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ABSTRACT

We consider the problem of estimating the p-quantile of a distribution when observations from that
distribution are generated from a simulation model. The standard estimator takes the p-quantile of the
empirical distribution of independent observations obtained by Monte Carlo. As an improvement, we use
conditional Monte Carlo to obtain a smoother estimate of the distribution function, and we combine this
with randomized quasi-Monte Carlo to further reduce the variance. The result is a much more accurate
quantile estimator, whose mean square error can converge even faster than the canonical rate of O(1/n).

1 INTRODUCTION

The p-quantile of a random variable Y with cumulative distribution function (CDF) F , for 0 < p < 1, is
defined as ξ = ξp = F−1(p) = inf{y : F(y)≥ p}. The value at risk (VaR) in finance and actuarial science
is defined as a quantile (Asmussen 2018). If Y represents a level of damage or loss, for example, then
ξp is the level that is exceeded with probability 1− p. A standard way of estimating ξp from a given
sample of n independent and identically distributed (i.i.d.) observations of Y is to take the p-quantile of
the empirical distribution, whose CDF F̂n is a step function having a jump of size 1/n at each observation.
In case these observations are generated from a simulation model by Monte Carlo (MC), one can do better
by controlling the way the observations are generated and how the CDF is estimated from them.

In this paper, we do this by combining two techniques. The first one, conditional Monte Carlo (CMC),
replaces the empirical CDF by an average of n realizations of the CDF of Y conditional on partial information
that does not completely reveal Y , but from which we can easily compute its conditional CDF. It is often
possible to do that in a way that the resulting (average) conditional CDF is continuous and smooth.

The second technique replaces the independent samples ofY by randomized quasi-Monte Carlo (RQMC)
samples. More specifically, we assume that to simulate Y , we generate a vector U of d independent random
numbers uniform over (0,1) that drive the simulation, and Y can be computed as a function of these random
numbers. Practically all MC simulations work that way, sometimes with a random d, but this is not a
problem (L’Ecuyer and Lemieux 2000; L’Ecuyer 2009). RQMC replaces the n independent realizations of
U by a set of n RQMC points in d dimensions. These points are not independent, but each of them has
the uniform distribution over (0,1)d , so each RQMC realization of Y has the correct distribution, and the
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n points together cover the unit cube more evenly (in some sense) than independent random points. If the
CMC is designed so that the CDF estimator becomes a smooth function of U in the neighborhood of ξp,
then the combination with RQMC can be much more effective, because the variance of the CDF estimator
can then be reduced significantly, and may converge at a faster rate than the canonical one.

Prior work on applying QMC and RQMC for quantile estimation include Papageorgiou and Paskov
(1999), Jin and Zhang (2006), Lai and Tan (2006), He and Wang (2017), and Kaplan et al. (2019), although
none of these papers combined it with CMC. Using CMC alone (without RQMC) for quantile estimation
was proposed and studied in Nakayama (2014) and further discussed in Asmussen (2018). Combining
CMC with RQMC for density estimation is studied in L’Ecuyer et al. (2020). These authors mention a
possible application to quantile estimation, but leave its study for future work.

The paper’s remainder is organized as follows. In Section 2, we define the mathematical setting and
introduce an example that we carry all along the paper. In the five following sections, we recall the basic
definitions and properties of MC, CMC, QMC, RQMC, and the CMC+RQMC combination, and we explain
how each of them works to estimate a quantile. Section 8 reports the results of numerical experiments with
our running example. A conclusion follows in Section 9.

2 MATHEMATICAL FRAMEWORK

Consider a random variable Y (also called the response) defined by

Y = bY (U1,U2, . . . ,Ud) = bY (U) (1)

for a given (deterministic) response function bY : (0,1)d→R with fixed integer d ≥ 1, where U1,U2, . . . ,Ud
are i.i.d. U (0,1) (i.e., uniform on the interval (0,1)) random variables, so U = (U1,U2, . . . ,Ud)∼U (0,1)d .
The function bY can be quite complicated, first transforming U into a random vector V having a specified
joint distribution, and then using V in detailed computations to finally output a response Y ; e.g., see
Example 1 below. Let F be the cumulative distribution function (CDF) of Y :

F(y) = P(Y ≤ y) = P(bY (U)≤ y) =
∫
(0,1)d

I(bY (u)≤ y)du for all y ∈ R, (2)

where I denotes the indicator function. We assume that we know how to compute Y for any realization
of U, but we do not know how to compute F or the quantiles analytically or numerically. Our goal is to
estimate the p-quantile ξ = ξp for a fixed p. We assume that the density f (y) = F ′(y) is strictly positive
in a neighborhood of ξ , so that y = ξ is the unique root of F(y) = p. To estimate ξ , we will estimate F ,
replace it by its estimator in the equation F(y) = p, and take the root as our quantile estimator.

