
Proceedings of the 2013 Winter Simulation Conference

R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds

A DISCRETE EVENT SIMULATION ENVIRONMENT TAILORED TO

THE NEEDS OF MILITARY HUMAN RESOURCES MANAGEMENT

Stephen Okazawa

Defence Research and Development Canada

Department of National Defence

Ottawa, ON, CANADA

ABSTRACT

The management of military human resources (HR) is a complex problem. Discrete event models of mili-

tary HR systems are used by the Canadian Department of National Defence to provide military decision

makers with greater knowledge of the outcome of possible courses of action. However, models of mili-

tary HR systems have unique characteristics that most discrete event simulation software products do not

cater to. Specifically, military HR models tend to be complex rule-based models, they process large

amounts of data, and the ability to interconnect models is very desirable. This paper presents a novel dis-

crete event simulation environment being developed by Defence Research and Development Canada

called “Right Person, Right Qualification, Right Place, Right Time Human Resources” which is tailored

to the particular needs of military HR modeling and simulation.

1 INTRODUCTION

The management of military human resources (HR) is a complex area in which decision making affecting

the careers of military personnel often produces unforeseen and long-lasting consequences. Without care-

ful analysis, a decision to change personnel force structure, training programs, retention policies, or op-

erational commitments can unknowingly produce shortages and/or excesses of personnel in various occu-

pations at various ranks at various times. Ultimately, these unexpected outcomes may result in a loss of

operational readiness and can take years, if not decades, to correct.

Within Defence Research and Development Canada (DRDC), the Director General Military Person-

nel Research and Analysis (DGMPRA) and the Centre for Operational Research and Analysis (CORA)

apply scientific methods to provide knowledge and advice to military managers and decision makers in

the Canadian Department of National Defence (DND). DGMPRA’s Workforce Modeling and Analysis

Team and other teams in CORA develop software models of DND HR systems and conduct simulations

and analyses in order to provide HR decision makers with greater knowledge of the outcomes of possible

courses of action. Examples of HR-related information produced by this work include forecasts of: train-

ing demand, training output and occupation health (Corbett 2013; Latchman and Hunter 2002; Straver,

Okazawa, and Wind 2009; Seguin 2011), manning levels at all ranks in various occupations (Zegers and

Isbrandt 2010), and readiness for deployed operations (Scales, Okazawa, and Ormrod 2011; Moorhead,

Wind and Halbrohr 2008).

Many of DRDC’s HR models are implemented in the discrete event simulation (DES) environment,

Arena, while a smaller number are implemented in other environments such as PowerSim or in program-

ming languages like C++. While each of these environments and languages is powerful in its own right,

none of them was designed with a military HR context in mind. Models of military HR systems have

unique characteristics that most simulation software is not ideally suited to addressing. As a conse-

Okazawa

quence, the process of developing and running DND HR models is not as efficient or as ambitious as it

could be. This paper presents a novel discrete event simulation environment being developed by

DGMPRA called Right Person, Right Qualification, Right Place, Right Time Human Resources (R4 HR)

which is tailored to the specific needs of military HR decision making. The objective of developing this

new software is to provide more accurate and more comprehensive HR-related information to military de-

cision makers in less time.

2 CHARACTERISTICS OF MILITARY HR MODELS

In our experience, military HR models present a challenge for DES environments like Arena because mil-

itary HR models tend to be complex rule-based systems, they make use of very large datasets, and the

ability to interconnect models is very desirable. This section elaborates on these characteristics and the

challenges they pose. Note that we frequently draw comparisons with Arena throughout the paper be-

cause it is a widely used DES environment and because of the number of DRDC’s military HR models

that are currently implemented in it.

2.1 Rule-Based Models

Military HR models often contain logic in the form of complex sets of rules representing the policies and

procedures that affect the careers of military members. For example, in a personnel force structure mod-

el, the following is a set of rules that could be used to carry out promotions:

1. Find all unfilled positions in the next rank and sort in order of priority

2. Find all promotable individuals in the preceding rank, i.e. individuals who:

a. have spent a certain minimum amount of time in the preceding rank

b. have completed necessary training in the preceding rank

3. For each available position:

a. Find all promotable individuals that meet the position’s minimum qualifications

b. Randomly select an individual from this group and promote to the position

The accuracy of military HR models is generally a function of the correctness of these rules, rather

than the correctness of properties like processing times, transit times, and queue sizes as is the case in

many other applications of DES. It is also the nature of military organizations that policies and proce-

dures are constantly changing. Each new simulation scenario typically involves a request to analyze the

effect of changing one or more of these rules.

