
Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

STATE-BASED MODELING AND SIMULATION TOOLKIT FOR DISCRETE-EVENT
SYSTEMS: STATE GRAPH SIMULATOR

Donghun Kang

Department of Industrial and Systems Engineering
Korea Advanced Institute of Science and Technology (KAIST)

Daehak-ro 291, Yuseong-gu
Daejeon, 305-701, REPUBLIC OF KOREA

ABSTRACT

There have been many simulation packages that support the state-based modeling formalisms for modeling
and simulation of a discrete-event system. However, most of them requires a programming task to define the
dynamic behavior of the system so that the modelers who are not experts to the programming have a difficulty
in the learning and use. Also, they lack of a integrated capability to support the model development process.
This paper presents an integrated model development environment for a state-based modeling formalism,
which is named state graph simulator to provide all the functionality of the model development process
of graphical and tabular modeling, interactive simulation, output analysis, model verification capabilities.
The state graph simulator aims to support the rapid model building of a state graph, one of state-based
modeling formalisms, and the rapid development of a domain-specific simulator.

1 INTRODUCTION

In a state-based modeling formalism, the dynamics of a discrete-event system (DES) is described in terms
of the states of the resources that resides in the system. The state-based modeling formalism is originated
from the classical finite state machine that was used for modeling the behavior of sequential circuits (Mealy
1955). Since then, there have been a number of state-based modeling formalisms proposed in the literature,
as well as a number of simulation packages that follow the state-based modeling formalisms developed.

Among the state-based modeling formalisms, DEVS (Zeigler 1976) and timed automata (Alur and Dill
1994) are regarded as the theory of modeling, and each forms an independent research community. Timed
automata is a finite state machine extended with a finite set of real-valued clock where two types of clock
constraints (guard and invariant) are placed on a state transition and a state node (Cassandras and Lafortune
2010). Also, DEVS (Discrete Event System Specification) is a finite state machine extended with a lifepan
for each state in order to accommodate the timing and hierarchical modeling concept (Zeigler 1976).

A number of simulation packages and toolkits have been introduced from the academia to support
the state-based modeling and simulation of a DES. Especially, DEVS-based simulation packages have
been widely developed, such as DEVSJava (Sarjoughian and Zeigler 1998), CoSMos (Sarjoughian and
Elamvazhuthi 2009), DEVSim++ (Kim et al. 2011) and so on. Most of state-based simulation packages
require the users to program for defining the simulation models, which is a difficult task to the non-expert
developers. To mitigate this difficulty, a few simulation packages are introduced with the support of graphical
modeling and the simplification of the model development process: DEVS-Suite (Kim et al. 2009), VLE
(Quesnel et al. 2007), and CD++ (Bonaventura et al. 2013). The graphical modeling capability provided
in these software packages is limited only to support the graphical modeling of the coupled models while
the internal behavior is left to program by the users. Also, each function for the development process is
separated into the independent software tools, which increases the loads of learning and use for the users.
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The state transition diagram is a graphical specification for the state-based modeling formalism, which
was firstly introduced with the finite state machine. As the dynamic behavior of a system becomes complex,
the number of states and the state transitions also increases, which makes it difficult to draw a concise and
readable state transition diagram. In that case, another specification for the state-based modeling formalism,
state transition table, is more suitable to specify the dynamic behavior in a table showing what state will
move to, based on the current state and other inputs. Among the aforementioned simulation packages, no
simulation package supports the tabular specification.

This paper will present an integrated model development environment for a state-based modeling
formalism, which is named state graph simulator to provide all the functionality for the model development
process with graphical and tabular modeling capability while reducing the dependency on the programming
expertise. With the state graph simulator, the users can model a DES with the graphical and tabular
specifications, simulate the specified model with the interactive user interface, conduct the output analysis
with the automatic data collection and visualization, and verify the model with a graphical method,
sequence diagram. The state graph simulator not only supports the rapid model building, but also provides
the rapid development of a domain-specific simulator (or simulation-based decision-support system) with
the automatic code generation and simulation components.

In the following sections, Section 2 describes a state-based modeling formalism, state graph. Section
3 presents the state graph simulator that follows the state graph modeling formalism presented in Section
2 and provides the rapid model building and development capabilities. Section 4 describes an illustrative
example of constructing a domain-specific simulator with the state graph simulator and Section 5 has the
summary and discussion.