We illustrate the notation through the following example, motivated by a probabilistic safety assessment
(PSA) of a nuclear power plant (NPP); see Section 3.2 of U.S. Nuclear Regulatory Commission (2005).
Example 1 A system experiencing a random load L has a random capacity C to withstand the load, and
the system suffers damage when L > C. We define the system’s safety margin as Y = C−L, and let F
denote its CDF. This situation arises, e.g., in a NPP undergoing a hypothesized accident, where L denotes
the peak cladding temperature (PCT), and C is the temperature at which the cladding is damaged; e.g., see
Dube et al. (2014). Nuclear engineers model L as a random variable as its value depends on unforeseen
aspects of how the event progresses. The capacity C is also considered as random because it involves
uncertainties regarding the cladding’s material properties.

Nuclear engineers employ detailed computer codes (Hess et al. 2009) to generate an observation of
(L,C), which often entails numerically solving systems of differential equations. We express this through
two deterministic functions bL : (0,1)d → R and bC : (0,1)d → R as

(L,C) = (bL(U),bC(U)), (3)
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where U∼U (0,1)d . Note that we evaluate the functions bL and bC using the same uniform vector U, so
L and C can be dependent. The response function in (1) is bY (u) = bC(u)−bL(u) for u ∈ (0,1)d , so we
obtain an observation of the safety margin as Y = bY (U).

Let θ = P(Y < 0), which is the probability of sustaining damage during an event, and suppose that
a regulator has specified that θ must not exceed a given threshold p, e.g., p = 0.05. We can restate the
requirement that θ ≤ p in terms of a quantile: the p-quantile ξ of Y must satisfy ξ > 0. A quantile provides
information that can be more easily interpretable than the probability θ because ξ is expressed in the same
units (temperature) as L and C. Indeed, nuclear risk studies are often performed using quantiles; e.g., see
U.S. Nuclear Regulatory Commission (2005). 2

3 MONTE CARLO

To estimate ξ via MC, we generate n i.i.d. random vectors Ui ∼U (0,1)d , i = 1,2, . . . ,n, put Yi = bY (Ui)
for each i, and define the empirical CDF by

F̂MC,n(y) =
1
n

n

∑
i=1

I(Yi ≤ y) =
1
n

n

∑
i=1

I(bY (Ui)≤ y), (4)

which is an unbiased MC estimator of F(y). The MC estimator of the p-quantile ξ is then

ξ̂MC,n = F̂−1
MC,n(p). (5)

It can be easily computed as ξ̂MC,n =Ydnpe:n where d·e denotes the ceiling function and Y1:n≤Y2:n≤ ·· · ≤Yn:n
are the n observations Y1,Y2, . . . ,Yn sorted by increasing order.

Under our assumption that f (ξ )> 0, the MC p-quantile estimator obeys a central limit theorem (CLT):

√
n[ξ̂MC,n−ξ ]⇒ N(0,τ2

MC) as n→ ∞, (6)

where ⇒ denotes convergence in distribution (Chapter 5 of Billingsley 1995),

τ
2
MC =

Var[I(Y ≤ ξ )]

f 2(ξ )
=

p(1− p)
f 2(ξ )

(7)

is the CLT’s asymptotic variance, and Var[·] is the variance operator; see Section 2.3.3 of Serfling (1980).
We can construct a confidence interval (CI) for ξ as follows. Let τ̂2

MC,n be a consistent estimator of
τ2

MC, e.g., as in Bloch and Gastwirth (1968); i.e., τ̂2
MC,n⇒ τ2

MC as n→∞. Then for a fixed confidence level

0 < β < 1, we define a CI for ξ as JMC,n = [ξ̂MC,n± zβ τ̂MC,n/
√

n], where zβ = Φ−1(1− (1−β )/2) and Φ

is the N(0,1) CDF. The CI is asymptotically valid in the sense that limn→∞ P(ξ ∈ JMC,n) = β . There are
also other approaches for constructing a CI for ξ via MC; see Nagaraja and Nagaraja (2019).

As shown by Avramidis and Wilson (1998), the root mean square error (RMSE) of ξ̂MC,n, defined as
(E[(ξ̂MC,n−ξ )2])1/2, decreases at the canonical MC rate of O(n−1/2) as n→ ∞. This is a rather slow rate
of convergence, as reducing the error by a factor of 10 requires a 100-fold increase in n.

