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Abstract

With the increase of our cities and urban environments being connected to the inter-
net, we see a significant increase in the scale of these, so called, Internet of Things or
Smart City environments. These environments are characterized by a large amount of
heterogeneous devices and actors. This makes analyzing and testing of novel applications
within these environment difficult. This is because these solutions can only be properly
evaluated when deployed at the full scale of the environment, taking the full hetero-
geneity and complexity of the real environment into account. Deploying these solutions
untested is too risky. Instead different approaches are required.

To cope with this complexity we see that modeling and simulation techniques can help.
More specifically, Agent Based Simulation (ABS) is a paradigm that is well-suited to
simulate this type of environments, which consist out of many autonomous devices and
actors. These techniques allow the behavior of these environments to be analyzed and
evaluated. Furthermore, it allows for the creation of a virtual copy of the environment,
which can be used to optimize certain behavior within this environment.
In the last years we have seen examples of this in practice under the name of ”Digital
Twins”. Such a Digital Twin, relies on real-time data originating from Internet-Of-Things
devices, combined with simulated environments of its physical counterpart. Many cities
utilize digital twins as a representation of the current state of their city. City related
properties such as traffic behavior, noise and air pollution can be easily accessed. These
virtual environments can even control certain parts of the environment, which could
theoretically allow to dynamically optimize the aforementioned properties. But this is
currently only possible in theory because modeling and simulation of such environments
is strongly limited by its scaling capabilities. This is because they rely in most cases on
centralized, monolithic simulation architectures, with statically defined computationally
inefficient models.

In this thesis, we tackle the scalability capabilities of large-scale simulated environments.
We start with an in-depth analysis of building and testing simulated large-scale Internet
of Things environments. Based on this analysis we identify two opportunities. First, we
look at optimizing the partitioning of distributed agent-based simulations. In the second
we look at abstraction techniques that allow to switch abstraction levels of simulation
regions. This enables us to balance between various levels of detail and levels of compu-
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tational cost.
Furthermore, we develop a generic methodology that allows dynamic optimization of sim-
ulation partitioning and model abstraction levels. We implemented and validated these
techniques in a custom developed state-of-the-art traffic simulator, which we rigorously
discuss throughout this thesis.
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Samenvatting

Onze stedelijke omgevingen worden steeds meer verbonden met het internet, daarnaast
zien we een significante stijging van de schaal van deze, zogenaamde, Internet-of-Things
of Smart City omgevingen. Dit type van omgevingen kenmerkt zich door een groot aan-
tal heterogene toestellen en actoren die onderling interageren. Deze complexiteit maakt
het analyseren en testen van nieuwe applicaties in deze omgevingen moeilijk. Dit komt
doordat veel van deze oplossingen enkel goed geëvalueerd kunnen worden wanneer ze
worden uitgerold, rekening houdend met de volledige schaal en complexiteit van de echte
omgeving. Deze oplossingen ongetest uitrollen is te riskant. Een andere aanpak is daarom
noodzakelijk.

Om met deze complexiteit om te gaan zien we dat modellering en simulatietechnieken
kunnen helpen. Meer specifiek is agent-based simulatie een paradigma dat goedgeschikt
is om dit type omgeving te simuleren. Deze omgevingen bestaan typisch uit een groot
aantal autonome toestellen en actoren. agent-based simulatie laat toe om het gedrag van
deze omgevingen te analyseren en te evalueren. Verder laat het toe om een virtuele kopie
te maken van de omgeving. Dit kan gebruikt worden om bijvoorbeeld bepaald gedrag te
optimaliseren of in kaart te brengen.
De voorbije jaren hebben we een voorbeeld van een dergelijk systeem in de praktijk
gezien onder de naam ”Digital Twins”. Zo’n Digital Twin gebruikt real-time data ko-
mende van Internet-of-Things toestellen, gecombineerd met een gesimuleerd model van
zijn fysieke tegenhanger. Vele steden gebruiken nu al Digital Twins om de huidige staat
van hun stad voor te stellen. Stadsgerelateerde eigenschappen zoals verkeer, geluid-
en luchtverontreiniging kunnen hierdoor makkelijk geraadpleegd worden. Deze virtuele
omgevingen kunnen zelfs controle uitoefenen op bepaalde delen van de omgevingen. Dit
zou het theoretisch moeten mogelijk maken om de eerdergenoemde eigenschappen te op-
timaliseren. Maar dit is momenteel enkel mogelijk in theorie omdat het modeleren en sim-
uleren van zo’n omgevingen sterk gelimiteerd is door zijn schaalbaarheidsmogelijkheden.
Dit komt doordat ze veel steunen op centrale monolithische architecturen, waarbij stat-
isch gedefinieerde, computationeel inefficiënte modellen en simulatoren gebruikt worden.

In deze thesis proberen we de schaalbaarheidsmogelijkheden van grootschalige ges-
imuleerde omgevingen te verbeteren. We beginnen met een diepgaande analyse over het
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bouwen en testen van gesimuleerde grootschalige Internet-of-Things omgevingen. Ge-
baseerd op deze analyse, identificeren we twee opportuniteiten om de schaalbaarheid te
verbeteren. Eerst bekijken we hoe we het partitioneren van gedistribueerde agent-based
simulaties kunnen verbeteren. Vervolgens onderzoeken we technieken die toelaten om
dynamisch te switchen tussen verschillende abstractieniveaus van simulatie regio’s. Dit
laat ons toe om te balanceren tussen accuraatheid van het gesimuleerde model en de
bijhorende computationele kost.
Daarbij presenteren we een generieke methodologie die de dynamische uitvoering van
de voornoemde twee methodes toelaat. We hebben deze technieken gëımplementeerd en
gevalideerd in een op maat ontwikkelde state-of-the-art verkeerssimulator, die we uit-
gebreid bespreken doorheen deze thesis.
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Chapter 1

Introduction

1.1 Problem statement

In this thesis, we aim to improve the scalability of large scale agent-based simulation.
We initially discuss the challenges and opportunities in the context of simulation-based
testing and evaluation of large-scale smart environments and applications. Later in the
thesis, we focus on developing methodologies and techniques to allow dynamic improve-
ment of scalability in state-of-the-art agent-based simulators. We validate our proposed
methods on a realistic large-scale traffic simulation scenario. During this thesis, we at-
tempt to solve the following challenges:

• How can we dynamically switch the agent distribution over multiple compute units
to reduce computational cost

• How can we dynamically switch abstraction levels of simulation models to reduce
computational cost

• What type of simulation architecture is needed to implement dynamic or adaptive
performance optimization techniques in a clear and reusable way

• How can we validate the presented techniques in a real-life large-scale traffic simu-
lation scenario

In the next section, we give further context about these challenges that arise when
simulating large-scale agent-Based environments and how we will attempt to tackle them.

1.2 Background

Over the last years, we have seen a significant increase in large-scale smart systems. Such
a smart system is characterized by its decentralized nature. It consists of hundreds or
even thousands of heterogeneous internet-connected entities. Such an entity can be an
actor (e.g. a person, or a car), or an Internet Of Things (IoT) device that collects and
shares its data. These entities have the capability to either observe or interact with the
environment. In the latter case, these entities could alter the state of the environment.
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This leads to an enormous opportunity, because when a large amount of these entit-
ies interact with each-other and impact the environment, it leads to global, potentially
optimized, emerging behavior that can be observed at the system level. This type of
behavior, originating from local autonomous interacting entities is often referred to as
emergent behavior [1].

A concrete example of this can be found in smart traffic solutions where the environment
consists of many observing and acting entities. The acting entities consist of vehicles,
cyclists and pedestrians interacting with smart traffic lights, variable speed limit signs,
digital traffic signs etc. The observing entities are traffic loops, traffic cameras, sound
level devices, air pollution devices etc. Local behavior of individual acting entities could
impact the global emergent behavior. For example, switching the traffic light schedules
of smart traffic lights could lead to the optimization of emergent properties such as for
example traffic flow, noise and air pollution. Other examples of large scale smart envir-
onments are smart grids, smart cities, large-scale digital twins and in general large-scale
Internet of Things systems.

Analyzing and properly modelling this local behavior is therefore key but not an easy
task. Emergent behavior can only be properly evaluated when the local entities have
the ability to interact with each-other and with the environment at an appropriate scale.
With the rising maturity of Artificial Intelligence systems we could even see some of these
entities acting autonomously in the interest of the resulting emergent behavior. Imagine,
for example that the traffic lights learn based on the current observable traffic flow how
they can collaboratively alter their behavior in order to optimize the emerging traffic
flow.
D. Roca et al. [2] argues that the resulting emergent behavior in the context of such
large-scale decentralized Internet of Things environments will lead to improved scalabil-
ity, interoperability and cost efficiency as opposed to traditional approaches that heavily
rely on extensive programming of explicit behaviors in a centralized architecture.

We believe that leveraging simulation as a means to analyze the emergent behavior of
this type of systems is key. Analyzing and validating both the local and emergent beha-
vior is impractical in real-world test setups because of the required scale. Furthermore,
modern learning techniques such as Reinforcement Learning require a large amount of
interactions of the agents with their environment. This makes simulation also in the
optimization context a key component.
However, as mentioned, the type of smart systems discussed in the previous paragraphs
are characterized by their large-scale requirements. The scale of these systems makes
computational efficiency a primary condition. In this thesis, we propose various tech-
niques and methods to improve the computational efficiency of large-scale simulation
frameworks in the context of analyzing, testing and optimizing large-scale smart systems.

