
Chapter 2
Bond Graph Representations of Hybrid
System Models

This chapter addresses the modelling abstraction of fast dynamic state transitions
into instantaneous discrete state changes and its consequences and surveys various
bond graph representations of hybrid system models proposed in the literature. The
bond graph model-based quantitative approach to FDI in hybrid systems presented
in Chap.4 uses a bond graph representation with system mode independent compu-
tational causalities. As a result, a single set of equations in the form of a DAE system
can be derived that holds for all system modes. The chapter concludes by addressing
the index of the DAE system as it is an information that is relevant with regard to a
symbolic and numerical processing of the DAE system.

2.1 Hybrid System Models

The way an engineering system is modelled depends on the purpose of a modelling
and simulation study. Depending on the kind of problem or on the design stage mod-
ellers take different views of a system that either exists or is yet to be developed. For
instance, it is well known that integrated digital circuits are modelled and simulated
at different levels of abstractions. A hierarchical approach may start at the circuit
level by accounting for the electrical dynamical behaviour of transistors, resistors
and capacitors. One level up the hierarchy, the electrical behaviour is still of interest
but transistors are abstracted into switches. State transitions are accounted for by rise
and fall times. At the gate level the focus is on the logic behaviour of the circuits. The
fact that a logic gate is built my means of electrical elements is taken into account
by the time a signal needs to pass the logic gate. A top-down hierarchical design
of complex digital circuitry starts at even higher levels of abstraction such as the
register transfer level.

Besides the fast switching of transistors, electrical diodes or thyristors, fast
changing phenomena such as the opening or closing of hydraulic check valves,
the engagement-disengagement of clutches, stick-slip effects or stops in mechan-
ical motion give rise to the modelling abstraction that such mode changes take
place instantaneously and may be considered discrete events that either happen
autonomously caused by internal continuous time variables that have crossed some
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threshold values or are due to external control signals. Such amodelling abstraction is
justified because the continuous time evolution of fast mode transitions during short
time intervals is not relevant for the overall dynamic system behaviour. That is, there
are discrete events at which switch state variables instantaneously switch between
discrete values. The set of all discrete switch states m j (t), j = 1, . . . , n f charac-
terises a system mode at time instant t > 0. For the time span of a system mode,
the discrete switch state variables take constant values while the system behaviour is
described by a continuous time model that is mode specific. Hence, if the abstraction
of instantaneous mode switches is adopted then amodel encompasses discrete events
at which mode changes instantaneously take place and continuous time models for
the dynamic system behaviour in each mode. Such models are usually called hybrid
system models.

Adopting a hybrid system model entails a number of consequences.

• If fast switching devices are modelled as switches then parts of an overall system
model are instantaneously disconnected or reconnected for a while. That is, an
overall model is of variable structure. The result of such a structural change is a
continuous time model that holds for the resulting system mode.

• The number of state variables of an overall model is not time-invariant but mode
dependent. Due to a connection of model parts storage elements may become
dependent, e.g. if a clutch is engaged or if rigid bodies stick together for a while
due to Coulomb friction.
In [1], Cellier and Kofman call a model a variable structure model if structural
properties such as the number of differential equations depend on the discrete state
of some switches.

• The formulation of a mathematical model becomes mode dependent. In one mode
it may be an explicit state space model. If storage elements become dependent the
model turns into a set of differential-algebraic equations (DAEs).

• The numerical integration of the model equations often requires the determination
of the time instant of the discrete events and a reinitialisation. Hence, the numerical
computation of a hybrid systemmodel may be viewed as the solution of a sequence
of initial value problems (IVPs). Modern numerical solvers for DAE systems such
as IDA [2] from the SUNDIALS suite or DASRT [3] provide a root finding feature
such that the time instances of mode switches can be located.
If an event condition rather than the time instant of an event is known, the event is
commonly denoted as a state event. The event condition is specified by a function
of continuous variables and a state event occurs when the function crosses zero. If
the time instant of a discrete event is known in advance, the event is called a time
event. In that case, the event can be scheduled to happen by entering its time and
its type into a calendar of forthcoming events.

The computation of models with variable structure is still a subject of ongoing
research as latest publications show [4, 5]. With regard to a modelling by means
of bond graphs the question arises how to represent a hybrid system model in a bond
graph framework.
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2.2 Bond Graph Representations of Hybrid System Models

Bond graph modelling starts from considering the exchange of energy between
system components and energy conversion. As the exchange and the conversion
of energy happen continuously with respect to time, bond graph modelling was, at
first, limited to the representation of continuous time models. Bond graphs were
mainly developed to obtain a mathematical model in the form of a system of ODEs
or DAEs for the simulation of the dynamic behaviour of a system or to obtain trans-
fer functions for the analysis of the frequency domain behaviour, for the analysis of
structural observability and controllability, or for the design of a controller. Besides,
various proposals to extend the bond graph modelling framework to capture discrete
discontinuous events have evolved during the past two decades. So far, none of the
reported approaches has attained common usage.

Combination of Petri Nets and Bond Graphs

One approach is to combine the advantages of established graphical representations
by capturing physically feasible systemmodes and discrete transitions between them
in a Petri net (PN) and by modelling the dynamic behaviour in each system mode by
a bond graph or set of disjoint bond graphs composed of standard elements [6, 7].
Accordingly,

• the dynamic system behaviour is modelled by a set of bond graphs each of which
has time-invariant computational causalities,

• each bond graph holds for the time period between two discrete events,
• for each system mode, the structure of the bond graph can be different,
• the mathematical model is a set of initial value problems.

Other approaches prefer a uniform model representation and suggest to let bond
graphs capture also instantaneous discontinuous state changes although power con-
servation means that it takes a finite time to change the content of an energy stor-
age element. Bond graph representations of hybrid models can be categorised into
those that aim to keep computational causalities systemmode independent and those
accepting variable causalities.

Switching Off and On Degrees of Freedom by Means of Switched Residual Sinks

One way to keep computational causalities time-invariant as proposed in [8] is to use
sinks of invariant causality in conjunction with a modulated transformer MTF : b(t)
that switches off and on degrees of freedom.