Using standard DES components like assign blocks, decide blocks and delay blocks, it can become

very difficult to implement such a rule-based system. The resulting logic tends to involve deeply nested

loops that search and sort large amounts of data. This quickly becomes very challenging to debug, vali-

date and modify. In such cases, for example Okazawa, Ormrod and Young (2009), it is often more ap-

propriate to implement this type of model logic using an embedded programming language like Arena’s

Visual Basic for Applications (VBA). However, this presents its own challenges. Writing portions of

model logic in code requires knowledge of the simulation environment’s programming interface, moves

model logic out of the graphical interface into a separate code editor, and makes it less easy to understand

and change the model as simulation requirements change.

2.2 Large Datasets

In Arena, and other similar DES environments, simulation data from spreadsheets and/or databases is im-

ported to in-memory data structures for processing as the simulation runs. On most current personal

computer (PC) hardware, this amounts to an upper limit of a few gigabytes of data; though, the limit is

less in reality because memory is a shared resource. This places a relatively low ceiling on the scale of

Okazawa

simulation that can be carried out from a military HR perspective. A large-scale DND HR simulation

could make use of data from a variety of large databases including: regular force, reserve force and civil-

ian personnel records, individual employment and training histories, establishment and theatre unit struc-

tures, organizational structure, and planned intake and manning levels. By a rough estimate, importing

these datasets would require on the order of tens of gigabytes of memory space, exceeding the available

memory on most modern PCs. In general, however, there is no limit on the amount or type of data that a

simulation may need. As DND’s data warehousing technology improves, the amount of data available for

simulation will only increase. Therefore, the volume of data required for military HR simulations will

most likely continue to exceed the limits imposed by in-memory data structures even as PC hardware im-

proves over time.

2.3 Interconnecting Models

Maintaining a capability to develop and operate DND HR models such as a personnel force structure

model or a deployment model is a substantial task typically involving a team of two or three scientists

having specialized knowledge in that area. The ground-up development and operation of a unified mili-

tary HR model that handles these and other areas at once is an enormous task beyond the scope of any one

team because of the diverse expertise required and the complexity that such a model would entail.

However, the need for such a unified model exists because the various components of military HR are

interconnected. For example, a deployment model cannot accurately determine the availability of per-

sonnel over time without also modeling personnel force structure and training; a training model cannot

accurately determine student intake without also modeling personnel force structure; and it cannot accu-

rately determine if it is meeting demand without also modeling deployments. Without a unified model,

the effects of these interactions must either be significantly simplified or ignored.

The most feasible approach to achieving a unified military HR model is to allow parallel execution of

multiple sub-models that have been developed by different teams of scientists. In this context, parallel

execution means running two or more sub-models in the same simulation instance using the same event

queue and having the ability to exchange data. However, to the author’s knowledge, Arena and similar

DES environments are not designed to facilitate this. For example, in Arena, block names, variable

names, signal values and the simulation clock all have global scope. If two or more separately-developed

models are imported into the same simulation instance, it is unlikely that no naming collisions will occur

and unlikely that the simulation clock has been used in a consistent way (e.g. assuming the same zero-

time). It is very hard to detect and debug the resulting errors, mostly likely producing a broken model.

3 THE R4 HR SIMULATION ENVIRONMENT

The R4 HR simulation environment was developed specifically to address these unique characteristics of

military HR models. This section introduces the main concepts and features of the R4 HR simulation en-

vironment that distinguish it from other DES software and allow it to meet the needs of military HR mod-

eling and simulation.

3.1 Python

As discussed above, the rule-based model logic that is common in military HR models tends to be better

suited to a programming language implementation rather than a graphical process implementation using

DES building blocks. However, verbose and unintuitive syntax are significant barriers to developing and

maintaining models that implement some logic in code. For example, to access a simulation variable

named “total” in an Arena VBA block, the following code is used:

ThisDocument.Model.SIMAN.VariableArrayValue(

 ThisDocument.Model.SIMAN.SymbolNumber(“total”))

Okazawa

 The R4 HR simulation environment attempts to provide the advantages of a programming language

but employs a clear, simple syntax that non-programmers will be comfortable with and seamlessly inte-

grates the code with the graphical interface. In the R4 HR environment, the following code would be

used to access a variable named “total”: $total.