The computational requirements of this type of simulations are directly dependant on
the amount of entities and the complexity of their models. We saw that spreading the
amount of entities over more computational units (CPUs and servers) could reduce the
total execution time at the cost of increased simulator complexity and increased syn-
chronization requirements. But as stated by Amdahl’s law [3] the scaling possibilities by
relying on increased concurrency are limited by the additional overhead it creates and
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the parts of the application that require serial, non-parallel execution. Instead, the com-
plexity of the models could be altered based on the accuracy needs of the domain in order
to reduce the computational cost. The focus of this thesis is on exploiting these observa-
tions to improve the computation efficiency. Furthermore, we identified that many of the
computational requirements and constraints of the simulations strongly depend on the
context of the simulation. For example, the required model complexity can change over
time and based on the operating context of the model. Based on this observation, we
put extra focus on optimizing the computation efficiency of the simulation dynamically
by taking the simulation context into account.

Throughout the thesis we will refer to the type of system described in this section as
Large-Scale Smart Systems, or simply ”Smart Systems”. In our work, we focus primarily
on smart traffic system use cases, as we believe that this is representative for the chal-
lenges that arise when simulating smart systems in general, and where emerging behavior
originates from the interactions and behavior of local decentralized entities.
Internet-of-Things is a concept that is strongly related to these smart systems, therefore
we also put some extra attention on simulating and testing general Internet-of-Things
systems. This is mostly discussed in chapter 2. The remaining chapters primarily focus
on optimizing the computational efficiency of large-scale traffic simulations.
In the next sections, we look into further detail what methods exist to simulate smart
systems and we discuss relevant techniques such as Parallel and Distributed Simulation
and Model abstraction. The analysis presented in the next sections is based on a posi-
tional paper that was published and presented in the SCS SpringSim conference of 2018
[4].

1.2.1 Model representation

In order to model emergent behavior, the Agent Based Modeling (ABM) paradigm seems
the most appropriate [5]. With ABM, a bottom-up modeling approach is applied.
Instead of modeling the global expected behavior, the modeler describes the behavior
of the individuals. The ABM paradigm allows these individuals to interact. Eventually,
these interactions will lead to a global behavior. As the smart system application are
deployed in a similar matter, the simulation engineer has to model the different entities
involved in the simulation.

Opposed to ABM there are other formalisms often used in modern simulation applic-
ations. For example, Discrete-event formalisms such as DEVS [6] model the behavior of
a system using a timed sequence of ”events” either as input to a system or as a timeout
within the system. These events cause instantaneous changes to the state of the system.
Atomic discrete event models can be combined together into a coupled model. Further-
more, extensions exist that couple these models in a grid, e.g. Cell-DEVS [7]. These
types of cellular automata can have an advantage to model geographical areas. E.g. the
city is divided into a grid of cells where each cell models a part of the city.

Finally, differential equations can help to model rates of changes of relevant properties,
e.g. traffic flows can be modeled with a differential equation. Different equations can
also be coupled together using co-simulation techniques to allow for a divide-and-conquer
approach to model complex systems.
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The focus in this thesis is on the Agent-based formalism, because it is ideally to
simulate emergent behavior by modeling the behavior of individual entities, which makes
modelling of these smart systems easier. Furthermore, the formalism is related to how
modern optimization applications, such as Reinforcement Learning (RL), are developed.
The simulations developed using the ABM formalism can therefore be easily integrated
in an RL environment. We will also look into exploiting other formalisms because of
performance reasons and integrate them in the same simulation environment.

1.3 Overview

The main challenge in simulating large-scale smart systems is related to performance. In
order to obtain some level of representative emergent behavior a great amount of inter-
acting entities is required. Running such a simulation on a single computational unit is
often not enough, instead distributing to multiple servers is a better approach to cope
with the necessary scale. Example implementations are described in the Parallel And
Distributed Simulation (PADS) methodology [8] and in the IEEE 1516 standard. Facil-
itating the proper execution of these simulation entities in a simulated environment still
requires several performance optimization techniques in the simulation core. Preferably,
these optimizations can be performed transparent to the simulation modeler. However,
this won’t be possible all the time. In these sections we provide an overview of vari-
ous optimization techniques that can be applied dynamically or statically. A dynamic
optimization can be applied at run-time and can be context-dependent, while a static
optimization needs to be applied up-front. We made a break-out of major performance
optimization techniques in Figure 1.1 below. We used a feature diagram formalism to
represent the various techniques. We refer to this diagram throughout the thesis, to
clarify in which area we make contributions.

1.4 Model abstraction techniques

An important aspect of generating emergent behavior is to properly describe the behavior
of the individual elements of the real-world within the simulation model. Furthermore,
once these systems are modeled we show which modeling techniques can help us in
achieving a scalable smart system simulation framework.

The most appropriate formalism often depends on the required level of detail. Model
abstraction techniques can help to reduce the level of detail when possible. This leads to
a decrease of the computational cost of individual models by “simplifying” the repres-
entation of such a model while maintaining the original behavior as accurate as possible.
The main objective of applying model abstraction is to make a proper trade-off between
computational complexity and accuracy. Extensive taxonomies of model abstraction
techniques exist in literature [9], [10]. In this work we will only discuss the most rel-
evant techniques. As demonstrated in Figure 1.1, we differentiate between two major
categories, one based on multi-formalism model abstraction and another based on single-
formalism abstraction. We than discuss how we can use these techniques in a smart
system simulation environment.

4



1.4. Model abstraction techniques

Figure 1.1: Overview of relevant simulation performance optimization techniques

1.4.1 Abstractions within a single formalism

These abstractions are applied on the model without changing the formalism to describe
it. We define three types of abstractions that can happen within a single model. We will
apply these types of abstractions on the individuals of the ABM but they can also be
applied to models in other formalisms as well.

State abstraction This technique abstracts the state of a single individual. As the
decision processes of individuals can be very complex, certain parts of the decision making
process that an individual exhibits can be ignored without compromising the global
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behavior of the simulation, e.g. the individual also reasons about other properties that
do not influence the global behavior, or higher-order reasoning with little to no impact
on the decision of the agent.

The process of creating a more abstract individual from a detailed one can be done
manually. This requires insight into both the decision making process of the individuals as
into the application that generates the emergence of behavior. Therefore, more automatic
techniques might be more appropriate. An example technique that can be used for this
is metamodeling (as in surrogate modeling). Caughlin et al. define a metamodel as a
projection of the original, high-fidelity model onto a subspace defined by new constraints
or regions of interest [10]. In practice, a metamodel is a mathematical approximation of a
complex model. The original model is treated as a black box, and the metamodel operates
as a surrogate model that replaces the original. To come to such a metamodel a detailed
analysis of the input/output mapping of the original model has to be performed. Based
on this analysis a surrogate metamodel should learn to represent a similar mapping.
Preferably, the surrogate model is more abstract and is computationally less complex.
Various methods have been used for the development of metamodels such as polynomial
regressions, Radial Basis Functions (RBF) and others [11]. Most of these techniques
try to approximate input functions or data. Since the goal of metamodeling is to map
an input value to a specific output value we believe other supervised learning techniques
could be used as well. For example, P. Symonds et al. demonstrate that Neural Networks
(NN) could perform up to 15% more accurate compared to classic RBF approaches [12]
[13]. We believe that evaluating various state-of-the-art deep neural networks could lead
to even better results. We consider this as a promising area for further research.

Entity aggregation Another option to reduce the computational complexity of simu-
lation entities is Entity Aggregation. The idea of entity aggregation is to combine multiple
low-level simulation entities with a single high-level entity while preserving the collective
behavior. For example, when simulating emergent behavior in a smart power grid applic-
ation, a single agent could represent a single household but depending on the required
level of accuracy a single agent could also represent an entire neighborhood. Rodriguez
et al. demonstrate that NN’s could be used to transform a collection of low-level entities
to an aggregated model [14] . From an architectural perspective, a mechanism in the
simulation kernel can be created to detect and analyze clusters of agents that interact
a lot and pose homogeneous behavior. Using metamodeling techniques such a cluster of
agents can then be replaced by a single surrogate model. Conversely, the modeler can
also manually model an aggregation of individual simulation agents.

Temporal abstraction Finally, temporal abstraction can be used to limit the gran-
ularity of simulation entity state updates over time. Since, each state update results
in a cascade of simulation events the overall computational cost could be significantly
reduced.

Engineers can themselves easily change the temporal granularity (time-step) of their
simulation. However, choosing a too large time-step can result in an unstable simulation.
Automatic techniques to adapt the time-step also exist [15]. E.g. for solving differential
equations, several techniques are available that automatically adapts the time-step of the
simulation based on the estimated error, e.g. Runge-Kutta 4-5 embeds a higher-order
method in its solver to estimate the error and adapt the time-step.
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1.4.2 Multi-formalism modeling

Changing formalisms during abstraction can help to achieve better performance results
as we can leverage the strengths of different types of formalisms. For example, as ex-
plained in section 4.1, in the domain of traffic simulation, queuing theory might be a
more appropriate, less computationally expensive formalism compared to agent based
modeling. The formalism change allows for an easier state and aggregation abstraction.

1.4.3 Multi-resolution modeling

Multi-resolution modeling can be used to vary between model abstraction levels (and
possibly formalisms) within the same simulation. The advantage of this is that we can
increase abstraction levels in simulation areas where less accuracy is required. This will
consequently reduce the computational complexity of the simulation. Oppositely, we
could also increase levels of detail in certain simulation areas when an increased level of
accuracy is required. The multi-resolution model can be static or dynamic.

When applying a static approach, the most appropriate formalisms and levels of detail
have to be specified upfront and will be used during the entire course of the simulation.
Due to the dynamic nature of smart system applications, the potential computational
benefit is limited. Conversely, with a dynamic approach we can switch between various
levels of abstraction during the course of the simulation. This can be done by predefining
when and where an abstraction switch should occur. Domain knowledge is necessary to
detect and abstract/refine the (part of the) model.