Example: Bouncing Ball

Figure2.1 depicts the well known bouncing ball problem and a bond graph repre-
sentation of a hybrid model.
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Fig. 2.1 Switching off and on degrees of freedom by sinks of invariant causality [6]

In the bond graph of Fig. 2.1, b(t) ∈ {0, 1} ∀ t ≥ 0. For b = 0, there is no force
between the floor and the ball. The ball is freelymoving in the air. If, however, the ball
is in contact with the ground (b = 1) then the modulated effort source MSe imposes
a constraint force λ which enforces that the ground and the ball move with the same
velocity. Both inertia elements are in fixed integral causality. When the ball drops to
the floor numerical integration restarts with new initial conditions. Modulated sinks
imposing either an effort or a flow so that their input variable vanishes are termed
residual sinks. As to the representation of the residual sink in Fig. 2.1, one might
ask whether the relative velocity vb − vw is fed into the modulated effort sink as a
signal when this information is already delivered into the sink by the power bond
attached to it. A standard effort sink Se does not serve the intended purpose as its
output is independent of the input. In this case, a sink is needed that delivers an output
so that the input vanishes. To that end, the input is sensed and fed as a signal into a
modulated sink. The presentation has been adopted from [9] where it is introduced to
display controlled constraint forces in multibond graphs of rigid multibody systems.
Actually, these modulated sinks represent Lagrange multipliers that are not limited
to mechanical systems modelling and can be used for various other purposes as
well, e.g. to add tearing information into a bond graph [10]. In the context of FDI,
residual sinks can be used to couple a behavioural bond graph model of a system
subject to faults to a bond graph of the faultless system with nominal parameters
[11]. In Chap.4, they are used in this way to numerically determine ARR residuals.
For the sake of a concise bond graph representation residual sinks are denoted by
the standard symbol of a source or sink prefixed by the letter ‘r’, e.g. rSe denotes a
residuals effort sink.

http://dx.doi.org/10.1007/978-3-319-11860-4_4
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Switched Power Junctions (SPJs)

In order to account for the abstraction of ideal, no power consuming switching in
a bond graph with invariant causalities that holds for all system modes, Umarikar
extended 0- and 1-junctions by allowing for more than one bond to impose an effort
on a 0-junction and more than one bond imposing a flow on a 1-junction with the
constraint that only one of the causality imposing bonds is active at a time instant
[12, 13]. These extensions are called switched power junctions and are not to be con-
fused with controlled junctions to be referred to subsequently. Figure2.2 illustrates
the idea.

For a switched power junction holds

∀ t ≥ 0 ∃ j ∈ N (m j (t) = 1 ∧ mi (t) = 0 ∀ i �= j)

The equations for a switched power 0-junction read

e3(t) = m1(t)e1(t) + m2(t)e2(t) = e4(t) (2.1a)

f1(t) = m1(t)( f3(t) − f4(t)) (2.1b)

f2(t) = m2(t)( f4(t) − f3(t)) (2.1c)

Accordingly, equations can be formulated for a switched power 1-junction.

Example: Boost Converter

The bond graph of a boost converter in Fig. 2.3 illustrates the use of these extended
junctions.

Summation of efforts at the encircled left 1-junction and summation of flows at the
rightmost encircled 0-junction yields mode dependent state equations (2.2a)–(2.2b)

1 : L
d

dt
iL = E − m2VC − RLiL (2.2a)

0 : C
d

dt
VC = m2iL − VC

R
(2.2b)
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Fig. 2.3 Bond graph with SPJs of a boost converter [12]
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Fig. 2.4 The ideal switch as an additional bond graph element

The Ideal Switch as a Bond Graph Element

If one is willing to accept that computational causalities in bond graphs are mode
dependent and if one neglects the energy loss associatedwith an instantaneous change
of a switch state then fast switching devices may be modelled as an ideal switch
[14–18] and represented by a bond graph switch element Sw or by controlled junc-
tions [19–21]. In the case of an open switch, the bond graph switch Sw becomes a
zero flow source Se : 0. In the case of a closed switch the bond graph switch element
turns into a zero flow source Sf : 0. Hence, the causality at a switch port is mode
dependent as displayed in Fig. 2.4.

Remark 2.1 Van der Schaft and Schuhmacher call variables such as the power vari-
ables of the bond graph switch element Sw complementary variables in the sense
that for the two of them an inequality holds and for all times at least one of them
is strictly an equality. Systems in which mode switching is determined by comple-
mentarity conditions they call complementary systems [22]. In the case that both
variables can be assumed to be nonnegative, the complementarity condition is often
expressed as
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Fig. 2.5 Modelling a mechanical stop by means of an ideal switch [6, 18]

0 ≤ f (t) ⊥ e(t) ≥ 0 or 0 ≤ e(t) − f (t) ≥ 0 (2.3)

In general, the complementary variables can be vectors if inequalities hold compo-
nentwise.

Let M be a k × k matrix and q a k-dimensional real vector. The so-called linear
complimentary problem then consists in finding k-dimensional vectors λ and y such
that

y = Mλ + q (2.4a)

0 ≤ y − λ ≥ 0 (2.4b)

This problem has a unique solution if the matrix fulfills a certain condition [22]. �

Example: Mechanical Stop

In the bondgraphofFig. 2.5, an ideal switchSw is used tomodel an elasticmechanical
stop.

Clearly, if the cart is not in contactwith the stop then Fsw = 0∧ v12 := v1−v2 ≥ 0.
If the cart is in contact with the stop then Fsw ≥ 0 ∧ v12 = 0. That is, 0 ≤ Fsw ⊥
v12 ≥ 0. The force Fsw may be thought of as a Lagrange multiplier λ which is either
zero or takes a value to be computed.
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Fig. 2.6 Propagation of causality changes at the switch port

A causality change at a switch port propagates at least locally into the bond graph
and affects the causality at the ports of other elements as indicated in Fig. 2.6 for the
example of the mechanical stop.

Causality changes due to a mode change can be captured by using a ‘Boolean’
variable b in the constitutive equation of the switch.

0 = b · Fsw + b̄ · (v1 − v2) (2.5)

where b(t) ∈ {0, 1} ∀ t ≥ 0 and b̄ := 1− b. Then the following DAE system can be
deduced from the bond graph in Fig. 2.6.

