
Proceedings of the 2020 Winter Simulation Conference

K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

FROM ABSTRACTION TO IMPLEMENTATION: IMPROVING THE RDEVS MODELING

AND SIMULATION THROUGH A DOMAIN MODELING SPECIFICATION

María Julia Blas

Silvio Gonnet

Instituto de Desarrollo y Diseño INGAR
CONICET-UTN
Avellaneda 3657

Santa Fe, 3000, ARGENTINA

ABSTRACT

The Routed DEVS (RDEVS) formalism provides a feasible solution to modelers for easily build discrete-
event simulation models for routing processes. By employing three types of models, the formalism provides
an appropriate separation of concerns in terms of the routing structure, the possible paths and the component

behaviors. This paper presents the usefulness of graphical Modeling and Simulation (M&S) for supporting
the implementation of routing process simulation models thought their abstraction to a graph model. These
simulation models are formalized using RDEVS formalism. The methodological proposal is focused in the
development of a M&S software tool based on a combination of data metamodels and formalizations rules.
The final software tool was developed as a plugin for Eclipse IDE with aims to take advantage of existent
M&S software. One of the main benefits obtained when modeling an abstraction with the proposed M&S

tool is a significant reduction of formalization and implementation times.

1 INTRODUCTION

The conceptual models generally describe the structure and the behavior of the system independent from
the implementation details (Cetinkaya et al. 2010). The success of the modeling task depends on the modeler
ability to get an appropriate level of abstraction in the design. Although effective conceptual modeling is a
vital aspect of a simulation study, it is probably the most difficult and least understood (Law 1991). The

design of the simulation model impacts all aspects of the study, in particular the data requirements, the
speed with which the model can be developed, the validity of the model, the speed of experimentation and
the confidence that is placed in the model results (Robinson 2008). Good modeling enables an appropriate
separation of concerns that improves quality properties of the final simulation models, such as modifiability
and maintainability. In this sense, the Modeling and Simulation (M&S) software products should provide
not only simulation capabilities but, also, they should support new modeling strategies that improve the

modeling tasks (e.g. number of simulation models to be developed, time to spend for getting correct
implementations, modeling complexity, M&S knowledge required prior perform the modeling, etc.).
 Well-designed M&S software products should support reuse of existing (software) components (Dalle
et al. 2009). Moreover, two desirable properties of any M&S software product are low coupling and high
cohesion among software components. The low coupling is desirable because: i) fewer interconnections
among software modules reduce the chance that changes in one module cause problems in other modules

(i.e. enhances reusability), and ii) fewer interconnections among modules reduce the developer time in
understanding the details of other modules (Page-Jones 1980). In this context, any M&S software tool has
to, al least, provide two distinct set of modules: software modules for supporting the modeling, and software
modules for supporting the simulation execution. On the other hand, cohesion is an important attribute
corresponding to the quality of the abstraction captured by the software module under consideration. Good

Blas and Gonnet

abstractions typically exhibit high cohesion (Hitz and Montazeri 1995). Thereby, each software module
defined as part of the M&S software product, needs to fully capture an explicit abstraction of the M&S task.

Nowadays, there are multiple software tools and simulators for DEVS models (Van Tendeloo and

Vangheluwe 2017). Most M&S DEVS tools support graphical modeling capabilities. For example,
PowerDEVS (Bergero and Kofman 2011) integrates different software modules with aims to provide a
graphical modeling environment, an atomic model editor, and a code generator in a M&S DEVS tool. In
the same direction, the graphical modeling environment called CD++Builder (Bonaventura et al. 2013) can
be used to create models for CD++ (Wainer 2002). DEVSimPy (Capocchi et al. 2011) offers a graphical
modeling environment for coupled models. A similar approach is applied in Virtual Laboratory

Environment (VLE) (Quesnel et al. 2007) where atomic models are written in C++ and coupled models can
be created using either the graphical environment or by manually writing XML files. However, all these
approaches are centered in building graphically models that have been already designed by some modeler
(at least, at conceptual level).

From the traditional point of view, a good conceptual model lays a strong foundation for successful
simulation modeling and analysis (Robinson et al. 2010). Over such interpretation, conceptual modeling

serves as a bridge between problem owner and simulation modeler. In this context, the progression of
abstraction to implementation presented by Zeigler et al. (2018) can be used to study how abstractions can
lead to well-defined implementations. An abstraction focuses on an aspect of reality and, almost by
definition, greatly reduces the complexity of the reality being considered. Then, formalization makes it
easier to work out implications of the abstraction and implement in reality. Finally, implementation can be
considered as providing a concrete realization of the abstraction. The use of the progression abstraction-

formalization-implementation allows to develop new types of M&S software products centered in new
model representations.

