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Abstract. This work comes as a contribution to the efforts that are undergoing 
within engineering systems community to account for the increased complexity 
of today’s manufacturing or service systems. These systems are becoming more 
and more complicated due to the increase in the number of elements, intercon-
nections within the system, and necessary integration with other systems. 
Moreover, through the emphasis on self-organization and considering the multi-
stakeholders context and objectives, these systems are crossing the line towards 
complexity. There is a need for developing a framework to be used in modeling, 
analysis, and integration of systems that operate in uncertain environments, in 
which characteristics such as adaptation, self-organization and evolution, or in 
other words behavior prediction, need to be addressed. The proposed complex 
enterprise systems framework combines knowledge coming from complex  
systems science and systems engineering domains, and uses computational in-
telligence and agent-based systems simulation methodologies. The approach re-
quires computational experience in manipulating large amounts of data and 
building large-scale simulation models. A significant result to be made possible 
by this research is that systems may no longer have a fixed, life-cycle long, de-
sign based on identified requirements; systems will be engineered to evolve and 
adapt as needed during the operational phase, while respecting their operational 
environment constraints. 

Keywords: complex enterprise systems, behavior prediction, agent-based mod-
eling and simulation, holonic enterprise systems. 

1 Introduction 

On January 23, 2000, the famous British physicist Stephen Hawking stated in an in-
terview for the San Jose Mercury News: “I think the next century will be the century 
of complexity”. Other theoreticians described the 21st century as “the systems cen-
tury” [1]. Systems engineering (SE) as a discipline is in the position to complement its 
traditional approach of translating operational requirements into optimized systems 
configurations with elements and characteristics identified in natural complex  
systems, such as, adaptability, self-organization, and evolution. By having these capa-
bilities available in their toolset, engineered systems and enterprises will be better 
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prepared to respond to the increased complexity of today’s business and operational 
environment.  

This work comes as a contribution to the efforts that are undergoing within  
engineering systems community to account for the increased complexity of today’s 
manufacturing or service systems. These systems are becoming more and more com-
plicated due to the increase in the number of elements, interconnections within the 
system, and necessary integration with other systems. Moreover, through the empha-
sis on self-organization and considering the multi-stakeholders context and objectives, 
these systems are crossing the line towards complexity. Consequently, there is a need 
for developing a framework to be used in modeling, analysis, and integration of sys-
tems that operate in uncertain environments, in which characteristics such as adapta-
tion, self-organization and evolution, or in other words behavior prediction, need to be 
addressed. 

The proposed complex enterprise systems framework combines knowledge coming 
from complex systems science and systems engineering domains, and uses computa-
tional intelligence and systems simulation methodologies. The approach requires 
computational experience in manipulating large amounts of data and building large-
scale simulation models. A significant result to be made possible by this research is 
that systems may no longer have a fixed, life-cycle long, design based on identified 
requirements; systems will be engineered to evolve and adapt as needed during the 
operational phase, while respecting their operational environment constraints. Finally, 
being generic, the proposed framework is expected to be applicable to all the types of 
large-scale manufacturing and service complex systems that are designed and work in 
uncertain environments. 

2 Complex Systems, Engineered Systems, and Complex 
Enterprise Systems 

Natural world was engineers’ inspiration for centuries regarding the way to build 
systems that benefit mankind. With the goal of optimal design, traditional engineering 
disciplines and systems engineering looked at including characteristics such as predic-
tability, controllability, and reliability into the engineered systems. Natural world, 
however, exhibits also other characteristics such as adaptability, self-organization, 
and evolution, which were not included in the design and operational sequences of 
engineered systems until recently. Today’s manufacturing and service systems are 
more intricate and complicated than ever, and achieving the only goal of optimal de-
sign may be too restrictive. Engineered systems should have the mechanisms that 
allow them to adapt to changes in requirements and deal with environment uncertain-
ties, while in operation. For large complex systems and enterprises, deterministic 
predictability and controllability is no longer sufficient. These systems should be 
engineered with the goal of providing a meaningful and real-time response, while 
retaining reliability as a main characteristic. 



