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ABSTRACT 

Infineon Technologies Dresden has a long-term experience in discrete event simulation which is used for 
an optimized production planning for its full automated front end manufacturing lines. There are needs to 
reduce maintenance effort; to increase transparency for the plausibility check facilitation; to improve 
flexibility for the fast simulation of scenarios with focus on qualitative statements. Less detailed models 
will be utilized where components could be omitted. We considered a simplification of the process flows 
through operation substitution for constant delays. The main idea of this paper is to consider the metrics 

used to evaluate simplification. It is shown that standard simulation metrics (mean absolute error, 
correlation coefficient, autocorrelation function, t-test) produce rather poor performance. It is suggested 
instead to use metrics based on lot cycle time distributions (e.g. goodness-of-fit tests). Nine types of 
simplification sieve functions were analyzed. The analysis is based on the MIMAC dataset 5 model. 

1 INTRODUCTION 

Van der Zee (2019) presented an overview of the simulation model simplification and noticed that 

simplification “is still very much a green field”. Numerous papers have been written around this theme. 
Unfortunately, some of them describe evaluation metrics which are only suitable for the rather simple 
examples which the authors considered in their works. More appropriate methods do exist, e.g. goodness-
of-fit tests (Law 2015), but they are not as popular. This is possibly due to historical traditions in 
simulation, where the main focus is placed on precise estimation of the mean and quantile values of the 
simulation model results in comparison with reality (Alexopoulos and Kelton 2017), but not on the 

comparison of the dozens of simulation models with each other.  
As a continuation of the work which we presented earlier (Stogniy and Scholl 2019), the current 

paper makes the following contributions: 1) gradual simplification with substitution of a one tool set per 
step (this allows oscillations in the metrics to be seen); 2) the consideration not only of machine tool 
delays, but also operation based delays (providing an improved simplified model); 3) considerations of 9 
(not one and a half) sieve functions with a focus on standard simulation metrics (mean absolute error, 

correlation coefficient, autocorrelation function, t-test) as opposed to simply comparing the results of 
sieve functions, and we found the metrics not suitable for simplification tasks, in contrast to some 
findings in the literature; and 4) a dramatically increased data volume for which R (R Core Team 2019) 
was used for metrics calculation, as opposed to the electronic spreadsheets used previously. 

As a basis for the research, the well-known MIMAC Datasets (1997) were used. MIMAC dataset 5 
was chosen because it has the largest quantity of process flows. For the fab simulation model, AutoSched 

AP from Applied Material, version 11.5, was used. 
This paper is organized as follows. Several ideas from related works are presented in Section 2. The 

designs of the experiments, including sieve function, delay types, and metrics description, are discussed in 
Section 3. The diagrams, including metrics and their critiques, are described in Section 4. Section 5 
includes summarized experimental results for sieve function comparison. 
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2 RELATED WORK 

This research was inspired mostly by two papers: Johnson et al. (2005) and Völker and Gmilkowsky 
(2003). Following Johnson et al. (2005), gradual simplification was implemented in this paper, but with a 

much more detailed model (MIMAC dataset 5 and not tandem-10 M/M/1 or M/M/10 model). Johnson et 
al. (2005) used correlation and autocorrelation to estimate the accuracy of simplified models. In this paper 
it was determined that these estimations would not be sufficient. Völker and Gmilkowsky (2003) was 
found to be the most detailed paper in the field of simplification. In that paper, the authors used three 
sieve functions to choose the operations for substitution. Our research uses nine sieve functions, each with 
two variations. The focus was put on machine tools and not on the operation substitution, as this does not 

require capacity reservations. However, information about each particular operation was also used for the 
calculation of operation-based delays. The authors also used an estimation based on lot cycle time mean 
absolute error (MAE) and found “pathological” configurations when the error is not monotonous. We also 
found such configurations and assume them to be “logical”. Moreover, we found MAE was inadequate as 
an estimation tool for simplified models. Similar to the authors, we used an operation ratio to quantify the 
degree of simplification. 