In this paper, we propose a M&S software tool implemented as a plugin for Eclipse Integrated
Development Environment (IDE) (The Eclipse Foundation 2020a) supporting the description of routing
process simulation models thought their abstraction to a graph model. We employ Routed DEVS (RDEVS)
as formalization mechanism for such simulation models. The RDEVS formalism was designed as a DEVS

extension that improves the discrete event models that solve problems centered in routing processes (Blas
et al. 2017). A routing process is defined as “the part of a modeling scenario where the components need
to interact among them by distinguishing the event sources and destinations in order to ensure their
transference into the right model”. When building a simulation model for solving a routing process, the
modeler is solving a routing problem. Hence, the core of RDEVS formalism is the formalization of the set
of elements that composes a routing process definition following a conceptual modeling point of view.

Then, the RDEVS formalism levels out the complexity of routing problems specification to reduce the
modeling effort. This allows the use of the RDEVS formalism as a “layer” above the DEVS formalism that
provides routing functionality without requiring the user to “dip down” to DEVS itself for any functions
(Zeigler 2018). In this context, our aim is: i) to offer a graphical environment for modeling RDEVS
formalism using a standardized graph description, and ii) to be able to generate Java code for such RDEVS
models in a way that they can be executed in DEVS simulators.

The remainder of this paper is structured as follows. Section II describes the principles of RDEVS
formalism detailing the simulation models and their structural dependencies. It also includes the definition
of the abstraction-formalization metamodel used as conceptual view of the proposal. Section III presents
the M&S software tool designed using the abstraction-formalization-implementation approach. Section IV
briefly describes the main benefits of having the M&S software tool for building routing process simulation
models based in RDEVS formalism. Finally, Section V is devoted to conclusions and future work.

2 RDEVS FORMALISM

The RDEVS formalism defines three types of models: essential, routing and network (Blas et al. 2017).
These models allow the formalism to provide an appropriate separation of concerns over the routing process
description (i.e. the structure and routing paths) and the routing component behaviors.

Blas and Gonnet

 The essential model specifies a discrete-event simulation model that exhibits the behavior of an
elemental routing component that will be used as part of a routing process description. The guidelines for
building an essential model should be defined by a domain expert (because such model refers to a domain

specific component). Formally, a RDEVS essential model is defined as a DEVS atomic model (Zeigler et
al. 2018).
 The routing model defines a discrete-event simulation model that acts inside the routing process. Its
definition employs a routing process component as operational description of its own behavior. Hence, the
routing model definition embeds an essential model. The same essential model can be embedded in several
routing models. Also, the routing model definition requires setting the routing policy. The routing policy

attached to each routing model is defined at design time and cannot be changed during the simulation
execution. However, the same routing policy can be used in distinct routing models (that, at the same time,
can be based in distinct essential model). The routing policy definition includes an identifier used to
distinguish the set of routing models that build the routing process. Routing models employ these identifiers
to decide how to treat the input events (accept or reject) and how to route the output events. Therefore, the
events that flow over the routing models that compose a routing process are defined as events with

identification. An event with identification is recognized by its sender information (i.e. the identifier of the
routing model that created the event through its output function) and its feasible receptors. The feasible
receptors of an event with identification are obtained from the routing function that compose the routing
policy. Therefore, the execution of the routing process is build-in inside the RDEVS models.

Finally, the network model describes a complex discrete-event simulation model that has a primary goal
that involves the resolution of a routing problem. Its definition includes a set of routing models and the

couplings among them. Such couplings are detailed as all-to-all connections in order to left the routing task
to the routing policies detailed in the routing models. The network model specification also involves two
special translation functions used to link distinct networks: input translation function and output translation
function. These functions allows matching events with identification produced by different routing process.
Therefore, network models are designed to interact with other network models or, simply, with DEVS
models (atomic or coupled). The output events produced by a network model are events sent “everywhere”.

The simulation model that, eventually, consumes such events must decide how to route these messages.
Hence, the combination of distinct types of simulation models depends on the problem final goal allowing
to build powerful simulation models that exploit the benefits of each formalism according to the problem
characteristics.

By embedding essential models into the routing models, the RDEVS formalism improves the design
phase in two distinct ways: i) behavioral descriptions are only required for the domain-specific routing

components (the routing behavior is build-in as part of the RDEVS models), and ii) routing policies are
isolated from behavioral descriptions (allowing to reuse the essential models in new networks models).
Therefore, the RDEVS models allows the modeler to explicitly define the routing policy without specifying
any behavioral description attached to it. Such routing information is detailed inside the routing model as
part of its own definition in order to authenticate senders and receivers prior executing the (linked) essential
model.