The R4 HR environment’s programming language is Python. The model developer can create Python

functions that integrate with the rest of the model and are visible and editable directly in the modeling in-

terface. Figure 1 illustrates how the “total” example would appear in the R4 HR environment. Note, the

$ that precedes the variable name is not standard Python syntax and indicates that “total” is an alias for a

model object and not a regular python variable (the use of aliases will be described in more detail below).

Figure 1: A Python function accesses and prints a simulation variable named “total”.

 Python was chosen because it is a powerful, general purpose programming language supported by an

impressive variety of libraries that extend its capabilities in many scientific fields. It is a language that

emphasizes simple, readable syntax that is friendly to non-programmers. Finally, it is a widely-used lan-

guage that has proven itself in ambitious scientific applications. For example, Python was used to stream-

line NASA’s Space Shuttle mission design (python.org 2013).

3.2 Modular Model Logic

The R4 HR environment implements a modular architecture that allows any model logic, whether a single

function or an entire model, to be duplicated and reconnected elsewhere in the same workspace or im-

ported into another model. The architecture also allows separately developed models to be integrated and

executed in parallel. This is achieved in large part by a naming system that avoids naming collisions.

Naming collisions arise because software normally organizes objects into scopes. Implicitly, any ob-

ject can interact with any other object in the same scope, so all names in the scope must be unique. We

cannot transplant objects and code from one scope to another if they use names that have already been

claimed in the new scope. The objects must be renamed and any code that accesses them must be updat-

ed, which is a difficult and error-prone process. In Arena, for example, all model objects exist in the

same scope, so naming collisions are very hard to avoid when moving or duplicating model logic.

To void these problems, R4 HR uses a naming system similar to the way people use names. Many

people share the same name, and yet society functions despite the ambiguity. This works because peo-

ples’ interactions are not managed with scopes; they are managed with one-to-one connections. So it

does not matter that there may be many people named, for example, Robert. What matters is who is con-

nected to each Robert and what they call him. A Robert may indeed be called Robert by some, but others

will call him Bob or boss or uncle depending on their relationship to him. In other words, Robert is given

an alias by each person that interacts with him. If another person, say Barbara, knows more than one

Robert, she will give each one a different alias, like Big Bob and Little Bob. If a group of people move

from one place to another, they retain the connections and aliases that already existed within the group so

they can function as before. To interact with their new setting, new one-to-one connections are formed.

R4 HR applies this naming system to all model objects. Therefore, if one model object needs to in-

teract with another, it forms a connection to that object and then refers to it using the alias. In the Python

code, aliases are prefixed with a $ (as seen in Figure 1, above). This system ensures that any selection of

model logic can be safely duplicated, moved and reconnected elsewhere without affecting its functionali-

ty. We will refer to this naming system as the graph-alias naming system because the objects and their

Okazawa

connections form a directed graph where each connection has an alias. Figure 2 shows a number of ob-

jects and connections and illustrates how the graph-alias naming system handles multiple objects with the

same name. In the R4 HR interface, model objects are surrounded by a rectangular border, connections

appear as arrows and aliases are shown next to the connection arrow.

Figure 2: A model in which there are two variables named Robert. A function named Barbara connects to

both Roberts with different aliases. The functions Nephew and Employee form other connections with

their own aliases.

3.3 Relational Database

The vast majority of military HR data resides in databases. For Arena-based models, we import this data

into in-memory data arrays. As discussed above, this places a low ceiling on the size of data that can be

processed. It also presents another disadvantage. A relational database can be processed using structure

query language (SQL) which is ideally suited to the large-scale searching, sorting and updating operations

that are common in military HR models. But when the data is imported into an in-memory array, the abil-

ity to use SQL is lost, and these data operations must then be re-implemented by the model developer.

In order to conveniently access and process very large datasets, the R4 HR environment provides a

built-in relational database. Simulation data can be imported into the built-in database without changing

form and can be directly processed using SQL as the simulation runs. This approach was previously im-

plemented in Arena using extensive VBA code (Okazawa, Ormrod, and Young 2009). In R4 HR, the ap-

proach has been seamlessly integrated into the environment, so the model developer can use database ta-

bles and SQL without knowing the details of opening database connections and executing transactions.

