
Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. Rosetti, eds.

A QUANTUM OF CONTINUOUS SIMULATED TIME

NameFirstAuthor
NameLastAuthor

Institution
Street Address

City, Zip, COUNTRY

ABSTRACT

Although discrete-event simulation models are typically associated with the notion of time as a continuous
quantity, many such models can be simulated exactly using a uniform discretization of time based on a
carefully selected time unit. This paper contributes general formulas and related tests for calculating the
optimal time unit of a discrete-event simulation model from its specification. The proposed theory is applied
to various types of models. An ability to reason about a model’s optimal time unit provides a deeper
understanding of several preexisting methods for handling simultaneous events, and lends credibility to the
use of simulated time representations based on integers as opposed to floating-point numbers.

1 INTRODUCTION

Time flows not like a river but like the ticking of a clock, with “ticks” that are about as
long as the Planck length: 10−43 second. Or, more precisely, time in our universe flows by
the ticking of innumerable clocks—in a sense, at every location in the spin foam where a
quantum “move” takes place, a clock at that location has ticked once.

– Lee Smolin, Atoms of Space and Time

Smolin (2014) explains that if the theory of loop quantum gravity is correct, neither space nor time is
fundamentally continuous but rather they are both “made of discrete pieces”. If these “pieces” exist, they
would go unnoticed due to their immeasurably small size (10−99 cm3 in volume and 10−43 s in duration).
The idea is interesting in that it challenges such an intuitive and widespread assumption as the continuous
nature of physical time. Our intention is to raise an analogous issue pertaining to simulated time.

In this paper we scrutinize the assumption that discrete-event simulations tend to treat simulated time
as fundamentally continuous. Our contradictory observation is that many such simulations can in fact be
performed with a uniform discretization of time without introducing any error into the timing of events.
To properly understand this concept, there are two important points to note. First, we are speaking of a
different type of “uniform discretization of time” than one encounters in discrete-time simulation, where
every pair of consecutive events is separated by a common time step. In discrete-event simulation, what
we observe is that there is often a common time unit, a nonzero duration of simulated time that evenly
divides all durations between events. The second point is that our observation is theoretical in nature, not
technological. It is well understood that quantities regarded as continuous, such as physical time, are often
discretized out of necessity when represented on a computer. A floating-point time variable, for example,
is a discretization in the sense that the number of distinct representable time values is finite. What we show
is that time units are often implicit in specifications of discrete-event simulation models.

Our main contribution is a set of general formulas and related tests for calculating a model’s optimal
time unit, a property that helps one identify the longest common time unit for all possible simulation runs
performed using the model. We demonstrate the theory by applying it to notable classes of discrete-event



LastNameFirstAuthor and LastNameLastAuthor

simulation models, including the generator and processor models described in Theory of Modeling and
Simulation (Zeigler, Praehofer, and Kim 2000). For models specified via the coupling of multiple submodels,
the theory is applied in a modular fashion from the simplest models at the bottom of a hierarchy to the
increasingly complex models at higher levels.

Conveniently, we find that intuition, guided by a general understanding of the proposed theory, can in
many cases help one identify the optimal time unit without rigorously applying the formulas. The generator
model is a trivial case: a discrete-time model in which the fixed time step serves as the optimal time unit.
Yet even the processor model has a nonzero optimal time unit, despite its ability to receive a message at
any point in simulated time. The explanation for this apparent neglect of received messages is that they
can be analyzed separately. One must recognize that (a) a processor’s input messages come from a source,
(b) the source can be treated as a model with its own optimal time unit, and (c) the source and processor
together constitute a third model with yet another optimal time unit. For example, consider a processor
with a 15-second response duration. Its optimal time unit is 15 seconds. If it receives messages from a
generator with a 10-second time step, the optimal time unit of the generator is 10 seconds and that of the
overall model is 5 seconds. In many cases, this simple greatest common divisor heuristic works well.

In addition to advancing the current body of theoretical knowledge pertaining to the analysis of simulation
model specifications, this work has two noteworthy implications. First, there are a number of preexisting
methods in which event times are deliberately offset as a means of handling simultaneous events. Optimal
time units clarify the point at which these offsets are long enough to cause events to be reordered. Second,
computer representations of simulated time may be based on integers or binary floating-point numbers.
Although the floating-point option seems most consistent with the notion of time as a continuous quantity,
integer-based time representations gain credibility from the counterintuitive observation that a diverse set
of discrete-event simulation models treat time as if it were quantized.