Learning approaches are also possible to switch levels of abstraction, by learning
areas of opportunity and applying the necessary level of abstraction. For this, additional
mechanisms in the simulation kernel are required that detect areas of opportunity based
on various parameters. For example, simulation entities that have a limited amount
of interaction with the rest of the simulation could be marked as candidates for an
abstraction level increase. The advantage of such an approach is that we can adaptively
detect opportunities to switch between abstraction levels in order to decrease necessary
computational resources or oppositely, use all available computational resources.

Applying a dynamic multi-resolution modeling approach leads to additional challenges
that need to be taken into account [16]. For example, reinitializing a more abstract model
from the current state of the original model is possible as there is enough information
available in the original. However, when switching from a more abstract to a refined
model, extra information is required. This should be mended by modeling additional
domain-knowledge to fill this information gap.
In chapter 4, we propose a mix of entity aggregation and multi-formalism modeling, i.e.
dynamically switching from an agent-based formalism responsible for modeling behavior
of a single entity to a discrete event formalism responsible for modeling multiple entities.
In chapter 5, we expand on this work with a framework that allows to switch between
multiple resolutions and formalisms to balance both computational cost and validity of
the global emergent behavior. In this chapter we also discuss a method that allows
dynamic switching of model abstraction levels. Finally, in chapter 6, we discuss a first
attempt to combine traffic simulation with data-driven models that where the behavior
was not explicitly described but learned from data.
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1.5 Techniques related to simulation architecture

In this section, we will discuss techniques that could improve the performance capabilities
of the simulator itself. Most of these techniques have been studied in various domains such
as parallel and distributed simulation (PADS) and distributed discrete event simulation.

1.5.1 Simulation architecture

Most of the current Internet of Things and traffic simulators have an underlying mono-
lithic architecture which limits its scalability capabilities. D’Angelo et al. recognize this
limitation in state-of-the-art IoT simulation in their work. Instead, they propose their
custom built large-scale simulator Gaia/Artis which is based on the PADS paradigm.
PADS allows a simulation to be executed among multiple distributed devices or Phys-
ical Execution Units (PEU’s), which will significantly improve scaling capabilities. Each
Physical Execution Unit (PEU) consists of a collection of Logical Processes (LP). An LP
represents a part of the simulation and contains a collection of Simulation Entities (SEs).
A simulation entity, as the name implies, represents an individual simulation model or
agent (in the context of agent-based simulation). A disadvantage of PADS and distrib-
uted simulation is that it leads to additional difficulties with regards to synchronization,
simulation partitioning and transparency.

1.5.2 Model partitioning

Model partitioning aims to optimally distribute agents across multiple servers to decrease
the overall communication cost. A significant part of the computational interaction cost
is characterized by remote communication across multiple PEU’s [17]. This computa-
tional cost of remote communication is much higher than the local communication cost
between SE’s located in the same region. Much efficiency can be gained by analyzing
communication patterns and optimizing the distribution of the simulation entities, so
that local communication is maximized and as a result the communication cost will be
lower.

Static model partitioning: We make a distinction between a static and a dynamic
approach. With a static partitioning approach it is assumed that the interaction dynam-
ics between SEs remain stationary, as soon as these dynamics change over the course of
the simulation the benefit of the partitioning decreases. For example, a fixed partitioning
could be configured by specifying the exact time of when a model entity should migrate
from one LP to another. Such a schedule could be performing well at first, but as soon
as the communication dynamics change it will lead to suboptimal simulator performance
[18]. In the domain of IoT and traffic we can assume the presence of stochastic dynamic
nodes and devices. This will inherently lead to unpredictable changes in interaction dy-
namics. Furthermore, because of the required scale to simulate emergent behavior we
can conclude that static partitioning methods are impractical and not preferable in order
to simulate this type of application [19].

Dynamic model partitioning using heuristics: When compared to static parti-
tioning, the dynamic partitioning methods will be more adequate, as they are able to
automatically migrate simulation entities when their communication patterns evolve. In
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the context of PADS, many research has been done in the area of dynamic simulation
partitioning. Most of these techniques rely on solutions based on heuristics [20]. In most
cases these heuristics don’t have a complete view on the global simulation state because
this would be computationally too expensive, both from a model computation and com-
munication point of view. Instead, most heuristics rely on limited data directly available
on the individual hosts.

Dynamic model partitioning using domain knowledge: A possible disadvantage
in the heuristics approach is that it doesn’t take domain knowledge into account. This
can lead to a number of undesired side effects. For example, migrations might occur
that need to be undone in a later phase. This could result in a higher computational
cost (introduced by these consecutive migrations) than the obtained gain which was
only temporal. The heuristics presented above do try to prevent oscillating migrations
by introducing a threshold that prevents immediate undoing a migration. However,
another solution would be to inject domain knowledge that could prevent these unwanted
migrations to occur in the first place. Furthermore, it could perform more optimal
migrations that couldn’t have been achieved by solely analyzing local communication
patterns of individual SEs.

Van Tendeloo and Vangheluwe demonstrate in their work that significant performance
improvements can be obtained by injecting domain knowledge in their Python-based dis-
tributed DEVS simulator PythonPDEVS [18]. Their work builds further on the abstract
notion of activity introduced by Muzy et al. which represents a measure for a number
of events in the context of a Discrete Event Simulation (DES) system [21]. This activity
concept can refer to various resources such as time, memory or energy which are relevant
in a DES system. In the context of performance optimization the time resource will be
most relevant. One can look at activity from various perspectives, either from a compu-
tational load perspective or from a communication perspective. The heuristics discussed
in the previous paragraph look at activity from a communication perspective whereas
activity-based on the computational perspective. The concept of activity prediction al-
lows simulation models to provide hints to the simulator kernel about both their current
and anticipated activity and how they should be distributed. Consequently, these hints
will be exploited to decide when a SE migration should occur. This approach leads to a
more optimal distribution of computational load across servers. The idea of activity pre-
diction based on domain knowledge is also relevant when looking at the activity concept
from a communicational load perspective, in that case, the goal would be to reduce the
overall communicational load over the network. A disadvantage of this approach is that
a level of transparency has to be sacrificed, breaking down the boundary between model
and simulation engine in order to obtain better performance.
In chapter 3, we present a generic and reusable method for dynamic/adaptive partition-
ing by leveraging the concept activity in order to solve load imbalances in a distributed
simulation setup. Our method tries to manage the breaking of the boundary between the
model layer and the simulation engine layer by presenting a clear and generic framework
that allows information to be shared between the various layers within the simulation
architecture. We validate this technique on two agent-based use cases.
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1.5.3 Synchronization

Finally, another important decision that needs to be considered when developing a large-
scale distributed simulator is synchronization. This section gives an overview of the most
relevant techniques described in state-of-the-art research.

Synchronization is an important topic in the field of distributed simulation. Its goal is
to maintain validity of a distributed simulation system by preventing causal inconsisten-
cies. Such an inconsistency occurs when events that depend on each-other are executed
in the wrong order [22]. For example, imagine an event B that depends on the results of
an event A. If event B were to be processed before the execution of event A, a causal in-
consistency occurs and simulation results could become invalid. Various synchronization
techniques are discussed in literature to maintain this causal consistency, a distinction
is made between two major categories 1) optimistic synchronization techniques and 2)
conservative optimization techniques. Each technique will lead to different performance
results.

Conservative synchronization One way to maintain causal consistency among vari-
ous LPs in a distributed simulation is to prevent a simulator to move to the next event
only when it is certain that no other LP will insert an earlier event. [23]. This approach is
called a conservative synchronization approach. The best known conservative techniques
are based on the Chandy Misra Bryant algorithm [24]. In their work, each LP should have
an individual communication channel for all other LP’s it communicates with. Each LP
is assumed to post timestamped events in the right order. An LP is only able to accept
and process events with the lowest time-stamp as soon as all messages in all channels are
received. This could lead to deadlocks when some LPs are not generating events, leading
to some empty channels and an LP consequently remaining in a waiting/blocking state.
As a solution, the idea of null messages is added, where null messages can be sent to
channels when no events are assumed for a particular LP. The CMB technique allows
the simulation to progress at various rates, however it introduces high overhead because
of the null messages in terms of computational overhead and network load [25].

Optimistic synchronization The conservative synchronization method blocks the
simulator and results in some LPs waiting in an idle state on other, slower LPs, which
is not always necessary. Instead, the optimistic synchronization method introduces a
non-blocking approach where each LP continues on its own rate, not waiting for other
LPs until an inconsistency occurs, e.g. an event is received with a time-stamp earlier
than the local time of the LP. When such a inconsistency is found the simulator will
turn back its state to a checkpoint prior to the time-stamp of the received event before
continuing processing. As a result, the simulation remains valid. This non-blocking op-
timistic synchronization mechanism as described above, is called the time warp protocol,
first introduced in Jefferon’s paper [26]. In cases where not many causality conflicts are
expected, it could lead to better simulation performance and a reduced execution time
compared to the conservative approach.

The synchronization solutions are a out of the scope of this thesis and will not be dis-
cussed further.
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1.5.4 Scalability

Throughout this thesis we refer to the concept of scalability and how we aim to improve
it. It is therefore important that we clearly define this concept as meanings may vary
between various research domains. We define the concept of simulation scalability from
the perspective of the simulation execution time, where an improved scalability is equal
to an overall improved performance of the simulation execution time. That is the time
interval between the end of the simulation and the beginning of the simulation.
This can be in a single-core computational environment but also in a multi-core or dis-
tributed environment.
There are no clear benchmarks available that we can leverage to compare the improve-
ment of the scalability with. This is because the execution time of a simulation strongly
depends on the implementation and level of detail added to the simulation models. And
this is very application dependent.
Therefore, in the experiments presented in this thesis we compare the impact of our
presented methods on state-of-the-art models executed in the same simulation frame-
work. This simulation framework is called Acsim, and has been developed throughout
the course of this thesis. The architecture of this framework is also implemented based
on state-of-the-art frameworks and literature. We describe the implementation and the
design decisions of the framework throughout this thesis.