Figure 3 shows an example of an SQL query acting on a database table in the R4 HR environment.

Figure 3: An SQL query is applied to a relational database table in the R4 HR environment.

3.4 Model Objects and Connections

As with most DES simulation environments, models in R4 HR are created by adding model objects to the

workspace and connecting them together. The environment provides a selection of basic modeling ob-

jects that will be useful in many scenarios. These include function objects for executing Python code, da-

Okazawa

ta objects for storing and processing data in various formats, plotting objects that display information in

graphical form, and other objects that are useful for managing larger, more complex models.

Each of the basic modeling objects is a special Python object created for the R4 HR software, but any

Python object can actually be used as a model object. This provides a great deal of flexibility because it

allows application-specific Python objects, such as a numpy array (an optimized data structure for matrix

operations) or a custom file reader, to be easily incorporated into a model.

When one object, A, is connected to another object, B, it means that A can interact with B. For ex-

ample, Figure 4 shows a function object that is connected to another function object and a data object.

Through the connections, the function is able to use the other objects. In this case, it assigns data to the

data object and calls the factorial function object. Note that function objects can have parameters and can

be recursive as the factorial function illustrates. Connections are uni-directional, so object B cannot inter-

act with object A unless another connection is created from B to A. Connections are the only way that

one model object can interact with another which respects the graph-alias naming system and thus pre-

serves modularity.

Figure 4: A function object is connected to and uses two other objects: another function object called fac-

torial and a data object.

3.5 Events and Signals

A discrete event simulation consists of items (often called entities) that flow through a process. Each step

in the process is an event which may apply changes to the entity’s attributes, changes to simulation varia-

bles, delays, decisions, and the use of resources. In R4 HR, the Python function objects introduced above

also serve as events. In most cases, events will consist of a few simple lines of code, and the level of Py-

thon knowledge required to write such events is very basic. But this approach is also very powerful as the

full flexibility of Python and its libraries is available to be used in any function object when needed.

Events in DES are triggered by entities, and we normally think of entities as physical objects such as

a parcel being shipped or a hospital patient. But a more general interpretation is that an entity is some-

thing that carries information from one event to another. The information could describe a physical ob-

ject, and information on the same object could be passed through the entire process, which is analogous to

traditional DES entities; but we can also allow events to send arbitrary information to other events. This

is the approach used in R4 HR. There is no assumption of what an entity is or that it persists throughout

the process. Events simply communicate whatever information is needed, and because it is information

rather than objects moving from one event to another, we use the term signal rather than entity.

The advantage of this approach is that the information that is sent from one event to another is unre-

stricted. The signal might only be a trigger for another event, in which case no information needs to be

sent; the signal could carry a simple message such as a value or string; or the signal could carry complex

Okazawa

information such as a list of items or a custom class instance. If the developer wishes to implement tradi-

tional DES entities, the signal can carry an entity message that stores information in attributes.

Because there is no assumption that signals persist throughout a process, all signals between process

events must be explicitly created. This is done by calling a signal function within an event’s Python code.

The signal function must be called with at least one parameter specifying the target event that will receive

the signal, and a connection must exist to the target event; a second optional parameter is used to attach a

message to the signal; a third optional parameter is used to specify the time at which the target event will

be triggered; and a fourth optional parameter assigns a priority to the signal.

When the signal function is called, the target event, message, time and priority are stored in the R4

HR software’s event queue. As with other DES software, the event queue manages all pending events in

the simulation and decides which event will execute next. When one event has completed, the event

queue will select the event with the nearest time to execute next. If there is more than one such event, it

will select the one with the highest priority. If there is still more than one such event, it will select the one

that was placed on the event queue first. Figure 5 shows a simple example of one event signaling another

without passing any information.

Figure 5: EventA sends a simple trigger signal to eventB with no information.

Because events and functions are one and the same, any function object can be called like a function

or signaled like an event. The execution of a called function is nested within the execution of the code

that called it, so it runs immediately and can return a value (as in the factorial function example in Figure

3, above). Conversely, signaling a function does not execute it, it places it in a queue of pending events

for execution later in the simulation. The code that created the signal finishes before the signaled function

runs, therefore a signaled function cannot return a value to the code that sent the signal.

