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ABSTRACT

The Composable Cellular Automata (CCA) specification formally defines a system for building cellular
automata models that can be composed with other models. The intent is to build hybrid simulation models
with uniquely modeled subsystems. It is feasible that two or more subsystems of a large, complex system
are modeled using CCA. For the purposes of refining domain abstraction, reducing composition complexity,
or improving model execution, the need to compose two or more CCA to create a single CCA may exist.
It is then important for a modeler to understand the implications that specific disparities between the CCA
have on their composition. To that end, this paper describes formal composition of CCA with respect to
their dimensional attributes—cell indices and time.

1 INTRODUCTION

This paper defines closure properties of the dimensional attributes of Composable Cellular Automata (CCA).
CCA are formally specified cellular automata that are developed with the intent of composing the model
with other models to develop more complex hybrid system models (see Sarjoughian 2006, and Sarjoughian
and Mayer 2011). CCA are defined in Mayer and Sarjoughian (2009) and summarized here. There are two
major components of CCA, a network and the cells contained within the network. The network encapsulates
the cells such that all external input and output (I/O) must be handled by the network itself. The cells
represent the individual automaton that maintain state, produce output based upon state, and undergo state
transition based upon current state and input.

Mayer and Sarjoughian (2009) discusses an approach to mapping I/O between two CCA networks.
This is feasible and remains a viable solution, especially if the two CCA are distributed or extremely
disparate across their elements. However, it does not address a direct composition approach to managing
CCA that are alike. In other words, how CCA can be composed with other CCA and treated as a single
CCA if they differ in specific ways. The utility of this is that it may simplify the composition of the CCA
models with an additional, non-CCA model; thus, making the hybrid model more simplistic (see Mayer
2009; and Barton, Ullah, and Bergin 2010 as examples). Another purpose to composing two or more CCA
is to reduce execution overhead; removing the need for multiple simulators, as an example. This paper
discusses how CCA may be composed with respect to their dimensional properties—cell representation and
time. The overall goal is to describe approaches to formally compose CCA, and provide an understanding
of the implications of doing such when faced with specific disparities between the CCA systems.

The section that immediately follows provides a summary introduction of the composable cellular
automata specification. Section 2 introduces properties that apply to all CCA. Next, in Section 3, CCA
composition is discussed from the perspective of cell indices and time. Finally, Section 4 provides a
summary of what is presented in the paper.
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1.1 Review of CCA Specification

A Composable Cellular Automata network, N, is defined as

N = 〈XN ,YN ,D,{Mi jk},T,F〉, (1)

and each cell component, Mi jk, within the network is specified by

Mi jk = 〈Xi jk,Yi jk,Qi jk, Ii jk,δi jk,λi jk,T 〉. (2)

As discussed in (Mayer and Sarjoughian 2009), the first two elements of N, XN and YN , are the input
from an external system to the network and output from the network to an external system, respectively.
D is a set of indices that uniquely identify each cell within the set of homogeneous cells, {Mi jk}, that
belongs to the network (subscript i jk is the index for a unique element of a three-dimensional network).
T is a finite set of time-ordered, time intervals that structures the discrete-time dynamics of the network.
The last set, F , contains the mapping functions between the CCA cells and the network as a whole.

The cells, Mi jk, are defined by, Xi jk and Yi jk, which are the input to and output from each cell. Each is a
union of data internal and external to the network. Xi jk = Ẋi jk∪X i jk, which represents input from the cell’s
influencers and external input mapped to this cell, respectively. Yi jk = Ẏi jk∪Y i jk, which represents output
to the cells that this cell influences and output that acts as part of the external output from this network,
respectively. Qi jk is the set of possible states for the component. Ii jk is the set of indices that identify this
cell’s influencers (i.e., its neighborhood). The component’s state transition function is δi jk, and the output
function is λi jk. δi jk : Qi jk×Xi jk → Qi jk and λi jk : Qi jk → Yi jk. T is the same set of time-ordered, time
intervals that exists in the network tuple in (1). The significance of this is that it ensures that every cell in
the network is using the same set of time-ordered, time intervals and, therefore, every cell undergoes state
transition at the same discrete time. It should also be noted that a specific cell has no a priori knowledge of
the network, including characteristics such as total number of cells in the network and connectivity (e.g.,
Moore versus von Neumann networks).