The RDEVS formalism is designed for level out the modeling effort of routing problems providing an
easier modeling solution that employs a set of simulation models defined in terms of the main elements
involved in routing processes. RDEVS models can be used as predefined simulation modules (i.e. patterns)
that require specifying: a behavior (essential model), a routing component with its own routing policy
(routing model) and the interactions among such components (network model). In this context, the aim of
RDEVS models is isolate a routing process inside the network model and capture the explicit information

required to redirect the events flow over the routing models in the routing policies. That is, there is no
universal routing policy to manage the global structure of the simulation model. Each routing model takes
its own decisions (thought the routing policy) on how routing the input and output events. The modeler
does not need to explicitly define any additional behavior to manage the routing process during design
phase.

Blas and Gonnet

Then, the RDEVS formalism provides a feasible solution to modelers for easily build discrete-event
simulation models for routing processes. Since RDEVS is a subclass of DEVS, the RDEVS models can be
executed using DEVS simulators. Then, RDEVS models can be implemented employing existent

implementations of DEVS. In (Blas et al. 2017) a first description of the RDEVS software framework was
presented.

In addition to the reusable functions provided in libraries, frameworks provide “flows of control”
(Johnson and Foote 1988). Frameworks shall ease / speed up the development of software from the domain
they are created for (Madsen 2003). Therefore, a framework may be built on top of a set of libraries and
might be used to create more specialized solutions. This is the case of the RDEVS software framework that

allows modeling and executing RDEVS models in Java using the features provided by DEVSJAVA
(ACIMS 2005) and DEVS Suite (ACIMS 2009). DEVSJAVA is a M&S tool implemented in Java that
supports characterizing models in DEVS formalism. On the other hand, the DEVS Suite Simulator is itself
an extension of DEVSJAVA that supports visual design of experiments and introduces simulation data
visualization (Kim et al. 2009). Through the extension of DEVSJAVA and DEVS Suite Simulator, the
RDEVS software framework provides a solid solution for building executable models that support RDEVS

formalism.
Hence, the use of the RDEVS software framework enhances the development of RDEVS simulation

models in Java programming language.

2.1 Routing Process Simulation Models from Graph Abstractions

An abstraction focuses on an aspect of reality and, almost by definition, greatly reduces the complexity of
the reality being considered (Zeigler et al. 2018). In this context, graph models (defined over a set of

predefined components) can be used as abstraction of routing processes (reality).
 When a routing process is modeled as a graph, the nodes of the graph represent domain-component
instances and the edges of the graph represent the connections (i.e. the relationships) among those instances
(i.e. the nodes). Under this representation, the domain components are conceptualized as nodes of the graph
that share a behavioral operation.
 Figure 1 shows a UML class diagram that describes the main elements that compose a graph model. A

Graph is Composed by Nodes and Edges. In this case, a Graph is Composed by, at least, two Nodes and it
Includes, at least, one Edge. Both associations (i.e. Composed by and Includes) are modeled as UML
compositions. The Nodes are linked by Edges. An Edge is defined as an ordered pair of Nodes according
to the mandatory associations named Starts at and Ends at (both cases are modeled with multiplicity 1).
Finally, a Node Instantiates a Component that have a behavior described over a domain procedure. The
Instantiates association between Node and Component is mandatory for Node (multiplicity 1). However,

the same Component can be used as support of several Nodes (multiplicity 1..*).

Figure 1: Simplified UML class diagram that depicts the main concepts and relationships required for
instantiate a graph model that represents a routing process (abstraction metamodel). The routing process
needs to be based in a predefined set of components that hold a well-known behavior defined in a domain
procedure.

Blas and Gonnet

 The abstraction metamodel depicted in Figure 1 simplifies the graph domain using a set of concepts
and relationships that ensure building an appropriate graph model. The main advantage of employing a
graph model as abstraction of the routing process domain is that the existent metrics designed for such

models can be used as support measures for evaluate the complexity of the simulation models obtained
from it.
 Following the abstraction, a formalization makes it easier to work out implications of the abstraction
and implement in reality (Zeigler et al. 2018). When a simulation model is designed for a routing process,
the RDEVS formalism can be used as formalization language. Since the formalism provides a solution to
modelers for easily build such models, the RDEVS models allows to formalize the routing process modeled

as a graph with aims to get discrete-event simulation models from such abstraction.
 Then, each RDEVS model can be seen as the formalization of some component defined in Figure 1 as
follows:

• the essential model formalizes a component (because the essential model is designed to exhibit the
behavior of an elemental routing component),

• the routing model formalizes the nodes of the graph (because the routing model is designed to act
as part of the routing process), and

• the network model formalizes the graph (because the network model is designed to represent the
overall routing process).