1.6 Contributions

In the previous section, we presented an extensive background to the problem of simulat-
ing and evaluating large scale Internet of Things environments. In this research project
we aim to analyse techniques and methods to test and validate large-scale smart systems
using agent-based simulation and modeling.

Furthermore, we identified possible solutions discussed in literature that allow to improve
the scalability of such complex environments: Model abstraction and Model partitioning.
We identified the problem that most of these solutions rely on static implementations.
This can however lead to inefficiencies occurring at simulation run-time. Therefore, in
this thesis we propose a methodology to dynamically switch model abstraction levels
and dynamically optimize agent distribution in the context of distributed agent-based
simulation.
We validate our method with implementations in a state-of-the-art agent-based traffic
simulator. We consider traffic simulation as the perfect validation use-case of the meth-
ods presented in this thesis. This is because traffic simulation is often used in smart
city solutions. It requires a high amount of complexity and scale. It leads to emergent
behavior that can best be validated at appropriate scale. Therefore, we believe that the
methods presented in the context of traffic simulation can also be used in simulation of
other large-scale applications. We compare each of the dynamic approaches to a static
baseline to evaluate its performance.

The contributions of this thesis can be summarized as such:

• Overview of challenges and solutions to simulating large-scale smart environments
and Internet-of-Things systems in general

• Method for dynamic partitioning of agent-based simulations
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• Method for dynamic abstraction of agent-based traffic simulations

• The implementation of these methods on a state-of-the-art large-scale traffic sim-
ulation framework

The contributions made in this thesis are shown in the feature diagram below. This
feature diagram is a selection of the features presented in Figure 1.1. Our contribu-
tions are mostly related to multi-formalism abstraction where we abstract a collection
of concrete agents and replace them by a more abstract formalism. Furthermore, we
always rely on a conservative time stepped synchronization. This is because we want to
have the full simulation synchronized at each discrete timestep. With opportunistic syn-
chronization some of the simulation areas could be running behind or ahead compared to
the rest of the simulation. Because of these reasons we didn’t research synchronization
methods further. A lot of research has already be done in this area, and we consider it
to be outside of the scope of this thesis. All chapters in this thesis implement the same
step-based conservative synchronization method.

Our main contribution of this thesis to the state-of-the-art is not only in the various
fields we show in Figure 1.2 but also more general: we look broadly to the domain
of scalable simulation and we present a method that allows adaptive behavior of the
simulation engine to better balance performance and accuracy. Such adaptive method,
as presented in this thesis, have not been described in literature. Our method goes beyond
the state-of-the-art by the facts that it generalizes among various agent-based simulation
applications and that it can be applied both in the domain of model abstraction as in
the domain of distributed load balancing. Furthermore, we validate this research using
a custom developed large scale traffic simulation framework which is further discussed
in the next paragraph. This allows us to validate our method beyond small-scale toy
examples as is often the case in related work. The combination of these contributions
make this thesis unique and offer significant contributions to the state-of-the-art in the
domain of large-scale agent-based simulation and modeling.

Acsim simulation framework Throughout this thesis we discuss the architecture of
the Acsim simulator. Acsim is the name of the simulation framework that we developed
during the course of this research. Each chapter might reintroduce parts of the simulation
architecture, but always from a slightly different perspective. We used the framework to
validate our experiments and the various techniques that we present. It has grown as an
important contribution of this thesis. It started as a very basic simulator and eventually
grew to a state-of-the-art simulator. We hope that the framework will continue to add
value beyond the scope of this dissertation and that it will be used in related research
trajectories. It must be noted that the implementation details of the simulation frame-
work our outside the scope of this thesis as they don’t offer a direct research contribution.
A major amount of work during the executions of this thesis was however focused on the
implementation of this simulation framework. There are no similar frameworks available,
so we had to build this simulation framework from scratch in order to test and validate
the methods proposed in this thesis.
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Figure 1.2: The various features and contributions of the thesis

1.7 Outline

This thesis is presented as a collection of bundled papers that were published the last
four years. Each chapter corresponds to a single paper.

In chapter 2, we present a framework that enables hybrid testing of Internet of Things
environments. We discuss the implementation of this framework using a participatory
sensing use case. We further align some problems that arise with regards to synchroniz-
ation and scalability. this chapter was published as Testing IoT systems using a hybrid
simulation based testing approach, in the 2019 Springer Journal of Computing [27].
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In chapter 3, we discuss techniques to adaptively distribute agents among multiple com-
putation units. We present the MAPE-K framework as part of our simulation archi-
tecture to allow for this adaptivity. We validate our method on two use cases. A real-
istic micro-traffic use case, where we dynamically migrate parts of the traffic network.
And a sugarscape automate where we migrate agents between CPU units to reduce the
remote communication cost. This chapter was published as Adaptivity in Distributed
Agent-Based Simulation: A Generic Load-Balancing Approach, in the 2020 International
Workshop on Multi-Agent Systems and Agent-Based Simulation as part of the AAMAS
conference [28].

In chapter 4, we present a technique to approximate model behavior on an agent-based
micro-traffic use case. We dynamically identify approximation opportunities by meas-
uring the entropy of speed distributions at the street level in order to approximate the
entire agent-based street-level behavior. This chapter was published as Reducing compu-
tational cost of large-scale simulations using opportunistic model approximation, in the
2019 Spring Simulation Conference [29]

In chapter 5, we discuss a state-of-the-art large-scale microtraffic implementation and
leverage the MAPE-K paradigm to dynamically switch model formalisms and reduce
computational cost while taking model accuracy into account. We allow switching
between micro and meso-level traffic models. This chapter is submitted for publication
as Adaptivity in multi-level traffic simulation at the 2021 Elsevier journal of simulation
modeling practice and theory.

In chapter 6, we discuss the implementation of data-driven model based on a novel
graph convolution architecture within our micro-traffic simulation framework. We show
how it can more effectively approximate driving behavior while taking the layout of the
traffic network into account. This chapter is a progress report and will be submitted
later this year to a yet undetermined conference.

In Appendix B, we present a publication that describes the early state of the Acsim
simulator architecture. This work was published in 2017 [30]. Finally, in Appendix C
we present an expansion of my master thesis related to scheduling of computationally
intensive calculations in a cloud environment [31]. This work was published in 2018 in
the International Journal of Grid and Utility Computing.
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Chapter 2

Testing Internet of Things Environments
using a hybrid testing approach

As mentioned in the introduction of this thesis, Large-scale Smart Systems are closely
related to IoT systems. In this chapter, we focus on the challenges that arise when test-
ing IoT applications using simulation and how emergent behavior relates to this type
of challenges. This chapter doesn’t contain the main contributions of this thesis, but it
makes a strong case on testing of IoT systems using large-scale agent-based simulation
techniques which is relevant in the scope of this work. This chapter is based on the work
that was published in 2019 in the journal of Computing [27].
The interactions of local entities, such as IoT devices or people interacting with the IoT
system, eventually leads to an emergent behavior. Both the emergent behavior and the
local behavior need to be taken into account when testing IoT systems. Therefore, we
present a hybrid simulation-based testing approach that is able to facilitate both high
scalability for emergent behavior testing with real life on device testing. Furthermore, we
introduce various solutions to the challenges that arise when implementing this hybrid
method. These challenges are mainly related to the IoT development pipeline, synchron-
ization between real-life and simulation environment and the scalability constraints of
modern simulation techniques.

A very important aspect when testing Internet of Things systems at the system level
is to include the behavior exhibited by Local Entities (LEs) that leads to emergent be-
havior. In order to orchestrate such LE behavior, the LE will need to be able to interact
in real-time with the environment and with other entities. This eventually leads to a
global, emergent behavior. Emergent behavior is the overall, global behavior posed by a
smart system. It inherently depends on the behavior and interactions of LEs with each
other and with the environment. Mataric et al. define emergent behavior as a collection
of actions and patterns that result from local interactions between elements and their
environment, which have not been explicitly programmed. When tested and calibrated
correctly this emergent behavior can lead to various global optimizations at the system
level. However, a large amount of real-time interacting LEs, posing realistic behavior
will be required to properly test this.
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In the next section, we present the participatory sensing use case that serves as a run-
ning example throughout the chapter. In section 3, an overview of classic IoT testing
techniques is provided and the importance of local and emergent behavior is clarified.
In section 4, we present various techniques that can be used to simulate behavior of
local entities. Section 5 introduces the hybrid simulation-based testing methodology and
proposes various solutions to implementing this methodology. Finally, section 6 takes a
deeper look at scalability constraints that arise when implementing large real-time IoT
simulations.

2.1 Participatory sensing use case

To better explain the concepts presented in this chapter we will use a running example
throughout the remainder of this chapter. The running example is based on the SeRGIo
project, which is short for mobile sensing services for developing geospatial IoT applica-
tion. It is a participatory sensing project that is currently being developed with multiple
academic and industrial partners as a proof of concept. The goal of the project is to
collect qualitative data from citizens or workers, such as mail(wo)men, by targeted dis-
tribution of small sensing tasks. SeRGIo is different compared to other participatory
sensing frameworks in that it focus on the collection of qualitative data instead of quant-
itative data. An example of such data is the user’s perception of safety in a particular
neighborhood. A sensing task is typically received on the smartphone of the user and
contains a small questionnaire or single question such as ”How clean is the street?” or
”What is the quality of the street bench in front of you?”. SeRGIo will also take the
spatio-temporal aspects of a user into account when sending tasks. This means that the
system only sends tasks related to a certain place or area when a user is actually nearby.

It should be clear that testing this type of system poses significant challenges. This
is mainly due to the fact that the functional aspects of the IoT system can only be
tested with actual participants. In current state-of-the-art, there isn’t a clear approach
to handle such test cases.

