
T. Skersys, R. Butleris, and R. Butkiene (Eds.): ICIST 2013, CCIS 403, pp. 392–402, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Behavior Analysis of Real-Time Systems Using PLA
Method

Dalius Makackas, Regina Miseviciene, and Henrikas Pranevicius

Kaunas University of Technology, Faculty of Informatics, Studentu 56-443, Kaunas, Lithuania
{dalius.makackas,regina.miseviciene,

henrikas.pranevicius}@ktu.lt

Abstract. The paper deals with a behavior analysis task of real-time system
specified by the PLA method. An algorithm for creating a reachable state
graph is used while solving for the task. The algorithm evaluates intervals of
time when the defined system events occur. An approach based on the algo-
rithm for the reachable state graph generation is presented within this paper.
The suggested approach is illustrated by an example.

Keywords: real -time system, analysis, trajectory modeling, reachable state
graph.

1 Introduction

A real-time system’s accuracy depends not only on the logical result of computations,
but also on the time at which the results are produced [2]. For a design of this type of
system, high security, reliability and performance requirements are raised. Various
formal methods for describing such systems functioning are applied. The most com-
monly used are following formal notations: Time Petri Nets [6-7, 19], Discrete Event
System Specification (DEVS) [2, 5, 20], Timed Automata [1, 4, 8], Piece-linear Ag-
gregate (PLA) [16, 18], Finite State Machine [21] and others. Such formal specifica-
tions of real-time systems can be analyzed by functionality or behavior. A functional
analysis is performed by creating a system simulation model. A behavioral analysis
examines all the possible trajectories of the system, while checking whether the speci-
fication is made correctly. As the real-time systems interact with their environment in
real-time, time properties are very important. Thus, more recently, considerable
research efforts have been devoted to verification of the time properties. There are
various verification techniques [9, 10, 12, 15]. However, conventional verification
methods do not perform a full inspection of real-time systems. Their main drawback
is that the traditional verification methods underestimate the system performance over
time, or analyzes only system whose operation time is deterministic. Functioning of
such systems is described only by one trajectory. However, many operations of real-
time systems depend on a certain interval. Thus, describing such systems by a single
trajectory is not possible, infinitely many endings of the operation in time.

 Behavior Analysis of Real-Time Systems Using PLA Method 393

The operations may result in any precisely specified time interval. Thus, real time
systems can have a number of operating trajectories. Verification of these trajectories
is problematic, because of the need to generate and verify all the possible modes.

A goal of this article is to present a novel approach for creation of reachable state
graph of operating trajectories for behavior analysis. The approach is based on the
algorithm for the reachable state graph generation. The algorithm permits precise
evaluation of specified time intervals for operations. The algorithm is designed for
real-time systems specified by Piece-linear aggregate method [16].

The remainder of this paper is organized with the following approach. The next
section provides a formal definition of Piece-linear aggregate; Section 2 describes
real-time system functioning trajectories; Section 3 provides a reachable state graph
creation algorithm; and an illustrative example is proposed in Section 4. Conclusions
are presented in the last section.

2 Piece-Linear Aggregate Specification Method

The paper analyzes real-time systems, specified for by Piece-linear aggregate method [16].
A system specified by the Piece-linear aggregate method is understood as a set of

interacting piece-linear aggregates. Each aggregate is defined by a set of states
...},{ 21 zzZ = , a set of input signals ...},{ 21 xxX = , a set of output signals

...},{ 21 yyY = , a set of internal E ′′ and external E′ events, a set of transition

ZZE H →×: and output YZE G →×: operators.
The aggregate method generates time-point sequences ...},{ 10 ttT = and state

)...}(),({ 10 tztz transitions in these time points. The state))(),(()(tztvtz v= consists

of two components: discrete)(tv and continuous)(tzv . Each element)(twi of a

continuous component)...)(),(()(21 twtwtzv = indicates a time when an event ie oc-

curs. The event changes j elements of discrete and continuous component of state

according to the law:))(,()(tzthth v
j

v
j = ,))(,()(tzthth w

j
w
j = .

In the aggregate model it is also defined the concept of the operation. This function
takes the following values:

() ()
t. time at pasive is it

t; time at ended it

t; time at active is it

teOtOO ee








−
===

,1

,0

,1

,

Each operation is linked with continuous component. If the operation eO is active

then value of continuous component is ttwe >)(; if the operation is passive, it is not

known when the next event will occur and continuous component is ttwe <)(; if the

operation is ended at time t then ttwe =)(.