2 STATE GRAPH

The state graph is one of state-based modeling formalism that provides a well-defined set of graphical
conventions with a formal syntax for unambiguous understanding among the modeling experts and the
simulation algorithm for executing the state graph models (Choi and Kang 2013).

Figure 1 presents the state graph model of a single server system. In general, the single server system
consists of a Buffer and a Machine, but a Job Generator is introduced to supply the job entities
into the system. The state graph model consists of a composite state graph model represented in the object
interaction diagram and a set of atomic state graph models represented in the state transition diagrams.

Figure 1: State graph model of a single server system

The resources (or objects) in the above single server system are Job Generator, Buffer, and
Machine. In a DES, an event represents a system change at a discrete time, which is represented as
an interaction (or message) in the state graph model. The object interaction diagram at the upper part of
Figure 1 describes the interactions between the resources in the system. The interactions among the three
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resources in Figure 1 are identified as (1) job transfer from Job Generator to Buffer, (2) request for
the next job from Machine to Buffer, and (3) job transfer from Buffer to Machine. Namely, Job
Generator sends out Arrive message to Buffer whenever a new job arrives at the system. The new
job enters the waiting space of Buffer. Once the Machine becomes idle, it sends out Request message
to Buffer for the next job. Then, the Buffer sends out Withdraw message to the Machine. Figure 2
represents the graphical conventions for the object interaction diagram of Figure 1.

Figure 2: Graphical convention of a object interaction diagram

The lower part of Figure 1 presents the state transition diagrams of three objects that comprise of the
single server system. The state transition diagram is a graphical specification for an atomic state graph
model, which describes the state transition of an object based on the interactions with other objects.

The Job Generator sends out an Arrive message every ta time units in a Gen state. The Buffer
has three states of Backlog, Empty, and Stock, and a state variable J that represents the number of
jobs waiting at the Buffer. Initially, the Buffer is set to Backlog state and its state variable J is set
to zero. When the Buffer receives an Enter message (e?), it moves onto Empty state while sending out
a Withdraw message (w!). Upon receiving another Enter message in Empty state (e?), it increases the
number of waiting jobs by one (J++) and moves onto Stock state. The Machine starts with Idle state.
Upon receiving a Send message (s?), the Machine moves onto Run state. After staying at Run state for
ts time units, it changes to Idle state while sending out a Request message (r!). Figure 3 represents the
graphical conventions for the state transition diagrams of Figure 1.

Figure 3: Graphical convention of a state transition diagram

In modeling formalisms for DESs, such as ACD and event graph, the model specification can be given
in three ways: (1) graphical specification, (2) tabular specification, and (3) algebraic specification (Choi
and Kang 2014). The state graph also provides all of the three specifications. However, the algebraic
specification with a detailed description of the transition function is both tedious and difficult; thus graphical
and tabular specification are preferred (Hopcroft et al. 2006).

Tables 1 shows a state transition table of Buffer atomic state graph model given in Figure 1. The state
transition table contains all the information of the state transition diagram in a clearly-defined structured.
Specified for each State are its Name and entry Action, Input Event and Action, Transition Condition and
Action, and Next State.

The graphical and tabular specifications contains all the information for the atomic state graph model.
Therefore, they are interchangeable. However, as the target DES becomes large and complex, the number of
graphical primitives that comprise of the state transition diagram also increases, which results in difficulties
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Table 1: State transition table of a Buffer atomic state graph model in Figure 1

State Input Transition
Name Action Event Action Condition Action

Next
State

Backlog - (e)? - True (w)! Empty
(e)? J++ True - StockEmpty - (r)? - True - Backlog
(e)? J++ True - Stock

J ≡ 0 - EmptyStock - (r)? (w)!; J-- J >0 - Stock

in building and understanding. Especially, the state transition diagram that supports different types of
actions, such as entry action, input action, transition action, and so on, may have a difficulty in specifying
the state transitions including these actions and conditions in the graph. On the other hand, the tabular
specification provides a concise and readable representation of the atomic state graph model.

Table 2 presents an object interaction table of the composite state graph model given in Figure 1. The
object interaction table is specified for each interaction (or message) between two objects, which consists
of Source Object and its Output Message, and Receiving Object and its Input Message.

