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ABSTRACT

There are numerous modeling and simulation environments based on the DEVS formalism. Due to the
incompatible modeling grammars, it has been a challenge to reuse DEVS models in different modeling
tools. Existing XML-based model representations lack general expressions of the model behavior and only
support one type of DEVS. In this paper, a modeling ontology named DEVSMO is proposed. DEVSMO
uses structured programming theory to express the programming logic and uses MathML to express the
mathematical models in the model behavior. Structured programming theory and MathML provide a set of
standard terminologies, so the generality of DEVSMO is improved. Furthermore, DEVSMO can express
various DEVS formalisms and has good reusability for the extended applications. Three cases are developed
to test DEVSMO in the usability of expressing the model structure and the model behavior and in the
reusability for further extension.

1 INTRODUCTION

DEVS (Discrete Event Systems Specification) is a universal formalism for the modeling and analysis of
discrete event systems. There are various DEVS-based simulators, such as CD++ (Wainer 2002), DEVS-
Java (Sarjoughian and Zeigler 1998), DEVS/C++ (Zeigler et al. 1996), etc. Though different DEVS-based
simulators support the same DEVS formalism, they have different modeling grammars. Thus a model
developed in one simulator is difficult to use in others.

For the DEVS model reuse, many researchers have used XML (Extensible Markup Language) to
represent DEVS models, such as XLSC (Meseth et al. 2009), DEVS-XML (Martı́n et al. 2007), DEVS Meta
Language (DEVSML) (Janoušek, Polášek, and Slavı́ček 2006) and DEVS Modeling Language (DEVSML)
(Mittal et al. 2007,Mittal and Douglass 2012). XML is a markup language for documents containing
structured information (Bray et al. 1997). XML-based DEVS model representations are independent of
specific modeling languages and the models represented by them can be shared in different simulators.
However, XML is difficult to represent the system behavior of DEVS models because the programming
logic and the mathematical models in the model behavior need complex XML markups. DEVS-XML
only expresses the if-else logic through the XML elements with a Condition prefix and expresses the
mathematical models through the name-value element attributes. XLSC provides a set of statements including
expressions and commands to express the logic. The expressions provide some operation elements to build
a mathematical model while the commands provide some logic elements to implement a programming
structure. Both DEVS Meta Language and DEVS Modeling Language use parts of JavaML to express the
model behavior. The existing model representations do not use a standard set of markups to express the
programming logic and the mathematical models, so they are incompatible with each other. In addition,
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DEVS-XML refers to classic DEVS, while others refer to parallel DEVS. Different DEVS types have
different model formalisms, so the existing model representations lack a unified format which is compatible
with various DEVS types.

Compared with XML, OWL (Ontology Web Language) can express the sematic information. Recently,
OWL has been widely used to represent simulation models for better model discovery, interoperability,
integration and reuse (Silver et al. 2007, Turnitsa et al. 2010). PIMODELS (Lacy 2006) expresses discrete
event simulation models in the aspect of process interaction world view. DeMO (Silver et al. 2011) expresses
discrete event models in the aspects of state-oriented, time-oriented, activity-oriented and process-oriented.
COSMO (Teo and Szabo 2008) is a component-oriented ontology, which is used to describe the components
and compositions of a simulation model. DEVS Ontology (Peng et al. 2010) provides a black box description
of DEVS models for the model maintenance and reuse. However, the first three model ontologies contain
fewer terminologies corresponding to the DEVS formalism and DEVS Ontology lacks the description of
the model behavior, so they are difficult to support the reuse of DEVS models.

In this paper, we propose a modeling ontology named DEVS Math Ontology (DEVSMO) to support the
representation of various DEVS models. DEVSMO contains three sub ontologies including DEVS model
ontology, model structure ontology and model behavior ontology. For improving the expression of the model
behavior , we use structured programming to express the programming logic and use MathML to express
the mathematical models. Structured programming provides clear semantics for a general programming
logic and is independent of specific programming languages such as C++ and Java. MathML provides a
standard set of XML markups to describe mathematical notions, and it is a recommendation of the W3C
math working group. Though DEVSMO in this version only implement the representations of classic
DEVS and parallel DEVS, it has good reusability to support the extension of representing the other kinds
of DEVS models.

The rest of the paper is organized as follows. The background of developing DEVSMO is introduced
in section 2. DEVSMO is presented in section 3 in detail. A software framework for the application of
DEVSMO is provided in section 4. We then present three cases to test the usability and reusability of
DEVSMO. Concluding remark and future work for DEVSMO are given in Section 6.