2.2 IoT testing

IoT applications are inherently heterogeneous systems. They consist of many different
sensors, actuators, communication protocols and operating systems. This makes the
testing of these systems a challenging task. In this section, we provide an overview of
classical testing techniques used in IoT projects and identify the gaps that remain in
current testing practices.

2.2.1 Classic testing of IoT

Given, that there is a strong cohesion between hardware and software in IoT projects,
the testing approach used in state-of-the-art Internet of Things projects is often based
on best practices used in classic software or hardware development.

Software testing Software testing is mainly used for the validation of both functional
and non-functional aspects of IoT middleware software or more low-level code such as the
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software logic deployed on IoT sensors and actuators [32]. Two major types of testing
are described:

1) White box testing: the tests have full transparency to the inner structure of the
software. Unit tests are often considered a white box testing approach. Within the
context of IoT testing, this method is used to test the functionality of low-level pieces of
code, such as single methods and classes [33].

2) Black box testing: With this testing method the software system is considered a
full black box [34]. These tests have no knowledge of the internal structure of the system.
Black box tests are concerned with more high-level aspects of the software, typically on
the system-level. E.g. in SeRGIo we could apply a black box system level test to verify
whether a user correctly receives a sensing task on his smartphone when he is located
in a certain area that is below the data relevance threshold. In practice, these type
of tests are difficult to run, especially when developing IoT applications. Because, as
mentioned before, IoT systems typically contain many different sensors, actuators and
software parts interacting with each other.

Within the context of this chapter we only focus on the black box testing method.

Prototype setups Prototype testing is used to test the functionality of hardware
components in a lab-based environment. These tests are often limited to single devices.
Given the diversity of IoT systems and environments it is best to rely on more large scale
test setups when testing entire systems. Various initiatives are described in literature to
facilitate such large scale test beds. One example is the imec City of Things testbed in
Antwerp [35]. Another example of such a testbed is the Smart Santander project
[36]. It is a city-wide, real IoT testbed. It offers many thousands of IoT devices readily
deployed in an actual environment. Most of the testbeds described in literature are ideal
to test non-functional requirements of an IoT system, such as testing the interoperability
between various devices and their communication protocols or operating systems.

Simulation based testing Instead of writing custom test cases, simulation models
are used to interact with the system. Although real testing is often desirable, simulation
testing is a more flexible and cost-efficient approach. It allows for a more controlled and
reusable environment that can be tweaked much easier. Within the IoT domain simula-
tion testing is most often used to test technical aspects of the system such as network
related features, power consumption etc. The most well-known examples of such simu-
lators are NS-3 [37] and Omnet++ [38]. Various IoT operating systems such as Contiki
and TinyOs also offer their dedicated simulator, Cooja [39] and Tossim
[40] respectively. Some simulators are focused on testing more high-level IoT setups such
as the iFogSim simulator [41] which is used to test IoT edge or fog architectures. Finally,
D’Angelo et al. demonstrate the use of the Gaia/Artis specifically to run large-scale IoT
simulations [42]. Also here, the focus is mainly on testing technical aspects such as power
consumption and network utilization.

The problem however with the testing approaches described in this section is that they
typically do not take the impact of behavior into account when testing IoT systems and
are often focused on testing only non-functional requirements. Many of the classic test-
ing practices isolate certain parts of the system and test it in isolation. We want to
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test the behavior of the system at the system level and evaluate the global functional
requirements of the systems. Therefore, we look at the IoT system as a black box.

2.2.2 Role of behavior in IoT systems

To better understand the importance and the role of behavior in IoT systems it is import-
ant to clearly define different types of behavior. We differentiate between local behavior
at the local or entity level and emergent behavior which arises at the global level of the
IoT system.

Local entity behavior This type of behavior is exhibited by the Local Entity (LE)
level of an IoT system. With the term local entities we refer to local actors that operate
autonomously and have some type of behavior. This behavior can be very different
ranging from a simple actuator that responds to certain inputs, a sensor forwarding
inputs towards devices whose behavior is powered by an AI. But also human actors can
be seen as local entities. Actually, any connected entity that is able to communicate
with other entities in the IoT system can be seen as a local entity. In the SeRGIo use
case, mail(wo)men and citizens are also LEs. We refer to these entities as LEs in the
remainder of this chapter. The local behavior exhibited by these LEs has an impact on
the overall behavior of the system. Therefore, this behavior is an important part of the
system and needs to be taken into consideration when evaluating the system.

Emergent behavior A special type of behavior in IoT is emergent behavior. Emer-
gent behavior is the overall, global behavior posed by a system. It inherently depend on
the behavior and interactions of LEs with each other and with the environment. Mataric
et al. define emergent behavior as a collection of actions and patterns that result from
local interactions between elements and their environment, which have not been expli-
citly programmed [1]. It is loosely based on the emergent behavior that is observed in
bird flocks where birds apply three local rules which result in emergent flocking behavior
(e.g. remain at a fixed distance to neighbor birds). Roca et al. argue that this emer-
gent behavior will lead to improved scalability, interoperability and cost efficiency of
ultra-large-scale IoT systems as opposed to traditional approaches that strongly rely on
extensive programming of explicit behaviors [2]. Emergent behavior typically originate
from autonomous entities, with adaptive or evolving behavior, that are interacting with
each other and with the environment. This type of behavior particularly benefits the
IoT areas which require the interaction of an enormous amount of devices where relying
solely on a centralized architecture is insufficient. Examples are such as smart power
grids, autonomous car flocking and smart traffic lights.
In the context of this work we are interested in testing functional aspects of IoT applic-
ations at the global system level. Furthermore, we want to evaluate how we can include
behavior when testing functional requirements of an IoT system. We believe that the
dynamic impact of local entity behavior can not be neglected in IoT systems. As in many
cases, there is a strong connection between human actors and the IoT system as a whole.
Furthermore testing systems from the bottom up reduces the complexity of evaluating
the entire system, as you start from evaluating the local behavior opposed to evaluating
the complex global behavior. This reduction of complexity leads to reduced error made
by the tester and makes it computationally more feasible. The state-of-the-art (SotA)
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literature lacks clear methods to validate, verify this behavior and its relationship to
the IoT system as a whole. In the next sections, we present various techniques and list
open challenges that arise when testing behavior in IoT systems. Furthermore, when
testing emergent behavior in IoT systems, real-time interactions between LEs and the
environment (e.g. a IoT middleware system) are required. Solutions to facilitate this are
largely ignored in SotA literature. Later in this chapter, we look at how we can leverage
large-scale simulation techniques to do this.

2.3 Simulating behavior in IoT system testing

Many IoT services such as participatory sensing, adaptive traffic navigation and more,
inherently rely on human behavior. Furthermore, some of them even depend on the be-
havior posed by people interacting with each other and with various IoT devices in order
to provide qualitative services. As pointed out by Nunes in the context of Cyber Physical
Systems (CPS), most CPS are however human-centric applications where humans are an
essential part of the system and most of these systems still consider the human as an
external and unpredictable element [43]. The same argument holds for Internet of Things
systems and behavior posed by other LEs such as smart actuators and sensors.

For example, in the participatory sensing use case, human actors are responsible
for collecting sensing tasks. These actors behave according to certain semi-predictable
spatio-temporal patterns, e.g. a mail(wo)man walks the same route each day and an
average citizen goes to work and returns back home at roughly the same time using the
same route. Furthermore, the actors also add an element of stochasticity to the system.
For example, not every SeRGIo user will always be able or willing to respond to sensing
tasks.

One can not rely directly on human actors and readily deployed IoT LEs to evaluate
the behavior of the system prior to when the system is fully operational. Therefore,
simulation can be seen as an effective alternative to real LEs during the test phase. Op-
posed to solely simulating technical, non-functional aspects of IoT systems as described
in the previous section, we propose the simulation of LE behavior in order to evaluate
the functional requirements of IoT systems. These SEs should be able to interact in
real-time with the IoT system middleware, as if they were actual real-life entities. The
following techniques can be used to model human behavior:

Explicit modeling The behavior of human actors or smart devices can be explicitly
modeled. A technique often used for modeling the Internet of Things is ABM. With
ABM each IoT device or actor is considered an agent that is autonomous, dynamic and
has the ability to interact with other agents or with the environment. These properties
make ABM also ideal for modeling the behavior of human actors [44]. Within the Sergio
project we implemented an ABM approach to simulate citizens that navigate through the
city. These citizen agents are able to walk a predefined route and broadcast their location
to the middleware system. Furthermore, the agents were able to respond to task sensing
requests based on a predefined probability estimate. This technique allows for an easy,
cost-effective and reusable testing strategy compared to the classic testing approaches
described in the previous sections. However, the level of detail in the modeled behavior
is limited. It is therefore very likely that not all variations of behavior are included in
the models which could lead to imperfections or errors in the demonstrated behavior.
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Data replay Many IoT projects leverage existing datasets to replay behavior. For
example, the participatory sensing system presented by Marjanovi et al. uses a public
dataset that contains discrete, timestamped GPS locations of 65 users [45]. For each user
the data will be replayed at a predefined interval. The IoT middleware under test will
perceive the incoming GPS logs as real-time behavior posed by an actual user. The same
strategy could be used to test the Sergio project, to model the navigation behavior of
citizens through the city. However, this would require the collection of qualitative data,
which is not always available depending on the type of data and the required quality.
Furthermore, explicit modeling of behavior is still needed in many cases in order to re-
spond to stochastic events. For example, with Sergio when a sensing task request is sent
to a user, the system needs to have a response within a limited timeframe. Since the
exact time of the creation of these events is not predictable upfront, we can not rely on
replaying data event responses and thus, some logic is required to handle, process and
respond to the event

Both explicit modeling and data replay can be effective strategies to model human be-
havior. They definitely can be used to include LE behavior in the IoT testing strategy.
Compared to relying on a group of actual human testers, the simulation strategy is more
scalable, more cost-effective and reusable. But, they require additional efforts and don’t
guarantee that the simulated behavior is realistic.