Table 2: Object interaction table of the composite state graph model in Figure 1

Source Object Output Message Receiving Object Input Message
Job Generator Arrive Buffer Enter
Buffer Withdraw Machine Send
Machine Request Buffer Request

3 STATE GRAPH SIMULATOR

The state graph simulator supports a state-based modeling and simulation of DESs with state graph described
in Section 2. Figure 4 presents the system architecture of state graph simulator that consists of several
graphical user interface (GUI) components and two libraries for the modeling and simulation of a state graph
model. In state graph simulator, a composite state graph model is specified using the object interaction
diagram editor and an atomic state graph model is specified using the state transition table editor. The
adoption of the state transition table for specifying an atomic state graph model allows the users to have a
concise and readable specification for a large and complex system.

Figure 4: System architecture of state graph simulator

As presented in Figure 4, the state graph simulator is not limited only to state graph modeling, but
also supports the simulation and model verification. In addition, the state graph simulator provides two
components (model and simulation libraries) that can be used for constructing a dedicated simulator. More
details on the construction of a dedicated or domain-specific simulator will be introduced in Section 4.
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3.1 Modeling of State Graph Model

Figure 5 presents the state transition table editor with Buffer atomic state graph model of Figure 1. The
state transition table editor consists of a state transition table window for specifying the state transitions
as same in Table 1 and the data table window to define the data tables for state variables, parameters,
messages, and states.

Figure 5: State transition table editor with Buffer atomic state graph model in Figure 1

Prior to specifying the state transitions, data tables have to be defined in the data table window: (1)
State variable data table for state variables with name, type, and initial value, (2) Parameters data table
for the parameters of the atomic state graph model, such as service time (ts) and inter-arrival time (ta),
(3) Messages data table for input and output messages with name and type, and (4) States data table for
specifying the attributes of each state, such as state name, state type {Initial, Regular, Final}, and time
delay. Specified in Figure 5 are a state variable J of integer type with an initial value, messages of Enter,
Request, and Withdraw, and states of Backlog with the initial type, and Empty and Stock with the
regular type. In Buffer atomic state graph model, no parameter is defined.

The toolbar located in the top of the state transition table window provides a few buttons to manipulate
the table structure, such as add/remove a state, an input event, or a state transition for each edge. After the
table structure is constructed, the state transitions can be entered as same as the state transitions in Table 1.

All the state transition tables of the atomic state graph models can be accessed in the atomic state graph
models window of the object interaction diagram editor as presented in Figure 6. Once all the atomic state
graph models are specified, the object interaction diagram can be modeled in the object interaction diagram
window: (1) drag-and-drop a rectangle of an atomic state graph model in the atomic state graph models
window into the object interaction diagram window, and then (2) an atomic object node of the designated
atomic state graph model will be instantiated. Once all the atomic object nodes are placed, the message
couplings that represent the interactions among the atomic objects can be connected: (1) click Connect
button in the toolbar of the object interaction diagram editor to enable the connection, (2) click a source
atomic object node and drag-and-drop a port placed on the selected atomic object node to the destination
atomic object node, (3) an Message Coupling dialog box will show up and specify the output message of
a source atomic object and the input message of a destination atomic object.

The object interaction table window allows the users to check the message couplings among the atomic
objects in a table. The parameter values of the atomic objects can be set or modified in the spreadsheet
window. For example, Machine 1 and Machine 2 atomic objects are instances of Machine atomic
state graph model having a parameter of service time (ts).
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Figure 6: Object interaction diagram editor of state graph simulator

3.2 Simulation of State Graph Model

The simulation window provides the simulation execution of a state graph model. Figure 7 presents the
simulation window in which the simulation execution is finished. The simulation window consists of the
simulation controller, model explorer, and the object interaction diagram view.

Figure 7: Simulation window of state graph simulator with a tandem line system

During the simulation execution, the object interaction diagram view updates the current state of each
atomic object and the current simulation clock as the simulation progresses. For example, in Figure 7,
Buffer 1 atomic object is in Stock state and Machine 1 atomic object is in Run state at the simulation
clock of 3600. The simulation window also can present the current value of a state variable using a label
where the number below each atomic object node in Figure 7 indicates the current value of a state variable
that belongs to the atomic object. For example, the number (29) below Buffer 1 atomic object node
represents the current value of the state variable J of Buffer 1 atomic object. The auxiliary nodes just
like a label are Picture Set for displaying the designated picture for each state of an atomic object, and
Gauge for displaying a state variable’s value in the graphics. As a modeling formalism for a DES, the state
graph provides the simulation algorithm, named synchronization algorithm that synchronizes the simulation
clock and exchanges the messages among the atomic simulators where each atomic simulator is constructed
for each atomic object and takes care of simulation of the atomic object (Choi and Kang 2013).
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3.3 Output Analysis and Model Verification

After the simulation runs, the simulation output can be accessed in the model explorer located at the
left of the simulation window. The following simulation output window in Figure 8 will pop up upon
double-clicking any atomic object name under the ”Simulation Run #1” of model explorer in Figure 7.