Another consequential paper is that of Rose (1999), from which several design features were adopted: 
using First In First Out (FIFO) and Critical Ratio (CR) dispatching rules, considering lot cycle time 
distribution as an accuracy criterion, and looking into bottleneck problems. Rose (1999) did not present 
formal criteria to estimate differences in lot cycle distributions, but used them as illustrations. In a 
previous paper (Stogniy and Scholl 2019), we suggested using a Kolmogorov-Smirnov test and 
summarized absolute divergence (SAD). Within the review process, out attention was directed to a similar 

SAD criterion in (Ewen et al. 2017). In this paper we considered these and other metrics. It is also 
necessary to emphasize that one of the popular metrics, t-test (see for example Piplani and Puah (2004)), 
is not suitable for the simplification in our case. A literature review of papers on bottlenecks produced 
two helpful ideas: a sieve function based on active period method (Roser and Nakano 2015) and using 
standard deviation to estimate sieve function fluctuation.  

3 DESIGN OF EXPERIMENTS 

For this research a special automated experimental environment was developed. It allowed for 4,000 
experiments with detailed models to calculate warm up period and delays (2000 seeds x2: FIFO and CR 
dispatching rules). Subsequently, we made 44,820 automated experiments for KPI calculations: 3 system 
configurations: ε1 – FIFO, ε2 – CR, ε2b – CR with consolidated delays at the beginning; 9 sieve functions; 
2 variants of sieve function fluctuation (with and without); 2 types of delays (operation and machine tool 
based); and 83 tool sets substitutions (5 seeds for each substitution).  

We consider a steady state simulation. Each simulation run is 114 weeks. We used Welch’s procedure 
to determine the warm up period (Law 2015). The warm up was set to 10 weeks. We consider tool set 
substitution for constant but not random delays. In (Stogniy and Scholl 2019) we explained this choice. In 
this paper we used distributed delays (ε1 and ε2). However, because the previous research showed a 
valuable difference for CR rules if we calculate a consolidated delay for each process flow and put it at 
the beginning, we considered this system configuration (ε2b) as well.  

3.1 Sieve functions ζ 

For tool sets substitution we used some heuristics, which we called sieve functions following (Völker and 
Gmilkowsky 2003). We created an order of tool sets according to a particular sieve function and 
substitute a tool set one by one. Usually in simplification papers the term “bottleneck” is used. We prefer 
to use the term “tool importance” to emphasize that we are not looking for a real bottleneck, but just 
trying to find an important tool set when considering substitution. 

We used the following model statistics based on weekly standard model reports to build sieve 
functions: IDLE%/IDLE# – the percent of time/the number of times a machine tool entered the idle state; 
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PROC% – the percent of time a machine tool entered the processing state; BSAVG – the average of batches 
processed (batch size); BSMAX – the maximum quantity of pieces allowed in a batch; QTAVG – the average 
time lots waited at the machine tool (queue time); QLAVG – the average number of pieces in front of the 

machine tool (queue length);  PTAVG – the average of the lot processing time for the machine tool; CTAVG – 
the average lot cycle time for the machine tool (CTAVG = PTAVG + QTAVG); and CTSD – standard deviation 
of the cycle time for the machine tool (CT2

SD = PT2
SD + QT2

SD).  
We used the following sieve functions: ζ1 = IDLE%; ζ2 = IDLE% + PROC% – PROC%(BSAVG / 

BSMAX); ζ3 = (100 – IDLE%) / IDLE#; ζ4 = QTAVG; ζ5 = QTAVG / PTAVG; ζ6 = QLAVG; ζ7 = QLAVG / BSMAX; ζ8 
= CTSD

total; and ζ9 = CTSD
total / CTAVG

total. All of ζ (except ζ3) were calculated based on weekly report data 

of 2,000 independent experiments with detailed models. ζ3 was calculated based on 104-week period 
reports of the 2,000 experiments. This was done to reduce the cases where IDLE# = 0. In the case of 104-
week period reports, we had IDLE# = 0 only for one machine tool in about 500 of 2,000 experiments. In 
this case we substituted it with IDLE# = 1 for the calculation of ζ3. To calculate CTSD

total (ζ8), we used the 
following formula (the law of total variance (Fewster 2014)): 