2 SIMULATED TIME DURATIONS AND CONSTRAINTS

To reason effectively about time units, we must identify a set of formal conventions for characterizing the
behavior of any discrete-event simulation model with respect to simulated time. One option would be to
use the Discrete Event System Specification (DEVS) formalism (Zeigler, Praehofer, and Kim 2000), which
provides the desired level of generality. However, we choose simpler conventions for two reasons. First,
we do not want to give the impression that one must specify his/her model using DEVS in order to calculate
its optimal time unit. It is helpful to begin with a DEVS model, but one may also start from a conceptual
model, or from a model specified according to an event-scheduling procedure. The second reason we avoid
conventional DEVS nomenclature is that functions and transitions involving input, output, and state values,
which figure prominently in the formalism, are unnecessary for our purposes; we are concerned with only
the constraints imposed by a model on the durations which govern the timing of events. That said, the
conventions presented here are heavily inspired by DEVS theory.

When simulated, an instance of a discrete-event simulation model produces a sequence of events
[A,B,C, . . .], with corresponding event times [tA, tB, tC, . . . ]. The first event, which may neither receive nor
send messages, is the initialization event. Each of the remaining events is either a planned event, triggered
by the instance itself and capable of sending a message, or an unplanned event, triggered by the receiving
of a message and capable of reading that message.

Although state plays only an indirect role in the analysis of a model’s time units, it is worthwhile noting
that each state si occurring between successive events coincides with two types of durations. A planned
duration 〈∆tp〉i represents a duration of simulated time that, if uninterrupted by an incoming message or the
end of the simulation run, would be followed by a planned event. For a typical event-scheduling simulation
algorithm, the planned duration is the time that must elapse before the most imminent scheduled event
occurs, regardless of whether the event actually does occur. For a DEVS model, where one has defined
the time advance function ta, we have simply 〈∆tp〉i = ta(si). The other type of duration is an elapsed
duration 〈∆te〉i, which measures the simulated time between two consecutive events of any type. When



LastNameFirstAuthor and LastNameLastAuthor

a simulation run begins, the first state s0 occurs after initialization event A and coincides with durations
〈∆tp〉0 and 〈∆te〉0. A total of n state transitions follow before the simulation ends with the model instance
in state sn. At this point the final planned duration 〈∆tp〉n is known, but the elapsed duration 〈∆te〉n does
not exist because the subsequent event never occurred.

Figure 1 illustrates the notation we have established using a scenario involving an initialization event
followed by a hypothetical sequence of planned and unplanned events. On the timeline at the top of the
diagram, solid black dots represent events. Planned events such as B and C are shown with a dashed arrow
pointing out, representing the possibility of an outgoing message. Unplanned events such as D and F are
shown with a solid arrow pointing in, representing the incoming message that triggered the event. The dot
with the circle around it indicates that the simulation ends at simulated time tG with the instance in state
s5. Note that n = 5 for this scenario. Also note that any two consecutive event times may be equal, in
which case the elapsed duration measured between them would be zero.

Figure 1: Constraints on planned durations 〈∆tp〉i and elapsed durations 〈∆te〉i for the following sequence
of event types: initialization (A), planned×2 (B,C), unplanned (D), planned (E), unplanned (F).

Beneath the timeline in Figure 1, each planned and elapsed duration is depicted from top to bottom
in the order in which it is encountered during the simulation. The first row is labeled A+, indicating that
the first planned duration 〈∆tp〉0 is encountered immediately after event A is processed. Because event B
is a planned event, it is clear that 〈∆tp〉0 elapses uninterrupted by any incoming message, and therefore
〈∆tp〉0 = tB− tA. The second row labeled B− indicates that the first elapsed duration 〈∆te〉0 is encountered
immediately before event B is processed, and that its magnitude must also be tB− tA.

We use diagrams similar to Figure 1 largely to illustrate constraints on planned durations. For example,
consider planned duration 〈∆tp〉2 that is encountered immediately after the processing of event C. While
the diagram clearly shows that the duration is measured starting from time tC, the box on the right of the
interval is meant to indicate that the end point can be anywhere in the box or on either edge. The end point
might be tD, in which case the incoming message would have coincided with the elapsing of 〈∆tp〉2. If
not tD, the end point might be any subsequent point in time, including but not necessarily one of the later
event times such as tE or tF. The end point might also be infinity, in which case 〈∆tp〉2 = ∞, meaning that
no events had been scheduled. Observe that whenever the next event is planned, the planned duration is
equal to its corresponding elapsed duration; whenever the next event is unplanned, the planned duration is
at least the elapsed duration but possibly longer.

To express simulated time durations and constraints independent of any particular scenario, we transition
from diagrams to formulas. We start by arranging the durations 〈∆tp〉0,〈∆te〉0,〈∆tp〉1,〈∆te〉1, . . . in a duration



LastNameFirstAuthor and LastNameLastAuthor

vector, where planned and elapsed durations alternate in a manner consistent with Figure 1. A simulation
run with n state transitions will have n elapsed durations and n+ 1 planned durations, meaning that the
duration vector has 2·n+1 elements in total. Now we let TM be the set of all possible duration vectors
permitted by discrete-event simulation model M. For any model M, TM is partially defined by (1).