2 BACKGROUNDS

2.1 DEVS

A system modeled based on DEVS is composed of atomic and coupled components (Zeigler et al. 2000).
In the following, classic DEVS is described in the mathematical formulation:
Atomic DEV S = {X ,S,Y,δint ,δext ,λ , ta}
Where X is the set of input

Y is the set of output
S is a set of states
δint : S→ S is the internal transition function
δext : Q×X → S is the external transition function where Q = {(s,e)|s ∈ S,0≤ e≤ ta(s)}
λ : S→ Y is the output function
ta : S→ R+

0,∞ is the set positive reals with 0 and ∞
Coupled DEV S = {X ,Y,D,{Md |d ∈ D},EIC,EOC, IC,S}
Where X = {(p,v)|p ∈ IPorts,v ∈ Xp} is the set of input ports and values

Y = {(p,v)|p ∈ OPorts,v ∈ Yp} is the set of output ports and values
D is the set of the component names
Md = (X ,Y,S,δint ,δext ,λ , ta) is a DEVS with Xd = {(p,v)|p ∈ IPortsd ,v ∈ Xp}
Yd = {(p,v)|p ∈ OPortsd ,v ∈ Yp}
EIC ⊆ {((N, ipN),(d, ipd))|ipN ∈ IPorts,d ∈ D, ipd ∈ IPortsd} is the external input coupling connect

external inputs to component inputs
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EOC ⊆ {((d,opd),(N,opN))|opN ∈ OPorts,d ∈ D,opd ∈ OPortsd} is the external output coupling
connect component outputs to external outputs

IC⊆{((a,opa),(b, ipb))|a,b∈D,opa ∈OPortsa, ipd ∈ IPortsb} is the external output coupling connect
component outputs to external outputs

Select : 2D−{}−D, the tie-breaking function
Compared with classic DEVS, parallel DEVS adds the confluent transition function to atomic model

and eliminated Select from coupled model. The confluent transition function can decide the next state in
cases of collision between external and internal events, so it is not necessary to use Select to make a choice
among imminent components. Classic DEVS and parallel DEVS are basic DEVS formalisms. There are
some extensions of DEVS including dynamic DEVS (Barros 1995), symbolic DEVS (Chi 1997), real time
DEVS (Cho and Kim 1998) and fuzzy DEVS (Kwon et al. 1996).

2.2 OWL

OWL is a language for publishing and sharing ontologies in the web and is part of the growing stack of W3C
recommendations (Smith et al. 2009). OWL has three increasingly expressive sublanguages, called OWL
Lite, OWL DL and OWL Full. Different types of OWL satisfy different application requirements. OWL
Lite supports a classification hierarchy and simple constraints. OWL DL, based on description logic theory,
supports strong expressiveness and has computational completeness and decidability for reasoning. OWL
Full supports maximum expressiveness but has no computational guarantees for reasoning. DEVSMO is
developed in OWL DL for the need of simple reasoning in the translation of the DEVSMO instances.

2.3 MathML

MathML (Mathematical Markup Language) is an XML application for describing mathematical notation
and capturing its both structure and content (http://w3c.org/Math). MathML can express arbitrarily complex
mathematical models including differential equations and mathematical model sets besides algebraic model
(Carlisle et al. 2001). MathML has two kinds of markup sets including content markup and presentation
markup. The former focuses on exposing the semantics of functions and the later focuses on describing
an equation similarly to the way one read it. In DEVSMO, we choose content MathML to express the
mathematical models because there are some correspondences between the content markups and the existing
XML-based DEVS model representations.

2.4 Structured Programming

Structured programming is a classical result of program schematology (Böhm and Jacopini 1966), which
states that any deterministic flowchart program is equivalent to a while program. Deterministic while
programs are formed inductively from sequential composition (p; q), conditional tests (if b then p else q),
and while loops (while b do p), where b is a test and p & q are programs (Kozen and Tseng 2008). Though
C++ and Java are object-oriented programming (OOP) languages, the internal structure of class methods
in OOP still follows the principle of structured programming.

In the executable DEVS modeling languages, many functions and class methods have been defined in
advance, such as the holdIn(state, time) function and the externalFunction(const ExternalMessage &msg)
method in the CD++ modeling language. The individualization process of class methods for a DEVS model
is to call various functions according to the principle of structured programming.

3 DEVSMO

The overview of DEVSMO is illustrated in Figure 1. DEVSMO is composed of three sub ontologies:
DEVS model ontology, model structure ontology and model behavior ontology. DEVS model ontology
describes the classification of DEVS formalisms. Model structure ontology provides the terminologies to
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express the model structure, which consists of atomic model structure and coupled model structure. Model
behavior ontology is used to express the behavior parts of DEVS models, including four parts of function,
action, math model and control structure.

DEVS Model

Atomic Model StructureCoupled Model Structure

Function Control Structure 

Action Math Model

has

Model Structure Ontology

Model Behavior Ontology

DEVS Model Ontology

Figure 1: Overview of DEVSMO

In the following, the three sub ontologies of DEVSMO are described in detail.