4 CONDITIONAL MONTE CARLO

When estimating a mean, CMC (Section V.4 of Asmussen and Glynn 2007) reduces sampling error by
analytically integrating out some of the variability. Nakayama (2014) applies CMC with MC for quantile
estimation (also see Asmussen 2018). Dong and Nakayama (2017) combine CMC with Latin hypercube
sampling (McKay et al. 1979), which can be viewed as a variant of stratified sampling in high dimensions,
or as a primitive form of RQMC (Owen 1997a).
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To apply CMC for quantile estimation, we apply CMC to estimate F , then we invert this CMC estimator
of F to obtain the CMC quantile estimator. More specifically, let G be a sigma-field not containing all of the
information needed to compute Y (we discuss specific examples of G below). Using iterated expectations
(p. 448 of Billingsley 1995), we can write

F(y) = E[I(Y ≤ y)] = E[E[I(Y ≤ y) | G ]] = E[q(y,G )], (8)

where q(y,G ) := P(Y ≤ y | G ), which we assume is easily computable. Averaging n i.i.d. realizations of
q(y,G ), say q(y,G1), . . . ,q(y,Gn), gives the following unbiased CMC estimator of F(y):

F̂CMC,n(y) =
1
n

n

∑
i=1

q(y,Gi). (9)

By inverting F̂CMC,n, we get the CMC p-quantile estimator

ξ̂CMC,n = F̂−1
CMC,n(p). (10)

Computing ξ̂CMC,n typically requires employing a numerical root-finding method, such as the bisection or
Newton’s method (Chapter 7 of Ortega and Rheinboldt 2000), which incurs extra computation cost.

In our setting where Y = bY (U) with U∼U (0,1)d , we may for example define G as (the sigma-field
generated by) a random vector

Z≡ (Z1,Z2, . . . ,Zl) = bZ(U) (11)

for a deterministic function bZ : (0,1)d → Rl for some l ≥ 1, using the same U (0,1)d vector U from (1),
making Y and Z generally dependent. Thus, bZ(U) has all of the details needed to produce one realization
of the information contained in the sigma-field G . Although the function bZ is defined to take as input all
d coordinates from U in (1), it may not use all of them. Writing Zi = bZ(Ui), (9) becomes

F̂CMC,n(y) =
1
n

n

∑
i=1

q(y,Zi) =
1
n

n

∑
i=1

q(y,bZ(Ui)). (12)

Example 1 (continued) To apply CMC to our example, we define the conditioning vector in (11) as
Z = L, so bZ(U) = bL(U), where bL is from (3). As in Dube et al. (2014), we now assume that the load
L and the capacity C are independent. From a modeling perspective, it is reasonable to have L and C
independent as L is determined by random variables that affect how the hypothesized accident unfolds,
whereas C depends on uncertainties about the material properties of the cladding. Let GC be the marginal
CDF of C. We then write the CDF F of the safety margin Y =C−L as

F(y) = P(C−L≤ y) = E[P(C ≤ y+L | L)] = E[GC(y+L)] (13)

by the independence of L and C. Thus, we have that q(y,Z) = GC(y+L) = GC(y+bL(U)), and (12) gives
F̂CMC,n(y) = (1/n)∑

n
i=1 GC(y+bL(Ui)) as the CMC estimator of the CDF.

The independence of L and C holds, e.g., when the two functions bL(u) and bC(u) in (3) depend
only on disjoint subsets of the components of u = (u1,u2, . . . ,ud) ∈ (0,1)d . Specifically, consider a subset
S ⊂ {1,2, . . . ,d} of the coordinate indices, and let S̄ = {1,2, . . . ,d}−S be its complement. For a vector
u∈ (0,1)d , let uS ∈ (0,1)|S | (resp., uS̄ ∈ (0,1)|S̄ |) be the projection of u onto the coordinates in S (resp.,
S̄ ). Now assume that there exist functions b∗L : (0,1)|S |→R and b∗C : (0,1)|S̄ |→R such that bL(u)= b∗L(uS )

and bC(u) = b∗C(uS̄ ) for every u ∈ (0,1)d . Then L = bL(U) = b∗L(US ) and C = bC(U) = b∗C(US̄ ) are
independent because US and US̄ are as U∼U (0,1)d has independent components. 2
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As noted by Nakayama (2014), when f (ξ ) > 0, the CMC p-quantile estimator obeys the CLT√
n[ξ̂CMC,n−ξ ]⇒ N(0,τ2

CMC) as n→ ∞, where

τ
2
CMC = Var[q(ξ ,G )]/ f 2(ξ ). (14)