 Figure 2 extends the UML class diagram depicted in Figure 1 with the formalization metamodel (i.e.

concepts highlighted in yellow) employing the formalizes stereotyped relationship (i.e. association
highlighted in blue). Through this special relationship, the formalization metamodel refines the concepts of
the abstraction metamodel with aims to explicitly define the simulation model structures. For example, the
Node formalization through the Routing Model includes the node decomposition in terms of its Routing
Policy and Input / Output Ports. A similar approach is used in the Network Model that formalizes the Graph.
In this case, the Input and Output Translation Function are included to formalize the Node (or Nodes) where

the event flow should start and end, respectively.
A set of OCL constraints is added to the UML class diagram in order to maintain the traceability

between abstraction and formalization metamodels. This traceability is related to the correctness of the
formalism. Even when RDEVS models can be used to support the design of routing processes, the graph
model used as abstraction must ensure a set of structural properties prior is formalization with RDEVS.
Such structural properties guarantee the validity of the RDEVS models.

The OCL constraints detailed in Figure 2 are attached to the formalizes relationship modeled between
Node (from the abstraction metamodel) and Routing Model (from the formalization metamodel). These
constraints should be evaluated prior getting the Routing Model that formalizes a Node. For example, a
Routing Model cannot be obtained for an isolated Node (because, by definition, all models that compose a
Network Model needs to be connected to each other). Then, before obtaining such simulation model, the
OCL invariant named isNotIsolated should be evaluated over the Node.

From a conceptual point of view, a Coupling can be seen as a formalization of an Edge. However, the
diagram depicted in Figure 2 does not include such formalization as an effective relationship. This is
because the Couplings in RDEVS models are structured by the Network Model definition as all-to-all
connections (in order to left the routing task to the Routing Policies). When a Routing Model Embeds an
Essential Model, the Routing Policy must be defined. Such Routing Policy is used to route the input/output
events that flows to/from the actual Routing Model from/to the other Routing Models that compose the

Network Model. Therefore, the Routing Policy is Defined over a set of Routing Models (at least, one Routing
Model given by the multiplicity 1…*) using as foundation the Edges that link the Nodes that abstract them.
Moreover, all Routing Models included in a Network Model must be attached to, at least, one Routing Policy
(multiplicity 1…*) - because they cannot be obtained from isolated Nodes. Hence, the Edges are used as
guidelines for building Routing Policies but not as abstraction of the Couplings.

Blas and Gonnet

Figure 2: UML class diagram that links the abstraction metamodel with the RDEVS specification through
the formalizes relation. The associations that holds the same name and multiplicity in both metamodels
describe the same dependency between elements. The Embeds association (from the formalization
metamodel) is the materialization of the Instantiates association (from the abstraction metamodel). The
OCL constrains are used to ensure the correct design of RDEVS models.

Under the abstraction-formalization representation, the routing process problem is modeled with a

strict separation of concerns between the model primary goal (i.e. the domain procedures) and the routing
process itself. However, in order to get a concrete realization of it, such representation must be
implemented. Then, the implementation can be considered as providing a concrete realization of the
abstraction thought the formalization. An available implementation of RDEVS models is given in the
software framework initially presented in (Blas et al. 2017).

The main classes designed and implemented as part of the RDEVS software framework are the

following:

• EssentialModel.java, RoutingModel.java, and NetworkModel.java to define the simulation models
that build RDEVS formalism,

• RoutingFunction.java and RoutingFunctionElement.java to define the Routing Policy required as
part of the Routing Model definition, and

Blas and Gonnet

• TranslationFunction.java, InputTranslationFunction.java and OutputTranslationFunction.java to
define, respectively, the transformations from events / events with identification to events with
identification / events.

 The Java classes listed above can be seen as potential extension points of the software framework for
building an explicit RDEVS implementation. In software engineering, an extension point is the definition
of the provided interface for extensions (Klatt and Krogmann 2008). That is, an extension itself is an
implementation according to an extension point (equal to an implementation of a software component).
Therefore, the software framework includes extension points configured for designing explicit instances of

RDEVS models as reusable software components slated for executing the routing process simulation
(already defined in the framework) without any other consideration. In this context, each one of the concepts
defined as explicit formalization of the routing process abstraction can be implemented as an extension
developed over an extension point of the software framework (i.e. a new Java class based on an existent
one).
 Following this approach, the next section introduces the plugin for Eclipse IDE developed to integrate

the abstraction-formalization metamodel with the RDEVS software framework (already developed in Java).
The goal of this plugin is provide a single object-oriented software M&S tool for building routing process
simulation models from graph abstractions.