Figure 8: Output window for Machine 1 atomic object

The simulation output window provides three outputs for each atomic object: (1) Total output for
displaying the value changes of state and state variables over time, (2) State output for displaying the state
changes over time and time percentage of each distinct state (e.g. utilization), (3) State variable output for
displaying the value changes of each state variable over time and its minimum, mean, and maximum values.
Figure 8 presents the state output of Machine 1 atomic object where its utilization (time percentage of
staying at Run state) is 99.21 %.

To minimize the errors in the simulation execution, the state graph simulator provides a model checking
functionality to find out the syntax errors in the state transition table. However, the logical errors in a
state graph model cannot easily be found before the simulation run. Therefore, the model verification is
required to ensure that the computer program of the computerized model and its implementation are correct
(Sargent 2014). Especially, the state graph model consists of several atomic object and their dynamic
behaviors are based on the interactions among them. In software engineering, the dynamic behaviors of
software components can be specified using sequence diagrams of the Unified Modeling Language (UML).
The sequence diagram is a graphical specification language to show the interactions between objects in
the sequential order that those interactions occur (Booch et al. 2005). The state graph simulator provides
the sequence diagram of a simulation execution so that the user can check the logical flow in the state
transitions and interactions among the atomic objects are correctly performed as shown in Figure 9.

Figure 9 presents the sequence diagram window after the simulation is executed. For each atomic
object, its lifeline in the vertical line is placed and the state changes within an atomic object are displayed in
the time order. Each box placed on the lifeline indicates the time portion of staying at a specific state. The
horizontal arrows represent the messages exchanged between the atomic objects and its text label indicates
the input message of receiving atomic object and its receiving time (e.g. enter@9.64). The provided
sequence diagram can facilitate the model verification in that the state changes from the interaction and
the interaction initiated by the state change can be captured in a graphical way. This is the unique feature
of the state graph simulator, which is available in the author’s website (Kang 2015).

4 ILLUSTRATIVE EXAMPLE

The users are allowed to model and simulate a state graph model within the state graph simulator, but
they are also able to build their own dedicated simulators using the state graph simulator. For example,
the rapid development of an urban traffic simulator can take full advantages of the integrated simulation

http://www.vms-technology.com/sgs/
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Figure 9: Sequence diagram window of state graph simulator

model development environment of the state graph simulator. Figure 10 presents the simulation model
development process for the urban traffic simulator using the state graph simulator.

Figure 10: Development process of urban traffic simulator using the state graph simulator

In the state graph simulator, the user constructs a state graph model of an urban traffic system using the
object interaction diagram editor and state transition table editor, executes the state graph model, and then
performs the model verification using the output window and sequence diagram window. If the state graph
model turns out that it works correctly, the state graph simulator can generate the source code of the state
graph model in Microsoft C# or Java programming language. Once the source code are generated, these
codes are assembled into a urban traffic system model library. On the top of the state graph simulation
library, the domain-specific modeling tools, such as link-node diagram editor and traffic control editor are
constructed and the simulation and analysis tools are also developed.

4.1 State Graph Modeling of Urban Traffic System

The signalized urban traffic system consists of a road network and the traffic signal controllers for each
intersection. The link-node diagram is introduced to represent a physical road network concisely and clearly
(Myung et al. 2014), which is a directed graph having a set of links and a set of nodes. A link is a directed
edge that represent a lane between two intersections where inflow occurs only at the start point of a link
and out flow occurs only at the end point of a link (Myung et al. 2014). A node is a vertex that connects
the links and indicates the stopping point at each incoming lane of an intersection (Gate and End nodes),
splitting and merging of lanes (Split and Merge nodes), and the generation and disposal of vehicles
(Source and Sink nodes).