⎡
⎢⎢⎣

m 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v̇1
Ḟc

v̇2
Ḟsw

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 1
0 0 −k 0
0 1 r −1
b̄ 0 −b̄ b

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v1
Fc

v2
Fsw

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Fin
0
0
0

⎤
⎥⎥⎦ (2.6)

In each of the two modes, DAE system (2.6) reduces to a simple ODE system.
Mosterman argues that ideal switches are not energy elements, that they represent

control aspects rather than physical concepts ([21], p. 53).

Causality Resistors

Back in1993,Asher proposed to assist an ideal switchbya resistor he called ‘causality
resistor’ that adapts its causality to causality changes at the switch port so that the
rest of the bond graph remains causally unaffected [23]. As long as the simulated
dynamic behaviour is not significantly affected, the parameter value of a causality
resistor can be chosen within reasonable limits but may lead to stiff model equations
and thus may give rise to an increase of computational costs.

The physical meaning of a causality resistor depends on the application area and
how it is used in conjunction with an ideal switch. For instance, the bond graph in
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Fig. 2.8 Piecewise linear
model of an electrical diode
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Va Vb

Fig. 2.7 may be a piecewise linear model of an electrical diode. The corresponding
circuit schematic is displayed in Fig. 2.8.

The causality resistor R : R2 clearly avoids the propagation of causality changes
at the port of the ideal switch into the rest of the bond graph and captures the diode’s
high resistance Roff in reverse mode. The resistor R : R1 represents the diode’s small
ON-resistance Ron.

Let iD denote the current through the diode and ΔV := Va − Vb. Then from the
bond graph in Fig. 2.7a the equation

iD =
(

1

R1
+ 1

R2

)
ΔV =

(
1

Ron
+ 1

Roff

)
ΔV ≈ 1

Ron
ΔV (2.7)

is immediately deduced, where Roff � Ron. Likewise, the causal bond graph in
Fig. 2.7b gives

iD = iR2 = 1

R2
ΔV = 1

Roff
ΔV (2.8)

As in the case of a mechanical stop (cf. Fig. 2.6), the bond graphs for both modes in
Fig. 2.7 can be merged into one single bond graph from which equations valid for
both modes can be deduced.
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From the bond graph in Fig. 2.9 the following equations can be derived.

i2 = ΔV

Roff
(2.9a)

iD = i2 + isw (2.9b)

ΔV = Ronisw + usw (2.9c)

The constitutive equation of the switch may be expressed by means of a variable
b(t) ∈ {0, 1} ∀ t ≥ 0. Let b̄ := 1 − b. Then

0 = b isw + b̄ usw. (2.10)

That is, b(t) = 0 means that the switch is closed, b(t) = 1 indicates that the switch
is open.

From this set of equations an equation for the current iD can be obtained that
holds for both modes.

iD =
(

1

Roff
+ b̄

b̄ Ron − b

)
ΔV (2.11)

Controlled Junctions

As early as 1974, Thoma introduced the concept of time dependent junctions [24]
in order to switch off and on connections between power ports. Mosterman picked
up this idea and introduced controlled junctions [21]. In contrast to switched power
junctions, a local control algorithm associated with a controlled junction switches off
all adjacent bonds of a controlled junction when a switching device considered as an
ideal switch turns off and re-activates all bonds when the switch is closed. That is, an
ideal switch in ON-mode is represented by a standard 0- or 1-junction. In OFF-mode
the junction is replaced by a source of value zero as shown in Fig. 2.10.
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As Fig. 2.10 shows, a discrete switch state change entails a change in causality
that is to be propagated into the bond graph. Bond graphs using controlled junctions
are usually called Hybrid Bond Graphs (HBGs).

Figure2.11 displays a hybrid bond graph for the well known bouncing ball prob-
lem given the assumption of a perfect non-elastic collision between the ball and the
floor. As the focus of the bond graph methodology is to model the continuous time
exchange of energy between system components and possible energy conversion
and since none of the proposed extensions to include discrete events has become a
widely accepted standard, there is not much bond graph software that support hybrid
bond graphs. Mosterman has developed a software HYBrSIM especially suited for
continuous-discrete event bond graph modelling using controlled junctions [25].
In the tool suite MoTHS, hybrid bond graphs are transformed into block diagrams
by using block diagram models that can be efficiently reconfigured for those parts
of a hybrid bond graph that need a re-assignment of causality after a system mode
change has happened [20]. Wang and his co-workers [26] also map hybrid bond
graphs onto block diagrams for simulation with Simulink®1[27].

1 Simulink is a registered trademark of The MathWorks, 3 Apple Hill Drive, Natick, MA, USA,
http://www.MathWorks.com.

http://www.MathWorks.com
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Non-ideal Switches

Finally, another way to keep computational causalities in a bond graph system
mode independent is to model fast switching devices as non-ideal switches and
to account for a resistance in ON-mode. The functionality of electronic diodes
or hydraulic check valves suggests to represent a non-ideal switch in a bond
graph by means of a resistor with conductance causality. In [28], the nonlinear
characteristic of a diode is approximated by a piecewise linear one. The switching
is explicitly represented by decomposing the resistor into an MTF with a modulus
m(t) ∈ {0, 1} ∀ t ≥ 0 and a resistor R : Ron accounting for the ON-resistance as dis-
played in Fig. 2.12. Depending on the value of the transformer modulus m(t), model
parts linked by such MTFs are either connected or disconnected. For s switches in a
hybrid model, there are s f ≤ 2s physically feasible switch state combinations. Each
one of them constitutes a system mode.

In this book, the bond graph representation of a non-ideal switch proposed by
Ducreux et al. as early as 1993 is used in a bond graph model-based approach to FDI
in hybrid systems. This approach offers the following advantages.

• Switching devices, e.g. semiconductor switches in power electronic systems that
are explicitly represented by a component model can be more easily identified
in a bond graph in comparison to a representation that accounts for switches by
controlled junctions. An initial not simplified bond graph is more close to a system
schematic (cf. Chap. 4, Figs. 4.2 and 4.3).