2.4 Hybrid testing

Using simulation can be an effective testing strategy. However, it is difficult to fully rely
on it during the entire development process. As pointed out by Crisan et al. the data
generated by classic simulation methods, as presented in the previous section, cannot
model precisely the traffic bursts and noise of real-world activities of people [46]. Real-
world testing is still preferred as it will better represent the broad variations of human
behavior. Therefore, we present a hybrid testing methodology. The methodology com-
bines both the advantages of simulation, which is a cost-effective, scalable and reusable
technique, with the advantages of real-life testing.
The concept of hybrid simulation has been described in related literature. Mainly, within
the domain of structural construction simulation
[47]. It allows experiments to be conducted in which structural components with com-
plex responses can be modeled experimentally and more well-known components can be
represented within an analytical model. The motivation for using hybrid testing in the
Internet of Things domain is similar. Combining complex behavior, represented by real-
life testing with more homogeneous behavior represented by simulation. In more related
work, Arora et al. present a hybrid approach for their Kainsei, wireless sensing simulator
[48]. However, in their work they consider the real world and the simulated world as
two separate environments where no real-time interactions are required. Instead, data
gathered in the real world need to be transferred manually to the simulated environment.
In the following sections we present three novel solutions or methods that should be taken
into account when implementing a hybrid testing approach.
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Figure 2.1: IoT testing pipeline: Moving from experimental setups to real-life tests

2.4.1 Hybrid testing pipeline

The core of our methodology is based on a dynamic mix of both simulation and real-life
testing as can be seen in Figure 2.1 below. In the early stages of development, functional
testing of the IoT project will rely mainly on simulation and only for a small part on
real-life testing. The amount of simulation will decrease when moving to later stages in
the development pipeline.

In the experimental phase it makes sense to almost fully rely on simulation. At that
point, fast development progress is key. Later phases move closer to deployment and
correspondingly more accurate behavior is required. In the SeRGIo project, for example,
a lot of focus during the early development stages was on building a stable simulator.
Once the simulator was completed, we had a testbed environment that allowed us to
easily experiment with various task distribution algorithms without worrying about the
effort and cost that would occur when deploying a testbed in real-life. In later phases
we focused on finalizing the most promising algorithms and gradually testing these in
real-life environments.

2.4.2 Uniform communication interface

An important aspect of our hybrid testing methodology is that an IoT middleware system
under test or other IoT entities are not aware whether the entity, which is generating
specific behavior, is simulated or actually operating in real-life. The underlying method
should be fully transparent as illustrated in Figure 2.2. The simulated environment
should be able to interact with the middleware and with other entities in real-time.
This has as a consequence that a clear separation of concerns is required and that the
communication interfaces are clearly defined and documented. The Sergio project relies
on a variety of interface techniques such as REST and AMQP. In the context of IoT also
COAP [49] and MQTT [50] can be used as more resource-efficient alternatives.
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Figure 2.2: Interactions between virtual and real environment with the IoT middleware

2.4.3 Synchronization challenges

By implementing a hybrid testing approach, there will be a mix of data generated by
either SEs or real LEs. It is important that there are no unnecessary inconsistencies
between the data generated by the various sources. Synchronization faults in time and
space can add fake inconsistencies to the testing environment. For example, in the Sergio
use case it is possible that a SE responds to a sensing task request with a message that
marks a specific area as ”dirty” while a real LEs would mark it as ”very clean”. As a
result there will be a strong variation between the observed data points. This is can
causes significant problems. Let us for example assume that the SeRGIo project would
adapt its behavior when a large variation in data points is detected in a certain area.
Such variations could indicate that there is a lot of uncertainty about this area and
additional sensing points are required to increase certainty. When more sensing points
are added in the area, the load on the servers or edge devices located near the area
will increase as a consequence. This in turn, could lead to a reconfiguration of reserved
compute resources which is actually unnecessary and is only triggered as a consequence
of the lack of synchronization between simulated and real LEs.
Clearly, a proper synchronization mechanism is required when implementing a hybrid
testing approach. We present two techniques below. Synchronization can be implemented
over multiple dimensions. We limit ourselves to synchronizing over the time and space
dimension. In the context of IoT projects these are the most relevant dimensions. Within
the space dimension we are concerned to maintain consistency between data sensed at a
specific location. Within the time dimension we are concerned to maintain consistency
between data sensed at a specific time. Preferably, both dimensions are take into account.

Proxy based synchronization: One of the requirements for implementing hybrid
synchronization is that the IoT middleware is unaware whether the LE that is transmit-
ting messages is real or simulated. Therefore, the synchronization mechanism cannot be
implemented as part of the middleware. Instead, we propose a proxy synchronization
mechanism as illustrated in Figure 2.3 below.

The proxy intercepts all messages sent to the middleware. Messages originating from
the real environment are directly forwarded to the middleware and also used to train a
prediction algorithm which tries to match the space and time dimensions to the data
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Figure 2.3: A proxy based solution that synchronizes the observed data from the real environ-
ment with the virtual environment

values. Messages originating from the virtual environment will only contain a space and
a time value. The proxy uses these values to estimate a data value that matches the
data coming from the real environment. When no messages are received from the real
environment, the prediction will be random. When time passes, and more and more
messages are processed from the real environment, the predictions made by the proxy
will better match the actual data distribution. An example can be seen in Figure 2.4
below where a Self Organizing Map (SOM) prediction technique is used to match the
actual data distribution. After training the SOM neurons are able to better match the
actual temperature distribution. The illustration only shows the time dimension, also the
space dimension should be used in practice but is now left out for visualization purposes.
Suppose that a virtual LE sends a message at midnight. The SOM will try to match this
time value to the closest neurons, in this case the SOM will output a value somewhere
near ten degrees Celsius and send it to the middleware. In some specific cases it might
even be useful to feed the sensor data originating from the virtual environment back to
the real world that could impact the behavior and actuators of these real-life LEs.

Reducing synchronization requirement by space isolation: Another technique
is to isolate certain geographical areas. These areas can then be limited to only serve
real LEs or only simulated LEs. An example is illustrated in Figure 2.5 below. The left
area is fully simulated, all data sent from this area to the middleware originates from the
simulation. Whereas, the right area contains a physical test bed, all data sent from this
area originates from the real world. The advantage of this is that it reduces the need
for an additional synchronization mechanism between real and simulated environment,
like the one presented in the previous section. There will however, remain a mismatch
in data variability at the border between areas (illustrated by a red line in the image
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Figure 2.4: Automatic matching of virtual observations with real observations using a Self
Organizing Map

below).

2.4.4 Evaluation of hybrid testing

To further motivate the advantages of implementing a hybrid testing approach we present
our practical experiences gained from implementing a hybrid testing method in the SeR-
GIo project. During the early stages of middleware development we tested our sensing
task distribution algorithm primarily in a simulation environment. One of the evaluation
metrics was to verify the effort required by humans actors to perform a given sensing
task. Based on that we could then calibrate the optimal refresh rate of sending out
sensing tasks to obtain an optimal spread of data coverage in the city. It is hard, almost
impossible to estimate this only based on assumptions of human behavior modeled in
a simulation environment. This is because we can’t estimate upfront how much time a
task would take and if people would either accept or reject the tasks. Instead we moved
a stage further and tested the algorithm in a real environment using a basic smartphone
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Figure 2.5: Space isolation: separating which part of a region is either real or virtual

application that was able to interact with the middleware under test and receive sensing
tasks. An example of this task was ”What is the cleanliness of the street at location X
(which was in a max range of 400 meters)?”.

2.5 Conclusion

When testing large IoT systems the amount of LEs that need to be simulated will be
very high. This is especially the case when simulating emergent behavior where a large
amount of interacting entities are required. Most state-of-the-art simulators are based on
a monolith architecture which does not take advantage of parallelization or multi-server
distribution that will be required to run many thousands of virtual LEs in parallel. In
the first optimization technique we try to reduce computational cost by better balancing
agents over multiple computational units. This work is presented in chapter 3. In chapter
4 and 5 we discuss a dynamic model abstraction technique that allows to dynamically
switch between models with various levels of accuracy and computational complexity.
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Chapter 3

Adaptivity in distributed agent-based
simulation

In the previous chapters, we discussed the problem of scalability in the context of large-
scale agent-based Internet of Things simulations. We showed that in related work a
parallel and distributed simulation approach is often used to cope with these scalability
issues.

But distributed and agent-based simulations often suffer from an imbalance in com-
putational load, leading to a suboptimal use of resources. This happens when part of
the computational resoures are waiting idle for another process to finish. Self-adaptive
load-balancing algorithms have been developed to use these resources more optimally.
These algorithms are typically implemented ad-hoc, making re-usability and maintenance
difficult. In this chapter, we propose to organize the distribution of agents adaptively
by dynamically reacting to imbalances in computational load, synchronization load, and
communication load.
We present a generic self-adaptive framework. The methodology is evaluated with the
Acsim framework on two simulations: a micro-traffic simulation and a cellular automata
simulation. For each of these scenarios a scalable and adaptive load-balancing algorithm
is implemented, showing significant improvements in execution time of the simulation.
Although ABS is a relatively new simulation paradigm [5], it has been used as an effective
tool in a wide range of research domains [4], [51]–[53]. The main characteristic in ABS
is the concept of an agent, which is a self-contained autonomous entity, with the ability
to interact with other agents and with the environment. These interactions can lead to
complex emergent behavior [54]. ABS is, therefore, one of the most powerful and natural
tools to simulate emergent phenomena using a bottom-up approach.