The Piece-linear aggregate specification method can be used for real-time system
specification. This method is described in detail by Russian scientists N. Buslenko

394 D. Makackas, R. Miseviciene, and H. Pranevicius

and I. Kovalenko [3]. Professor H.Pranevicius proposed a modification by adding to
the method control sequences, which built in comfortable assumptions of these mod-
els in computer systems realization. The Piece-linear aggregate specification is used
for two purposes: to create simulation models and to validate and to verify the system.
Validation and verification is based on creation of a reachable state graph. The es-
sence of the reachable state method consists in the fact that, with the aggregate system
specifications, the system generates a set of all possible trajectories. Then, the trajec-
tories are analyzed in respect of properties under investigation.

3 Real-Time System Functioning Trajectories

Real-time systems are defined as follows: “It is an environment that responds to ran-
dom external events. The respond to a particular event is a set of actions; each of them
must be carried out in certain time constraints” [11, 13, 14].

Based on the definition, real-time system has the strict, fixed temporary conditions.
The actions must be carried out under the defined conditions. Real-time systems are
divided into two categories: real-time systems with strict requirements and real-time
systems with probabilistic requirements. This article explores the systems with strict
requirements. They must ensure that the appropriate actions will be carried out strictly
within the prescribed time interval.

The system is investigating by analyzing functioning trajectories
,...),(,),(, 2221110 SIeSIeS , where iI is time interval.

For example (Fig. 1), if the system contains two active operations 1O and 2O they

can be ended by the relevant events 1e and 2e . The event 1e can occur in the interval

);(111 βα ++= ii ttI and the event 2e - in the interval);(222 βα ++= ii ttI .

1O

2O

1α+it 2α+it 1β+it2β+it
t

Fig. 1. Time intervals of active operations

In this case there are three time intervals:

1. If an event 1e will occur at time);(21 αα ++∈ iim ttt , then the second event 2e

will occur at time);(221 βα ++∈+ iim ttt .

2. If an event 1e will occur at time);(22 βα ++∈ iim ttt , then the second event 2e

cannot occur before the first. The second event will occur at time
);(21 β+∈+ imm ttt .

3. If an event 2e will occur at time);(22 βα ++∈ iim ttt , then the first event 1e will

occur at the time);(11 β+∈+ imm ttt .

 Behavior Analysis of Real-Time Systems Using PLA Method 395

There are three possible trajectories of system functioning:

;),;(,),;(, 222212110 StteStteS iiii βααα ++++

,),;(,),;(, 22212210 StteStteS imii ββα +++ where ;22 βα +<<+ imi ttt

,),;(,),;(, *
211

*
12220 StteStteS imii ββα +++ where ;12 βα +<<+ imi ttt

Graphically this is illustrated in a tree-like structure (Fig. 2).

S0

S*1S1

S2 S*2S2

()211 , βα ++ ii tte ()222 , βα ++ ii tte

() whentte ii ,, 222 βα ++ () whentte im ,, 22 β+
()221 , βα ++ ii tte

()11 , β+im tte()211 , αα ++ ii tte

Fig. 2. Tree-like structure of example

4 Reachable State Graph Creation Algorithm

All functioning trajectories must satisfy the following statements. All the statements
are proven in [17].

Statement 1. If)(twe can take any value in the interval),(βα , then an event e

can occur at any time),(βα∈mt .

Statement 2. If the system is at the state s , then the next event ie will occur at

time)min,min(i
i

i
i

t βα∈ . According to this definition (Fig. 3) i
ni
αα

≤≤
=

1
min and

i
ni
ββ

≤≤
=

1
min .

2O

1O

1α 2α 3α 2β1β 3β

3O

α β

Fig. 3. Graphic depiction of operation ending intervals

Fig. 3 shows that in the interval),(21 αα may finish only operation 2O ; in the in-

terval),(32 αα - operations 1O and 2O ; in the interval),(13 βα - operations 1O , 2O

and 3O . In this case 1αα = and 1ββ = .

396 D. Makackas, R. Miseviciene, and H. Pranevicius

Statement 3. Suppose that in a state s at time t′ the operation jO was active. If

at the end of the operation iO (ji ≠) at time mt operator ()ieH did not change the
continuous component ()tw j , then the system will move to a state where the conti-

nuous component ()tw j satisfies the condition: { } () jmjjm twt βα <<,max .