3 M&S GRAPHICAL SOFTWARE TOOL FOR BUILDING ROUTING PROCESSES FROM

ABSTRACTION TO IMPLEMENTATION

 Graphical modeling is an aspect which is used successfully (Ören 2007). Among the advantages of a

graphical software tool are: i) easy-to-use: in graphical modeling software, the modeling is performed by
manipulating graphical elements and their connections; ii) fast modeling solutions: graphical modeling
software allows the development and solution of complex simulation models rapidly with limited M&S
background; iii) well-defined simulation models: if code generation is implemented over the graphical
modeling, the final simulation models will always be well-defined in terms of the related simulation
formalism; and iv) standardized simulation models: thought the employment of a set of well-defined

graphical components, the graphical modeling software ensures standardized designs (Nikolaidou et al.
2008; Touraille et al. 2011; Bonaventura et al. 2013; Wainer 2017).
 With aims to build a M&S software tool that provides an full solution for building simulation models
for routing processes, a graphical M&S plugin for Eclipse IDE was developed. The core of this plugin is
the abstraction metamodel depicted in Figure 1.
 Figure 3 shows the plugin architecture over a layered design pattern build over five software modules

(where the modular code runtime platform is Eclipse IDE). The layered architecture employed as structure
for the M&S software allows to get reusable software modules and, at the same time, modularity in each
M&S level. By employing specific plugins in the development of each module, the performance of
supporting tools is taken into advantage.

Figure 3: Layered software architecture of the M&S plugin.

Blas and Gonnet

 Besides employing DEVSJAVA, DEVS Suite-Simulator and the RDEVS software framework, the
M&S plugin uses other software modules for building the routing process representation (i.e. the
abstraction, formalization and implementation). With aims to ensure a full compatibility with the underlying

platform, the development of the M&S software employed several plugins of Eclipse IDE. The Eclipse
Modeling Framework (EMF) (The Eclipse Foundation: Eclipse Modeling Project 2020) was used for
building the foundational metamodel (abstraction metamodel) required as support mechanism of the plugin.
The Sirius project (The Eclipse Foundation 2020b) was employed for developing a graphical representation
of the foundational metamodel. Such graphical representation allows building routing process
representations (abstraction metamodel instances) employing a set of graphical elements that depict the

concepts and relationships detailed in the abstraction metamodel. Finally, the Acceleo development tool
(The Eclipse Foundation 2019) was used for translating the abstraction model (i.e. the one obtained as an
instance of the abstraction metamodel) to the Java implementation of RDEVS (using the formalizations
defined in the formalization metamodel).

3.1 Ecore Model

The EMF project is a modeling framework and code generation facility for building software tools and

other software applications based on a structured data model (The Eclipse Foundation: Eclipse Modeling
Project 2020).
 The foundational metamodel used for modeling the routing process was implemented with EMF in
order to get a data model specification described in XMI. This implementation provides the Ecore model
required for building the other software modules that compose the plugin. The core of such metamodel was
the abstraction metamodel. However, a few changes were introduced to the original metamodel with aims

to exploit the EMF capabilities. First, the association named Instantiates was renamed to Materializes in
order to remove the notion of instance from the modeling tasks. Also, new conceptual modeling elements
were added. These elements include:

• the attribute name in concepts Graph, Node and Component to provide a further identification of
their instances, and

• the concept Abstraction Description as a container of the set of elements that compose an explicit
abstraction.

 The Abstraction Description concept was introduced in the metamodel detailing the following
associations: i) an Abstraction Description Describes a Graph (i.e. a mandatory composition), and ii) an
Abstraction Description Uses a set of Components (at least, one Component per instance).
 Moreover, since Ecore provides the capability to include OCL constrains over the models, the OCL
constrains required to get a formalization from the abstraction were also included over the foundational
metamodel. In this way, the abstraction model (instance of the foundational metamodel) can be validated

prior its formalization. Then, an explicit and valid abstraction of a routing process based in the graph model
can be instantiated using the Ecore model defined with EMF.

3.2 Sirius Graphical Definition

Sirius is an Eclipse project which allows to easily create a graphical modeling workbench by leveraging the
Eclipse Modeling technologies (The Eclipse Foundation 2020b).
 Using as basis the Ecore model implemented with EMF, Sirius was employed to define graphical

representations for each element included in the model. Figure 4 shows a screenshot of the final graphical
software tool developed with Sirius. In the example, there are four Components (Machine Type A, B, C
and D) and five Nodes (Machine #1 to #5). Each Node materializes an specific Component (e.g. the Node
named “Machine #1” materializes the Component named “Machine Type A”). Finally, the Nodes are linked
by Edges (grey arrows). These Edges depict the event flows allowed among the (future) simulation models
(to be implemented with RDEVS).

Blas and Gonnet

Figure 4: Screenshot of the graphical M&S software tool for modeling the routing process abstraction. The
modeler drag and drop the elements available in the palette (right side of the screen) to build the routing
process abstraction.