TM ⊆
{[
〈∆tp〉0,〈∆te〉0,〈∆tp〉1,〈∆te〉1, . . . ,〈∆tp〉n−1,〈∆te〉n−1,〈∆tp〉n

] ∣∣∣ n≥ 0
}

(1)

Let us refine the definition of TM. We assume that a simulation can be terminated at any point after
the completion of the initialization event and zero or more subsequent events. What this means is that for
any possible simulation run with at least one state transition, there is an otherwise identical simulation run
with one fewer transition. Omitting the last state transition means trimming the last pair of durations, one
elapsed and one planned, from the end of the duration vector. This gives us (2), which will play a key role
in how we formalize optimal time unit calculations.([

〈∆tp〉0, . . . ,〈∆tp〉n,〈∆te〉n,〈∆tp〉n+1
]
∈TM

)
⇒

([
〈∆tp〉0, . . . ,〈∆tp〉n

]
∈TM

)
(2)

To complete the general definition of TM, we observe constraints on the planned and elapsed durations
in the duration vectors. These general constraints may be further refined for a specific model. The first
constraint is that a planned duration must be a nonnegative real number or infinity, as in (3).

∀i ∈ {0, . . . ,n} , 〈∆tp〉i ∈ R≥0∪{∞} (3)

An elapsed duration must be a nonnegative real number, but may not be infinity. Furthermore, it must
be at most as long as its corresponding planned duration. These constraints, which should be evident from
Figure 1, are expressed in (4) and (5). For formulas such as these where i is not explicitly quantified, the
condition must hold for all i < n. We omit the quantification ∀i ∈ {0, . . . ,n−1} to improve readability.

〈∆te〉i ∈ R≥0 (4)

〈∆te〉i ≤ 〈∆tp〉i (5)

3 PERMISSIBLE AND OPTIMAL TIME UNITS

Here the guiding objective is to be able to take any simulation that has yet to be performed, examine
its configuration and underlying model, and determine the longest time unit that is guaranteed to divide
all elapsed durations and all finite planned durations encountered during the run. We will work toward
a practical method for obtaining these common time units, but we begin with a general albeit unwieldy
formula. Let 〈∆Tu〉M, defined in (6), be the set of permissible time units associated with model M.

〈∆Tu〉M =

∆tu ∈ R>0

∣∣∣∣∣∣∣∣∣
∀
[
〈∆tp〉0,〈∆te〉0,〈∆tp〉1,〈∆te〉1, . . . ,〈∆tp〉n

]
∈TM,(

∀i ∈ {0, . . . ,n−1} , 〈∆te〉i
∆tu

∈ N

)
⇒
(
〈∆tp〉n = ∞

)
∨
(
〈∆tp〉n

∆tu
∈ N

)
 (6)

A permissible time unit is a duration ∆tu such that if all previously encountered elapsed durations are
multiples of ∆tu, the next planned duration will be either infinity or a multiple of ∆tu. This is exactly what
is expressed in (6). Because the stated condition pertains to all possible simulation runs for model M, the
formula includes a quantification over all duration vectors in TM. Beneath is an implication (. . .⇒ . . .)
with a left-hand side (LHS) and a right-hand side (RHS). The LHS formalizes the assumption that all
previous 〈∆te〉i are multiples of ∆tu, while the RHS captures the requirement that 〈∆tp〉n is infinity or a
multiple of ∆tu. Although the RHS explicitly focuses on the last planned duration, it pertains to all planned



LastNameFirstAuthor and LastNameLastAuthor

durations for the following reason. Recall from Section 2 that one can take a simulation run and omit the
final state transition. As in (2), if the original duration vector is in the set of possibilities TM, then so are
the abbreviated variations of this vector. Thus because the expression in (6) involves a quantification over
all duration vectors in TM, all planned durations wind up on the RHS.

Let us now focus on the LHS of the implication in (6), which essentially assumes that elapsed durations
are conveniently quantized. The rationale for this assumption relates to remarks made in Section 1: input
messages come from a source, and the time constraints associated with the source can be analyzed separately
from the receiving model. Since (a) we want to defer the analysis of the timing of received messages, and
(b) the arrival of these messages impacts elapsed durations, we therefore (c) make a convenient assumption
about elapsed durations. The practical significance of this assumption will become clear when we explain
how time units of coupled models and simulation runs are calculated.

We turn our attention to the task of applying (6) to a given model specification. To ease this task, we
propose a simple zeroth-order permissibility test and a somewhat more complicated first-order permissibility
test that indicate whether a positive, finite time unit ∆tu is permissible. Both tests are strictly conservative,
meaning that any ∆tu which passes either test is definitely permissible. A time unit that fails either test
should be considered not permissible only if that test is appropriate for the model under analysis.