2 BASIC PROPERTIES OF CCA

Let Φ and Ψ represent two distinct composable cellular automaton. The network specifications for Φ and Ψ

are NΦ = 〈XΦ
N ,Y Φ

N ,DΦ,{MΦ
i jk},T Φ,FΦ〉 and NΨ = 〈XΨ

N ,Y Ψ
N ,DΨ,{MΨ

i jk},T Ψ,FΨ〉, respectively. Similarly,
the specifications for the cell components of Φ and Ψ are MΦ

i jk = 〈XΦ
i jk,Y

Φ
i jk,Q

Φ
i jk, I

Φ
i jk,δ

Φ
i jk,λ

Φ
i jk,T

Φ〉 and
MΨ

i jk = 〈XΨ
i jk,Y

Ψ
i jk,Q

Ψ
i jk, I

Ψ
i jk,δ

Ψ
i jk,λ

Ψ
i jk,T

Ψ〉, respectively.

Definition 1 Φ = Ψ is defined as all subset elements of tuples Φ and Ψ being equal. Formally,

Φ = Ψ⇔ (XΦ
N = XΨ

N )∧ (Y Φ
N = Y Ψ

N )∧ (DΦ = DΨ)∧ ({MΦ
i jk}= {MΨ

i jk})∧ (T Φ = T Ψ)∧ (FΦ = FΨ), (3)

where {MΦ
i jk} = {MΨ

i jk} ⇔ ∀i jk : (XΦ
i jk = XΨ

i jk)∧ (Y Φ
i jk = Y Ψ

i jk)∧ (QΦ
i jk = QΨ

i jk)∧ (IΦ
i jk = IΨ

i jk)∧ (δ Φ
i jk = δ Ψ

i jk)∧
(λ Φ

i jk = λ Ψ
i jk)∧ (T Φ = T Ψ).

Definition 2 Φ ∼Ψ is defined as Φ and Ψ being similar, differing only in the time intervals subset, T .
Formally,

Φ∼Ψ≡ {Φ−{T Φ}}= {Ψ−{T Ψ}}, (4)

where T Φ 6= T Ψ. Note that Φ∼Ψ |= T ∈ {MΦ
i jk} 6= T ∈ {MΨ

i jk} ∵ T ∈ N = T ∈ {Mi jk}.

Definition 3 Composition of two CCA is a disjoint union of the CCA plus a composition tuple containing
any new external I/O mappings to the resultant set of cells and any new influencers to specific cells. In other
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words, it is the union of each of the subset elements of the CCA tuples and each subset element is pairwise
disjoint, the union of the network mapping function set with an mapping composition set, and the union
of the influencer set of each cell with an influencer composition set. Formally, let Ξ = {F ′,{I′i jk}} be the
composition tuple, where F ′ is the mapping composition set and {I′i jk} is the influencer composition set. Then,
composition ≡Φ�Ξ Ψ = 〈{XΦ

N ∪XΨ
N },{Y Φ

N ∪Y Ψ
N },{DΦ∪DΨ},{{MΦ

i jk}]{MΨ
i jk}},{T Φ∪T Ψ},{FΦ∪FΨ∪

F ′}〉, and {{MΦ
i jk}]{MΨ

i jk}}= {{MΦ
i jk}t{MΨ

i jk}}= ∀i jk : 〈{XΦ
i jk ∪XΨ

i jk},{Y Φ
i jk ∪Y Ψ

i jk},{QΦ
i jk ∪QΨ

i jk},{IΦ
i jk ∪

IΨ
i jk∪ I′i jk},{δ Φ

i jk∪δ Ψ
i jk},{λ Φ

i jk∪λ Ψ
i jk},{T Φ∪T Ψ}〉. Note that Ξ = /0⇒Φ�Ξ Ψ = Φ� /0 Ψ = ΦtΨ.

Theorem 1 If Φ = Ψ, then Φ� /0 Ψ = Φ.