• One single bond graph can be set up that holds for all system modes.
• The standard Sequential Causality Assignment Procedure (SCAP) can be applied
without any modification resulting in time-invariant computational causalities.

• A single set of model equations as well as equations for fault indicators valid for all
system modes can be (automatically) derived from the bond graph. They contain
the discrete moduli mi (t) ∈ {0, 1}, i = 1, . . . , s, of the switching MTFs. Inserting
values for the moduli belonging to a feasible switch state combination gives the
equations that hold for the associated system mode.

http://dx.doi.org/10.1007/978-3-319-11860-4_4
http://dx.doi.org/10.1007/978-3-319-11860-4_4
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• Existing software such as SYMBOLS™2 [29] could be used to generate a set of
ARRs.

Semiconductor switches in power electronic inverters are commonly made up of
a transistor together with a diode in anti-parallel connection as depicted in Fig. 2.13a
for a bipolar transistor to provide a path for an inductive load currentwhen conducting
switches are turned off and thus to avoid damage of the transistors in an inverter.
MOSFET transistors have a built-in diode. Figure2.13b shows a bond graph model
of such a transistor-diode pair.

The time invariant conductance causality of the ON resistor of non-ideal switches
may lead to conflicts at junctions that can be resolved by adding a storage element.
Equations derived from a bond graph may be symbolically formulated in such a way
that the parameter of these additional storage elements can be set to zero as well
as the small ON resistance of some switches turning them into ideal switches and
avoiding small time constants. That is, ideal switches may be considered the limit
case of non-ideal switches. Avoiding stiff equations is of interest in the case when an
explicit formulation of ARRs is not possible so that the model equations need to be
solved numerically in order to determine the residuals ofARRs. In [30], Buisson et al.
compare the use of ideal and non-ideal switches in a bond graph framework in the
light of perturbation theory.

For the sake of a concise representation in the bond graphs of the examples in this
book, a switched MTF : m(t), m ∈ {0, 1}, in conjunction with the ON resistance
R : Ron of a switch is represented as a component model denoted by Sw : m as
shown in Fig. 2.14.

Instantaneous Structural Changes

If phenomena such as the engagement of a clutch or a change from slip to stick
friction is considered as a discrete event then the instantaneous mode change results

2 Symbols is a trademark of HighTech Consultants, STEP, I.I.T.Kharagpur - 721 302, India, http://
www.htcinfo.com/.

http://www.htcinfo.com/
http://www.htcinfo.com/
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Fig. 2.15 Bond graph of a clutch with fixed mode independent causalities

in a change of the number of state variables. As long as twomoving rigid bodies stick
together due to friction they build a single body for some time span with one single
state variable. In power electronic systems, the OFF state of a switch may cause two
inductor currents to become equal. This means that in a bond graph representation of
a hybridmodel causality at some storage ports may change from integral to derivative
causality. Preferred integral causality may, however, be preserved by using a modu-
lated sink that either impose an effort or a flow on two dependent storage elements so
that their output variables become equal. They are to be activated whenever a system
mode change happens that causes two storage elements to become dependent. Their
activation can be achieved by a ‘Boolean’ controlled transformer as depicted for the
example of a mechanical clutch.

Example: Mechanical Clutch

Figure2.15 depicts a bond graph representation of a hybrid model of a clutch.
The left upper modulated effort source provides a moment M that enforces that

the plates of the clutch stick together when the clutch is in mode ‘engaged’, i.e.
their angular velocities are equal. This moment is imposed on the two I-elements
in integral causalities. At the time instant the clutch instantaneously switches from
disengagement to engagement, numerical integration must be re-initialised. At this
discrete event, the modulated sink is activated and the output of both I-elements jump
to a common value and integration restarts from this value.

2.3 Equations Formulation for Switched LTI Systems

The use of such modulated sinks that are activated and deactivated at discrete time
instances means that the underlying mathematical model is of the form of a DAE
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Fig. 2.16 Partitioning of a bond graph model into fields

system. These sinks enforce that algebraic constraints for the output variables of
some storage elements are met but there is no differential equation for their output.
When the modulated sinks are active, the DAE system is of index 2.

Let the moduli m j (t) ∈ {0, 1} ∀ t ≥ 0, j = 1, . . . , ns , of the ns switching MTFs
be grouped into a vector m(t), the outputs zi of all storage elements in integral
causality, the inputs zd of all storage elements in derivative causality and the outputs
of resistors and switches be grouped into a descriptor vector x. The outputs of all
modulated sinks activated at switching events are combined into a vector λ. Let u
denote the vector of all system inputs.

If it is assumed that the system under consideration can be described by a linear
time-invariant model for the time spans between two discrete switching events then,
starting from the partitioning of a bond graph model into fields as displayed in
Fig. 2.16, a DAE system in the form

[
E 0
0 0

]
d

dt

[
x(t)
λ(t)

]
=

[
A11(m(t)) A12(m(t))
A21(m(t)) 0

] [
x(t)
λ(t)

]

+
[

B1(m(t))
B2(m(t))

]
u(t) (2.12)

can be established. In (2.12), the matrices are of proper dimensions and E =
[

E1
0

]
.

If, for some time intervals, no residual sinks are switched on via an MTF, then
the mathematical model takes the form

Eẋ(t) = A11(m(t))x(t) + B1(m(t))u(t) (2.13)

for these time intervals. If the set of algebraic constraints can be solved then the DAE
system can be reduced to an explicit linear state equation.
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For controlled switching elements, the time instances of the discrete state tran-
sitions are known a priori. For other events such as the transition from slip to stick
friction, the value of the MTF moduli involved is the result of a local automaton
evaluating constraints on model variables. In that case, the time instant of the event
is to be determined and numerical integration is to be reset in general.