CT𝑆𝐷
𝑡𝑜𝑡𝑎𝑙 = √

∑ (𝐶𝑇𝑆𝐷)𝑖
2 ∙ 𝑝𝑖

𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

+
∑ ((𝐶𝑇𝐴𝑉𝐺)𝑖 − 𝐶𝑇𝐴𝑉𝐺

𝑡𝑜𝑡𝑎𝑙)
2

∙ 𝑝𝑖
𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

,  

where i is the report period (a week), n = 104 weeks, and pi is the number of pieces which finished 

processing at the machine tool during the ith report period.  
Several papers about bottlenecks (e.g. Roser and Nakano (2015)) mentioned that taking momentary 

bottlenecks into account is important, and we tried to implement this idea into our research. Therefore we 
considered sieve function fluctuations. As long as we calculated ζ based on large amounts of data, we had 
a distribution of its value and calculated mean value (µ) and standard deviation (σ). We considered two 
variants of sieve function: ζi = µ and ζif = µ ± σ (where i = 1, 2, …, 9 and f – fluctuation). To understand 

the difference between the two variants and which sign (“+” or “–”) we should use in the second variant, 
let us consider a conditional example (Figure 1). There are three machine tools (A, B, and C) with the 
following case to consider: “tool importance” → max, when ζ → min. This means that we need to create 
an ascending order of the machine tools. If we take into account only mean values (µ), then we get an 
order B<A<C. But if we take mean and standard deviation values, we should use µ – σ to obtain a 
conservative estimation. Therefore we have A<B<C. If we consider another case: “tool importance” → 

max, when ζ → max, then we should take µ + σ. 

 

Figure 1: A conditional example of ζ fluctuation. Two variants: ζi and ζif. 

3.2 Delay types η 

We consider two types of delays: operation (η1) and machine tool (η2) based. The delays are 
calculated as averages based on 104 weekly reports of 2,000 independent experiments with detailed 

models. The first type is calculated based on operation reports and the second type based on tool set 
reports (Figure 2). A delay for a particular week is equal to the sum of average processing and average 
queueing time for an operation or a tool set. For system configurations FIFO(ε1) and CR (ε2) we used 
distributed delays: each delay substitutes each operation exactly at the place where this operation appears 
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in the process flow. For the case CRb (ε2b) we calculated the sum of all the delays for a process flow and 
put it at the beginning of the process flow.   

 

Figure 2: Delay types: η1 – operation based; η2 – machine tool based. 

Thus for each of the nine sieve functions we have four experiment configurations: (ζi, η1), (ζi, η2), (ζif, 
η1), and (ζif, η2). Altogether we have 36 experiment configurations for each of the three system 
configurations (ε1 – FIFO, ε2 – CR, ε2b – CRb). Later in this paper we use a triad (ε, ζ, η) to label a 
particular experiment configuration. 

3.3 Metrics 

In this paper we used the following simulation run data metrics: simulation time, operation ratio (OP_r = 

100 * substituted operations/all operations); Work-In-Process ratio (WIP_r =100 * WIP of substituted 
tool sets/WIP of all tool sets ); Work-In-Process in the queue ratio (WIPq_r = 100 * WIP of the queue in 
front of substituted tool sets/ WIP of the queue in front of all tool sets). We calculated WIP values based 
on detailed models. We also used four typical metrics from simplification papers: lot cycle time (CT) 
mean absolute error (MAE), correlation coefficient, autocorrelation function, and t-test.  

After several experiments and unexpected results (see “pathological” in the Section 4.1), we found 

the following metrics to be useful based on lot CT distribution (Dowd 2018): Kolmogorov-Smirnov (KS), 
Anderson-Darling (AD) and Cramer-von Mises (CVM), Two Sample Test (DTS), Wasserstein distance 
(WASS), and Summarized Absolute Divergence (SAD). KS and SAD were introduced in our previous 
paper (Stogniy and Scholl 2019). There we used Excel to calculate them, while in this paper we used R to 
calculate the metrics. For the KS test we used the standard function from the R-package “stats” and for 
SAD we wrote our own R-code. There were difficulties in implementing Anderson-Darling and Cramer-

von Mises tests with several R-packages (some functions have worked too long and others have not 
worked at all for our data) until we found a package “twosamples”. The package showed good 
performance. We compared the KS test from packages “stats” and “twosamples” and found the results to 
be in agreeance. Therefore we assumed that other statistics are also calculated properly in this package 
and we used it for our research. The names DTS and WASS seem incorrect, but we used them just as 
labels. In the end, it is the formulas behind the labels that matter. The formulas (Table 1) were taken from 

the package description (Dowd 2018). 

Table 1: Metrics. 