The zeroth-order test, shown in (7), is simply the unqualified restriction on the last planned duration.
The test is appropriate for any model for which past planned and elapsed durations provide no information
that would help to constrain future planned durations. Models in this category tend to exhibit extremely
simple behavior with respect to simulated time. Discrete-time simulation models are an obvious example.(

〈∆tp〉n = ∞

)
∨
(
〈∆tp〉n

∆tu
∈ N

)
(7)

The first-order test is a proof by mathematical induction based on (6). The proof consists of a base
case given by (8) and an inductive step given by (9). The first-order test is appropriate for any model in
which the next planned duration 〈∆tp〉i+1 may be constrained in part by the current planned duration 〈∆tp〉i
and the current elapsed duration 〈∆te〉i, but not directly by preceding planned and elapsed durations such
as 〈∆tp〉i−1 and 〈∆te〉i−1. A wide range of typical discrete-event simulation models fall into this category.(

〈∆tp〉0 = ∞

)
∨
(
〈∆tp〉0

∆tu
∈ N

)
(8)((

〈∆tp〉i = ∞

)
∨
(
〈∆tp〉i

∆tu
∈ N

))
∧
(
〈∆te〉i
∆tu

∈ N
)
⇒

(
〈∆tp〉i+1 = ∞

)
∨
(
〈∆tp〉i+1

∆tu
∈ N

)
(9)

We have now established the mathematical theory needed to identify the permissible time units of a
given model. It turns out that the longest of these time units is particularly useful because it can be divided
by positive integers to yield the other permissible time units. This leads to the concept of an optimal time
unit 〈∆t̂u〉M for model M. As defined in (10), this property is zero for models with no permissible time
units, and infinity for models where all time units are permissible.

〈∆t̂u〉M = sup
(
〈∆Tu〉M ∪{0}

)
(10)

4 APPLICATION TO NOTABLE CLASSES OF SIMULATION MODELS

Here we apply the theory introduced in the previous section. First, we identify the permissible and optimal
time units of the generator, ramp, and processor models as specified in Chapter 4 of Theory of Modeling
and Simulation. We then expand on the theory in relation to models with infinite optimal time units, those
with optimal time units of zero, and coupled models.



LastNameFirstAuthor and LastNameLastAuthor

4.1 Generator Model

The generator model “outputs a 1 in a periodic fashion” (Zeigler, Praehofer, and Kim 2000). The period
between successive output messages is simply the time step ∆ts, a model parameter. The output message
values have no bearing the model’s timing patterns, so we need not regard the value as always equal to
1. In fact the analysis below applies to any model with no time-dependent inputs and a fixed time step
between outputs. Such discrete-time simulation models are pervasive in a multitude of domains.

Figure 2 illustrates the progression of a simulation run using the generator model. Since there are no
input messages, all events after the first are planned events. As in Figure 1, the planned durations are shown
in the order in which they are encountered, though to avoid redundancy we will no longer plot elapsed
durations in such diagrams. Note that elapsed durations are always 〈∆te〉0 = tB− tA, 〈∆te〉1 = tC− tB, etc.

Figure 2: Constraints on planned durations 〈∆tp〉i for the generator model over the following sequence of
event types: initialization (A), planned×3 (B–D).

The first step in deriving permissible and optimal time units is to formally express all model-specific
constraints on planned and elapsed durations, purposely omitting any representation of state. We start with
the constraints on the first planned duration 〈∆tp〉0. Inconveniently for the task at hand, DEVS models
typically omit the initial state since it has more to do with the desired experiment than the modeled system.
Nevertheless, we observe that constraints on the first planned duration tend to reflect those on subsequent
durations, at least to some extent. A generator with a time step of 10 seconds is unlikely to begin in such
a state that its first output is produced π seconds after the beginning of a simulation run. In fact only two
initial planned durations strike us as normal for a generator-like model: zero, implying that the first output
coincides with the start of the simulation; and ∆ts, meaning that time advances one step before the first
output is produced. Let us assume that either initial duration is possible, as expressed in (11).

〈∆tp〉0 ∈ {0,∆ts} (11)

Because the generator never receives messages, the elapsed duration is never cut short. In other words,
it is always equal to the corresponding planned duration, as in (12).

〈∆te〉i = 〈∆tp〉i (12)

Finally, all planned durations after the first are necessarily equal to the time step, as in (13). Recall
that i < n unless otherwise specified, so 〈∆tp〉i+1 expresses planned durations 〈∆tp〉1 through 〈∆tp〉n.

〈∆tp〉i+1 = ∆ts (13)

Here the zeroth-order test is appropriate for finding the permissible time units, since no planned durations
depend on preceding planned or elapsed durations. We begin with the test expression in (7) and manipulate
it using the model-specific constraints (11)–(13) as needed.(

〈∆tp〉n = ∞

)
∨
(
〈∆tp〉n

∆tu
∈ N

)
zeroth order test (7)

⇒
(
〈∆tp〉n

∆tu
∈ N

)
〈∆tp〉n < ∞ from (11) and (13)



LastNameFirstAuthor and LastNameLastAuthor

⇒
(

0
∆tu
∈ N

)
∧
(

∆ts
∆tu
∈ N

)
〈∆tp〉n ∈ {0,∆ts} from (11) and (13)

⇒
(

∆ts
∆tu
∈ N

)
0 ∈ N from definition of N

⇒ ∆tu ∈
{

∆ts, ∆ts
2 , ∆ts

3 , . . .
}

We formally discover that the time step is a permissible time unit of the generator model, and dividing
the time step by any positive integer yields another permissible time unit. In this case the optimal time
unit is simply the longest permissible time unit, which happens to be the time step itself.