3.1 DEVS model ontology

The UML diagram of DEVS model ontology is illustrated in Figure 2. DEVS model is divided into atomic
model and coupled model. Each model refers to a DEVS type which may be basic DEVS (classic DEVS
and parallel DEVS) or extended DEVS (dynamic DEVS, symbolic DEVS, real time DEVS and fuzzy DEVS).
Some concepts in model structure ontology and model behavior ontology, like inputs, outputs and output
function, are used to express the composition of DEVS models.
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11

Figure 2: The UML diagram of DEVS model ontology

3.2 Model structure ontology

In DEVSMO, the model structure is described by model structure ontology which does not contain any
concept about the programming logic and the mathematical models. The UML diagram of model structure
ontology is illustrated in Figure 3.
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Figure 3: The UML diagram of model structure ontology

The inputs and outputs in atomic model are both composed of port. Each port corresponds to a signal
variable which has a data property named hasValueType. State is divided into two kinds, one which is
state set consisted of state elements, and the other which is state variable with the data properties of initial
value and value type.

The coupled model structure part imports some concepts from the atomic model structure part, presented
in the dashed boxes. The classes of EOC, EIC and IC are sub classes of port coupling which is composed
of a source port and a target port. Each port belongs to a component which refers to a DEVS model. For
the expression of concept select, we refer to its description in DEVS-XML. Each select has more than one
two-tuples of a concurrent component set and a prioritized component.

3.3 Model behavior ontology

The mode behavior is the most complex part in the DEVS model representation. The four parts of function,
action, control structure and math model in model behavior ontology are illustrated in Figure 4. The concepts
in the dashed boxes are imported from the other parts. The concepts of action and control structure come
from extended structured modeling theory (Lenard 1992, Lenard 1993) which extends structured modeling
to express DEVS models.

In the following, we describe the four parts of model behavior ontology separately in detail:

• Function part. Functions are a part of an atomic model. The function concept is the super concept
of time advance function, output function and transition function and each function has a control
structure to express the programming logic. The transition function has three types: internal,
external and confluent.

• Control structure part. We choose structured programming theory to express the control structure of
the programming logic. There are three kinds of control structures: loop, selection and sequence.
Loop is composed of While and Do, Selection is composed of If, ThenDo and ElseDo and Sequence
is composed of Do and ThenDo. Each Do corresponds to a control structure or some actions. The
concepts of If and While have a super concept named condition.

• Action part. The concept of action means an atomic statement in the programming logic. Each
action belongs to a function in a DEVS model. For example, the send action belongs to output
function and the execution action belongs to confluent transition function. Some actions have
relationships with the concepts in model structure ontology or the function part. For example, each
signal value update action has a signal value and each execution action may execute an internal
transition function or an external transition function.
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Figure 4: The UML diagram of model behavior ontology

• Math model part. The math model is a part of control structures or actions in the model behavior.
The math model can express numerical operations like signal value calculation in the action and
express logical calculations like condition in the control structure.

4 THE FRAMEWORK OF DEVSMO APPLICATION

The models represented by DEVSMO cannot be executed directly. The model instances in DEVSMO can
be translated into the formats of executable modeling languages or XML-based model representations.
The framework of translation is illustrated in Figure 5. The models stored in *.owl files can be read and
written through the Jena component (McBride 2002) which provides the APIs for the ontology operation
and the SPARQL (http://www.w3.org/TR/rdf-sparql-query) query. The MathML codes embedded in *.owl
files can be operated through MathML DOM which extends the Core API of DOM to describe the objects
and methods specific to MathML elements. For the translation to executable languages like CD++ or
DEVS-Java, a template specific to the target language is needed. The template contains some constant
contexts in different models, such as the reference library files in *.h files of CD++ language. For the
translation to XML-based model representations like DEVS-XML or XLSC, the DOM interface provides
class methods to interact with the objects in XML documents.

5 CASES

5.1 The translation of the model structure represented by DEVSMO

In this case, an atomic DEVS model named model has an input port named in 1. The model instance
represented by DEVSMO is illustrated in Figure 6. The AtomicModel class has a model individual. The
hasInputs property of model has a value of model inputs. The hasPort property of model inputs has a value of
in 1. The instances of model and in 1 can be translated separately as the values of ATOMIC MODEL NAME
and PORT NAME elements in DEVS-XML and can also be written into the *.h file of CD++ as illustrated in
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Figure 5: The prototype of model translation implementation

Figure 6. The other codes in the *.h file of CD++ are the constant contexts in the translation template. This
case proves that the model structure represented by DEVSMO can be translated into executable modeling
languages and XML-based model representations.