2O

1O

1α 2α 3α 2β1β 3β

3O

α βmt

Fig. 4. Active operations range adjustment

Statement 4. The newly generated operation may fall either outside or inside of
the relevant range),(βα (Fig. 5). The earlier mentioned definitions should be eva-

luated in the both intervals.
2O

4O

1α 2α+mt 2β+mt1β
α βmt

Fig. 5. The newly generated operation falls inside of the relevant interval

2O

4O

1α 2α+mt 2β+mt1β
α βmt

Fig. 6. The newly generated operation falls outside of the relevant interval

According to these definitions, a state graph is formed according to algorithm pre-
sented in Fig. 7.

 Behavior Analysis of Real-Time Systems Using PLA Method 397

 An unexamined node of graph is
analyzed

A time interval I = (α, β) for the
possible operations is defined

Operations which can finish
before β are examined

An interval I=(α, β) is
decomposed to interval system
and possible operations of the

intervals are set

A set of possible transitions is
created

For transition pair (e,I) a state is
found according to H(e)

A set of end moments for active
operations is identified after

evaluating the newly activated
operations

New β of I=(α, β) is
recalculated

A new state node of the graph is
added and additional new

constraints of time are
formulated

Fig. 7. A flowchart of the state graph analysis algorithm

5 Reachable State Graph Creation Example

A service system consists of one input and two service devices (Fig. 8). Service appli-
cation messages, arriving to the system, are placed in a queue. When one of the de-
vices becomes available for the service the message is passed to him. If both devices
are available, the message is transmitted to the first device.

Fig. 8. Two-channel mass service system

The system specification consists of the components:

• a set of inputs ∅=X and a set of outputs ∅=Y ;
• a set of events EEE ′′∪′= , where ∅=′E ; { }321 ,, eeeE =′′ , 1e - a new message

arrived, 2e - a first channel service is completed, 3e - a second channel service is

finished;
• controlling sequences  2101 ,, αααe ,  2102 ,, βββe ,  2103 ,, γγγe ;

• a discrete component () ()()tnt =ν , where ()()tn is a number of messages in a queue.

• a continuous component () () () ()()tewtewtewtz ,,,,, 321=ν ;

• a parameter s - is a maximum length of the queue.

398 D. Makackas, R. Miseviciene, and H. Pranevicius

• time limitations on the duration of operations are these: 64 << iα , 53 << iβ ,

42 << iϕ , ,2,1=∀i .

Transition operators are as follows:
() :1eH

 () () () () ()


 <−∧−<∧−<+−

=
otherwise;

stntewttewttn
tn mmmmmm
m

;00,0,

,0

,10 32

() mmm ttew α+=,1 ;

() ()
()



 −>

−
+

=
otherwise;

tewt

tew

t
tew mm

m

mm
m

;0,

,0,

,
, 2

2
2

β

() ()
() ()



 −>∧−<

−
+

=
otherwise;

tewttewt

tew

t
tew mmmm

m

mm
m

;0,0,

,0,

,
, 32

3
3

γ

():2eH

() () ()


 >−−−

=
otherwise;

tntn
tn mm
m

;00

,0

,10

() ()
()



 >−

−
+

=
otherwise;

tn

tew

t
tew m

m

mm
m

;00

,0,

,
,

2
2

β

():3eH

() () ()


 >−−−

=
otherwise;

tntn
tn mm
m

;00

,0

,10

() ()
()



 >−

−
+

=
otherwise;

tn

tew

t
tew m

m

mm
m

;00

,0,

,
,

3
3

γ

A generation of a reachable state graph is carried out in accordance to the algo-
rithm presented in Fig. 7.

Step 1. The generation of the reachable state graph starts from the initial state. The
state S consists of three components: a discrete component ()tν , a continuous com-

ponent ()tzν and a set of time constraints R :

: ()()000 ;,,6,4;0:1 Rtt ∅∅++ , where ∅=0R .

The first interval),(βα=I is defined according to formulas

{ } 44min 00 +=+= ttα and { } 66min 00 +=+= ttβ (Fig. 9). Operations, which may

finish in the interval first of all, are found. According to PLA specification only one
operation 1O is active. Since there is only one operation, using a transition operator

()1eH we find the next state: () ()()∅++++ ,5,3,6,4;0 1111 tttt .

Check if the new activated operation will not end earlier than 60 += tβ . Since the

condition is satisfied { }3,6min 10 ++ tt = β=+ 60t , a new activated operation can not

finish before the examined interval. The next state is as follows:
() ()()111111 ;,5,3,6,4;0:2 Rtttt ∅++++ , where { }64 010011 +<<+∪= tttRR .