The parameters of a function define the inputs that the function expects when it is called. When a

function with parameters is signaled, the signal must include a message that matches the function’s pa-

rameters. This is how a signal’s message gets passed to the target event. Figure 6 shows an example of

sending a signal with a message. Note that the event that receives the message has a parameter called

“person” in its title line, so any signals that trigger this event must include a person as a message.

Figure 6: EventA creates an entity called “person” and assigns attributes for its ID, name and age. It then

sends a signal to eventB, including the person as a message. EventB receives the message as a function

parameter, increments the person’s age, and then prints its attributes.

Okazawa

3.6 Clocks

The examples of signaling described in the previous section did not involve time. If no time is provided

in the signal call, the current simulation time is used by default. In order to schedule events to occur in

the future, we need to introduce the concept of clocks.

In the R4 HR environment, the model developer does not have access to a global simulation clock.

Instead, R4 HR uses multiple local clocks. This is consistent with the way we use time in reality as there

is no absolute clock that started ticking when the universe began; we use wrist watches, wall clocks, CPU

clocks, and other devises that tick along with time but which do not necessarily display the same time or

tick at the same rate. In the same way, R4 HR’s local clocks can be individually set to different times and

different speeds.

This allows the model developer to use clocks in any way (s)he sees fit without worrying about future

integration issues. One developer may decide that a clock tick corresponds to an hour and that the initial

time at simulation start is zero, while another developer may decide that a clock tick corresponds to a day

with an initial time of 365. If these two models were later integrated for parallel execution, each model

brings its own clock, so there will be no conflicts in how time is used. The hour-clock will start at zero

and will tick 24 times for each tick of the day-clock which will start at 365. Note that clock times are real

numbers, not integers, so events can be scheduled at any real number value on a given clock.

To signal an event at a future time, the signal defines a time or a delay according a local clock. The

event that is sending the signal must have a connection to the clock it is using. Figure 7 shows an exam-

ple of an event setting up a signal to trigger another event at time 5 on a local clock. Note that the target

event accepts two parameters, so the signal sends a message with two elements: (‘John’, ‘Smith’).

Figure 7: EventA creates a signal with a two-parameter message (‘John’, ‘Smith’) that will trigger eventB

at time 5 according to the clock.

3.7 Actors and Sockets

While it is possible to implement an entire model in a single workspace, such a model would become dif-

ficult to understand because both high-level and low-level logic would be mixed together. Usually, it is

preferable to hide lower-level details from a higher-level view. This makes the structure of the model

clearer and helps others understand how it works.

To achieve this, the R4 HR environment allows model logic to be enclosed within an object called an

actor. Actors can also contain other actors, so the model can be organized hierarchically. When a model

object inside an actor needs to interact with an object outside the actor (and vice versa), connections can

cross actor boundaries using another object called a socket. Actors and sockets are purely cosmetic; they

have no impact on how the model works, only on how it is organized and displayed in the interface. This

means the model developer can enclose arbitrary portions of logic inside actors without having to make

any changes to the model implementation.

Figure 8 shows a simple example of a decision event that is enclosed within an actor. In R4 HR,

there is a top-level actor called “simulation” within which all model logic is created. The actor currently

Okazawa

being viewed is displayed within a dashed border and shows its path to the top-level simulation actor.

The actor shown in the figure contains an event that receives information about a person. The code re-

sends the signal with the same information to one of two outputs depending on the person’s age. The ob-

jects to the left and right of the event are sockets. The dashed edge on each socket indicates the side of

the actor that the socket is attached to. The dots within the sockets are called nodes, and their role is to

break up connections into segments.

Figure 8: The internal logic of an actor showing a decision event and input and output sockets.

Figure 9 shows the same actor viewed from the outside. The sockets now appear on the outside of the

actor and show how the actor’s internal logic is connected to external logic.

Figure 9: The external logic that interacts with the actor by connecting to its sockets.

3.8 Modeling Approach

In practice, we anticipate that most models, at a high level, will consist of a number of interconnected ac-

tors. Each actor would be responsible for a different aspect of the model and would pass information to

other actors using sockets as needed. For example, Figure 10 shows how a personnel force structure

model could be structured in the R4 HR environment. Personnel force structure models simulate the pro-

gression of military personnel from recruitment, up through the ranks until they retire.