A variance decomposition (e.g., p. 456 of Billingsley 1995) implies that for each y ∈ R,

Var[I(Y ≤ y)] = Var[E[I(Y ≤ y) | G ]]+E[Var[I(Y ≤ y) | G ]]

= Var[q(y,G )]+E[Var[I(Y ≤ y) | G ]] ≥ Var[q(y,G )]. (15)

As a consequence, Var[F̂CMC,n(y)] = Var[q(y,G )]/n≤Var[I(Y ≤ y)]/n = Var[F̂MC,n(y)] for each y ∈R, and
by taking y = ξ , this also gives τ2

CMC ≤ τ2
MC by (7) and (14). This shows that CMC reduces the asymptotic

variance of the p-quantile estimator compared to MC, but the RMSE of ξ̂CMC,n still decreases at the
canonical MC rate of O(n−1/2), although with a smaller hidden constant.

5 QUASI-MONTE CARLO

QMC replaces the n independent random points Ui by a setPn of n deterministic points ui =(ui,1,ui,2, . . . ,ui,d)

∈ [0,1)d which cover the unit hypercube more evenly than typical independent random points, in the sense
that their empirical distribution has a low discrepancy with respect to the uniform distribution over [0,1)d ,
lower than for typical independent random points. Here we take the interval [0,1) closed on the left
because most constructions have points with coordinates equal to 0, but this will disappear when the points
are randomized with RQMC. (In practice, we want to avoid 0 and 1 because it causes a problem when
generating random variates by inversion from distributions having an infinite tail.) The most common
constructions of low-discrepancy point sets are integration lattices (Sloan and Joe 1994) and digital nets
(Niederreiter 1992; Dick and Pillichshammer 2010).

QMC theory was developed mainly for when we want to approximate an integral of the form γ :=∫
[0,1)d h(u)du for some function h : [0,1)d → R by the average γ̂QMC,n = (1/n)∑

n
i=1 h(ui) over the points

ui ∈Pn. There is a large variety of Cauchy-Schwarz-type inequalities of the form

|γ̂QMC,n− γ| ≤ D(Pn) ·V (h), (16)

where D(Pn) measures the discrepancy of Pn and V (h) measures the variation of h. One special case
is the classical Koksma-Hlawka inequality in which D(Pn) is the star discrepancy D∗(Pn) and V is the
Hardy-Krause variation VHK (Niederreiter 1992, Section 2.2), but it is impractical because these quantities
are too hard to compute. However, other more easily computable discrepancies, together with matching
definitions of V , also exist (Dick and Pillichshammer 2010; L’Ecuyer 2009; L’Ecuyer and Munger 2016).
Explicit point set constructions can achieve D(Pn) = O(n−α+ε) for any ε > 0, often for α = 1 (e.g., for
the star discrepancy) and for α > 1 for some discrepancies. Then, for any h for which V (h)< ∞ for the
corresponding V , the integration error converges to 0 at the same rate (at worst) as D(Pn). It is true that
the hidden constant in the convergence order can increase very quickly with the dimension d, but there are
nevertheless many large-dimensional integrands for which QMC is much more accurate than MC. Typically,
this occurs when h can be decomposed approximately as a sum of low-dimensional functions; see Paskov
and Traub (1995), L’Ecuyer (2009), Dick and Pillichshammer (2010) and L’Ecuyer and Munger (2016).

Papageorgiou and Paskov (1999) approximate F and ξ as in (4) and (5), with the Ui’s replaced by the
QMC points ui. This gives

F̂QMC,n(y) =
1
n

n

∑
i=1

I(bY (ui)≤ y) (17)

and ξ̂QMC,n = F̂−1
QMC,n(p). One could think of applying QMC theory to show that F̂QMC,n(y) converges

to F(y) faster than F̂MC,n(y). But this CDF estimator corresponds to applying QMC to the integrand
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h(u) = hy(u) := I(bY (u)≤ y), which is a discontinuous function of u. This discontinuity implies that the
variation V (hy) is typically infinite, so there is no error bound, and the gain from QMC is usually very
small in that situation; see, e.g., Sections 15.12 and 16.5 of Owen (2019) and L’Ecuyer (2018).

We saw earlier that CMC reduces the variance of a CDF estimator, but much more importantly, it
also provides a very powerful opportunity to make q(y,bZ(u)) continuous and smooth in u. Then, its
combination with QMC could give a much better approximation of F than the QMC approximation in (17),
and also a much better quantile estimator. Assuming that the conditioning sigma-field G in (8) is defined by
Z = bZ(U) in (11), the idea is simply to replace each Ui in (12) with ui ∈Pn to get a CDF approximation
F̂CQ,n(y), whose inversion gives an approximation ξ̂CQ,n = F̂−1

CQ,n(p) of the p-quantile. (Here, the subscript
“CQ” is an abbreviation for the combination CMC+QMC.)