For the clutch example, the DAE system derived from the BG in Fig. 2.15 reads

⎡
⎣

J1 0 0
0 J2 0
0 0 0

⎤
⎦ d

dt

⎡
⎣

ω1
ω2

M

⎤
⎦ =

⎡
⎣

0 0 −(1 − b)

0 0 (1 − b)

(1 − b) − (1 − b) 0

⎤
⎦

⎡
⎣

ω1
ω2

M

⎤
⎦

+
⎡
⎣
1 0 −b
0 −1 b
0 0 0

⎤
⎦

⎡
⎣

M1
M2
MR

⎤
⎦ (2.14)

If the clutch is disengaged (b = 1) then the DAE system reduces to

[
J1 0
0 J2

]
d

dt

[
ω1
ω2

]
=

[
0 0 0
0 0 0

] [
ω1
ω2

]
+

[
1 0 −1
0 −1 1

] ⎡
⎣

M1
M2
MR

⎤
⎦ (2.15)

and could be formulated as an explicit state space equation.
A different bond graph approach to hybrid system modelling recently proposed

by Margetts [19] inspired by the work of Buisson [31] and of Mosterman [21] also
leads to an implicit formulation of system equations that holds for all system modes
and can be systematically constructed from a hybrid bond graph. This approach
makes use of controlled junctions and partitions the field of storage elements and
the field of resistors into a field with elements having static causalities and another
field with elements having causalities that dynamically change. Margetts terms the
latter dynamic causalities and expresses them on a hybrid bond graph by a dashed
perpendicular causal stroke in addition to the solid line causal stroke assigned by
application of the SCAP.

2.4 Index of a DAE System Derived from the Bond Graph
of a Hybrid Model

In this book, switching devices such as electrical diodes and transistors, or hydraulic
valves are modelled as non-ideal switches represented by a bond graph component
model Sw that is composed of a switched MTF and a resistor in fixed conductance
causality. The choice of fixed conductance causality is motivated by the fact that it
is the flow through the element that is determined by the discrete switch state.

Structural changes such as the engagement and disengagement of a clutch or the
change between slip and stick mode for two rigid bodies considered as instantaneous
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discrete events cause the number of states in one system mode to change instanta-
neously at the advent of a discrete event. If two rigid bodies stick together for the
duration of that system mode, the two of them may be considered as one body, or
one inertia is dependent of the other so that one degree of freedom is temporarily
lost. As presented in Sect. 2.3, such structural changes are modelled in a bond graph
by means of a switched MTF and a residual sink that supplies an output variable so
that its input vanishes. As a result, storage elements that have been assigned inte-
gral causality remain in integral causality for all system modes. If linear constitutive
element equations are assumed, the equations derived from such a bond graph with
static, system mode independent causalities can be formulated as a linear implicit
DAE (2.12).

A characteristic of DAEs besides their form is their differentiation index [32].
For a definition and an example see Appendix C. It is an indicator for the problems
to be encountered with the numerical solution of a set of DAEs. Systems of index>1
are usually called higher index DAEs and the higher the index the more severe
numerical difficulties can be. As the mathematical description of problems in various
disciplines often leads to DAE system, they have been a research subject for more
than two decades. A large body of publications and a number software programs
for their numerical solution have emerged. DAE systems of index 1 can be safely
numerically computed by means of the backward differentiation formula (BDF)
[33, 34] implemented in solvers such as the well known and widely used DASSL
code [35].

For the solution of higher index problems, index reduction techniques [34] such as
the graph-based Pantelides algorithm [36] or the dummy derivative method [37] have
been reported in the literature and are used in some software programs. Bothmethods
are based on the symbolic differentiation of some of the constraint equations of a
DAE system and thus introduce equations with higher order derivatives of unknown
variables with respect to time. This differentiation entails a problem in its own to find
a set of consistent initial values. The Pantelides algorithm aiming at the determination
of a set of consistent initial conditions can and is used to determine which equations
are to be differentiated howmany times in order to reduce the index to one or zero. The
algorithm assumes that the index does not change. A direct initialization technique
for DAE systems has been presented in [38]. Reference [39] consideres the problem
of consistent initial conditions for switched linear passive network.

Index reduction entails another well known problem, namely that of numerical
drift. Original constraint equations get lost by differentiation and cannot be taken into
account in the numerical solution of the reduced index system. Hence, the numer-
ical solution of the reduced index problem can only approximate the original con-
straints. This suggests to keep the original constraints and differentiated equations
in the numerical solution of the reduced index problem resulting in more equa-
tions than unknowns in the reduced index problem. The dummy derivative method
addresses this problem by considering the derivatives of some variables as new inde-
pendent algebraic variables calleddummy derivatives so that the number of unknowns
matches the number of equations. This approach, however, requires to decide which
variables are selected as dummy derivatives and which ones as states.
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Hybrid models may be described by a single set of DAEs including discrete state
variables, e.g. switch state variables that change their discrete values at discrete
events. That is, for each set of values of the discrete state variables representing a
physically feasible systemmode a set of DAEs is obtained that describes the dynamic
behaviour in that system mode. Such a set of nf DAE systems

Fi (x(t), ẋ(t), u(t), y(t)) = 0 , i = 1, . . . , n f (2.16)

together with a set of conditions i = C(t, x) is termed a system of hybrid DAEs
(HDAEs) where F denotes a vector-valued function, t the time, x the vector of
unknown variables composed of state variables and algebraic variables, u the vector
of known inputs and y the vector of outputs. Evaluation of the function C at the
advent of a discrete event determines which DAE system is to be used to describe
the dynamic behaviour for the duration of the next system mode. At discrete events
parts of the overall DAE system are deactivated or re-activated so that the index of a
DAE system for subsequent system mode may be different from the one of the DAE
system for the current systemmode. For the duration of a systemmode, however, the
DAE index remains constant. A mixed symbolic and numerical solution of HDAEs
involves

• index reduction and a selection of states for the reduced index problem augmented
by initial constraints and differentiated equations,

• discrete event detection during evaluation of a continuous time model for the
current system mode,

• initialisation at start time and re-initialisation at discrete events.

Algorithms for these tasks have been implemented, for instance, in the open-source
OpenModelica software environment [40, 41].

As problems are to be encountered with the numerical solution of higher index
DAEs and as there is no general solver for them, given a causal bond graph, it is
an important question of what index a DAE system derived from the bond graph is.
In [42], van Dijk classifies causal paths and determines the index of bond graphs
of continuous time models with a given type of causal paths. For hybrid models, a
bond graph representation with time-invariant causalities is used in this book. Causal
paths through switches, however, depend on the switch state.