The basic modeling concept of an urban traffic system using the state graph is first introduced in Kang
et al. (2012), and then it is elaborated in Myung et al. (2014). In the state graph modeling, a link is
represented by a pair of ConveyPart atomic state graph model for conveying the vehicles at the start
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point of a link to the end point of the link and StorePart atomic state graph model for storing the
vehicles awaiting at the end point in order to move onto the next link by passing the connected node. Each
node is represented by the respective atomic state graph model: Traffic Generator and Traffic
Sink atomic state graph models for Source and Sink nodes, Signal Gate and End Point atomic
state graph models for Gate and End nodes, Diverter and Merge Controller atomic state graph
models for Split and Merge nodes. Figure 11 depicts the atomic state graph models of only four of the
above-mentioned modeling components with the state transition table editor. Presented in Figure 11 is also
a Traffic Signal atomic state graph model for a traffic signal controller where each state represents
a status of traffic lights at each incoming direction.

Figure 11: Atomic state graph models of the modeling components for a link-node diagram in the state
transition table editor

Presented in Figure 12 is the composite state graph model of a four-leg intersection where each road
consists of one lane with the object interaction diagram editor. The Traffic Signal atomic object is located
in the center of the diagram and is connected to all the Signal Gate atomic objects to control the traffic
flows. The Traffic Generator and Sink atomic objects are placed in the boundary of the diagram.

4.2 Model Verification

There are two ways to verify the model in the state graph simulator: one is to use the auxiliary atomic state
graph model to count the numbers of vehicles that have passed a certain point and the other is to use the
sequence diagram window to check whether the logical flow and message exchanges are made correctly
or not. Figure 13 presents a portion of simulation window that uses three labels to capture the number
of generated cars, the number of exited cars, and the number of on-going cars in the system. If the state
graph model in Figures 11 and 12 works correctly, the number of on-going cars should be equal to the
number of generated cars subtracted by the number of exited cars. To collect the number of generated cars
and exited cars, a new atomic state graph model is introduced, named Counter, which simply increases its
own counter variable whenever it receives a message from others (e.g. arrival and leave of cars). Similarly,
some specialized atomic state graph model may be useful to collect the output data, such as tally statistics
collector for waiting times and turn-around times, time-dependent statistics collector for average queue
length and machine utilization.
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Figure 12: Composite state graph model of a four-leg intersection with the object interaction diagram editor

Figure 13: Verification of state graph model for an traffic intersection

4.3 Implementation of Urban Traffic Simulator

The implementation of urban traffic simulator starts with the code generation of the state graph model.
The generated source codes are assembled into a urban traffic system model library that consists of the
atomic simulators for the above-mentioned atomic state graph models.

The urban traffic simulator requires a domain-specific model that includes a link-node diagram and
dual-ring-and-barrier diagrams for describing the road network and traffic signal controllers. The link-node
diagram editor in Figure 14-(a) allows the users to specify the link-node diagram using the graphical
elements, such as nodes and links. Also, the traffic signal controller editor in Figure 14-(b) let the users
specify the signal phases of a traffic signal control in a tabular form.

Before the simulation run, the simulation window in Figure 15 translates a domain-specific model
into a composite state graph model by mapping the modeling components of the link-node diagram and
traffic signal controllers into the respective atomic state graph simulators provided in the urban traffic
system model library. During the simulation run, the simulation window provides two simulation views:
(1) link-node diagram view for displaying the congestion level on each link with the color scheme and
updating the number of vehicles on each link, and (2) status of a traffic signal controller at each intersection.
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Figure 14: Urban traffic simulator: (a) link-node diagram editor and (b) traffic signal controller editor

Figure 15: Simulation window of urban traffic simulator

5 CONCLUSION

The state graph simulator provides all the functionality for the state-based modeling and simulation
development process in a single integrated development environment with the graphical and tabular modeling,
interactive simulation and output analysis, and model verification capabilities. The state graph modeling
consists of the composite state graph modeling with the object interaction diagram editor and the atomic
state graph modeling with the state transition table editor. The simulation comes with the interactive object
interaction view. The output analysis and model verification is based on the automatic data collection to
provide the visual system trajectories and the sequence diagram. Also, the state graph simulator provides
the components for constructing a domain-specific simulator, such as code generator and simulation library.

Further research should extend the state graph simulator so as to cope with more streamlined modeling
development process and modeling and simulation of a large-scale DES. In that sense, the state graph
simulator will support the parallel simulation with the automatic load balance and distributed simulation with
HLA/RTI in the near future. The state graph modeling formalism can facilitate the federation architecture
modeling and automatic generation of federate simulation codes and a federation object model. Also,
modeling template can be incorporated into the state graph simulator to help the re-use of atomic state
graph models and to provide the primitives for the data collection.
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