〈∆t̂u〉M = sup
{

∆ts,
∆ts
2
,
∆ts
3
, . . . ,0

}
= ∆ts from definition of〈∆t̂u〉M in (10)

To summarize, the generator model can be simulated with a uniform discretization of time based on
its time step or any other time unit that evenly divides the time step. This result is rather obvious, and it
is why such models are referred to as discrete-time simulation models. The reason we formally calculate
the result is to show that the proposed theory holds for this simple case. In practice one need only glance
at such a model to conclude that its optimal time unit is its time step.

4.2 Ramp Model

The ramp model is similar to the generator in that outputs are evenly spaced and separated by the time
step ∆ts, but different in that at any time an input message may be received. These inputs do not affect
the timing of planned events. They may however influence the trajectory of the ramp’s state, which likely
alters the output values. The word “ramp” pertains to simple cases where the state trajectory has a linear
relationship with elapsed time, though this is of little concern for the purpose of calculating permissible and
optimal time units. In general, models with ramp-like timing patterns are useful for integrating discrete-time
simulation models with different time steps. A ramp-based simulation scenario is illustrated in Figure 3.

Figure 3: Constraints on planned durations 〈∆tp〉i for the ramp model over the following sequence of event
types: initialization (A), planned×2 (B, C), unplanned (D), planned (E), unplanned×2 (F, G), planned (H).

Since a message may theoretically be received at any time, even after π or some other irrational number
of seconds, one would expect the ramp model to treat time as fundamentally continuous. In other words,
one expects that there are no permissible time units. Yet we will find that the ramp does have permissible
time units according to the proposed theory, and that they are the same as those of the generator.

We begin by enumerating the constraints on the planned and elapsed durations. The ramp’s initial
planned duration is either zero or the time step, similar to that of the generator.

〈∆tp〉0 ∈ {0,∆ts} (14)



LastNameFirstAuthor and LastNameLastAuthor

Recall that for the generator model, 〈∆te〉i = 〈∆tp〉i holds everywhere. For the ramp model, it is only
a possibility that corresponding elapsed and planned durations are equal. If they are equal, it means that
either (a) an incoming message triggered an unplanned event just when the planned event was scheduled,
in which case the planned event is imminent (〈∆tp〉i+1 = 0), or (b) the planned event just occurred, in which
case the next planned event is scheduled after a time step (〈∆tp〉i+1 = ∆ts).

〈∆te〉i = 〈∆tp〉i ⇒ 〈∆tp〉i+1 ∈ {0,∆ts} (15)

If an incoming message triggers an unplanned event at an earlier time than that of the planned event,
then the elapsed duration 〈∆te〉i must be subtracted from the previous planned duration 〈∆tp〉i to produce
the new planned duration 〈∆tp〉i+1. In other words, since the current time has advanced by 〈∆te〉i, the
remaining time must be reduced by 〈∆te〉i to maintain the time point of the next output.

〈∆te〉i < 〈∆tp〉i ⇒ 〈∆tp〉i+1 = 〈∆tp〉i−〈∆te〉i (16)

Having formulated the constraints in (14)–(16), we now wish to apply one of the permissibility tests.
Since the tests are strictly conservative, it does no harm to start with the zeroth-order test. However, in
light of the fact that planned durations fall anywhere in the range 0≤ 〈∆tp〉i+1 ≤ ∆ts < ∞, the zeroth-order
test will not provide any permissible time units. The first-order test is more appropriate for the ramp model
since (15) and (16) indicate a relationship between planned and elapsed durations 〈∆tp〉i and 〈∆te〉i and the
next planned duration 〈∆tp〉i+1.

To apply the first-order test, we should start with the base case expression in (8). But let us simply
observe that the manipulations on (8) for the ramp model would be almost identical to manipulations on
the zeroth-order test expression (7) for the generator model. As demonstrated in Section 4.1, the outcome
is that any permissible time unit ∆tu must be the time step ∆ts divided by a positive integer. So we proceed
to refine this set of candidate time units by focusing on the inductive step (9). But now we notice that
the special case of (15) applied to the RHS of (9) leads to the same manipulations yet again, giving us
no additional information. Therefore we move on to the final case, expressed in (16), and we proceed by
manipulating the LHS of (9).((

〈∆tp〉i = ∞

)
∨
(
〈∆tp〉i

∆tu
∈ N

))
∧
(
〈∆te〉i
∆tu

∈ N
)

LHS of (9)

