes of artillery fire i.e., direct fire where 
the target is in the line-of-sight and indirect fire, where the target is out of sight, and artillery unit is re-

http://www.graphviz.org/
http://gephi.org/
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quested for fire support by the forward observers. Both of these scenarios are supposed and designed to 
illustrate our verification approach of timed based systems.  
4.1 Indirect fire scenario 
In this scenario, following components are composed: 
• Field component: Where enemy and friendly units are deployed. 
• Observer: A soldier who observes enemy units at the forward location and coordinates fire support. 
• BHQ: BHQ, supervises the entire operation of fire support at the battalion level. 
• Battery: Three units of artillery batteries (cannons and crew) actually responsible to hit the target. 

 
We assume that a soldier observes the field and detects enemy units. When a target is spotted, he calls 

BHQ for fire support and provides the target details. Time On Target (TOT) is the military co-ordination 
of artillery fire observed by multiple firing units, so that all the munitions arrive at the target at precisely 
the same time (or plus or minus three seconds from the prescribed time of impact). This is done in order 
to achieve maximum target destruction. BHQ assigns target to the batteries, and also schedules a certain 
“TOT” for the batteries to comply. Each battery needs some time to prepare, so that it can align itself for 
correct orientation and elevation by computing the target’s range and bearing and load appropriate am-
munition, we call it preparation delay (PD). Knowing the range of the target, and the muzzle velocity, it is 
possible to estimate the time of flight (TOF) i.e., the time between launch and impact of the round. There-
fore the exact Time to fire (TTF) the round for each battery can be computed, as follows: 

TTF = TOT –  (Time of target assignment  + PD + TOF) (3) 
Each battery fires at its TTF. When field component receives fire, and if the detonation is within a de-
struction radius, then the target is said to be destroyed otherwise it is missed. If all batteries mange to hit 
the target within TOT±3 we say, that a desirable property have been satisfied.  
 In order to proceed with our verification process, we assume that the BOM composition is given as an 
input. Figure 4 represents BOM state-machines of each component in the composition:  
  

 
 In figure 4, States are defined in rounded rectangles, whereas events are defined over the arrows. Blue 
color represents send events whereas green color represent receive events of state-machine.  
 

 

Figure 4. Field Artillery BOM State-machines 
 

Figure 5.  (a) Battery E-BOM            (b) Battery CPN-Component Model 

http://en.wikipedia.org/wiki/Time_On_Target
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 The scenario starts, when the Observer component sends Observe-Field from its Ready state, which is 
received by Field component (also at Ready state). We extend each BOM to E-BOM, and transform it to 
CPN component model using our transformation tool. Figure 5 presents the E-BOM and CPN Component 
Model representation of Battery component (as an example). For further details we refer the interested 
readers to download complete TCPN implementation of Field Artillery scenario from here.  

Figure 5a describes the information that is extended in the BOM components including state-
variables, communication ports and the extended transitions, whereas Figure 5b, illustrate structural layer 
(in red), behavioral layer (in green) and communication layer (in blue). When all components are trans-
formed, they are composed in a TCPN composed model as shown in figure 6. 

 
 The circles represent socket places that connect components with each other. The rectangles represent 
components that are transformed form E-BOM (except two auxiliary components Join and Fork that facil-
itate composition of the components).  The composed CPN model can now be executed and analyzed. We 
define the following verification template: 

Property Definition CPN Translation and verification method 
Goal State All enemy units are destroyed Search all nodes, where Data place of the Field components has 

an empty list 
System properties Deadlock freedom There is no node that has no outgoing arc (except the goal states). 

Scenario Centric 
properties 

TOT as safety property. Check if there is any node in the state space, where F place has 
three tokens (meaning all three batteries have delivered fire) and at 
least one of these tokens deviates from the TOT more than 3 time 
units, then the TOT property is violated. If no such node is re-
trieved, then TOT property is said to be satisfied. We apply 
minTime() and maxTime() functions to verify this property. 