 13   Complex Manufacturing and Service Enterprise Systems 199 

2.1 Complex Systems 

Having its foundations on systems science, complex systems science “emerged from 
the interplay of physics, mathematics, biology, economy, engineering, and computer 
science, [with the] mission to overcome the simplifications and idealizations that lead 
to unrealistic models in these sciences” [2]. The complex adaptive systems (CAS) 
theory is built upon characteristics of many disciplines such as, evolutionary biology, 
nonlinear dynamical systems, and artificial intelligence. CAS focuses on the interac-
tion between the system and its environment and the co-evolution of both the system 
and the environment [3]. The main characteristics of CAS are self-organization (de-
fined as, the spontaneous appearance of large-scale spatial, temporal, or spatiotem-
poral order in a system of locally interacting simple components), emergence (defined 
as, the appearance of a large-scale phenomenon or property that cannot be reduced to 
a superposition of contributions by individual system elements), and adaptability 
(defined as, the process by which a system modifies its processes and/or structures in 
response to external or internal feedback in order to improve its fitness). 

2.2 Engineered Systems 

Blanchard and Fabrycky [4] define an engineered system to be a combination of inter-
related elements, parts, methods, or procedures forming a complex unitary whole 
working together towards a common objective. Traditional SE framework considers a 
clear distinction between the design and production phases, and the operational phase, 
and does not allow any type of change in the operational phase; engineered systems 
need to respect all the hard specifications of the designer. Even systems considered to 
be adaptive, such as adaptive controllers or neural networks, follow this two-phase 
approach, allowing changes (i.e., adaptation) only in the superficial sense of parame-
ter adjustment [5]. Every operational behavior at the system level can be traced back 
in terms of initial requirements. There is a vast literature on modeling and analysis of 
large-scale systems that presents the design methodologies and the tools used in anal-
ysis of these systems. However, these systems are analyzed in terms of their compo-
nents, and just a few studies attempt to provide a systems approach to modeling and 
analysis. Individual systems can be analyzed using operations research methodologies 
and modeled using computer science algorithms, but these tools work at the individu-
al system or component level. Once the big picture is considered, these methods of 
analysis fail to provide the needed insight to the problem. And, since the emergent 
characteristics can only be seen at the system level, the big picture needs to be consi-
dered in the analysis process. 

2.3 Complex Enterprise Systems 

In the understanding of this work, complex engineered systems, or engineering com-
plex enterprise (manufacturing or service) systems is the process of engineering of 
manufacturing and service large-scale systems such as distributed manufacturing 
operations, health care delivery systems, local and national infrastructure, globally 
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distributed supply and demand chains (value chains), etc., which involve a large num-
ber of interacting entities, and have several stakeholders with different objectives. A 
characteristic of these systems is their emergent behavior viewed at the system level, 
behavior that cannot be traced back to the individual system components. As these 
systems tend to increase in their scale and complexity, systems engineering, as it is 
today, cannot provide the means for accurate modeling and analysis processes. The 
principle that states that “the whole is more than the sum of the parts”, principle that 
can be traced back to Aristotle is as true today as it always was: “The systems  
problem is essentially the problem of the limitations of analytical procedures in 
science. This used to be expresses by half-metaphysical statements, such as emergent 
evolution or ‘the whole is more than a sum of its parts’, but has a clear operational 
meaning” [6]. 

Since traditional systems engineering and its methods and tools coming from oper-
ations research, computer science, and decision sciences cannot address the increased 
complexity of today’s engineered and organizational systems, engineering should 
borrow from complex systems research which offers the possibility to build a frame-
work using already studied concepts such as complexity, fractals, emergence, self-
organization, adaptation, evolution, etc. In engineering words, complexity is defined 
by the National Institute of Standards and Technology as the “intrinsic amount of 
resources, for instance, memory, time, messages, etc., need to solve a problem or 
execute an algorithm.” This definition does infer that in the context of a very large 
number of resources needed, the behavior of a system that relies on problem-solving 
or algorithm-execution may become intractable. It is worth noting that complexity, in 
the sense of this definition, can, however, decrease with learning, so assessing the 
“true” complexity of a system is at all times dependent on the observing entity. 

2.4 Background on Modeling Complex Systems 

Traditionally, in physics, chemistry and other sciences, complex systems are modeled 
using analytical techniques which include nonlinear dynamics, differential and differ-
ence equations, time series analysis, graph and network theory, cellular automata, and 
Markov processes. The interest of this research is on the resulting complexity charac-
teristics of nonlinear dynamic systems, regardless of the way they are modeled analyt-
ically. According to Ottino [7], complex systems show a form of organization without 
any external organizing principle being applied to them, or in other words complex 
systems demonstrate self-organization characteristics. 