CMC has already been used in the setting of estimating the derivative of an expectation or of a quantile
with respect to some model parameter (L’Ecuyer and Perron 1994; Fu and Hu 1997; Fu et al. 2009). It was
also used in combination with QMC or RQMC to estimate a mean (L’Ecuyer and Lemieux 2000 and He
2019). L’Ecuyer et al. (2020) obtain large gains by combining CMC with RQMC for density estimation.

A major limitation of QMC, however, is that it does not provide an easily computable bound or estimate
for the error on the CDF and for the errors |ξ̂QMC,n−ξ | and |ξ̂CQ,n−ξ | on the quantile approximations.
This motivates RQMC, described next.

6 RANDOMIZED QUASI-MONTE CARLO

RQMC turns QMC into a variance reduction method by randomizing the points in a way that they retain
their low discrepancy as a group, while each individual point has the uniform distribution over the unit
hypercube (Owen 1995; Owen 1997b; L’Ecuyer and Lemieux 2000; L’Ecuyer and Lemieux 2002; Lemieux
2009; L’Ecuyer 2018). By doing r ≥ 2 independent randomizations, one can obtain an unbiased estimator
for the variance of the CDF estimator by using the sample variance across randomizations, and eventually
an estimator for the variance of the quantile estimator and a confidence interval for the quantile. But as
noted by Kaplan et al. (2019), one has to be careful in how to adapt the RQMC approach for estimating a
mean to estimating the quantile ξ instead, because the quantile estimator is generally biased.

We now provide more details on RQMC. To have a fair comparison with the MC and CMC estimators
in (5) and (10), which are based on n evaluations of an integrand, we want to implement RQMC with
the same total number of integrand evaluations. Thus, we start with a low-discrepancy point set of size
m < n, which we randomize r = n/m times, where we assume that r ≥ 2 is integer-valued. Specifically,
let Pm = {u1,u2, . . . ,um} ⊂ [0,1)d be a low-discrepancy point set of size m. We randomize this point
set r = n/m independent times to obtain r independent randomized point sets P

(k)
m , k = 1,2, . . . ,r, with

P
(k)
m = {X(k)

1 ,X(k)
2 , . . . ,X(k)

m } and each X(k)
i = (X (k)

i,1 ,X
(k)
i,2 , . . .X

(k)
i,d ) has the uniform distribution over (0,1)d .

Appropriate randomizations of QMC point sets, which preserve the low-discrepancy properties, depend
on the type of point set construction. For integration lattices, a random shift modulo 1 is the most common and
appropriate approach (Cranley and Patterson 1976; Tuffin 1996; L’Ecuyer and Lemieux 2000). It works as
follows. For the kth randomization, we generate a single random vector Sk = (Sk,1,Sk,2, . . . ,Sk,d)∼U (0,1)d

and we add it to all the points ui of the original set Pm, modulo 1, component-wise. This gives
a randomized point set P

(k)
m = {X(k)

1 ,X(k)
2 , . . . ,X(k)

m }, where each X(k)
i = ((ui,1 + Sk,1) mod 1,(ui,2 + Sk,2)

mod 1, . . . ,(ui,d +Sk,d) mod 1). Clearly, each X(k)
i has the uniform distribution over (0,1)d , and the point

set keeps its lattice structure; it becomes a shifted lattice. We get independent randomizations simply by
taking r independent random shifts Sk, k = 1,2, . . . ,r. When estimating a mean, the resulting estimator is
called a randomly-shifted lattice rule, and its variance properties have been studied extensively (Cranley
and Patterson 1976; Tuffin 1996; L’Ecuyer and Lemieux 2000; L’Ecuyer and Munger 2016).

For digital nets, the uniformity is usually measured in terms of equidistribution of the points for
certain families of rectangular boxes, and a random shift does not preserve these properties. Other types
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of randomizations such as random digital shifts (Lemieux and L’Ecuyer 2001; Dick and Pillichshammer
2010; L’Ecuyer 2018), and various scrambles (Owen 1995; Owen 1997b; Owen 2019), do preserve them.

To construct an asymptotically valid CI based on RQMC, it is desirable for the RQMC estimator to
obey a CLT with a Gaussian limit. When estimating a mean, Loh (2003) proves such a CLT as the size
m of the point set grows large for RQMC using a digital net with full nested scrambling (Owen 1995).
However, this scrambling is computationally more expensive than random shifts (digital or modulo 1).