Table 1: Verification Template 

For verification, state-space is calculated using CPN tools. We use our state-space analysis library func-
tions to perform property verification according to our verification template. If all three properties are sat-
isfied, we say that the model is verified at dynamic semantic level, and hence justifies the necessary con-
dition of the overall composability.  
 In a counter example, we used a different field map, where enemy units are intentionally placed at a 
distance greater than the firing range of the batteries. So BHQ will assign these “unfeasible” targets to the 
batteries, which cannot be destroyed, hence the goal state will be unreachable. Similarly, we intentionally 
introduced an erroneous function, which causes the BHQ to compute TOT, so close to the preparation de-
lay of the batteries, that in some replications, they batteries fail to satisfy TOT property, due to delayed 
launch, hence verification fails. 

4.2 Direct fire scenario 

In this scenario, we suppose that the batteries engage directly with the enemy at night, therefore in or-
der to achieve advantage at night, illumination mortars are used to fire illumination rounds at the enemy 
location. They ignite and expose the exact position of the troops and vehicles. There is a time limitation 
for the ignition, so the batteries are supposed to hit maximum targets within in a given time interval. 
Based on this scenario, we replace the observer component with a mortar component in the composition 
as shown in figure 7. When Fire-illuminator transition occurs, a token is placed at the Light communica-
tion port and stays there (simulating the presence of light in the field) until the time interval expires. The 

Figure 6. Field Artillery TCPN Composed Model 
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illumination transition of the mortar component is bounded with a tim-
er, to implement lapse of the assigned time interval (TI). The shaded 
green area represents timer implementation in CPN. TI is initialized by 
the state-variable Interval. According to the figure, the timer will stop 
when the model time reaches 100 time units from the time when illu-
minating transition is fired (for the first time). When TI is reached, the 
token is removed due to the firing of timeout transition. This compo-
nent is connected with the batteries, which wait for the “illumination 
light” (at Light communication port), and shoot the targets, until there 
is light. Our goal state is same, i.e., “all targets must be destroyed”, 
but now batteries have a limited interval of time to reach the goal. We 
repeat the entire process, to verify that the composed model satisfy its 
requirements.  

This case study shows how time constraints can be introduced in a composed model, and verified us-
ing our verification approach.  

5 SUMMARY & CONCLUSION 

In this paper we present a process for the verification of composability at dynamic semantic level, 
with a focus on models of Real-time systems. We propose to use Base Object Model as a conceptual 
modeling framework, and Colored Petri Nets as an executable modeling standard. We suggest extending 
standard BOM model into E-BOM, so that it contains necessary behavioral details, required for its im-
plementations, specially the time function. We provide an automatic transformation method to convert E-
BOM into our proposed Timed CPN component model, which is useful to represent a model component 
in CPN language, yet it preserves the model structure and behavior conceptually intact. For the purpose of 
dynamic-semantic composability verification we suggest a verification template, as assessment criteria, 
which can be used to verify our executable model using State-space analysis.  Lastly, we discuss a case 
study of Field Artillery, with two scenarios, and provide a counter example to show how our framework 
verifies a given composition, particularly at a dynamic semantic level.  

Our proposed verification framework expedites the process of composability verification and pro-
vides suitable environment for finding out defects in the model composition. Moreover, the application of 
Colored Petri Nets and its analysis techniques in our approach is well justified and very constructive, due 
to its effectiveness in being able to model typical characteristics of dynamic real time event-driven sys-
tems, such as concurrency, conflict, and sequential execution. Moreover, because of numerous analysis 
methods and verification algorithms contributed by the CPN community over a couple of decades, CPN 
provides a significant improvement on efficient and accurate reasoning regarding the model correctness. 
We intend to fully automate the construction of TCPN composed model from the generated CPN compo-
nents to further depreciate the manual human effort in the development. 
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