<owl:NamedIndividual rdf:about="&devs;model_inputs"><rdf:type rdf:resource="&devs;Inputs"/><devs:hasPort rdf:resource="&devs;in_1"/></owl:NamedIndividual>
<owl:NamedIndividual rdf:about="&devs;model"><rdf:type rdf:resource="&devs;AtomicModel"/><devs:hasInputs rdf:resource="&devs;model_inputs"/></owl:NamedIndividual> <ATOMIC_DEVS><ATOMIC_MODEL_NAME>model</ATOMIC_MODEL_NAME><INPUTS><PORT_NAME>in_1</PORT_NAME></INPUTS></ATOMIC_DEVS>#include"atomic.h"class model : public Atomic {    public:        model( const string &name = "model");    protected:        Model &initFunction();        Model &externalFunction();        Model &internalFunction();        Model &outputFunction();    private:        Time time;        const Port &in_1;    };

Figure 6: The translation of DEVS model structure

5.2 The model behavior represented by DEVSMO

In this case, the external transition function of Processor (Zeigler et al. 2000) model represented by DE-
VSMO is illustrated in Figure 7. The exTransitionF 1 instance is an individual of ExternalTransitionFunction
class. The exTransitionF 1 instance has a selection control structure named controlS 1 which is composed
of if 1 and thenDo 1. The if 1 instance has a math model named condition 1 which has a Literal represented
by MathML. The thenDO 1 instance corresponds to a selection control structure named controlS 2 which
is composed of if 2, thenDo 2 and elseDo 1. The thenDo 2 instance is composed of stateSetU 1 and
stateVariableU 1. The elseDo 1 instance is composed of stateVariableU 2 and stateVariableU 3 . The
two object properties of stateSetU 1 instance have values, which means the phase state set has a new state
busy. Each individual of StateVariableUpdateCalModel class has a Literal represented by MathML.

The correspondences between DEVSMO instances and the programming logic in the external transition
function are illustrated in Figure 8.This case demonstrates that the programming logic and the mathematical
models in the model behavior can be represented by DEVSMO completely.
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Figure 7: The external transition function of Processor model represented by DEVSMOexternalFunction(){ if( port == in_1 ){ if( phase == idle ){ phase = busy;sigma = process_time;}    else    { job = job_id;sigma = sigma - e;     }}}
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controlS_2
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elseDo_1
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Figure 8: The external transition function of Processor model

5.3 Reusability of DEVSMO

For the development of ontology, reusability is a key evaluating indicator. Ontology reusability is defined
as the adaptation capability of an ontology to different application contexts, including those contexts that
were not considered at the time of the creation of the ontology (Russ et al. 1999, Pâslaru-Bonta% cs 2007).

In this case, we extend DEVSMO to express fuzzy DEVS which applies fuzzy set theory to the set
and function defined in classic DEVS, as illustrated in Figure 9. The concepts in dark blue are extended
from DEVSMO. FuzzyAtomicModel is the sub class of AtomicModel. The functions in fuzzy DEVS have
possibilistic features. The actions like FuzzyStateVaribleUpdate in model behavior ontology have a data
property named hasPossibilityRate. Through this case, it is concluded that DEVSMO has good reusability
and can be extended to express the other DEVS formalisms.

6 CONCLUSIONS AND FUTURE

The existing XML-based DEVS model representations lack general expressions of the model behavior
and only support one kind of DEVS formalism. This paper proposes a DEVS modeling ontology named
DEVSMO which improves the generality of the model behavior representation and can support various
DEVS types. The programming logic of the model behavior is expressed based on structured programming
theory which provides a conceptual description of various programming logics. The mathematical model
of the model behavior is expressed by MathML which provides a set of standard mathematical markups.
Furthermore, DEVSMO is divided into three sub ontologies and has good reusability for extension.



Hu, Xiao, Zhao and Rong

StateSetUpdate

StateVariableUpdate

Action

TimeAdvanceUpdate

Function part in model behavior ontology

hasPossibilityRate

Action part in model behavior ontology

Function

InternalTransitionFunction

ExternalTransitionFunction

TransitionFunction

OutputFunction

TimeAdvanceFunction

FuzzyInternalTransitionFunction

FuzzyExternalTransitionFunction

FuzzyOutputFunction

FuzzyTimeAdvanceFunction

FuzzyStateVariableUpdate

FuzzyStateSetUpdate

FuzzyTimeAdvanceUpdate

xsd:value

hasPossibilityRate

hasPossibilityRate

AtomicModel

referToDEVSType

FuzzyDEVS

FuzzyAtomicModel

1

1

1

1

1

1

DEVS model ontology

1 1 1

1

1

1

Figure 9: The extension of DEVSMO for fuzzy DEVS

Presently, though DEVSMO only implements the representations of classic DEVS and parallel DEVS,
it can be extended to support the other DEVS formalisms. In the future, we can extend DEVSMO based
on extended structured modeling theory to express optimization models for the multi-paradigm model
management.
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