Designation R package / function Formula 

KS stats/ks.test max|𝐸(𝑥) − 𝐹(𝑥)| 

AD twosamples / ad_stat ∑ (𝐸(𝑥) − 𝐹(𝑥))
2

[𝐺(𝑥)(1 − 𝐺(𝑥))]⁄𝑥   

CVM twosamples / cvm_stat ∑ (𝐸(𝑥) − 𝐹(𝑥))
2

𝑥   

DTS twosamples / dts_stat ∑ |𝐸(𝑥) − 𝐹(𝑥)| [𝐺(𝑥)(1 − 𝐺(𝑥))]⁄𝑥   

WASS twosamples / wass_stat ∑ |𝐸(𝑥) − 𝐹(𝑥)|𝑥   

SAD own code ∑ |𝑃𝐸(𝑥) − 𝑃𝐹(𝑥)|𝑥   
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Table 1 displays the designation, source, and formulas used for calculating the statistics. In the 
formulas: E(x) is the empirical cumulative distribution function (ECDF) of sample 1 (detailed model); 
F(x) is the ECDF of sample 2 (simplified model); G(x) is the ECDF of the joint sample; PE(x) is the 

probability density function (PDF) of sample 1, and PF(x) is the PDF of sample 2. Because the R-package 
“twosamples” uses randomization to create p-values (bootstrapping), it takes significant time to produce 
meaningful numbers. Therefore, we did not calculate p-values for AD, CVM, DTS, and WASS. For SAD 
it is not possible to calculate a p-value, because it is not a statistic in a classical meaning, but just a metric 
which we found suitable. 

4 EXPERIMENTS 

Five independent experiments with different seeds were carried out for each tool set substitution. After 
that, an average of output parameters (simulation time, correlation coefficient, etc.) were calculated to 
compare different experiments. Figure 3a illustrates the calculation for simulation time. The calculations 
were carried out on a server which is used for various tasks simultaneously. We assume that fluctuations 
in simulation time were caused by fluctuations in server load by other tasks. 

Figure 3b demonstrates relations between simulation time, operation ratio, and WIP ratios (here and 

later, all curves represent the average of the five seeds). The resulting curves appear different for different 
experiment configurations. Often they are relatively close to each other, but for some cases, such as (ε1, 
ζ8, η1), only operation ratio repeats the simulation time curve convexity. Moreover, Figure 3b shows that 
simulation time is not a monotonically decreasing function, in contrast to an operation ratio. Therefore we 
used operation ratio as a measurement of simplification to compare different experiment configurations at 
the end of this paper (Figure 9). On the other hand, using the experiment number on the x-axis makes the 

diagrams more intuitive and understandable. Therefore, we used this x-axis for the following figures. 

 

Figure 3: Simulation output. 

4.1 Typical metrics 

A common metric of model accuracy is lot cycle time (CT) mean absolute error (MAE). Völker and 
Gmilkowsky (2003) used a metric based on MAE and found some configurations which they called 
“pathological”, where an error does not grow monotonously, but increases at the beginning and decreases 

at the end. For example, (ε1, ζ1, η1) from our experiments: MAE increases until experiment number 60 
and falls after 70 (Figure 4a). At first we assumed that this behavior was caused by a shift of the overall 
lot CT mean. An analysis of this idea found a confirmation (Figure 4b). But then we found another 
example (ε1, ζ7, η1) where we had similar overall mean shift. Therefore, we also looked at lot CT standard 
deviation (SD) (Figure 4b). An average SD based on each process flow SD was calculated. The average 
SD decreases in both cases, but in the first case more. Figure 4c and 4d illustrate this behavior: the 

exp#70 distribution for (ε1, ζ1, η1) is much more narrow than for (ε1, ζ7, η1), but there is a significant shift 
to the left at the right peak for both cases. We could conclude that “pathological” behavior exists when we 
have both lot CT mean shift and a strong decrease of average SD (ε1, ζ1, η1). If there is only the shift and a 
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mild decrease of average SD, then no “pathology” is observed (ε1, ζ7, η1). There were several other 
examples of “pathological” but less expressed behavior: (ε1, ζ3, η1), (ε1, ζ4, η1), and (ε1, ζ5, η1). 

Lot CT mean shift and decrease of average SD were a result of substitution for constant delays. If the 

SD reduction is logical, due to the use of constant and not random delays, the shifting of the lot CT mean 
indicates that the calculation of constant delays as a sum of averaged processing and queueing time is not 
necessarily correct. What is more interesting is that the shift has negative ((ε1, ζ1, η1) exp# 40-70) and 
positive ((ε1, ζ1, η1) exp# 70-80) values. Identifying a more accurate way to calculate the delays would be 
a worthwhile endeavor for future research. 