In this example, the Recruit actor sends signals to the private rank (PTE) actor when new recruits en-

ter the system. Each rank actor maintains a list of current personnel and ensures that they complete the

requirements of the rank such as training and enforcing a minimum amount of time in the rank. When

these criteria are met, an individual becomes promotable. When a private becomes promotable, the pri-

vate actor immediately signals the corporal (CPL) actor to promote the individual. Beyond the rank of

corporal, promotions only occur if there is a position available in the rank above, so three connections are

needed to manage the back-and-forth communication. The first connection allows the lower rank to sig-

nal the upper rank when an individual has become promotable. If a position is available at that time, the

Okazawa

upper rank will signal back through the second connection. Finally, the lower rank responds by sending a

signal with information about the individual to be promoted through the third connection, and the promo-

tion is complete.

Figure 10: A sample layout for a personnel force structure model composed of actors, where each actor is

responsible for a rank and communicates with other actors using sockets.

Alternately, if no position was available for the promotion, the upper rank would not have responded

and the individual would wait in the lower rank. Eventually, when a position does open, the upper rank

would signal the lower rank through the second connection. Then the lower rank would select an individ-

ual from all those who are waiting and send the individual’s information through the third connection to

complete the promotion.

This example highlights how actors and sockets contribute to modular model development. Actors

neatly hide the detailed implementation of model components and clearly indicate the connections that

must be made to “plug” the component into the model. This allows actors to be easily disconnected,

moved, duplicated, swapped and reconnected.

By extension, actors and sockets also provide a convenient means to interconnect several complete

models. It is therefore feasible to create a unified military HR model in the R4 HR environment. Each

model would be enclosed in its own actor and sockets would be used to allow information exchange be-

tween them. Figure 11 illustrates a simple structure that could be used to interconnect a personnel force

structure model, a training model and a deployment model. In this minimal example, the force structure

model would send information to the training model about students that need training, and the training

model would send information back whenever students complete training. The deployment model would

send requests for deployable personnel to the force structure model, the force structure model would re-

spond by identifying whatever qualified and available personnel can be assigned to the deployment, and

finally, the deployment model would inform the force structure model when the deployment is complete.

Figure 11. A simple structure for unified military HR model in which a personnel force structure model,

training model and deployment model are enclosed within actors and communicate using sockets.

Okazawa

3.9 Additional Model Objects

In addition to the features described above, the R4 HR environment provides a number of other model ob-

jects that are useful in developing and running models, but which do not need to be described in detail for

the purposes of this paper. These include:

 a sheet object that stores data in a grid and provides some common features of spreadsheets,

 a hub object that allows one object to connect to many other related objects by making a single

connection to the hub,

 a data visualization object that displays two-dimensional (2D) and three-dimensional (3D) graphs

and plots that animate as the simulation runs, and

3.10 3D Graphical User Interface

Arena and other DES environments generally employ multiple workspaces for different aspects of a simu-

lation project including a graphical modeling space, a code editor, a 3D animation space, and a results

analysis space. The R4 HR environment integrates all these workspaces into a single 3D space. All mod-

el objects including functions, data and actors occupy a position in this 3D space. Actors can be assigned

a user-specified 2D or 3D icon. The positions of all model objects can be controlled within the simula-

tion, so it is possible to create an animated 3D representation of the events occurring in the simulation.

For example, if an actor was used to model a ship, a ship icon could be assigned to the actor, and the actor

could be moved between a shore position and a sea position to indicate its operational status.

4 DEVELOPMENT STATUS

DGMPRA has developed a functioning prototype of the R4 HR environment. All of the figures in this

paper are screen captures from the prototype, and all of the features introduced above are present in the

prototype. It is possible to carry out simulations in the software as it stands. However, the prototype was

not developed to be used for real modeling and simulation work; it was developed to validate and refine

R4 HR concepts. As such, it contains bugs, incomplete features, and the performance is not optimized.

DGMPRA is in the process of launching a contract to have the R4 HR software professionally developed.

The timeframe for completion of the contract is currently 2016.