The complexity theory can be traced back to Poincaré in the 1890s, who indicated 
the possibility for certain systems to be subject to sensitive dependence on initial con-
ditions. More than 50 years later, Lorenz came to the same answer while conducting 
weather forecasting studies and stated that systems in the real world do not behave in 
a precisely repeatable way. Therefore, prediction of the long-term future is unlikely 
for the nonlinear dynamical systems. A small difference in starting conditions alters 
the behavior of the system [8]. This sensitivity dependence on initial conditions is 
best illustrated by the Lorenz strange attractor [9]. Until the advent of modern compu-
ting with its tremendous increase in computational power only a few other complex 
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behavior of differential equations were published. Only two decades later, modern 
computing showed that simple systems of dynamical equations having a small num-
ber of parameters can produce an unlimited variety of complex behaviors. Since, there 
are no known rules for predicting the complex behavior, an extensive search is re-
quired to obtain behaviors of interest. Boccara [10] describes these dynamical models 
dependent on a previous state as equations of the form: , where x, 
represents the state of the system and belongs to a subset  , the function :  is called a model, and  is the state parameter. A complex model is a 
function of form f defined above, which exhibits some sort of complex behavior. In a 
complex model a bifurcation occurs when a small change in the model parameters 
causes a sudden change in the long-term dynamical behavior. 

Polack and Stepney [11] noted that, in terms of systems analysis, in emergent sys-
tems there is a discontinuity between the global and local system description. Their 
work explored the development of emergent systems using cellular automata by using 
simple algorithms that have emergent characteristics. The objective of their research 
is to systematically determine the system components and integration environment 
that is capable of forming the required properties as emergent effects. Johnson [12] 
characterizes the system level emergent properties as both beneficial (users adapt 
products to support tasks that designers never intended) and harmful (they undermine 
important safety requirements of the system), so the process of modeling the emergent 
characteristics needs to augment the beneficial emergent effects, while suppressing 
the harmful ones. 

2.5 Background on Large-Scale Systems Simulation 

Even not similar to a regular knowledge discovery process, represented usually by data 
mining techniques, identifying the nonlinear processes that potentially control complex 
systems is also done by studying very large amounts of data. Behavior characterization 
through simulation does not extract directly previously unknown knowledge from large 
databases, but uses entire databases to build knowledge by discovering the complex 
model(s) that governs system behavior. The literature review identified, however, a 
series of research papers related to this current work, that use knowledge discovery 
processes applied to study complex systems phenomena. An important issue in the 
knowledge discovery process is a reliable filtering of meaningful patterns from those 
trivial. The patterns of data extracted should be non-trivial, valid, novel, useful and 
comprehensible [13]. McGarry [14] reviews the methods of evaluation for the actual 
worth of the discovered patterns in the data mining process. Last et al. [15] discuss the 
knowledge discovery process in time-series databases and their approach includes 
cleaning and filtering of time series data, identifying the most important predicting 
attributes, and extracting a set of association rules that can be used to predict the  
time series behavior in the future. Their methodology is based on signal processing 
techniques and information-theoretic fuzzy approach to extract the rules, which  
are then further reduce using the computational theory of perception. Two types  
of time series, stock-market data and weather data are used as examples for their  
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approach. Large-scale agent-based and cellular automata simulations are also identi-
fied in the literature as means for modeling and characterizing the behavior of physi-
cal and natural phenomena and systems [16-17]. 

3 Framework for Engineering Complex Enterprise Systems 

This work proposes a multi-scale, multi-objective modeling framework applicable to 
complex man-made systems regardless of their nature. Since complexity as a term and 
complex systems as concept are debatable within science and engineering community, 
for the purpose of this work, a distinct delimitation is made between systems whose 
behavior can be completely understood through functional decomposition and sys-
tems that exhibit emergent behavior. The former will be named complicated, while by 
complex system, this work refers to the latter. This delimitation is in accordance with 
the recent advancements in engineering systems research exemplified by the pub-
lished work in the systems engineering area. As a comparison, a modern manufactur-
ing plant, which includes a large number of machines, whose work in process is  
determined based on reliable forecasting data is a good example of a complicated 
system conforming to the above definition, while the global value chain for the same 
manufacturing plant, which includes several other companies whose operations are 
exhibiting uncertain behavior, is a reasonable example of a complex system. 