⇒
(
〈∆tp〉i

∆tu
∈ N

)
∧
(
〈∆te〉i
∆tu

∈ N
)

〈∆tp〉i 6= ∞ for the ramp model

⇒
(
〈∆tp〉i

∆tu
∈ N

)
∧
(
〈∆tp〉i−〈∆tp〉i+1

∆tu
∈ N

)
substitution using (16)

⇒ 〈∆tp〉i+1
∆tu

∈ N property of arithmetic

⇒
(
〈∆tp〉i+1 = ∞

)
∨
(
〈∆tp〉i+1

∆tu
∈ N

)
generalization yielding RHS of (9)

This calculation shows that the inductive step is always satisfied for the ramp model, meaning that there
are no additional constraints on permissible time units. Thus we may now conclude that the permissible
time units for the ramp model are identical to those found in Section 4.1 for the generator model, and that
the optimal time unit is again the time step ∆ts.

To illustrate the utility of this result, consider a ramp model instance with a 10-second time step. Suppose
that this instance receives a message 4 seconds after a planned event. Clearly a 10-second time unit is
too coarse, but a 2-second time unit will suffice as it (a) evenly divides the elapsed duration of 4 seconds,
and (b) is a permissible time unit of the ramp model (∆ts/5). Now suppose that a message is received
2·π seconds after a planned event. In this case π will not serve as a time unit because, although it evenly



LastNameFirstAuthor and LastNameLastAuthor

divides the elapsed duration, it is not among the permissible time units. Knowing that the optimal time unit
is 10 seconds makes it easy to remember the permissible time units of 10/m seconds (m ∈ {1,2, . . .}). The
ramp model’s permissible time units help one identify appropriate time units for the overall simulation,
though timing patterns external to the ramp must be considered as well.

4.3 Processor Model

The processor model “outputs the number it received after a processing time” (Zeigler, Praehofer, and Kim
2000). We refer to the “processing time” as the response duration ∆tr, a model parameter. The processor
is representative of a class of models that respond to input messages after fixed durations, regardless of
how output values are determined. Figure 4 illustrates such models under simulation.

Figure 4: Constraints on planned durations 〈∆tp〉i for the processor model over the following sequence of
event types: initialization (A), unplanned (B), planned (C), unplanned×2 (D,E), planned (F).

The processor model differs from the ramp in that, not only can unplanned events occur at any point
in simulated time, but planned event times are also not restricted to multiples of any time step. Yet despite
this freedom in the timing of events, the optimal time unit of the processor model again happens to be
nonzero and finite. We will briefly outline the proof as we formalize the constraints on planned and elapsed
durations. As with the ramp model, the first-order test is needed.

We assume that a processor instance is initially waiting for a message, so the first planned duration is
infinite as in (17). Because this constraint always satisfies the base case expression of (8), we have yet to
identify any restrictions on the permissible time units.

〈∆tp〉0 = ∞ (17)

If a waiting processor receives a message, then as in (18) its next planned duration is ∆tr. The RHS
of the inductive step expression (9) will then restrict permissible time units to ∆tr/m for m ∈ {1,2, . . .}.

〈∆tp〉i = ∞ ⇒ 〈∆tp〉i+1 = ∆tr (18)

If a planned event is about to occur, then the next planned duration will be zero or infinity depending
on whether a message is received at exactly that instant. Both cases are covered by (19). Since the RHS
of (19) satisfies the RHS of (9), there are no additional restrictions on permissible time units.

〈∆te〉i = 〈∆tp〉i ⇒ 〈∆tp〉i+1 ∈ {0,∞} (19)

If a message is received while a planned event is to later occur, we encounter the familiar 〈∆tp〉i−〈∆te〉i
on the RHS of (20). This will lead to the same calculation as performed in Section 4.2 for the ramp model,
which results in no further restrictions on permissible time units.

〈∆te〉i < 〈∆tp〉i ≤ ∆tr ⇒ 〈∆tp〉i+1 = 〈∆tp〉i−〈∆te〉i (20)

The outcome is that the processor model’s optimal time unit is ∆tr, in much the same way that the
ramp’s optimal time unit turned out to be ∆ts. Dividing by a positive integer yields a permissible time unit.



LastNameFirstAuthor and LastNameLastAuthor

4.4 Time-Unit-Neutral Models

As a processor model’s response duration ∆tr approaches zero, its optimal time unit approaches zero as
well since they are equal. If ∆tr actually reaches zero, however, then the optimal time unit becomes infinity.
The reason is that the argument outlined in Section 4.3 assumes a nonzero response duration. If ∆tr = 0,
then the RHS of (18) would satisfy the RHS of (9), and consequently any positive real number would be
a permissible time unit. It would then follow from (10) that the optimal time unit is infinity.

We refer to a model with an infinite optimal time unit as a time-unit-neutral model. When such a
model is integrated with another simulation model, it accommodates the other model’s timing patterns by
imposing no restrictions of its own on common time units. The simplest example is the passive model in
Theory of Modeling and Simulation, which does nothing (n = 0; 〈∆tp〉0 = ∞). A more useful example is
the instant processor described above: a processor with a response duration of zero.