 Besides providing a graphical instantiation of the Ecore metamodel, the tool allows to validate
(graphically) the abstraction. A validation button was added with aims to verify the correctness of the final
model (i.e. the OCL constrains along with multiplicities and attributes uniqueness). If problems are
detected, the tool shows an error message with a warning icon over the element. If the model is correct, the
modeler can go directly to the formalization-implementation phase over the abstraction model instantiated.

3.3 Acceleo Model-to-Text Transformation

Acceleo is a template-based technology including authoring tools to create custom code generators. It
allows to automatically produce any kind of source code from any data source available in EMF format
(The Eclipse Foundation 2019).
 By defining a generation model for the model-to-text transformation, the elements graphically defined
in the abstraction model are navigated in order to apply the required formalizations. These formalizations
allows to get the Java source code for implementing the RDEVS simulation models. Therefore, their design

goal is defining the type of RDEVS model required for the abstraction elements as follows:

• each Component included in the Abstraction Description is formalized in an essential model
structure that will require (after getting the source code structure) codifying its behavioral
specification (e.g. the transition and output functions);

• each Node included in the Graph is formalized in a routing model that encompasses the model

identifier (that is defined as an unique value over the Graph), a pre-set of the routing function
(given by the Edges detailed for the Node over the Graph) and an instance of the essential model
obtained for the related Component (the one materialized by the Node);

• the Graph included in the Abstraction Description is formalized in a network model structure that
includes all the routing models obtained for its Nodes, and that will require (after getting the source
code structure) codifying the transformations needed for its input/output translation functions.

 Following these formalizations, the M&S software tool creates the Java classes that extend the classes
already implemented in the RDEVS software framework. The main template used in the automatic
generation process is the following:

Blas and Gonnet

[template public generateElement(abstraction : AbstractionDescription)]

 [for (c : Component | abstraction.uses)]

 [generateComponentStateClass(c)/]

 [generateComponentEssentialModel(c)/]

 [/for]

 [for (n : Node | abstraction.describes.composedBy)]

 [generateRoutingFunctionClass(n)/]

 [generateRoutFunctionElementClass(n)/]

 [generateNodeRoutingModel(n)/]

 [/for]

 [generateGraphNetworkModel(abstraction.describes)/]

 [generateTranslationFunctionClasses(abstraction.describes)/]

[/template]

 This template shows how the elements included in the abstraction model are navigated (through the
association modeled in the Abstraction Description concept) to get their formalization. The generate()

methods are used to support the Java code generation. Table 1 summarizes the set of classes obtained when
a model-to-text transformation is performed over the abstraction-formalization model.
 Finally, ones the abstraction model is translated to its implementation code, the modeler must codify
the pending behaviors and translations prior executing the simulation. After such codification, the RDEVS
simulation model will be executable. At this point, it is important to remark that this remaining codification
is intended to defining the explicit behaviors of the domain. The overall behavior required for supporting

the routing process execution is provided by the definition of RDEVS models. Hence, through the use of
the M&S software tool, modeling and implementation times are reduced to the automatic translation of an
abstraction model defined graphically from the domain description.

Table 1: Java classes created from the Ecore model as extension of the RDEVS software framework.

Ecore Model Java Implementation

Concept Attribute New Class “extends” (from RDEVS software framework)

Component name
<name>EssentialModel.java EssentialModel.java

<name>State.java State.java

Node name

<name>RoutingModel.java RoutingModel.java

<name>FunctionElement.java RoutingFunction.java

<name>RoutingFunctionElement.java RoutingFunctionElement.java

Graph name

<name>NetworkModel.java NetworkModel.java

<name>InputTranslationFunction.java InputTranslationFunction.java

<name>OutputTranslationFunction.java OutputTranslationFunction.java

4 BENEFITS OF THE M&S SOFTWARE TOOL FOR RDEVS SIMULATION MODELS

When using RDEVS formalism for building discrete-event simulation models for routing process, the
modeler can focus its attention to domain properties without worry about the routing implementation. The
simulation models effectively built by the modeler (behaviors) are the ones that represent well-known
domain elements. That is, take as example a routing process abstraction designed with N nodes. If all nodes

instantiate the same component, the modeler only has to design 1 simulation model (the one that represent
the behavior of such component) but, the final number of simulation models required for managing the
overall routing process will be N + 2 (one for the component and one for the graph). As opposite, if each
node instantiates a distinct component, the modeler designs N simulation models (one per each behavior)
but, the final number of simulation models required for the routing process will be 2N + 1.

Blas and Gonnet

 The M&S software tool enhances these advantages as follows: i) it provides an easy way for modeling
routing processes employing a graph abstraction, ii) it reduces the simulation modeling times by building
automatically all the behavior required to support the routing task, iii) it ensures the correctness of RDEVS

models because it validates the abstraction prior the formalization, and iv) it reduces the possibility of
introducing errors during programming because the modeler only needs to codify a reduced set of methods
in a few classes.