 

Figure 4: (a) MAE; (b) mean lot CT and average SD; (c) and (d) lot CT distributions. 

Another interesting observation about MAE is that, for some configurations (e.g (ε1, ζ1, η1) see Figure 
4a), the MAE value is high (18.08) even in the first experiment, and there is minimal change (20.3) by the 
last experiment. This suggests that the first substitution of a tool set with IDLE% = 97.14 ((ε1, ζ1, η1) 
exp#1) leads to significant changes in MAE (from 0 to 18.08), but further substitutions incur only small 
changes (from 18.08 to 20.3). For other configurations (e.g (ε1, ζ7, η1), this happens after the second 
substitution. Two possible reasons for this exist: 1) MAE calculation based on every single lot; 2) even 

small changes in the production system could lead to big lot rearrangements. We could call it a “butterfly 
effect”. The scatter plot in Figure 5b illustrates this phenomenon for the exp#1 ((ε1, ζ1, η1). 

A second typical measurement for model accuracy is correlation coefficient. Figure 5 demonstrates 
that the correlation is a less effective measurement for the simplified model. We can see that for the 
configuration (ε1, ζ7, η1) the correlation oscillates from exp#2 to exp#77 between 0.95 and 0.96 (Figure 
5a). Moreover, for the configuration (ε1, ζ1, η1) we have again “pathological” behavior. We could assume 

that indeed the correlation coefficient is not sensitive to the simplification. Scatter plots in Figure 5 
illustrate the reason for this: despite the fact that we have a point cloud in the scatter plot, the cloud is 
distributed along the bisector. Moreover, the cloud narrows to parallel lines as the experiment number 
increases (compare b with e and c with f). Figure 5d shows the scatter plot for the extremely reduced 
model (exp#83). Note that the correlation coefficient is 0.947 in this case. 
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Figure 5: Correlation coefficient and scatter plots. 

The third typical criteria to determine the accuracy of simplified models is the value of 
autocorrelation function. Rose (1999) and Johnson et al. (2005) noted that autocorrelation should decrease 

with simplification. This is true if we consider the very simplified model of exp#80, where all except 3 
tool sets were substituted for delays (see Figure 6).  

 

Figure 6: Autocorrelation function (base case, experiments: 45, 60, 70, 80). 



Stogniy and Scholl 
 

 

But attempting to use autocorrelation as an accuracy measurement of simplification seemed to be 
counterproductive, because for some configurations (e.g. (ε1, ζ7, η1)) it did not decrease but increased, at 
least until exp#70. Moreover, three different products were chosen with different demands (product 14 – 

demand 35 lots/week, 12 – 5 lots/week, 1 – 2 lots/week) to show that autocorrelation varies for different 
products depending on the quantity of the product lots in the model.  

The forth typical metric is a t-test (Piplani and Puah 2004). First of all, it is necessary to mention that 
it is recommended to use a t-test if there is a normal distribution. Our proof of the normality using R 
package normtest (Gavrilov and Pusev 2014) was unsuccessful. Nevertheless, it could still be interesting 
to see the results of t-tests within this research (Figures 7a and 7b). For the configuration (ε1, ζ1, η1) for 

both products we see the t-statistics increase and then fall. This is unsurprising because there is a shift of 
lot CT mean (see Figure 4b). Moreover, the p-value is above 0.2 for product 1 even for exp#83 and we 
have significant oscillations of the p-value from exp#1 to exp#83. In the end, it can be concluded that t-
test is not suitable for the research being carried out in this paper. 

 

Figure 7: (a) and (b) t-test, (c) and (d) Kolmogorov-Smirnov test: statistic (black) and p-value (red). 

4.2 More suitable metrics 

Now let us look at the results of a classical KS-test (Figures 7c and 7d). Here it is clear that the KS-
statistics also have some fluctuations, but they are much smaller than the t-statistics and, more 
importantly, the KS-statistics do not grow monotonously but quite strongly. The p-value also has 
oscillations but it tends to zero quite quickly (compare with Figures 7a and 7b). It is assumed that using 
metrics based on lot CT distribution is more suitable for the simplification task. First of all, they are not 
sensitive to the “butterfly effect”, which occurs at exp#1 (see Figure 5b), because they consider all lots as 

a whole (distribution) as opposed to just looking at a single one. Second, the “pathological” (non-
monotonous) behavior due to lot CT mean shift is not as expressed (see Figure 4b), because the metrics 
are not as sensitive to the shift.  