First, it is assumed that all storage elements are in integral causality for all system
modes. That is, no residual sinks are switched on at discrete events to keep some
storage elements in integral causality that otherwise would be become dependent and
would get derivative causality accordingly. Causal paths between resistive ports are
allowed. As the switch model contains a resistor in conductance causality, there may
also be causal paths between a resistor and a switch or between switches. If a switch
in one of these causal paths is in OFF mode, the switch and the causal path can be
disregarded. Causal paths between resistors mean that their outputs are determined
by a set of algebraic relations. Let a denote the vector of the outputs of resistors and
of switches, then the DAE of a switched LTI system is of the form
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[
I 0
0 0

] [
ẋ(t)
ȧ(t)

]
=

[
A11(m(t)) A12(m(t))

−A21(m(t)) I − A22(m(t))

] [
x(t)
a(t)

]

+
[

B1(m(t))
−B2(m(t))

]
[u] (2.17)

where m(t) denotes the vector of switch states m j (t) ∈ {0, 1}, j = 1, . . . , ns , at time
instant t > 0. For the time interval between two discrete events, m(t) is constant.
Differentiation of the algebraic equation

0 = −A21x + (I − A22)a − B2u (2.18)

with respect to time yields the new DAE system

[
I 0

−A21 I − A22

]

︸ ︷︷ ︸
E1

[
ẋ(t)
ȧ(t)

]
=

[
A11(m(t)) A12(m(t))

−0 0

] [
x(t)
a(t)

]
(2.19)

+
[

B1(m(t))u
−B2(m(t))u̇

]

In [42], van Dijk has shown that the determinant of E1, det(E1) = det(I − A22), is
non-zero for bond graphs with causal paths between resistive ports. That means that
the inverse of E1 exists and that differentiation of the algebraic equation (2.18) is
sufficient to transform the DAE system (2.17) into a set ODEs. Accordingly, (2.17)
is a DAE system of index 1.

Example: Electrical Network with Two Independent Switches

This is checked for the example of the switched network in Fig. 2.17.
The two switches may be operated independently. That is, there are four physi-

cal feasible switch state combinations constituting four system modes. The circuit

R1

−
+

E Sw1

R2 Sw2

C

L

V

Fig. 2.17 Electrical circuit with two independent switches
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Fig. 2.18 Bond graphwith systemmode independent causalities of the electrical circuit in Fig. 2.17

diagram is easily transformed into the causal bond graph in Fig. 2.18. The switches
are considered non-ideal and are represented by a model Sw containing a switched
MTF: m(t) in conjunction with an ON resistor in fixed conduction causality. The
two storage elements are in integral causality in all four system modes.

The bond graph in Fig. 2.18 contains three causal paths between resistors and
switches.

R : R1 → e2 → e3 → e4 → Sw : m1

R : R1 → e2 → e3 → e9 → e11 → Sw : m2

R : R2 → e10 → e11 → Sw : m2

The DAE system for that example reads

d

dt

[
iL
uc

]
=

⎡
⎢⎣

0 − 1

L
1

C
0

⎤
⎥⎦

[
iL
uc

]
+

⎡
⎢⎣

− 1

L
0 0 0

0
1

C
0 0

⎤
⎥⎦

⎡
⎢⎢⎣

u R1
u R2
iSw1
iSw2

⎤
⎥⎥⎦ +

[ 1

L
0

]
[E] (2.20)

and

⎡
⎢⎢⎣

u R1
u R2
iSw1
iSw2

⎤
⎥⎥⎦

︸ ︷︷ ︸
a

=

⎡
⎢⎢⎢⎣

R1 0
0 0
0 0

0 − m2

Ro

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A21

[
iL
uc

]

︸ ︷︷ ︸
x

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 R1 R1
0 0 0 R2

− m1

Ro
0 0 0

− m2

Ro
− m2

Ro
0 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A22

⎡
⎢⎢⎣

u R1
u R2
iSw1
iSw2

⎤
⎥⎥⎦

︸ ︷︷ ︸
a

+

⎡
⎢⎢⎢⎢⎢⎣

0
0

m1

Ro
m2

Ro

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B2

[E]︸︷︷︸
u

(2.21)

where Ro denotes the ON resistance of the switches. Transformation to triangular
form shows that the matrix (I − A22) is non-singular independent of the switch
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Fig. 2.19 Circuit schematic of a DC-DC buck converter
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Fig. 2.20 Bond graph in preferred integral causality of the buck converter in Fig. 2.19

states m1(t), m2(t). That is, the DAE system describing the dynamic behaviour of
the switched network is of index 1 for all four system modes.

Example: DC-DC Buck Converter

Figure2.19 depicts the circuit schematic of a buck converter.
If the transistor Q1 and the diode D1 are modelled as non-ideal switches the bond

graph in Fig. 2.20 is obtained.
The two switches commutate conversely. There are two system modes, in which

one switch is on while the other one is off. A third feasible mode, in which both
switches are off is not considered. If one of the switches is on, conductance causality
of its ON resistance can be changed. The result is a causal path between the two
non-ideal switches. In Fig. 2.21, it has been assumed that Sw : m2 is on.

However, as oneof two switches is off, i.e. the current through that switch vanishes,
the causal path can be disregarded. That is, in system modes m1 = 1 ∧ m2 = 0
and m1 = 0 ∧ m2 = 1, there are no causal paths between resistive ports and
no dependent storage elements giving rise to an algebraic constraint between state
variables. Hence, the dynamic behaviour in these modes is described by a set of two
ODEs. In the context of DAEs, the special case of ODEs without any additional
algebraic constraints is termed a DAE system of index 0.

If there are storage elements with derivative causality in all system modes then
causal pathsmay exist to other storage elements of the same type in integral causality.
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Fig. 2.21 Bond graph in preferred integral causality of the buck converter in case Sw : m2 is on

This means that the state variable of a storage element in derivative causality is
algebraically related to the state variables of a storage elements in integral causality.
Also in this case, the DAE system for the time interval between two discrete events
is of index 1 [42].

Structural Changes

For some systems with structural changes such as a clutch, storage elements may
temporarily become dependent for the duration of a system mode. In such a case, a
residual sink may be switched on that delivers a power variable so that the conjugate
power variable vanishes and storage elements can keep integral causality. As their
state variables jump to a new joint value, numerical integration has to be re-initialised
at such a discrete event.