 Behavior Analysis of Real-Time Systems Using PLA Method 399

1O

40 +t

α β
60 +t

t
()6,4; 0011 ++∈ ttte

1t

Fig. 9. Reachable state graph fragment 21 SS → and a transition 11,te

Step 2. The next interval),(βα=I is defined by formulas

{ } 34,3min 111 +=++= tttα and { } 56,5min 111 +=++= tttβ .

Operations which may finish in the interval first of all, are found. They are two op-
erations (1O and 2O). The interval),(βα=I is separated (Fig. 10) into two inter-

vals { }4,3 11 ++ tt and { }5,4 11 ++ tt .

1O

40 +t
1t

60 +t
t

2O

31 +t

α β
41 +t 51 +t 61 +t

Fig. 10. Separated two intervals { }4,3 11 ++ tt and { }5,4 11 ++ tt

The possible transitions there are three:
()4;3(, 1122 ++∈ ttte , ()5;4(, 1122 ++∈ ttte , ()5;4(, 1121 ++∈ ttte

Step 2.1. A transition ()4;3(, 1122 ++∈ ttte is analyzed first of all (Fig. 11).

1O

40 +t
1t

60 +t
t

2O

31 +t

α β
41 +t 51 +t 61 +t

2t

Fig. 11. An event ()4;3(, 1122 ++∈ ttte

Using a transition operator ()2eH the next state is defined:

()()∅∅++ ,,6,4;0 11 tt . Since the operation 1O after the event remained active, we

have to recalculate the end of the interval in such a way:
{ }())6,4(6,4,max 11112 ++=++ ttttt .

The third state is as follows (Fig. 12):
()()2111 ;,,6,4;0:3 Rtt ∅∅++ , were { }43 1211121 +<<+∪= tttRR

400 D. Makackas, R. Miseviciene, and H. Pranevicius

()6,4; 0011 ++∈ ttte

()4;3(, 1122 ++∈ ttte

Fig. 12. A fragment of the reachable state graph (a transition 32 SS →)

Step 2.2. The second transition ()5;4(, 1122 ++∈ ttte is analyzed next (Fig. 13).

1O

40 +t
1t

60 +t
t

2O

31 +t

α β
41 +t 51 +t 61 +t

2t

Fig. 13. An event ()5;4(, 1122 ++∈ ttte

Using transition a transition operator ()2eH the next state is defined:

()()∅∅++ ,,6,4;0 11 tt . Since an operation 1O after the event remained active, we

have to recalculate the end of the interval in such a way:
{ }())6,(6,4,max 12112 +=++ ttttt .

The forth state is as follows (Fig. 14):
()()2212 ;,,6,;0:4 Rtt ∅∅+ , were { }54 1211122 +<<+∪= tttRR

()6,4; 0011 ++∈ ttte

()4;3(, 1122 ++∈ ttte ()5;4(, 1122 ++∈ ttte

Fig. 14. A fragment of the reachable state graph (a transition 42 SS →)

Step 2.3. The third transition ()5;4(, 1121 ++∈ ttte is analyzed next (Fig. 15).

 Behavior Analysis of Real-Time Systems Using PLA Method 401

1O

40 +t
1t

60 +t
t

2O

31 +t

α β
41 +t 51 +t 61 +t

2t

Fig. 15. An event ()5;4(, 1121 ++∈ ttte

Using the transition operator ()1eH , the next state is defined:

() () ()()4,2,5,3,6,4;0 221122 ++++++ tttttt .

Since an operation 2O after the event remained active, we have to recalculate the

end of the interval in such a way: { }())5,(5,3,max 12112 +=++ ttttt . The forth state is

as follows (Fig. 16):
() () ()()23221222 ;4,2,5,,6,4;0:5 Rtttttt +++++ , where

{ }54 1211123 +<<+∪= tttRR .

()6,4; 0011 ++∈ ttte

()4;3(, 1122 ++∈ ttte

()5;4(, 1122 ++∈ ttte

()5;4(, 1121 ++∈ ttte

Fig. 16. A fragment of the reachable state graph (a transition 52 SS →)

6 Conclusions

Conventional verification methods do not perform a full analysis of real-time systems
as the traditional verification methods underestimate the system performance over
time, or analyze only system whose operation time is deterministic. However, many
operations of real-time systems depend to a certain interval and may result in any
precisely specified time interval.