ABS has been used to evaluate and analyze behavior of complex large-scale dynamic
systems such as traffic systems [53] or complex Internet of Things systems such as smart
city environments [4]. However, traditional monolithic ABS simulations quickly run into
problems when the scale of the simulation increases. This becomes especially problem-
atic when the application of these simulations is time-critical. Therefore, reducing the
computational cost and the run-time of these simulations is vital.

27



3. Adaptivity in distributed agent-based simulation

With this motivation, researchers have replaced the classic monolithic set-up by a dis-
tributed architecture. This can be achieved by partitioning the simulation into separate
logical processes. This allows the simulation to be divided among multiple processors
and servers, thus allowing to simulate larger systems and reducing the simulation run-
time. This however also increases the complexity and may add inefficiencies such as the
need for synchronization and slow remote communication between simulation partitions.
Furthermore, the inherently dynamic aspect of agent-based simulation makes static par-
titioning inefficient because the computational load of each process changes during the
simulation. This can lead to a significant waste of resources, for example, the simulation
can start perfectly balanced, but over time the distribution of these agents can become
highly imbalanced. Such distribution imbalance is often due to agents that change their
locations, increase communications or change their internal load. A direct consequence
of such imbalances is a significant increase in run-time and under-utilization of compu-
tational resources. As stated by Long et al. it is likely that such load imbalances occur
in distributed agent-based simulations [55].

Most state-of-the-art load-balancing mechanisms are implemented in an ad-hoc man-
ner, making them hard to reuse and maintain. The contribution of this chapter is a
generic framework to implement self-adaptivity in distributed agent-based simulators.
We evaluate this method using two different implementations: a large-scale micro-traffic
simulation with a graph-based environment and a cellular automata simulation with the
Sugarscape model.

In the feature diagram in Figure 3.1, we show that our contributions in this chapter
are mainly in the Adaptive Model Partitioning area where we compare a static partition-
ing approach to a dynamic activity based approach.

The first section of this chapter discusses the concept of adaptivity and related work.
Section two presents the architecture of the distributed agent-based simulation framework
Acsim, that will be used to evaluate the experiments. Section three presents the main
principles of a MAPE-K loop and its implementation in Acsim. Section four presents
the specific examples and the conclusions are drawn in section five.

3.1 Adaptivity in Agent-Based Simulation

Adaptivity in agent-based simulations can be related to the notion of activity which was
introduced by Muzy et al. as a measure of the number of events occurring during a dis-
crete event simulation [21]. As stated by Van Tendeloo et al. activity can be interpreted
depending on the particular resource one wishes to focus on (time, memory, energy,..)
[18]. Therefore, both the communicational load and the computational load can be seen
as types of ‘activity‘. For example, from a communicational load perspective, an agent
has high activity if it generates many messages in a fixed time window. From the com-
putational load perspective, an agent has high activity if its step duration takes a long
time to process.

Given this definition of activity, we can go ahead and define adaptivity as the prop-
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Figure 3.1: Feature Diagram - Contributions Chapter 3

erty of a distributed simulation framework to dynamically react to imbalances of activity
with the aim to restore the balance and improve overall simulation run-time.

Adaptivity is typically implemented as a load balancing optimization problem based on
global information [56] [57]. The activity is defined as a function of computational load,
synchronization load and communication load. The disadvantage of these approaches
is that they require global information to be stored or synchronized centrally and that
the optimization algorithm is computationally intensive and thus less scalable. It is also
possible to use heuristics that only require local information, making these solutions
computationally much more efficient, but the obtained optimum might be local. For
example, D’Angelo et al. present in their work a range of heuristics that trigger agent
migrations based on local and remote communication patterns [20] and Q. Long et al.
present a distributed load balancing algorithm based on partial local information [55].
But adaptivity is not constrained to solving load balancing problems only. In [58] and
[29] the authors show that adaptivity can be used to dynamically switch abstraction
levels of a single agent or a collection of agents. Switching to a higher abstraction level
leads to a reduction in the computational load at the cost of losing accuracy.

Most of the related work relies on ad-hoc implementations of adaptivity. An exception is
the work of Franceschini et al. who are using a MAPE-K control loop to implement an
automatic simulation abstraction solution [58]. In the following sections, we expand on
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this work and present the integration of a MAPE-K control loop in the Acsim distributed
simulation framework. Furthermore, we show that MAPE-K can also be used effectively
for adaptive load-balancing.

3.2 Distributed simulation architecture: Acsim

Acsim is a distributed Python-based agent-based framework, developed by the authors,
inspired by Mesa [59]. It has been developed as a prototyping simulation framework.
The goal of the framework is not to be a production-ready simulation framework but
to allow for the validation of state-of-the-art techniques regarding simulation scalabil-
ity. We hope that these techniques will eventually inspire production-ready distributed
agent-based simulation frameworks.
One of the main motivations for the development of Acsim is the observation that there
is an increasing need for large scale simulators in the context of IoT and Smart Traffic
applications. Due to the increase of connectivity of smart devices and the availability
of real-time data, simulation platforms provide the opportunity to simulate entire cit-
ies. Simulation technology enables the creation of a virtual testbed of large-scale IoT
applications and allows for real-time simulation-based optimization. An application of
this technology is, for example, a real-time city-wide and simulation-based traffic light
optimization platform. But state-of-the-art simulators are limited in their scalability
capabilities to support such technology. This is the challenge that Acsim tackles. Al-
though Acsim focuses on large scale IoT and traffic simulation, it can also support other
agent-based simulations.

Acsim relies on a conservative time-stepped synchronization mechanism. Where time

Figure 3.2: Acsim - Distributed simulator architecture. Acsim contains a cluster of nodes and
a node represents a physical device with one or more CPU cores, connected to other nodes via
the network.

is collectively progressed after the completion of each individual agent step. The archi-
tecture of the simulator is displayed in Figure 3.2. Acsim consists of three main building
blocks: 1) Agent: represents an entity at its highest granularity, an agent contains a
state, can adapt its state at each time-step and has the possibility to interact with other
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agents using message-passing and interact with the environment. 2) Model: a model
serves as a container for a specific type of agent and is responsible for the initializa-
tion of all agents of this type. For example, a class of car agents will be part of a car
model. This car model will initialize all cars, generate routes and collects car-related
logging information. 3) Logical Processes: Acsim consists of multiple sub-simulator or
LP’s. Each LP manages a part of the environment and a collection of agents that are
located in this partial environment. It runs a dedicated process and is responsible for
low-level simulation tasks such as handling agent migrations, managing message-passing
between local and remote agents, collecting logs and initiating agent steps. An agent
step is a discrete step forward in time. Only as part of a step can an agent adapt its
state or communicate with other agents and the environment. The global synchroniza-
tion is managed by the master coordinator. The coordinator orders all LP’s to execute
the next step. Furthermore, the coordinator collects and stores logs generated by the
LP’s. Finally, Acsim has extensive monitoring capabilities, enabling an in-depth analysis
of local and global simulator performance.

3.3 MAPE-K as a generic framework for adaptivity

Due to the ever-increasing complexity of computing infrastructure, a shift to self-managing
systems is observed in the field of software development. In 2005, IBM introduced MAPE-
K loops to deal with this complexity [60]. Measure Analyze Plan Execute - Knowledge
(MAPE-K) loops are closed feedback loops which can handle the complexities of self-
adaptivity. More recently, [61] described templates on how to utilize MAPE-K control
loops to different distributed applications. The implementation of most adaptive optim-
ization strategies in a simulation is ad-hoc and cannot be reused efficiently. We propose
the application of a MAPE-K control loop as a generic solution that will allow existing
adaptivity strategies to be efficiently implemented and maintained.
As mentioned above, the Acsim framework is step-based which results in the simulation
being as fast as the slowest simulator in the distribution. There is no guarantee that this
local optimization leads to a global optimum. The overhead of calculating the global
optimum, at a master node, increases with the scale of the simulation. Because of the
varying load-distribution over time, the global optimum shifts and a new optimization
iteration is needed. Our approach focuses on a solution to partitioning and merging
distributed environments. Our approach is generic, each simulator can easily implement
its specific logic as part of the MAPE-K framework implemented in Acsim. Execution of
the MAPE-K loop is handled by the Acsim framework. We put extra emphasis during
development that the MAPE-K framework is implemented in a modular way, as part of
the simulation coordination engine. Its architecture can therefore be transferred to most
agent-based simulators and be integrated without significant changes. This is because
the MAPE-K framework breaks the barrier between simulation application and simu-
lation engine. We can refer to this as leaky abstraction. This design choice has been
made in order for the framework to be implemented in other simulation engines without
breaking existing simulation applications. The trade-off however is that a simulation ap-
plication developer needs to be aware of low-level aspects of the simulation engine when
developing a MAPE-K implementation for its application. Next, we will go in-depth on
the structure of the MAPE-K framework integrated into Acsim:
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1. Measure: During this phase, logs regarding the model, simulator and environment
are retrieved from each subpart of the Acsim framework. When a MAPE-K itera-
tion starts, these logs are stored to the shared knowledge. This knowledge base is
located at the master node. To enhance the scalability, only computationally less
expensive algorithms are used at the master level.

2. Analyze: This phase has access to the shared knowledge base to identify bottle-
necks and flag optimization opportunities. These identifications do not provide a
solution but an indication of the performance of a certain entity in the framework.

3. Plan: This step collects all flags and generates an optimization plan without exe-
cution. There could be multiple optimization plans in a single MAPE-K loop.

4. Execute: This phase of the loop runs distributed after receiving one ore more
optimization requests from the planning phase. This phase has the highest compu-
tation requirement in the loop. The optimization algorithms used can vary for each
application. When a local optimization is complete, a synchronization message is
sent to all relevant entities involved in the optimization.