If a model’s planned durations are always either zero or infinity, then its optimal time unit is always
infinite. But the converse is not necessarily true. It is possible to design a model with an infinite optimal
time unit that can produce positive and finite planned durations. Consider a time-unit-adopting model that
receives messages, stores the durations between messages, and then schedules future events using these
stored durations. This is one of the few cases where both the zeroth- and first-order tests are inadequate;
only the general expression in (6) would reveal this model’s optimal time unit to be infinite.

4.5 Time-Unit-Averse Models

The opposite of a time-unit-neutral model—which has an infinite optimal time unit—is a time-unit-adverse
model: a model with no permissible time units and an optimal time unit of zero. These are the only models
that truly require a continuous representation of time in order to produce theoretically exact event times.
One of the simplest examples is a Poisson process model, which outputs messages at time points separated
by planned durations randomly sampled from an exponential distribution. Probabilistically, these durations
are irrational numbers with no common divisors. It follows from (6) that there are no permissible time
units, and according to (10) the optimal time unit is zero.

Another noteworthy example of a time-unit-adverse model is the quantized integrator model defined in
Chapter 16 of Theory of Modeling and Simulation. This model is similar to the ramp model in that input
messages can be received at any time, and between these messages a scalar property is typically assumed
to vary linearly with time. But whereas a ramp constraints the time points of output messages to multiples
of a time step, a quantized integrator constrains output values to multiples of a non-temporal quantum.
To achieve quantized values, planned durations must be completely unconstrained, and as a consequence
there are generally no permissible time units.

4.6 Coupled Models

A coupled model contains components which communicate through the instantaneous transfer of messages.
Each component is described by a submodel, which allows complex models to be developed in a modular
fashion. Given a coupled model M composed of p submodels M0, M1, . . . , Mp−1, its set of permissible
time units is simply the intersection of the submodel-specific sets, as in (21).

〈∆Tu〉M = 〈∆Tu〉M0 ∩〈∆Tu〉M1 ∩ . . .∩〈∆Tu〉Mp−1 (21)

A convenient alternative to (21) is to determine a coupled model’s optimal time unit using the following
set of rules. The first rule is simple: if any of the submodels are time-unit-averse, the coupled model is
also time-unit-averse. Otherwise, proceed as follows: first, ignore all time-unit-neutral submodels, as they
impose no constraints on time units; second, list the positive, finite optimal time units of the remaining
submodels; third, determine the greatest common divisor of all of these time units, as this is the optimal
time unit of the coupled model. Recall that a coupled model containing a 10-second generator and a
15-second processor has an optimal time unit of 5 seconds, 5 being the greatest common divisor of 10



LastNameFirstAuthor and LastNameLastAuthor

and 15. If we include an instant processor (time-unit-neutral) as a third component of the coupled model,
the optimal time unit remains unchanged. But if we add a Poisson process model (time-unit-averse) as a
fourth component, the coupled model’s optimal time unit becomes zero. Note that when coupled models
are nested within other coupled models, optimal time units can be calculated by working upwards from the
bottom of the hierarchy. Also note that as with any model, one simply divides a coupled model’s optimal
time unit by any positive integer to obtain a permissible time unit.

For the purpose of choosing a common time unit for a simulation run—a time unit supporting theoretically
exact event times—the simulation run can be conceptually represented by a coupled model with its own
optimal time unit. One of the components of this “simulation-level coupled model” is necessarily the actual
“model” of the system of interest. The other components include “sources” of time-dependent information.
These information sources might not be specified as discrete-event models, yet they often feature constraints
on planned durations between output messages. Such constraints can be used to determine a source’s optimal
time unit, which in turn influences the optimal time unit of the encompassing simulation run. To illustrate,
suppose the “model” is a 15-second processor. The simulation injects messages at time points 03:51.683,
16:06.277, and 16:13.954. This injection of messages constitutes a “source” with planned durations of
231683 ms, 734594 ms, and 7677 ms, which have no common factors other than 1 ms. And so, although
the model has a 15-second optimal time unit, the source has a 1-millisecond optimal time unit for the
experiment at hand. Thus for exact results the simulation must be run with a common time unit of 1 ms,
or more generally 1 ms divided by any positive integer. Note that the “sources” mentioned here may be
regarded as part of an experimental frame (Zeigler, Praehofer, and Kim 2000), which could be described
as having its own optimal time unit.