Proof. Let {I′i jk}= /0. Using Definition 1, substitute Ψ for Φ into the equation for Φ�I′i jk
Ψ given in Defini-

tion 3. Then, Φ� /0 Ψ = 〈{XΦ
N ∪XΦ

N },{Y Φ
N ∪Y Φ

N },{DΦ∪DΦ},{{MΦ
i jk}]{MΦ

i jk}},{T Φ∪T Φ},{FΦ∪FΦ}〉,
and {{MΦ

i jk} ] {MΦ
i jk}} = ∀i jk : 〈{XΦ

i jk ∪XΦ
i jk},{Y Φ

i jk ∪Y Φ
i jk},{QΦ

i jk ∪QΦ
i jk},{IΦ

i jk ∪ IΦ
i jk},{δ Φ

i jk ∪ δ Φ
i jk},{λ Φ

i jk ∪
λ Φ

i jk},{T Φ∪T Φ}〉. By definition of a union of sets, {{MΦ
i jk}]{MΦ

i jk}} = {MΦ
i jk}, and the first tuple sim-

plifies to 〈{XΦ
N },{Y Φ

N },{DΦ},{{MΦ
i jk}},{T Φ},{FΦ}〉, which is the specification for Φ. ∴ if Φ = Ψ, then

Φ� /0 Ψ = Φ.

3 PROPERTIES OF DIMENSIONAL ATTRIBUTES

3.1 Cell Dimensionality

Definition 4 If two CCA have the same set of cell identifiers, D, and the same set of cell influencers,
{Ii jk}, then the two CCA possess the same domain representation, D. Formally,

(DΦ = DΨ)∧ (∀i jk : IΦ
i jk = IΨ

i jk)⇔DΦ =DΨ. (5)

D models the tessellation of the domain space while {Ii jk} captures the abstraction of domain element
interactions (specified by the network). Arbitrary values can be assigned to i, j, and k as labels in D.
However, for the purposes of evaluation of a CCA there are two approaches. First, from a domain-neutral
perspective, all indices must be assumed to use the same coordinate system, start at (0,0,0), and then be
numbered sequentially based upon movement in a respective dimension. Alternatively, the semantics of the
values with respect to the domain must be considered. Thus, stating DΦ = DΨ entails that all of the same
discrete-elements of the domain are being represented by D. As examples of differences in D, consider a
grid-shaped tessellation versus a hexagonal one. For differences in {Ii jk} consider a Moore network versus
a von Neumann network.

Definition 5 Regions, R, of CCA network, N, are a set of references to distinct sets of cells in the network,
to which a specific external input value in XN is mapped. Formally, f : (r,xN) 7→ {xi jk}, where f ∈ F , r∈R,
xN ∈ XN , xi jk ∈ X i jk, i jk ∈ D, and 0 ≤ |{X i jk}| ≤ |D|. Regions are a domain-dependent implementation
concept (similar to ports).

3.2 Composition with Disparate Indices

Confining a discussion of CCA differences to the cells themselves, {Φ−{DΦ,FΦ}}= {Ψ−{DΨ,FΨ}}.
Note that F is dependent on the indices in D, and so must be considered.

Theorem 2 Two single-celled CCA, Φ and Ψ, differing by set D (and, potentially, F and {Ii jk} as well)
can be composed into a third CCA, Ω.
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Proof. Let DΦ = {(a,b,c)} and DΨ = {(e, f ,g)}; let FΦ = { f Φ} and FΨ = { f Ψ}, where f Φ : (rΦ,xΦ
N ) 7→

xabc and f Ψ : (rΨ,xΨ
N ) 7→ xe f g; let IΦ

abc = {(a,b,c)} and IΨ
e f g = {(e, f ,g)}, where c 6= g and the remaining

indice variables may be arbitrary values; and let F ′ = /0 and {I′i jk}= /0.
Using Definition 3: Ω = Φ�Ξ Ψ⇒ DΩ = DΦ ∪DΨ = {(a,b,c),(e, f ,g)}, FΩ = FΦ ∪ FΨ ∪ F ′ =

{ f Φ, f Ψ}; and ∀i jk : IΩ
i jk = IΦ

i jk ∪ IΨ
i jk ∪ I′i jk = {{IΩ

abc},{IΩ
e f g}}, where {IΩ

abc} = {IΦ
abc} and {IΩ

e f g} = {IΨ
e f g}.