3.1 Factors Influencing Complexity 

According to Bar-Yam [18], a complex system exhibits behaviors not understandable, 
and which may not be inferred from the structure and behavior of its component parts. 
These perceived complex behaviors can be attributed to one or more of the following 
characteristics, “large numbers of elements, large numbers of relationships among 
elements, nonlinear and discontinuous relationships, and uncertain characteristics of 
elements and relationships” [19]. Since these systems show evidence of complex 
structural and operational characteristics that are not accounted for within the tradi-
tional systems engineering framework, engineering research needs to propose a new 
modeling framework that addresses these characteristics. As presented in Fig. 1, com-
plexity in enterprise systems is due to one or more factors: system modeling through 
its architecture and multiple scale and time characteristics; system interactions 
through its internal interconnections and interfaces with other systems; system mul-
tiple objectives and multiple stakeholders, resulting in frequent trade-offs in the  
analysis process; system learning, resulting in adaptation and reconfigurability capa-
bilities; system context, dealing with the environment in which the system operates; 
and, system information through the collection and distribution of data [19]. 

The complex enterprise systems architecture framework needs to address the phys-
ical component systems, the social organization of the component systems, as well as 
behavior characteristics of individual humans and social organizations components. 
Since the systems are intended to be engineered for evolution and adaptability,  
the architecture framework should be capable of generating adaptive and evolvable 
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behaviors and demonstrate agility in responses to external and internal stimuli. More-
over, it should include fixed system elements and be capable of accounting for system 
changes in terms of structure, relationships, controls and incentives. Trade-off study 
capabilities to address the balance between system efficiency and evolution characte-
ristics should be considered in the framework development, as well. Nevertheless, the 
overall generic complex enterprise system architecture needs to address the system 
multiple goals, while respecting individual sub-systems hard constraints. 

 

Fig. 1. Factors influencing systems complexity 

3.2 Proposed Modeling and Simulation Approach 

Experiments, modeling, and simulation are essential in order to analyze a self-
organizing system and to engineer systems that exhibit emergent properties. Since a 
complex enterprise system evolves continuously, it has to be engineered such that its 
evolution is within a predictable pattern. The proposed process of engineering of 
complex enterprise systems can be performed either on an existing, or a new system, 
and it consists of two main components, descriptive and predictive components, as 
presented below. For each of the two components, their objectives, methodologies to 
accomplish them, and the outcome of the processes are considered. 

• Descriptive Component 
o Purpose: Theoretical Description of the System 
o Methodology: System Modeling 
o Outcome: Complex Model Identification 

• Predictive Component 
o Purpose: Prediction of System Behavior 
o Methodology: System Simulation 
o Outcome: Complex Behavior Identification 
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3.3 System Modeling 

The system modeling process is performed to obtain a theoretical description of the 
system in the form of a complex model. Considering the current system stakeholder, 
states, goals, and factors influencing its complexity previously identified, the process 
of system modeling is presented in Fig. 2.  

 

Fig. 2. System modeling for complex model identification 

The first steps are to acknowledge the observer by selecting one of the multiple 
stakeholders and identify the current and subsequent system states based on the se-
lected stakeholder view of the system. Then, system goals are identified and ranked 
based on hard operational requirements and stakeholder’s point of view; out of the 
remaining five factors previously linked to system complexity, the ones that affect the 
system are identified and ranked based on factorial experiments; systems engineering 
process is used to identify and rank system technical performance measures (TPM); 
and, all this information is used to calculate the expected values of the TPMs. In the 
last step, the transition of the system from one state to another is approximated as 
close as possible with nonlinear complex mathematical models based on the expected 
values of the system TPMs. The complex model identification is a computational 
process that involves searches in the models’ space based on the values of TPMs cal-
culated for the current and subsequent states. 

The ranking of TPMs is obtained using factorial experiments with three TPMs as 
factors at three different levels of systems complexity. The interaction between the 
TPMs and the system complexity levels is also considered in the factorial experi-
ments. The output of the factorial experiments will give the most important TPM 
based on which the complex model will be identified. Ranking of the factors that 
influence the complexity of the system can also be obtained as a result of factorial 
experiments. 
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3.4 System Simulation 

The advances in systems characterization using complexity theory provide opportuni-
ties for the computational simulation techniques to attempt at prediction of the future 
behavior of complex systems. The system simulation component works in two ways. 
First, by using observed systems data as well as simulation techniques, the predictive 
component undertakes the complex enterprise systems behavior from both the expe-
rimental and computational directions. The purpose of this approach, presented in Fig. 
3 below, is to characterize the observed data and identify the underlying complex 
models that control the system behavior, functions which the traditional analytical 
approach cannot uncover. These complex models are further used in the prediction 
process for complex behavior identification. The second approach is to use the com-
plex models identified in the above system modeling component and proceed directly 
to the second set of simulation experiments. 