For a system mode, in which such switched residual sinks provide a non-zero
output λ, the DAEs for a switched LTI system are of the form

[
I 0
0 0

]
d

dt

[
x
λ

]
=

[
A11 A12
A22 0

] [
x
λ

]
+

[
B1
0

]
[u] (2.22)

The entries of the matrices depend on the values of the current switch states. As the
variable λ is absent in the algebraic constraint

0 = A22x (2.23)

differentiation of (2.23) does not give an equation for λ̇ but an algebraic equation
that is called a hidden constraint.

0 = A22[A11x + A11λ + B1u] (2.24)
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If the matrix A22A11 is non-singular, (2.24) differentiated with respect to time can be
solved for dλ/dt. According to the definition of the differentiation index, the DAE
in this system mode is of index 2.

Remark 2.2

1. Initial conditionsmust also satisfy hidden constraints. It is these hidden constraints
that pose problems for DAE-solvers.

2. The DAE form (2.22) is known as Hessenberg index-2 form. This form can be
directly numerically solved by the DASKP 3.0 solver [43, 44] or the MEBDFI
[45] solver available in Maple [46]. Both solvers use the BDF method. �

As a result, if the dynamic behaviour of a system can be described by a switched
LTI system, the DAE system derived from the bond graph is of index ≤1 as long as
no structural changes occur. If a structural change modelled by a switched residual
sink happens, the DAE index jumps to two.

Example: Clutch

As an example, consider the bond graph of a clutch in Fig. 2.15. There are no causal
paths between resistors and no dependent storage elements. Clearly, as long as the
clutch is disengaged, the DAE system is of index 0. In the case when the clutch
is engaged, the unknown constraint force M between the two plates keeps their
inertia elements in integral causality and at the same time ensures that the algebraic
constraint

0 = ω1 − ω2 (2.25)

holds. Clearly, differentiating this constraint with respect to time does not give the
derivative of the unknown constraint force M . Substituting dω1/dt, dω2/dt in the
derivative of the constraint allows to obtain dM/dt after differentiation of the result-
ing hidden constraint

0 = − 1

J1
M + 1

J1
M1 − 1

J2
M + 1

J2
M2 (2.26)

Hence, once the clutch is engaged, the DAE is of index 2.

2.5 Discrete Event Simulation of Hybrid Systems

Instead of discretising the time and using a BDF-based method for the numerical
computation of a continuous-time model one may think of quantising the state vari-
ables. That is, instead of using a multistep method to compute an approximation
of the value x(tk+1) of a state variable x at time tk+1, the question then is at what
time the state x will deviate from its current value x(tk) bymore than a given quantum
ΔQ. In other words, the task is to find the smallest time step h so that
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DEVS

t t

Fig. 2.22 Input/output behaviour of a DEVS model [1, 53]

x(tk + h) = x(tk) ± ΔQ (2.27)

This approach replaces the traditional discrete time based computation of continuous
time models by a discrete event simulation that advances the time from the time
point of an event to the time of the next event which is attractive for the computa-
tion of hybrid models because discrete events, i.e. discontinuous mode changes, and
the continuous time behaviour during system modes can be uniformly processed
in the framework of the well-known Discrete EVent System (DEVS) specifica-
tion introduced by Ziegler [47, 48]. Moreover, the DEVS formalism is supported
by software libraries such as adevs [49, 50] or simulation environments such as
PowerDEVS [51, 52].

ADEVSmodel of a system takes a sequenceof discrete events, i.e. of instantaneous
system changes, as inputs and produces an output sequence of events according its
initial conditions. Figure2.22 displays this input/output behaviour of a DEVSmodel.
Events can be characterised by a value and the time point of their occurrence. Accord-
ingly, they are indicated by perpendicular strokes in Fig. 2.22. A sequence of events
is called an event trajectory. It is assumed that the number of state changes in any
finite time interval is finite.

An atomic DEVS model is defined as a tuple of sets and functions (cf. Appendix
A.3). If the output events of an atomic DEVS model are converted into input events
of another atomic DEVS model, i.e. if atomic DEVS models are coupled, then the
result defines a new DEVS model. That is, complex systems can be modelled in the
DEVS framework in a hierarchical manner. The DEVS formalism is widely used
in computer science. Its application to the numerical solution of continuous-time
models, however, is much less common.

The quantised state system (QSS) method introduced by Kofman [53] allows for a
discrete event simulation of hybrid systems. The method starts from the observation
that a piecewise constant trajectory can be represented by sequences of events. The
reader is referred to the literature, e.g. references [1, 53, 54] for details. In the
following, only the basic idea is outlined in a simplified manner.

Consider the state space equation

ẋ(t) = f (x(t), u(t)) (2.28)

where x(t) is the state and u(t) the input given by a piecewise constant function.
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u(t)

f
dx(t) x(t)

floor()
q(t)

quantised integrator

Fig. 2.23 Block diagram of a quantised state system

Let floor : R → Z
+ denote a function that returns the integer part of its positive

real-valued argument. The QSS-method then solves the approximate system

ẋ(t) = dx (t) (2.29a)

q(t) = floor(x(t)) (2.29b)

dx (t) = f (q(t), u(t)) (2.29c)

The variable q is called a quantised variable and Eq. (2.29) a quantised state system
(QSS). equations2.29a–2.29b constitute a dynamic subsystem with a piecewise con-
stant input trajectory dx (t) and a piecewise constant output trajectory q(t). The third
Eq.2.29c is a static relation. The quantised state system (2.29) can be displayed by
the block diagram in Fig. 2.23.

The static block and the quantised integrator can be represented by aDEVSmodel.
Their coupling again builds a DEVS model. The DEVS models can be translated
into PowerDEVSmodels. The software environment PowerDEVS provides a library
with a number of predefined atomic and coupled DEVS models and a graphical user
interface that permits to build coupled DEVS models.