The unions of the remaining, non-disparate tuple elements sets are elementary where {}Φ = {}Ψ = {}Ω.
∴ NΩ = 〈XΩ

N ,Y Ω
N ,DΩ,{MΩ

i jk},T Ω,FΩ〉 and {MΩ
i jk} = 〈XΩ

i jk,Y
Ω
i jk,Q

Ω
i jk, I

Ω
i jk,δ

Ω
i jk,λ

Ω
i jk,T

Ω〉 define Ω. Note that
F now contains two mapping functions, one that maps to each cell.

Corollary 3 Two single-celled CCA, Φ and Ψ, differing by set D (and, potentially, F and {Ii jk}) can be
composed into a third CCA, Ω, if F ′ contains a mapping from the network to the collection of all cells
within the network after composition (i.e., F ′ = { f}, where ∀i jk, f : (r,xN) 7→ {xi jk}), and I′i jk = /0.

Proof. Let FΦ = { fφ}, where ∀i jk ∈ DΦ, fφ : (r,xN) 7→ {xi jk}; FΨ = { fψ}, where ∀i jk ∈ DΨ, fψ :
(r,xN) 7→ {xi jk}; and F ′ = { fω}, where ∀i jk ∈ DΩ, fω : (r,xN) 7→ {xi jk}, and let I′i jk = /0.

Then, Ω = Φ�Ξ Ψ⇒ FΩ = {FΦ∪FΨ∪F ′} = { fφ , fψ , fω}. As before, the unions of the remaining
tuple element sets are elementary and Ω is properly defined. Note that three external I/O mappings now
exist—one to each cell and a third to both cells.

Corollary 4 Two single-celled CCA, Φ and Ψ, differing by set D (and, potentially, F and {Ii jk}) can
be composed into a third CCA, Ω, if I′i jk contains the index of the cell with which i jk is composed (i.e.,
I′abc = {(e, f ,g)} and I′e f g = {(a,b,c)}), and F ′ = /0.

Proof. Let ∀i jk : {I′i jk} = {{IΦ
abc},{IΨ

e f g}}, where {IΦ
abc} = {(e, f ,g)} and {IΨ

e f g} = {(a,b,c)}, and let
F ′ = /0.

Then, Ω = Φ�Ξ Ψ⇒ ∀i jk : IΩ
i jk = {IΦ

i jk}∪{IΨ
i jk}∪{I′i jk} = {{IΩ

abc},{IΩ
e f g}}, where {IΩ

abc} = {(a,b,c),
(e, f ,g)} and {IΩ

e f g} = {(e, f ,g),(a,b,c)}. As before, the unions of the remaining tuple element sets
are elementary and Ω is properly defined. Note that the two cells now influence each other as well as
themselves.

Corollary 5 Given the associative property of a binary union, multiple CCA; differing only by sets D, F ,
and {Ii jk}; can be composed in any order. (Φ�Ξ Ψ)�Ξ ϒ = Φ�Ξ (Ψ�Ξ ϒ). Furthermore, as the unions are
disjoint, each mapping composition set, F ′, and influencer composition set, I′i jk, may be given with respect
to each composition or all at once with the last composition as a union of all respective composition sets.

Note that when it stated that the composition set is “with respect to” each composition, this means that
the mappings and influencer indices are valid for the two CCA being composed (i.e., i jk ∈ {DΦ∪DΨ}).

Whether or not the composed CCA have additional mappings and/or influence over a subset of the other
to which it is composed, a network mapping to a set of dimensionally-disparate cells is a viable system.
Thus, multiple CCA, differing only by sets D, F , and {Ii jk} can be said to be closed under composition.
This implies that a CCA may be built from a composition of one (dimensionally-unique) cell at a time or
from a composition of cell sets containing at least one dimensionally-unique cell member between them.