5 IMPLICATIONS FOR SIMULTANEOUS EVENTS AND TIME REPRESENTATION

Two implications of the contributed theory deserve attention, the first of which concerns preexisting methods
in which simultaneous events are handled in part by the offsetting of event times. Time offsets introduce
the possibility that nearly simultaneous events, with close but distinct time points, will occur at the same
time or in the opposite order as planned. A question arises: for each method, how large can these offsets
be before such reordering effects occur? Having defined optimal time units, we are now in a position
to provide answers. We start with the ε-delay scheme (Kim, Seong, Kim, and Park 1997), in which a
unique nonnegative multiple of some ε is added to each simultaneous event time to order the events. To
avoid reordering nearly simultaneous events, it is suggested that the largest such multiple be less than the
minimum of any planned duration. We can now be more accurate: these multiples of ε must be less than
the optimal time unit of the simulation run. Another method involves the “threshold of event simultaneity”
(Wieland 1999), a parameter δ that bounds randomly generated positive or negative event time offsets. If
δ is sufficiently small, only exactly simultaneous events are affected. If δ is larger, the order of nearly
simultaneous events may also be randomized, which is claimed to improve robustness in certain contexts.
But what value of δ separates the two effects? We can now give the answer as half the optimal time
unit. Finally, we consider the time granule (Zeigler, Moon, and Kim 1996), a parameter d that promotes
parallelization by equating the event times of nearly simultaneous events. We observe that d must be at
least the optimal time unit to have the desired effect.

The second implication pertains to computer representations of simulated time. Discrete-event simula-
tions are typically associated with continuous time, suggesting that binary floating-point numbers be used
as a basis for simulated time points and durations. With one or two exceptions such as CD++ (Wainer
2002), most DEVS-based simulators rely on floating-point time values (Vicino, Dalle, and Wainer 2014).
Nevertheless, the presented theory lends credibility to the following integer-based time representation: a
duration-specific integer multiplier m times a common time unit ∆tu. The rationale is as follows. Both
floating-point-based and integer-based time values will introduce error into event times for time-unit-adverse
models. Yet a diverse class of discrete-event simulation models feature nonzero optimal time units, and
for these models one is better able to produce exact event times using an integer-based representation.



LastNameFirstAuthor and LastNameLastAuthor

Incidentally, not only do the generator, ramp, and processor models feature positive optimal time units,
but so do all ten atomic model examples in Chapter 4 of Theory of Modeling and Simulation. In fact
all six examples of coupled models also have positive optimal time units, provided duration parameters
and initial values are rational numbers. These sixteen models were selected for their educational value,
and learning discrete-event simulation is one endeavor for which exact results are highly desirable when
possible. Hence while Varga (2014) and others have observed practical advantages of integer-based time
values, there is now a complementary argument supported by theory.

6 CONCLUSION

This paper has introduced theory for reasoning about time units as inherent properties of discrete-event
simulation models. We have shown that all models have an optimal time unit, that some have permissible
time units, and that first- and second-order permissibility tests can be used to formally derive these units.
An understanding of the theory leads to an intuition about time units; notably, in the absence of time-unit-
adverse models, the optimal time unit is often the greatest common divisor of all duration parameters. The
optimal time unit plays an informative yet previously unrecognized role in several preexisting methods for
handling simultaneous events. Also, the high prevalence of nonzero optimal time units suggests the use of
integer-based time representations that reflect the surprisingly quantized nature of simulated time.

REFERENCES

Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park. 1997. “Ordering of simultaneous events in distributed
DEVS simulation”. Simulation Practice and Theory 5 (3): 253–268.

Smolin, L. 2014. “Atoms of space and time”. Scientific American 23 (4): 94–103.
Varga, A. 2014. OMNeT++ User Manual (Version 4.5).
Vicino, D., O. Dalle, and G. Wainer. 2014. “A data type for discretized time representation in DEVS”. In

Proceedings of the International Conference on Simulation Tools and Techniques (SIMUTools). Lisbon,
Portugal.

Wainer, G. 2002. “CD++: A toolkit to develop DEVS models”. Software: Practice and Experience 32
(13): 1261–1306.

Wieland, F. 1999. “The threshold of event simultaneity”. Transactions of the Society for Computer Simulation
International 16 (1): 23–31.

Zeigler, B. P. and Y. Moon and D. Kim 1996. “High performance modelling and simulation: Progress and
challenges”.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. Second ed. San Diego, CA, USA: Academic Press.

AUTHOR BIOGRAPHIES

NAMEFIRSTAUTHOR is [...] at [...] [...] [His/her] email address is emailfirstauthor.

NAMELASTAUTHOR is [...] at [...] [...] [His/her] email address is emaillastauthor.

mailto://emailfirstauthor
mailto://emaillastauthor

	INTRODUCTION
	SIMULATED TIME DURATIONS AND CONSTRAINTS
	PERMISSIBLE AND OPTIMAL TIME UNITS
	APPLICATION TO NOTABLE CLASSES OF SIMULATION MODELS
	Generator Model
	Ramp Model
	Processor Model
	Time-Unit-Neutral Models
	Time-Unit-Averse Models
	Coupled Models

	IMPLICATIONS FOR SIMULTANEOUS EVENTS AND TIME REPRESENTATION
	CONCLUSION