For mean estimators based on randomly-shifted lattice rules, L’Ecuyer et al. (2010) determine that
the limiting distribution (as m→ ∞) is generally not Gaussian, with histograms from numerical studies
exhibiting asymmetry and multiple modes. Also, to specify the number r of randomizations, practitioners
often choose r as not too large, e.g., r = 10 or 20 at most, to be able take a larger m to exploit the power
of RQMC. But this can result in a poor variance estimator and a CI with poor coverage, especially when
considering biased estimators (as for a quantile) or when studying tail behavior (e.g., a p-quantile with
p≈ 0 or p≈ 1). Thus, as the computation budget increases, to obtain an RQMC CI that is asymptotically
valid, it can be useful to have the number r of randomizations increase to infinity to ensure a CLT with a
Gaussian limit and to allow for consistent estimation of the CLT’s asymptotic variance.

We now describe one possible approach, which we call RQMC1, for quantile estimation based on
the typical RQMC method for estimating a mean, as described at the beginning of this section. For each
randomization k = 1,2, . . . ,r, compute

F̂RQMC1,m,k(y) =
1
m

m

∑
i=1

I(bY (X
(k)
i )≤ y) (18)

as an unbiased CDF estimator from the randomized point set P(k)
m . Inverting F̂RQMC1,m,k yields ξ̂RQMC1,m,k =

F̂−1
RQMC1,m,k(p), and the ξ̂RQMC1,m,k, k = 1,2, . . . ,r, are i.i.d. Then the RQMC1 quantile estimator is

ξ RQMC1,m,r =
1
r

r

∑
k=1

ξ̂RQMC1,m,k. (19)

Even if (18) is unbiased for F(y), the nonlinearity of the inverse operation leads to ξ̂RQMC1,m,k having bias
in general, so under the assumption that E[|ξ̂RQMC1,m,k|]< ∞, the law of large numbers implies that

ξ RQMC1,m,r
w.p.1→ E[ξ̂RQMC1,m,k] 6= ξ , as r→ ∞ with m fixed; (20)

i.e., ξ RQMC1,m,r converges to the wrong value. While the bias of ξ RQMC1,m,r decreases to zero as m grows,
(20) considers the asymptotic regime in which r increases with m fixed, causing the problems. If τ ′2RQMC1,m≡
Var[ξ̂RQMC1,m,k]< ∞, then ξ RQMC1,m,r obeys a CLT

√
r(ξ RQMC1,m,r−E[ξ̂RQMC1,m,k])⇒N (0,τ ′2RQMC1,m) as

r→∞ with m fixed, where τ ′2RQMC1,m depends on m. However, the CLT uses E[ξ̂RQMC1,m,k] as the centering
constant rather than the true quantile ξ , so a CI based on the CLT will have poor coverage, as the CI is
anchored at ξ RQMC1,m,r, which on average does not equal the true value ξ .

To address this, Kaplan et al. (2019) propose a second RQMC quantile estimator that does converge to
ξ in the asymptotic setting of (20). Rather than use each randomization to compute a quantile estimator,
as in (19), we instead employ all r randomizations to compute a single overall CDF estimator, which is
inverted to obtain a single overall quantile estimator. Specifically, first define the CDF estimator

F̃RQMC2,m,r(y) =
1
r

r

∑
k=1

F̂RQMC1,m,k(y) =
1

rm

r

∑
k=1

m

∑
i=1

I(bY (X
(k)
i )≤ y)

based on all rm evaluations of bY . Inverting this leads to the RQMC2 quantile estimator

ξ̃RQMC2,m,r = F̃−1
RQMC2,m,r(p). (21)
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As with the RQMC1 quantile estimator, the RQMC2 estimator ξ̃RQMC2,m,r is also biased. But unlike
the bias of ξ RQMC1,m,r, which does not shrink as r→ ∞ with m fixed, leading to the convergence to the

wrong value in (20), the bias of ξ̃RQMC2,m,r shrinks to 0. Indeed, it does so fast enough to ensure that under
our assumption that f (ξ )> 0, the RQMC2 quantile estimator obeys a CLT

√
r[ξ̃RQMC2,m,r−ξ ]⇒N (0,τ2

RQMC2,m), as r→ ∞ with m fixed, (22)

as noted in Kaplan et al. (2019), and the asymptotic variance is τ2
RQMC2,m = Var[F̂RQMC1,m,k(ξ )]/ f 2(ξ ),

which depends on m. Thus, the CLT (22) has the desired centering constant ξ , in contrast to the CLT for
the RQMC1 estimator ξ RQMC1,m,r.