5 CONCLUSIONS AND FUTURE WORK

The use of the abstraction-formalization-implementation approach as foundation for building a M&S
software tool leads to a new type of modeling task. In this paper, we present a M&S software tool

(developed as a plugin for Eclipse IDE) that employs this approach with aims to build automatically
discrete-event simulation models for routing processes thought the graphical definition of abstraction
models. Such software tool has been successfully used for the M&S of routing problems related to software
engineering and electric power systems fields.
 The abstraction-formalization-implementation approach used for RDEVS formalism ensures a set of
modeling desired properties, such as: i) Appropriate level of abstraction and separation of concerns that

give M&S solutions with low coupling and high cohesion: The mapping between the abstraction and
formalization metamodels provides a separation of the routing process structure and the M&S logic. While
the routing process structure is directly mapped to the RDEVS models (that ensures a correct
implementation of the routing behavior), the M&S logic is passed to the modelers (with aims to define
explicit domain behaviors). This separation of concerns improves the models modifiability because it leads
to modular designs with low coupling and high cohesion.; and ii) Reusability, modifiability and

maintainability: These properties can be analyzed from two different points of view. Given the own
definition of RDEVS formalism, the simulation models (in this case, obtained from the transformation
process) are easy to reuse and modify. An essential model can be reused in several routing models and, in
the same way, the same network model can be used to support distinct routing processes (changing the
routing policies of the routing models already defined). On the other hand, the utility provided by the
extension points of the RDEVS software framework allows maintaining the implementation of the routing

behavior as an isolate software module. Changes performed over this behavior will improve its execution,
but will not involve modifications in the specific extensions (that is, the specific RDEVS models designed
from the transformation process).
 We argue that the M&S software tool developed is more suitable than other types of software tools
because it employs a domain abstraction as methodology modeling (providing a natural representation of
the problem). This characteristic reduces the knowledge required for building the simulation models

attached to a specific routing process definition and, therefore, the modeling tasks could be performed by
anyone that knows the problem domain. Of course, M&S experts will be needed for building the component
behaviors required to execute the final simulation. Still, with the M&S software tool, the M&S process of
routing problems is enhanced.

REFERENCES

ACIMS (Arizona Center for Integrative Modeling and Simulation). 2005. DEVSJAVA. http://acims.asu.edu/software/devsjava/,

accessed 23th April 2020.

ACIMS (Arizona Center for Integrative Modeling and Simulation). 2009. DEVS-Suite. http://acims.asu.edu/software/devs-suite/,

accessed 23th April 2020.

Bergero, F., and E. Kofman. 2011. “PowerDEVS: A Tool for Hybrid System Modeling and Real-Time Simulation”. Simulation

87(2):113–132.

Blas, M. J., S. Gonnet, and H. Leone. 2017. “Routing Structure over Discrete Event System Specification: A DEVS Adaptation to

Develop Smart Routing in Simulation Models”. In Proceedings of the 2017 Winter Simulation Conference, edited by W. K.

V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, 774-785. Piscataway, New Jersey: Institute

of Electrical and Electronics Engineers, Inc.

http://acims.asu.edu/software/devsjava/
http://acims.asu.edu/software/devs-suite/

Blas and Gonnet

Bonaventura, M., G. Wainer, and R. Castro. 2013. “Graphical Modeling and Simulation of Discrete-Event Systems with

CD++Builder”. Simulation 89(1):4–27.

Capocchi L, J. F. Santucci, B. Poggi, and C.Nicolai. 2011. “DEVSimPy: A Collaborative Python Software for Modeling and

Simulation of DEVS Systems”. In Proceedings of the Workshop on Enabling Technologies: Infrastructure for Collaborative

Enterprises, June 27th–29th, Paris, France, 170–175.

Cetinkaya D., A. Verbraeck, and M.D. Seck. 2010. “A Metamodel and a DEVS Implementation for Component Based Hierarchical

Simulation Modeling”. In Proceedings of the Spring Simulation Multiconference, April 11th-15th, Orlando, United States, 130-

137.

Dalle, O., J. Ribault, and J. Himmelspach. 2009. “Design Considerations for M&S Software”. In Proceedings of the 2009 Winter

Simulation Conference, edited by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, 944-955. Piscataway,

New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Hitz, M., and B. Montazeri. 1995. “Measuring Coupling and Cohesion in Object-Oriented Systems”. In Proceedings of the

International Symposium on Applied Corporate Computing, October 25th-27th, Monterrey, Mexico, pp. 25-27.