In the Section 3.3 we introduced six metrics based on lot CT distribution. Let us compare them using 
the same configurations as before: (ε1, ζ1, η1) and (ε1, ζ7, η1) (Figures 8 and 9). Figure 9 shows SAD has 
the least fluctuations in comparison with other metrics. This occurs due to the use of the probability 

density function (PDF), which is built as a histogram with equidistant bins (Figures 4c and 4d). In this 
case, small changes inside one bin do not have an influence on the SAD value. On the other hand, we 
could see that SAD is less sensitive in the area exp#1-70 in comparison with other metrics. The KS test 
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shows moderate fluctuations and is more sensitive to the changes in the area exp#1-70. This happens as a 
result of the empirical cumulative distribution function (ECDF), which contains data about every single 
lot. But the KS-statistic is based on a measurement only of the maximum of the difference between the 

ECDFs, meaning the measurement of the difference is made only at one point. Before the experiments it 
was assumed that this is not adequate and the preference was to include the whole ECDF. Such metrics 
include AD, CVM, DTS, and WASS. 

 

Figure 8: Six metrics in dependence on experiment number.  

 

Figure 9: Six metrics in dependence on operation ratio.  

It is interesting to see that AD and CVM were less sensitive than KS in the area exp#1-40, and DTS 
and WASS were somewhat more sensitive than KS in the same area. Moreover, AD and CVM have 
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larger oscillations in the area exp#70-83 than other metrics. These differences between AD/CVM and 
DTS/WASS are caused by using a factor of 2 in the formulas (Table 1). Moreover, AD/CVM become 
much more sensitive to the lot CT mean shift as exp# grows. At the end (exp#80-83), even small changes 

in lot CT mean cause big changes in AD/CVM (compare with Figure 4b). It is assumed that KS and SAD 
are more reliable metrics for simulation simplification, but future research is needed to prove this 
statement. Figure 8 represents a picture of the quality. For the calculations, another x-axis was needed – 
operation ratio (see Figure 9).  

As mentioned above, the simulation time curve varies for different configurations (Figure 3b). This 
means that experiment numbers from one configuration are not equivalent to other configurations in the 

sense of simplification. We also pointed out that the curve is not monotonous. Therefore we could not use 
it for the comparison of configurations. On the other hand, it was found that simulation time and 
operation ratio curves matched sufficiently. Thus we decided for this paper to use the operation ratio as a 
basis for the comparisons. Figure 9 presents the metrics with operation ratio as the x-axis. Here the 
difference between two configurations is even more clear than in Figure 8. 

5 EXPERIMENTAL RESULTS 

To compare various configurations, measurements were made along the axis (metric, operation ratio). 
Those were then approximated with lines to produce the curves (see Figure 9), which were then 
numerically integrated to obtain a single value (area under the curve). This value represents a score of the 
particular configuration in a particular metric. All configurations were ordered according to the score for 
each metric. To compare two system configurations, ε2 and ε2b, a single list with those configurations was 
created. Table 2 shows the results for the first twenty items in each list. For ε2, a gray background is used. 

The other colors in the table are only there to easily distinguish different configurations.  

Table 2: Ordered configurations. 

 FIFO (ε1)   CR (ε2) and CRb (ε2b) 