 

Fig. 3. System modeling for complex model identification 

The last process presented in Fig. 3, part of the prediction component, checks for 
compliance with the SE specification values for the TPMs, and rejects any complex 
model that leads to a status that does not respect the critical, hard constraints. This 
process can be done using a general decision evaluation display as presented in Fig. 4 
below. The most important TPM identified in the system modeling component of the 
framework is plotted on the horizontal axis, and all other TPMs are plotted on the 
vertical axes. Except for the TPMs that are critical and must be respected for a safe 
operation of the system, all other TPMs plotted vertically may be subject to trade-off 
processes between them. 

For a given system, large sets of data are generated by fitting probability distribu-
tions to the data points obtained from the observed system behaviors. These probabili-
ty distributions are designed such that slightly changes in the initial conditions for the 
system under study are obtained. These sets of data are used in the first simulation 
model to build a large database of potential output system behaviors. The behavior 
characterization module selects through all these potential output system behaviors 
and removes from the database all unfeasible generated behaviors. Ranking the re-
maining and potential effective behaviors is a step further in the overall simulation 
process, and includes grouping the behaviors in sets based on their scores for each of 
the TPMs considered. Since complex systems have several stakeholders, each of them 
with its own set of objectives, there will be several performance measures associated 
with each set of objectives. 
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Fig. 4. General decision evaluation display for TPMs 

The second simulation model is used to statistically validate the feasible and poten-
tial effective behaviors identified through the characterization process or in the system 
modeling component of the complex enterprise systems framework. The complex 
models identified through the system modeling process are placed in a temporary 
database for system validation purposes. The same database is used for the second 
approach of system simulation component to store the potential valid complex models 
identified through simulation. Another set of experimental work is necessary to vali-
date the predictions stored in the temporary database. Once the predictions proved to 
be valid, the complex models are sent to the prediction module and grouped in sets 
corresponding to each of the system TPMs considered. 

3.5 Design of Simulation Experiments 

Since the time scale characteristic was identified as an important factor affecting the 
complexity of systems, the simulation models are developed based on a timed step 
approach. There is a correspondence between the variables of interests considered in 
the observational data points and the random variables considered in the simulation 
models. As stated above, two series of simulations experiments will be performed, 
one using observed experimental data and the other one using generated data fitted to 
the observed data by using probability distributions. 

The first series of simulations, presented in Fig. 5, will rely on comparison tech-
niques to select among the generated behaviors. This series of simulation experiments 
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will use huge amounts of data generated by fitting input probability distributions to 
the observed data. For each time period [i, i + 1] between two consecutive time steps 
[i], [i + 1], the algorithms embedded in the evaluation engine of the simulation model 
are run independently or in combinations of two or more such that the entire spectrum 
of the observed behaviors is covered. The behavior characterization process is done 
offline and uses the database delivered by the evaluation engine of the simulation 
model. 

 

Fig. 5. Generation of behavior characterization data 

The second series of simulation experiments, presented in Fig. 6, will use only  
experimental data and tries to validate the potential nonlinear mechanisms for the 
underlying process identified in the previous series of simulation experiments and the 
characterization process. Just like in the first simulation model, for each time period 
[i, i + 1] between two consecutive time steps [i], [i + 1], the algorithms embedded in 
the evaluation engine are run independently or in combinations of two or more. The 
potential matches of the simulation output with previously observed data are moni-
tored and stored in a temporary database. Running the potential complex model for all 
available observed data will provide sufficient information to decide if there is a fit 
between the experimental data and the output of the identified algorithm or combina-
tion of algorithms. To validate a potential complex model, a statistical analysis of the 
output given by the evaluation engine will be performed. 