7 COMBINING CMC WITH RQMC FOR QUANTILE ESTIMATION

We can combine CMC with RQMC for quantile estimation as follows. As in Section 5, we assume that G in
(8) is defined by Z = bZ(U) in (11). Then just as we went from the QMC CDF estimator in (17) to the CQ
CDF estimator by substituting I(bY (ui)≤ y) with q(y,bZ(ui)), we similarly replace I(bY (X

(k)
i )≤ y) in (18)

for the RQMC1 CDF estimator with q(y,bZ(X
(k)
i )) to obtain the combined CMC+RQMC1 (abbreviated

CR1) estimator of the CDF from randomization k as

F̂CR1,m,k(y) =
1
m

m

∑
i=1

q(y,bZ(X
(k)
i )).

Inverting F̂CR1,m,k yields ξ̂CR1,m,k = F̂−1
CR1,m,k(p), where ξ̂CR1,m,k, k = 1,2, . . . ,r, are i.i.d. Then our CR1

quantile estimator is

ξ CR1,m,r =
1
r

r

∑
k=1

ξ̂CR1,m,k. (23)

But the CR1 quantile estimator also suffers from the problems in (20) that the RQMC1 quantile estimator
has caused by bias (but perhaps less so, as we will see in the numerical results of Section 8).

For the combined CMC+RQMC2 (shortened to CR2) quantile estimator, we first compute the CR2
CDF estimator by

F̃CR2,m,r(y) =
1
r

r

∑
k=1

F̂CR1,m,k(y) =
1

rm

r

∑
k=1

m

∑
i=1

q(y,bZ(X
(k)
i ))

based on all rm evaluations of function q. Inverting this leads to our CR2 quantile estimator

ξ̃CR2,m,r = F̃−1
CR2,m,r(p). (24)

Using the framework in Chu and Nakayama (2012), we can prove that under our assumption that f (ξ )> 0,
the CR2 quantile estimator obeys a CLT

√
r[ξ̃CR2,m,r−ξ ]⇒N (0,τ2

CR2,m), as r→ ∞ with m fixed, (25)

with asymptotic variance τ2
CR2,m = Var[F̂CR1,m,k(ξ )]/ f 2(ξ ), which depends on m.

8 NUMERICAL RESULTS

We now present numerical results from a stylized version of the model in Example 1, where the goal is
to estimate the 0.05-quantile ξ of the system’s safety margin Y = C−L. We first describe the model,
which is also considered in Nakayama (2015), Alban et al. (2017), and Kaplan et al. (2019). As in some
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Figure 1: The left panel shows the RMSE for fixed m = 4096 as r increases, and the right panel displays
the RMSE for fixed r = 32 as m increases. Both plots have log-log scale. The notation “:d” in the legend
specifies the problem dimension without applying CMC. For CRv:d for d = 3 and 22, the plots for v = 1
and 2 lie on top of each other.

actual NPP PSA studies (e.g., Dube et al. 2014), the CDF GC of the capacity C is assumed triangular
with support [1800,2600] and mode 2200, with L and C independent. The marginal CDF GL of the
load L is a mixture of t = 4 lognormals, as in Nakayama (2015). Specifically, for each s = 1,2, . . . , t, let
GL,〈s〉 be the CDF of L〈s〉 = exp(µ〈s〉+σ〈s〉Z〈s〉), where Z〈s〉 ∼N (0,1), and µ〈s〉 and σ〈s〉 > 0 are given
constants, so L〈s〉 has a lognormal distribution. Our experiments set µ〈s〉= 7.4+0.1s and σ〈s〉= 0.01+0.01s.
Then GL is defined as GL(y) = ∑

t
s=1 λ〈s〉GL,〈s〉(y) for given positive constants λ〈s〉, 1 ≤ s ≤ t, summing

to 1. We set λ〈1〉 = 0.99938× 0.9981× 0.919, λ〈2〉 = 0.00062, λ〈3〉 = 0.99938× 0.9981× 0.081, and
λ〈4〉 = 0.99938×0.0019, where the factors in each product match branching probabilities given in an event
tree used in an NPP PSA study by Dube et al. (2014).