This paper presents a novel approach for creation of a reachable state graph. While
creating the reachable state graph an algorithm is used. The algorithm permits to eva-
luate intervals of time when the defined system events occur. When the reachable
state graph is made then various properties can be verified: dead ends, inefficient
cycles, reachability and so on.

Acknowledgements. The work described in this paper has been carried out within the
framework the Operational Programme for the Development of Human Resources

402 D. Makackas, R. Miseviciene, and H. Pranevicius

2007-2013 of Lithuania „Strengthening of capacities of researchers and scientists“
project VP1-3.1-ŠMM-08-K-01-018 „Research and development of Internet tech-
nologies and their infrastructure for smart environments of things and services“
(2012- 2015), funded by the European Social Fund (ESF).

References

1. Aceto, L., Bouyer, P., Burgueno, A., Larsen, K.G.: The power of reachability testing for
timed automata. Theoretical Computer Science 300, 411–475 (2003)

2. Bonhomme, P.: Scheduling and control of real-time systems based on a token player ap-
proach. Discrete Event Dynamic Systems 23, 197–209 (2013)

3. Buslenko, N.P., Kalashnikov, V.V., Kovalenko, I.N.: Lectures on the Theory of Complex
Systems. Sov. Radio, Moscow (1973) (in Russian)

4. Dang, Z., Ibarra, O.H., Kemmerer, R.A.: Generalized discrete timed automata: decidable
approximations for safety verification. Theoretical Computer Science 296, 59–74 (2003)

5. David, R., Alla, H.: On hybrid Petri nets. Discrete Event Dynamic Systems 11, 9–40 (2001)
6. Ding, Z., Jiang, C., Zhou, M.: Design, Analysis and Verification of Real-Time Systems

Based on Time Petri Net Refinement. ACM Transactions on Embedded Computing Sys-
tems (TECS) 12 (2013)

7. Ghomri, L., Alla, H.: Modeling and analysis using hybrid Petri nets. Nonlinear Analysis:
Hybrid Systems 1, 141–153 (2007)

8. Gómez, R.: Model-checking timed automata with deadlines with Uppaal. Formal Aspects
of Computing 25, 289–318 (2013)

9. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear
relation analysis. Formal Methods in System Design 11, 157–185 (1997)

10. Knorreck, D., Apvrille, L., Pacalet, R.: Formal system-level design space exploration.
Concurrency and Computation: Practice and Experience 25, 250–264 (2013)

11. Kopetz, H.: Real-time systems: design principles for distributed embedded applications.
Springer Science+ Business Media (2011)

12. Krena, B., Vojnar, T.: Automated formal analysis and verification: an overview. Interna-
tional Journal of General Systems 42, 335–365 (2013)

13. Laplante, P.A.: Real-Time Systems Design and Analysis. Wiley-IEEE Press (2004)
14. Lorin, H., Deitel, H.M.: Operating Systems. Longman Higher Education (2009)
15. Mekki, A., Ghazel, M., Toguyeni, A.: Validation of a New Functional Design of Automat-

ic Protection Systems at Level Crossings with Model-Checking Techniques. IEEE Trans-
actions Intelligent Transportation Systems 13, 714–723 (2012)

16. Pranevicius, H.: Complex systems formalization and analysis (in Lithuanian). Technologi-
ja, Kaunas (2008)

17. Pranevicius, H., Raudys, S., Rudzionis, A., Ratkevicius, K., Sakalauskaite, J., Makackas,
D.: Agent system models. Mokslo aidai, Vilnius (2008)

18. Pranevicius, H., Miseviciene, R.: Verification of piece-linear aggregate specifications.
Kaunas, Technologija (2006)

19. Renganathan, K., Bhaskar, V.: Performance evaluation and model checking in systems
modeled as Hybrid Petri nets. Applied Mathematical Modelling 36, 3941–3947 (2012)

20. Saadawi, H., Wainer, G.: Principles of Discrete Event System Specification model verifi-
cation. Simulation 89, 41–67 (2013)

21. Yin, Y., Liu, B., Ni, H.: Real-time embedded software testing method based on extended
finite state machine. Systems Engineering and Electronics 23, 276–285 (2012)

	Behavior Analysis of Real-Time Systems Using PLA
Method
	1 Introduction
	2 Piece-Linear Aggregate Specification Method
	3 Real-Time System Functioning Trajectories
	4 Reachable State Graph Creation Algorithm
	5 Reachable State Graph Creation Example
	6 Conclusions
	References