The evaluation engine of the simulation modules is the same for both series of ex-
periments and is presented in Fig. 7. Borrowing from multi-agent and holonic systems 
theory, each of the potential complex models to be tested individually or in combina-
tion is modeled as a holon having autonomy in running independently and also having 
the ability to cooperate with the other holons in the architecture, such that combina-
tions of two or more complex models can be tested. The types of complex models 
tested are fed with generated or observed data, corresponding to the first or the second 
series of simulation experiments, respectively. 
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Fig. 6. Simulation logic that validates selected complex models 

3.6 Simulation Input Modeling 

The purpose of the simulation part is to find the complex model that can deliver the 
observed output considering the known input of the process under study. Since the 
amount of experimental observed data may not be sufficient for a massive simulation, 
large databases of input data will be generated in the form of probability distributions. 
It is more than likely that no theoretical distribution will provide an adequate fit for 
the observed data, so to generate large amounts of input data an empirical distribution 
needs to be used. Bézier distributions are an alternative to pure empirical distributions 
and have the advantage that the distribution function can have any shape, in contrast 
with pure empirical distributions were observed data need to be sorted in increasing 
order. 

 

Fig. 7. Internal holonic architecture of the evaluation engine 

To specify a probability distribution that models a set of observed data X1,  X2, …,  
Xn using Bézier distributions a continuous random variable X with finite range [a, b] 
is considered. A distribution function F(x) is approximated closely by a Bézier distri-
bution with a degree of certainty m. The Bézier distribution is constructed by fitting a 
curve to a specified number of points called control points [20].  
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Let {p0, p1, …, pn} be a set of control points, where pi = (yi, zi) with i = 1, 2, …, n. 
Then, the Bézier distribution function P(t) for 0, 1  is given by: 

  ∑ ,  (1) 

 ,  !! ! 1  (2) 

Let F(x; m, y, z) be the empirical distribution defined by the Bézier distribution func-
tion above, where y and z are the vectors of yi’s and zi’s respectively. Then, for a de-
fined m, using a suitable optimization technique (e.g., least-square estimation), F(x; 
m, y, z) is fit to the Xi’s [21]. 

3.7 Simulation Output Analysis 

The paired-t approach is used to build a confidence interval (CI) on the difference 
between the expected response of the evaluation engine when using observed data and 
the actual observed data. Since the paired-t approach requires that observations be 
identically distributed and independent, bunches of replications are simulated and 
their mean is taken in consideration when constructing the confidence intervals [22]. 
The paired-t confidence interval method does require also that the number of observa-
tions be equal for the two sets of data. This condition is satisfied since the evaluation 
engine uses the actual observed data as input. If  is the sample mean of the 
random variable that denotes the difference between the simulated and observed data, , /  is the upper 1  /2  critical point for the t distribution with (n – 1) 

degrees of freedom, and,  is an unbiased estimator calculated using 
the sample standard deviation, then an 100(1 - α) CI on the expected difference be-
tween the response of the evaluation engine and the actual observed data is given by: 

 , /  (3) 

4 Simulation Results 

This section presents a hypothetical complex enterprise system operational scenario 
for which the proposed modeling and computational framework is applied step by 
step. Probabilistic models for the Descriptive and Predictive Components are consi-
dered, and their outcomes, the Complex Model Identification and the Complex Beha-
vior Identification, are derived statistically. To identify the underlying complex  
model, the hypothetical operational scenario considers probability distributions for the 
occurrence of three of the input modeling measures: the identification and ranking of 
system goals, the identification and ranking of the complexity factors, and the identi-
fication and ranking of the system performance measures. These probability distribu-
tions are used as input for the 1,000 trials Monte Carlo simulation model developed to 
derive the 95% confidence intervals for the Complex Model Identification measure, 
the outcome of the Descriptive Component, which are presented in Fig. 8 below.  
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As it can be seen form Fig. 9, the probability of detection is low at the beginning of 
simulation and increases with the simulation time step, as more models are added to 
the database of complex models behaviors and potential matches are compared with 
the database of observed and validated models. 

5 Conclusions and Future Work 

The proposed framework and approach may provide the capability for behavior predic-
tion of large-scale complex enterprise systems. Since the present and future’s engi-
neered systems need to adapt to changes in requirements and deal with environment 
uncertainties, while in operation, behavior prediction becomes a very important capabil-
ity to be contained in the enterprise systems’ toolboxes. The near future work will look 
at applying the proposed framework to actual manufacturing or service complex enter-
prise system, such as complex demand network systems. Validation of the predictions 
can be obtained by comparing them with the performance of, let’s say, the demand net-
work system over a certain period of time. Moreover, the framework can be further 
improved as a result of gaining more understanding of the underlying processes taking 
place in concepts such as emergence, self-organization, and evolution in complex  
enterprise systems. 
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