Johnson, R. E., and B. Foote. 1988. “Designing Reusable Classes”. Journal of Object-Oriented Programming 1(2):22–35.

Kim, S., H. S. Sarjoughian, and V. Elamvazhuthi. 2009. “DEVS-Suite: A Simulator Supporting Visual Experimentation Design

and Behavior Monitoring”. In Proceedings of the Spring Simulation Multiconference, March 22th-27th, San Diego, United

States, 1-7.

Klatt, B., and K. Krogmann. 2008. “Software Extension Mechanisms”. In Proceedings of the International Workshop on

Component-Oriented Programming, July 7th, Karlsruhe, Germany, 11-18.

Law, A.M. 1991. “Simulation-Models Level of Detail Determines Effectiveness”. Industrial Engineering 23(1):16-18.

Madsen, K. 2003. “Five Years of Framework Building: Lessons Learned”. In Companion of the Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications, October 26th-30th,Anaheim,United States,345–352.

Nikolaidou, M., V. Dalakas, L. Mitsi, G. D. Kapos, and D. Anagnostopoulos. 2008. “A SYSML Profile for Classical DEVS

Simulators”. In Proceedings of the International Conference on Software Engineering Advances, October 26th-31th, Sliema,

Malta, 445-450.

Ören, T. I. 2007. “The Importance of a Comprehensive and Integrative View of Modeling and Simulation”. In Proceedings of the

Summer Simulation Multiconference, July 15th-18th, San Diego, United States, 996-1006.

Page-Jones, M. 1980. The Practical Guide to Structured Systems Design. Yourdon Press, New York.

Quesnel G, R. Duboz, E. Ramat, and M. K. Traore. 2007. “VLE: A Multimodeling and Simulation Environment”. In Proceedings

of the Summer Simulation Multiconference, July 15th-18th, San Diego, United States, 367-374.

Robinson, S. 2008. “Conceptual Modelling for Simulation. Part I: Definition and Requirements”. Journal of the Operational

Research Society 59(3):278-290.

Robinson, S., R. Brooks, K. Kotiadis, and D. Van Der Zee. 2010. Conceptual Modeling for Discrete-Event Simulation. CRC Press.

The Eclipse Foundation. 2019. Acceleo. https://www.eclipse.org/acceleo/., accessed 23th April 2020.

The Eclipse Foundation. 2020a. Eclipse. https://www.eclipse.org/., accessed 23th April 2020.

The Eclipse Foundation. 2020b. Sirius. https://www.eclipse.org/sirius/., accessed 23th April 2020.

The Eclipse Foundation: Eclipse Modeling Project. 2020. Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/.,

accessed 23th April 2020.

Touraille, L., M. K. Traoré, and D. R. Hill. 2011. “A Model-Driven Software Environment for Modeling, Simulation and Analysis

of Complex Systems”. In Proceedings of the Spring Simulation Multiconference, April 4th-7th, Boston,United States, 229-237.

Van Tendeloo, Y., and H. Vangheluwe. 2017. “An Evaluation of DEVS Simulation Tools”. Simulation 93(2):103-121.

Wainer, G. 2002. “CD++: A Toolkit to Develop DEVS Models”. Software Practice and Experience 32(13):1261–1306.

Wainer, G. 2017. Discrete-Event Modeling and Simulation: A Practitioner's Approach. CRC press.

Zeigler, B. P. 2018. “Closure Under Coupling: Concept, Proofs, DEVS Recent Examples”. In Proceedings of the Spring Simulation

Multiconference, April 15th-18th, Baltimore, United States, 1-6.

Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation: Discrete Event & Iterative System

Computational Foundations. Academic Press.

AUTHOR BIOGRAPHIES

MARIA JULIA BLAS is an assistant professor in the Department of Information Systems at Universidad Tecnológica Nacional

(Argentina) and a postdoctoral researcher at Instituto de Desarrollo y Diseño INGAR (Argentina). She holds a PhD in Engineering

and Information Systems from Universidad Tecnológica Nacional (Argentina). Her research interest is improving discrete-event

modeling and simulation using software enginerring techniques. Her email address is mariajuliablas@santafe-conicet.gov.ar.

SILVIO GONNET received his PhD in Engineering from Universidad Nacional del Litoral (Argentina) in 2003. He currently

holds a Researcher position at Instituto de Desarrollo y Diseño INGAR (Argentina). His research interests are models to support

design processes and conceptual modeling. His email address is sgonnet@santafe-conicet.gov.ar.

https://www.eclipse.org/acceleo/
https://www.eclipse.org/
https://www.eclipse.org/sirius/
https://www.eclipse.org/modeling/emf/
mailto:mariajuliablas@santafe-conicet.gov.ar
mailto:sgonnet@santafe-conicet.gov.ar