5 CONCLUSION

The R4 HR simulation environment is intended to be a platform for future military HR modeling and

simulation in DND. It provides many convenient features that were specifically designed with this task in

mind including an embedded programming language that is both powerful and friendly to non-

programmers; an architecture that allows model logic to be easily moved, duplicated and reconnected; an

integrated relational database for processing large amounts of data; a flexible signaling system for com-

munication between simulation events; and a 3D graphical user interface that integrates modeling, simula-

tion and analysis activities into a single workspace.

Through these features R4 HR will enable military HR models to be developed faster and modified

more easily as simulation requirements change. As a result, simulation support to decision making will

be more responsive to operational and strategic needs. However, a key advantage of R4 HR is that it

makes feasible the prospect of creating unified models that interconnect the various sub-systems of mili-

tary HR. By capturing the interactions between these sub-systems, the R4 HR environment will provide

foresight to DND decision making that is more accurate and comprehensive than our current modeling

and simulation approaches allow.

Okazawa

ACKNOWLEDGMENTS

The R4 HR project could not have achieved its current momentum and progress without the hard work of

the following individuals: Stan Isbrandt, Patricia Moorhead, Sonia Latchman, Zakia Bouayed, Abe Je-

sion, Albert Chan, Benoit Paquin, and Alex Kwiatkowski.

REFERENCES

Corbett, N. Modelling the Production and Absorption of Pilots: The Development of the Production, Ab-

sorption and Retention Simulation (PARSim). DRDC Technical Report 2013-023, Center for Opera-

tional Research and Analysis, Ottawa, Canada.

Latchman, S. and C. Hunter. 2002. Preliminary Results from the Pilot Production/Absorption/Retention

Simulation (PARSim) Model. 1 CAD/CANR Headquarters Research Note 0202, Centre for Opera-

tional Research and Analysis, Ottawa, Canada.

Moorhead, P., A. Wind, M. Halbrohr. 2008. “A Discrete Event Simulation Model for Examining Future

Sustainability of Canadian Forces Operations.” In Proceedings of the 2008 Winter Simulation Con-

ference, Edited by S.J. Mason, R. Hill, L. Moench, and O. Rose, 1164 - 1172. Piscataway, New Jer-

sey: Institute of Electrical and Electronics Engineers, Inc.

Okazawa, S., M. Ormrod, C. Young. 2009. Managed Readiness Simulation (MARS) V2: Assessment of a

Simulation Runtime Database Approach. DRDC Technical Memorandum 2009-042, Center for Op-

erational Research and Analysis, Ottawa, Canada.

python.org. 2013. Python Streamlines Space Shuttle Mission Design. Accessed March 15.

http://www.python.org/about/success/usa/.

Scales, C., S. Okazawa, and M. Ormrod. 2011. “The Managed Readiness Simulator: A Force Readiness

Model.” In Proceedings of the 2011 Winter Simulation Conference, Edited by S. Jain, R.R. Creasey,

J. Himmelspach, K.P. White, and M. Fu, 2519 – 2529. Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers, Inc.

Seguin, R. 2011. “1 Canadian Forces Flying Training School (1 CFFTS) Resource Allocation Simulation

Tool.” In Proceedings of the 2011 Winter Simulation Conference, Edited by S. Jain, R.R. Creasey, J.

Himmelspach, K.P. White, and M. Fu, 2519 – 2529. Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers, Inc.

Straver, M., S. Okazawa S., A. Wind. 2009. Training Pipeline Modelling Using the Production Man-

agement Tool. DRDC Technical Memorandum 2009-019, Director General Military Personnel Re-

search and Analysis, Ottawa, Canada.

Zegers, A., S. Isbrandt. 2010. “The Arena Career Modelling Environment – a New Workforce Modelling

Tool for the Canadian Forces.” In Proceedings of the 2010 Summer Computer Simulation Confer-

ence, Edited by G. Wainer, 94 – 101. Curran Associates, Inc.

AUTHOR BIOGRAPHY

STEPHEN OKAZAWA is a defence scientist in Defence Research and Development Canada. His

research focusses on discrete event modeling methods in support of military decision making. He re-

ceived his MEng in Electro-Mechanical Engineering from the University of British Columbia, Canada.

His email address is stephen.okazawa@forces.gc.ca.

http://www.python.org/about/success/usa/
mailto:stephen.okazawa@forces.gc.ca