Note that if two composed CCA contain a common “edge” cell then, even if the influencer composition set
is /0, the composed CCA will integrate the two CCA based upon the union of the influencers of the edge cell. For
example, let Φ and Ψ be two two-celled CCA where DΦ = {(a,b,c),(e, f ,g)} and DΨ = {(e, f ,g),(p,q,r)};
and let IΦ

i jk = {{IΦ
abc},{IΦ

e f g}}, where {IΦ
abc}= {(a,b,c),(e, f ,g)} and {IΦ

e f g}= {(e, f ,g),(a,b,c)}. Similarly,
let IΨ

i jk = {{IΨ
e f g},{IΨ

pqr}}, where {IΨ
e f g}= {(e, f ,g),(p,q,r)} and {IΨ

pqr}= {(p,q,r),(e, f ,g)}; and let F ′= /0
and I′i jk = /0. Then, Ω = Φ� /0 Ψ⇒ IΦ

e f g∪ IΨ
e f g∪ /0 = IΩ

e f g = {(e, f ,g),(a,b,c),(p,q,r)}.
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Note also that directional influence and automata networks such as torus can be implemented by
excluding or including specific indices in I′i jk. Furthermore, if in the preceding example the restriction for
F ′ = /0 is removed and instead F ′ = { fω}, where ∀i jk ∈ DΩ, fω : (r,xN) 7→ {xi jk}; and FΦ = { fφ}, where
∀i jk ∈ DΦ, fφ : (r,xN) 7→ {xi jk}; and FΨ = { fψ}, where ∀i jk ∈ DΨ, fψ : (r,xN) 7→ {xi jk}; then all three
external I/O mapping functions, { fφ , fψ ,and fω}, will have at least one common cell to which they map.

3.3 Composition of Disparate Discrete-Time Segments

Attention is now turned to the composition of two CCA that differ with respect to their discrete-time
segments, T . In this regard, Φ ∼ Ψ. It may not make much sense to compose two CCA with the same
dimensional representation if they only vary in time. However, there is no dependency of D, Ii jk, or F on
T ; therefore, whether they are equal or not does not matter to what follows.

Theorem 6 If two similar single-celled CCA are composed, the resultant CCA is a system with the
network and all cells possessing discrete-time segments from both.

Proof. Let Φ∼Ψ; and T Φ = {tΦ
1 , tΦ

2 , . . . , tΦ
m} and T Ψ = {tΨ

1 , tΨ
2 , . . . , tΨ

n }, where T Φ 6= T Ψ and 0 < m≤
n≤ N∗ and N∗ ≡ N−{0,∞}.

Ω = Φ�Ξ Ψ⇒ T Ω = T Φ ∪T Ψ at the network-level and ∀i jk : T Ω = T Φ ∪T Ψ at the cellular level.
T Ω = T Φ∪T Ψ = {tΩ

1 , tΩ
2 , . . . , tΩ

m+n}. Given that T is independent of index i jk, even at the cell-level, T Ω at
the cellular level is also {tΩ

1 , tΩ
2 , . . . , tΩ

m+n}, retaining equality of discrete-time segments at the network and
cellular levels.

4 CONCLUSION

With adherence to specification and an understanding of the dependencies between tuple elements, com-
posable cellular automata (CCA) can be directly composed with each other. CCA are defined as a network
sextuple, which contain cellular automata (cells) defined by a septuple of elements. Composition of CCA
is defined as a disjoint union of the tuple elements, with the addition of a mapping composition set and
a influencer composition set that can redefine the external input/output and stitch two CCA together,
respectively. The properties of set unions are therefore used as a foundation for composition approaches.

The paper discusses CCA composition from the perspective of dimensional properties—cell indices
and time. It discusses how two CCA that differ in their index sets can be composed to create a new
CCA. This is valid for compositions containing mapping composition sets, influencer compositions sets, or
containing or lacking both. The paper also described why the composition exhibits an associate property
such that multiple CCA can be composed in any order. Thus, the CCA specification exhibits a closure
under composition. Lastly, two CCA that differ only in their discrete-time segments may also be composed,
yielding a CCA containing all discrete-timne segments from both original CCA.

The reader is cautioned that proper composition ensures that the system results can be verified to
conform to specification. It does not assure validation with respect to the domain. Even if the original
subsystems are valid, the composed system cannot be assumed to be valid. For example, changing the
tessellation that represents the domain space or adding additional cell influencers may impact the overall
simulation results. Similarly, while valid results may be obtained with CCA using two different sets of
discrete-time segments, merging the two may not yield valid results. Just as a software developer should
test the integration of two correct software components, a software modeler should validate the resultant
composed model.
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