For this model, we can define the response function bY in (1) to generate the safety margin Y =
bY (U1,U2,U3) using just d = 3 i.i.d. uniform inputs: one to choose the component in the load mixture
GL, another to generate the appropriate lognormal, and the third to sample the capacity C. For CMC, we
condition on L, as in (13), so (12) uses q(y,Z) = GC(y+L) = GC(y+bL(U)), as in Example 1 of Section 4.
Thus, CMC requires only 2 uniforms, as the one for sampling C is integrated out by GC. The analytical
tractability of the model allows us to numerically compute the 0.05-quantile as ξ = 11.79948572.

Given that the effectiveness of RQMC typically degrades as the problem dimension d increases
(Section 15.9 of Owen 2019), we also consider for comparison a stochastically equivalent artificial model
with larger d, defined as follows. We generate the lognormal L〈s〉 by exponentiating the sum of 20
independent normals, with parameters chosen so that the sum still has mean µ〈s〉 and variance σ2

〈s〉. Thus,
bY in (1) now has d = 22.

We consider quantile estimation using two versions (v = 1 and 2) each of RQMC and CMC+RQMC.
RQMCv denotes version v of RQMC, so the RQMC1 estimator is ξ RQMC1,m,r in (19), and the RQMC2

estimator is ξ̃RQMC2,m,r in (21). We have two versions of the CMC+RQMC quantile estimator: the CR1
estimator ξ CR1,m,r in (23), and the CR2 estimator ξ̃CR2,m,r in (24). In each case, our RQMC point set is a
randomly-shifted lattice rule of size m, and we make r independent random shifts. For MC and CMC, we
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consider only a single version v = 2, in which we compute a single CDF estimator based on all n = rm
outputs, and invert this to get the MC2 and CMC2 quantile estimators.

Figure 1 presents two sets of log-log plots of the RMSE, estimated from 103 independent replications,
of the various quantile estimators. In the left plots, the number r of randomizations increases, with a point
set of fixed size m = 4096. On the right side, m grows with fixed r = 32. The figures show the RQMC
results for different problem dimensions, where d (= 3 or = 22) in the notation “:d” represents the problem
dimension without applying CMC. For MC and CMC, changing d does not affect the RMSE, so Figure 1
presents results for only d = 22.

We now compare the mean-square error (MSE) of each v = 2 method for r = 64 and m = 4096. With
MC2 as the baseline, CMC2 (resp., RQMC2:22 and CR2:22) reduces MSE by a factor of 1.8 (resp.,
5.5 and 172). Thus, while RQMC2 improves on MC2 and CMC2, the combination of CR2 performs
substantially better, illustrating the benefits of a smoother integrand for RQMC. Moreover, RQMC2:3 (not
shown in Figure 1) and CR2:3 reduce MSE (compared to MC2) by factors of 21.5 and 897, respectively,
thus demonstrating the impact of the problem dimension d on RQMC’s effectiveness.

As previously explained in Kaplan et al. (2019), RQMC1 has issues as r increases with m fixed, as seen
in (20), which we next explain. To understand the left plots in Figure 1, recall that the MSE decomposes as
the sum of bias squared and variance. The variance of the RQMC1 quantile estimator shrinks to 0 as r→∞

with fixed m. But because quantile estimators are generally biased, the RQMC1 bias does not decrease
because m is fixed. Thus, the RMSE of RQMC1 will converge to a strictly positive value as r→ ∞ with
m fixed. We can see this start to happen in the left plots in Figure 1, where the RMSE of the RQMC1
estimator is leveling off as r increases. (The other v = 1 estimators also eventually suffer from the same
problem, although it may not be clear for the range of r considered.) In contrast, the RQMC2 quantile
estimator obeys a CLT (as r→ ∞ with m fixed) with centering constant ξ , so its RMSE shrinks to 0. The
left plots of Figure 1 demonstrate the steady decrease in RMSE of the v = 2 estimators.

The right plots of Figure 1 show that as m increases, the rate (i.e., slope) at which the RMSE decreases
for RQMC (especially for CRv:3) can be better than for MCv. This demonstrates that RQMC can not only
reduce variance but also improve convergence rates.

9 CONCLUSION

We have shown how combining CMC with RQMC can have a synergistic effect in improving the accuracy
of quantile estimators in a setting where observations are obtained from simulation. The synergy comes
from CMC replacing the empirical CDF (a step function) by a smooth, RQMC-friendly, CDF estimator.
This can make the subsequent RQMC improvement more substantial than when RQMC is applied alone.
As f (ξ ) appears in the denominator of the asymptotic variance in (25), constructing a confidence interval
for ξ may also benefit from applying CMC+RQMC for density estimation. In follow-up work, we intend
to provide sufficient conditions under which we can prove that the MSE of the quantile estimator converges
at a faster rate than the canonical O(1/n). We also want to experiment with a larger variety of examples.
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