Given a time instant tk and a constant quantum ΔQ, then the next time step h that
satisfies (2.27) can be determined if the derivative of the state variable in (2.29a) is
approximated by a difference quotient.

x(tk + h) − x(tk)

h
= ±ΔQ

h
= dx (tk) = f (q(tk), u(tk)) (2.30)

The QSS method outlined so far bears a problem because it cannot be guarantied
that a DEVSmodel resulting from the coupling of atomicDEVSmodels will perform
afinite number of transitions in anyfinite time interval.DEVSmodelswith this ability
are said to be legitimate. For illegitimate DEVSmodels the simulation will get stuck.
Kofman has shown that the problem can be overcome by introducing hysteresis in the
relationship between a state variable x and its quantised variable q [53]. However,
the method is only first-order accurate. A quantisation for which the hysteresis value
equals the quantum value produces a piecewise constant output trajectory that only
changes when the difference between input and output exceeds the quantum. As a
result, the state variables have a piecewise linear trajectory. To improve accuracy,
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Fig. 2.24 Block diagram of a
bond graph C storage element
in integral causality e(t)

f(t)
C : C

e(t) q(t)

1/C
f(t)

Kofman proposed a second-order accurate QSS2 method [55]. For this method, the
quantisation that does not need hysteresis produces piecewise linear output trajec-
tories having discontinuities whenever the absolute value of the difference between
a state variable and its quantised variable reaches the quantum. If the QSS2 method
is applied to LTI systems then state variables have piecewise parabolic trajectories
provided input trajectories are piecewise constant.

The outlined quantised state integration can be applied to systems of coupled
ODEs with piecewise constant input functions. Moreover, it can be extended so that
hybrid DAE systems can be solved by discrete event simulation [54].

Bond Graph Models and Discrete Event Simulation

As can be seen from Fig. 2.23, a coupled DEVSmodel is obtained from a continuous
time model by feeding the output of an integrator into a quantising block turning
the integrator into a so-called quantised integrator provided input trajectories are
piecewise constant. This observation suggests that discrete event simulation can
be applied to systems represented by a bond graph because a causal bond graph is
equivalent to a block diagram inwhich the block diagram replacement of each energy
storage element includes an integrator (Fig. 2.24).

It is sufficient to quantise the static relationbetween the energyvariable of a storage
element and its output power variable. Consider, e.g. the linear 1-port C element
in integral causality in Fig. 2.24 and let qq(t) = floor(q(t)) the quantisation of
its displacement q. The continuous constitutive equations of a C element with the
capacitance C

q̇(t) = f (t) (2.31a)

e(t) = 1

C
q(t) (2.31b)

are then replaced by

q̇(t) = f (t) (2.32a)

e(t) = 1

C
qq(t) = Φq(q(t)) (2.32b)

That is, the characteristic of a storage element is approximated by a piecewise
constant function Φq() (with hysteresis). The other bond graph elements are sta-
tic elements. A 2-port transformer, for instance, takes two piecewise constant inputs
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and delivers two piecewise constant outputs. Bond graphs in which the character-
istic of the storage elements has been quantised are called quantised bond graphs
(QBGs) in [53, 56]. The elements of a quantised bond graph can be represented by
DEVS models. The result of their coupling is a DEVS model of the QBG. Hence,
this approximation of an initial continuous-time bond graph model can be computed
by means of discrete event simulation.

Another approach that also allows to approximate each continuous time element of
a bond graph by aDEVSmodel so that aDEVS simulation can be performed has been
reported in [57, 58]. The task is to transform piecewise continuous input and output
trajectories of a bond graph element into discrete event trajectories. To translate,
e.g. the continuous time model of a C element in integral causality into a discret
event model, the input trajectory of the flow f (t) between two time instances ti and
t j is approximated by a linear function f (t) = a1t + a0. The output trajectory of
e(t) is a second order polynomial e(t) = b2t2 + b1t = (a1/2C)t2 + (a0/C)t . This
polynomial is approximated by a linear function ẽ(t) = b̃1t + b̃0. Its coefficients are
determined by the value of e(t) at the beginning and at the end of the time interval
[ti , t j ].

ẽ(t) = e(t j ) − e(ti )

t j − ti
t + e(ti ) (2.33)

A discrete event is considered to take place whenever the linear trajectory for the
time interval [ti , t j ] crosses a threshold or when there is a significant change of its
slope. This threshold crossing or a gradient change determines the time instant of
the next event and thus the length of the time interval of the current linear trajectory.

An attractive feature of a discrete event simulation of hybrid systems is that the
simulation time advances from discrete event to discrete event. For the QSS method,
discontinuities in the inputs and the quantised variables dictate the time advance.
No iteration is necessary to locate the time point of a discontinuity allowing for an
efficient processing of models with discontinuities. Discrete event simulation using
the quantised-based integrations needs much less simulation steps than a numerical
integration method of comparable accuracy based on time-discretisation. Accord-
ingly, computational costs are saved. Nevertheless, there are still some problems to
be tackled with the QSS approach as detailed in [1, Chap. 12.11].

2.6 Summary

The survey in this chapter shows that there are various bond graph approaches to
hybrid system modelling having their pros and cons. A comparison of approaches
using ideal switches versus those using non-ideal switches has been given in [30].

In this book, a bond graph representation of hybrid system models is chosen as
basis for bond graphmodel-based FDI in Chap.4. The representation is systemmode
independent with regard to computational causalities and allows for deriving a set of

http://dx.doi.org/10.1007/978-3-319-11860-4_4
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model equations in the form of a DAE system that holds for all system modes. This
is achieved by modelling fast switching devices by anMTF associated with a resistor
in fixed conductance causality and by means of MTFs switching on and off residual
sinks in the case of structural changes. The residual sinks allow for keeping integral
causality at storage elements that become dependent by a system mode change and
would take derivative causality.

If the dynamic behaviour of a system can be described by a switched LTI system,
a linear implicit DAE system can be derived from the bond graph. The entries of
its matrices depend on the discrete switch states. As long as no structural changes
occur, i.e. no residual sinks are switched on, the DAE system is of index ≤1.
For system modes in which residuals sinks are switched on, the DAE system is
of index 2. There are solvers available for its direct numerical computation that are
based on the BDF-method. An alternative may be to perform a DEVS simulation
that uses quantised based integration.
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