# KS AD CVM DTS WASS SAD  KS AD CVM DTS WASS SAD 

 ζ η ζ η ζ η ζ η ζ η ζ η  ζ η ζ η ζ η ζ η ζ η ζ η 

1 4 1 8f 1 8f 1 4f 1 4 1 8 1  8f 1 8f 1 8f 1 8 1 8 1 8f 1 

2 4f 1 8 1 8 1 4 1 4f 1 8f 1  8 1 8 1 8 1 8f 1 8f 1 8 1 

3 8 1 4 1 4 1 8f 1 8f 1 4 1  4f 1 4f 1 4f 1 7f 1 4f 1 8 2 

4 8f 1 4f 1 4f 1 8 1 8 1 4f 1  4 1 4 1 4 1 4f 1 4 1 4f 1 

5 4 2 5 1 9 1 4 2 4 2 8 2  8 2 7f 1 7f 1 4 1 8 2 8f 2 

6 4f 2 5f 1 9f 1 5f 1 9 1 8f 2  8f 2 7 1 7f 1 8 2 8f 2 4 1 

7 8 2 9 1 5 1 4f 2 4f 2 4f 2  7f 1 7f 1 7 1 8f 2 7f 1 4f 2 

8 8f 2 9f 1 5f 1 5 1 8f 2 4 2  7f 1 7 1 8f 2 7f 2 7f 2 4 2 

9 5 1 8f 2 8f 2 8f 2 8 2 5f 1  4f 2 8f 2 7 1 7 1 7f 1 7f 1 

10 5f 1 8 2 8 2 8 2 9f 1 5 1  4 2 7f 2 8 2 7 2 7 2 7 1 

11 6f 1 4f 2 4 2 9 1 5f 1 6f 1  7 1 6f 1 7f 2 7 1 7 1 7f 2 

12 9 1 4 2 4f 2 9f 1 5 1 7f 1  6f 1 8 2 6f 1 7f 1 7 1 7f 1 

13 9f 1 6f 1 3f 1 3f 1 3f 1 9 1  5f 1 7 2 7 2 2f 2 2f 2 5f 1 

14 6 1 3f 1 3 1 3 1 3 1 6 1  7f 2 2f 1 2f 2 2f 1 6f 1 6f 1 

15 3f 1 3 1 6f 1 6f 1 6f 1 3f 1  7 1 5f 1 6 1 5 1 2f 1 7f 2 

16 3 1 6 1 6 1 5f 2 5f 2 3 1  5 1 5 1 5f 1 8f 1 4f 2 8f 1 

17 6f 2 5f 2 5f 2 5 2 3f 2 9f 1  5f 1 2f 2 2f 1 6f 1 2 2 5f 1 

18 6 2 6f 2 6f 2 3f 2 3 2 7 1  2f 2 6 1 5f 1 5f 1 7 2 8 1 

19 7 1 7f 2 5 2 6f 2 5 2 3f 2  7 2 5f 1 4f 2 2 2 7f 2 5 1 

20 5f 2 7f 1 7f 2 9 2 6f 2 3 2  6 1 6f 1 5 1 7f 2 4 2 7 2 
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 Table 2 shows that there are different orders for different metrics. Nevertheless, one could see that 
configurations (ζx, η1) mostly outperform (ζx, η2): operation-based delays are mostly better than machine 
tool-based. The situation with (ζx) and (ζxf) is not so clear. It seems that those configurations do not  

differentiate from each other much, meaning it is difficult to evaluate which configuration is superior. For 
ε1 and ε2b configurations, (ζ4, η1), (ζ4f, η1), (ζ8, η1), and (ζ8f, η1) produced the best performances. But for ε2 
there were other leaders, namely (ζ7) and (ζ7f). Based on our previous experience (Stogniy and Scholl 
2019), we assumed that ε2b should always outperform ε2. Table 2 shows that it is not correct. We will 
continue our research to determine the underlying reasons for this.  

CONCLUSIONS 

In this paper, a simplification of process flow operations through substitution for constant delays was 
considered. Numerous experiments with three system configurations were carried out: First In First Out, 
Critical Ratio, and Critical Ratio with consolidated delays at the beginning. It was found that for the first 
two system configurations it is better to use queue time or cycle time standard deviation as sieve functions 
for the substitution. For the third variant, queue length divided by batch size is the best choice.  
 Different metrics were used to analyze the results of experiments. Based on our analysis we conclude 

that following metrics could not be effectively used to estimate simplified models: lot cycle time mean 
absolute error, correlation coefficient, autocorrelation function, and t-test. Metrics based on lot cycle time 
distributions are more suitable. It is assumed that a classical two sample Kolmogorov-Smirnov test and 
summarized absolute divergence (based on probability density function) are better than others because 
they are more stable. Our experiments showed that delays calculated based on average processing and 
queueing time are not precise enough and could lead to overall lot cycle time shift. This causes oscillation 

within the metrics. If that problem were to be solved, we assume that metrics based on empirical 
cumulative distribution functions would show better performance.    
 In future research we plan to analyze methods for more precise constant delay calculations and to 
consider other dispatching rules (Early Due Date, Operation Due Date). We will enhance our approach 
for variable workload scenarios and combine these ideas with the artificial process flow concept, which 
we presented earlier. Eventually, we plan to implement our approach in a real Infineon simulation model. 
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