5. Knowledge: This part is shared between the first three steps of the loop. The
execute step does not need the knowledge base as it only executes the plans created
during the previous step. During each iteration, the knowledge can be expanded
to store relevant information for future MAPE-K loops.

Each simulation will have access to the simulation logs, these are stored in the knowledge
class. The MAPE-K framework implemented in Acsim allows for easy implementation
of the phases and allows for reuseable, maintaineable and application-specific adaptivity
behavior. The loop can be executed both locally and centrally. Also a hierarchy of
multiple loops, affecting each other is supported by the framework.

3.4 Motivating examples

In the previous sections, we introduced the concept of adaptivity and how we can im-
plement it generically in the Acsim framework using the MAPE-K framework. In this
section, we validate this approach on two different agent-based simulations. In both
scenarios we implement a novel activity load balancing heuristics. We differentiate com-
pared to classical adaptive load balancing algorithms by making sure the heuristics are
not performed centrally but at the level of a LP to ensure scalability. In the experiments
our aim is to improve the global step duration GSD of the entire simulation. We can
express it as follows: GSD = maxi(LSD

i), where LSDi is the local step duration of LP
i. In other words, the global step duration is always equal to the worst LP step duration.
The reason for this is that Acsim relies on a conservative time-stepped synchronization
algorithm, as discussed in section 3.2. In the examples below the goal is to improve the
activity balance with each MAPE-K iteration. To gain insight in how LP’s are perform-
ing, we distinguish the different contributions to the step duration (as discussed in detail
in [20]): the Model Computation Cost (MCC), the Remote Communication Cost (RCC),
the Local Communication Cost (LCC) and the Model Synchronisation Cost (MSC). The
weight of each contribution is application-specific. When an imbalance occurs, for each
variable a different optimization strategy could be used. When optimizing on a local
level, each LP calculates their cost balance using only local information.

32



3.4. Motivating examples

3.4.1 Adaptive local optimization of compute cost: a micro-traffic
example

Introduction

In this example we perform a micro-traffic simulation of a 20km by 20km urban area
where cars are making random trips. Each car is an agent, managing its state and ad-
apting its acceleration based on speed regulation and the acceleration of leading cars.
The implemented models are based on the Intelligent Driver Model [62], which is a state-
of-the-art car following model and the lane-changing model MOBIL (Minimizing Overall
Braking Induced By Lane Changing) [63]. This implementation leads to both realistic
local behavior and realistic emerging behavior. All cars comply to standard traffic regu-
lations and priority rules.
The environment is represented by a directed graph datastructure. Edges are roads (with
single or more lanes) and nodes are junctions. A car agent can interact with the envir-
onment by requesting where nearby cars are located. Car agents can also interact with
each-other to request acceleration and related information, or with traffic light agents to
request the state of a traffic light.
During initialization the environment is partitioned based on the number of available
cores. The partitioning algorithm is a multilevel recursive algorithm for multi-constraint
graph partitioning as presented in [64]. It attempts to balance node cost, which rep-
resents the computational cost observed at a node in the graph, of the graph partitions
and minimizes edge cut. A single LP will manage a single environment partition and
the agents located in this partition. When agents leave the environment partition they
will migrate to an LP that manages one of the neighboring partitions. At the edges of
a partition, car agents require state information of agents that are located in the neigh-
bouring partition. Therefore, we include a synchronization mechanism. This mechanism
broadcasts the state of an agent, located at a border area, to neighboring partitions after
each state update. In this scenario the cost of a step depends on two activity paramet-
ers: Model Computation Cost, MCC and Model Synchronization Cost MSC. In the
remainder of this section we elaborate on how we can dynamically load balance these
activity parameters using local information only in order to reduce the global step dur-
ation.

Description of the optimization algorithm

A significant amount of research has been done in the context of distributed micro-traffic
simulation. The load balancing problem is one of the most discussed problems within
this context. As stated in [65] it is necessary for all simulation processes to consume
similar amounts of computing power in order to run at the same speed. Ramamohanar
et al. [66] introduced a spatial workload balancing approach where they partition the
environment in grids. As pointed out by the authors, this approach is static, and unable
to react to changes in computational load introduced by agent migrations. Cordasco et
al. presented a distributed extension to the Agent-Based Simulation framework MASON
[67]. In their work they put extra emphasis to the partitioning and load balancing prob-
lem. But also their implementation is not generic nor dynamic. Instead, other work,
such as Xu et al.’s work, presents an adaptive graph partitioning approach [56]. They
essentially execute the graph partitioning algorithm multiple times, on the entire traffic
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network, when imbalances are detected. The problem with this approach is that the
algorithm runs on the entire network, making a distributed approach difficult.
To solve this problem, we propose a heuristic-based approach, powered by the MAPE-K
framework presented in the previous section, that is able to run in a distributed way. The
global idea of the algorithm is that we keep track of activity using an activity graph. For
example, assuming car agent computational load is homogeneous, we keep track of the
number of cars located on the incoming edges of a node. When imbalances are detected
between neighboring environment partitions we allow an overloaded partition to migrate
a collection of its border nodes and edges to a neighboring, less occupied partition. This
is visualized in Figure 3.3. The amount of nodes and edges that get migrated depends
on the amount of activity that needs to be transferred in order to reestablish the activity
balance.

Figure 3.3: Heuristic: Load balancing using local activity graphs

MAPE-K Implementation

The implementation of the computational load balance algorithm in the MAPE-K frame-
work is explained below:

1. Monitor: We keep track of the Global Step Duration (GSD) and the local step
durations of the simulators (LSDi).

2. Analyze: The average LSD is calculated. When one of the LSD exceeds the
average by 20% or more, the algorithm evaluates if part of the computational

34



3.4. Motivating examples

activity can be offloaded to the neighbors (this is achieved by migrating nodes,
edges and agents). If this is the case a ‘migration flag‘ is set.

3. Plan: When a migration flag is found, a plan of execution will be created. This
plan orders the overloaded area to migrate a given amount of activity to one of its
neighboring areas that has been selected in the Analyze step.

4. Execute: The overloaded area will calculate which nodes it can offload. Con-
sequently, both the originating area and the destination area will update their
graph datastructure accordingly.

5. Knowledge: This part is shared between the first three steps of the loop to keep
track of the global and local step durations.

Results

We ran an experiment to test this implementation. In the experiment we randomly
generate trips in a city center. We introduced an initial imbalance of 1/10. This could
be a realistic scenario when people are leaving a residential area to an industrial area in
the morning. We expect the algorithm to restore this imbalance over time. Thirty runs
of this experiment were executed, the average and standard error are displayed in Figure
3.4. In both graphs we compare a non-adaptive approach with an adaptive approach.
The MAPE-K optimization is performed at time-step 250. Note that this time-step has
been chosen based on the application related observations and requirements. As this
is mostly a domain-specific decision, the time-step interval can be easily adapted by
the simulation developer. We observe a significant reduction of step duration when the
optimization occurs.

Figure 3.4: Results - with and without MAPE-K adaptive optimization, micro-traffic simulation

Future work: Balancing Synchronization Cost

As explained in the introduction, the step duration not only depends on MCC. It also
depends on MSC. The impact largely depends on the scenario. When there is a large
amount of traffic at the border areas of environment partitions, the MSC will be sig-
nificant and cannot be ignored. Therefore, further optimization will be required. We
propose a technique that can be explored in future work. The general idea is that we
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can measure the synchronization cost based on the amount of agents located in a border
area. When an imbalance in synchronization cost is observed between areas, we can
simulate the synchronization cost after incremental walk in the graph. This is similar
to incremental expansion demonstrated in Figure 3.3. When the synchronization cost of
the incremental expansion is lower than the initial cost, we can perform a migration of
nodes and edges.
In conclusion, the proposed synchronization heuristic combined with the computational
cost balancing heuristic is expected to lead to a further reduction in step duration. The
proposed heuristics will improve upon sub-optimal scenarios where imbalances are ob-
served in neighboring areas, in a scalable and computationally efficient manner. But, it
is limited to finding local optimal solutions, not a global optimal solution.

3.4.2 Adaptive local optimization of communication cost: a cellular
automata example

Introduction

In this example we use the agent-based simulation Sugarscape [68] with a cellular auto-
mata environment. This example was chosen as it is a well-known agent-based simula-
tion and because the type of the environment Sugarscape uses is used by many other
agent-based simulators. This shows that ideas presented here are transferable to similar
agent-based simulations. These simulations typically lead to emergent behaviour and
can be used in, for example, biology [51]. In Sugarscape, sugar is grown in each cell of
the environment at a certain rate and the goal of the agents is to survive by collecting
enough sugar. If an agent cannot satisfy his metabolism, he is replaced by a randomly
initiated agent at a random vacant position. The agents are characterised by a meta-
bolic rate and range of sight. At each step they search for sugar by looking in the four
perpendicular directions and move one step towards the cell with the highest sugar level,
collecting the sugar at their new location. The environment regrows sugar at each step
in the cells according to a fixed rate until a maximal sugar level is reached. The MCC of
the agent is relatively small but instead the step duration depends mainly on the LCC
and the RCC (with RCC being significantly more expensive). The RCC is the result of
agents that are close to the edge of a simulator and searches within the next simulator
for sugar. This consists of two messages that are sent between the simulators: one to ask
for the amount of sugar on the cells of interest and one with the corresponding answer.

Implementation

Our optimization algorithm keeps track of a communication-based activity graph, where
imbalances in LCC and RCC between simulators are monitored and dynamically im-
proved by migrating parts of the environment. The MAPE-K cycle is implemented as
follows:

1. Monitor: The local and remote (both contributions due to received and sent
messages) compute time for each cell is logged.

2. Analyze: Bottleneck simulators are identified by comparing their Local Step Dur-
ation (LSD) to the GSD.
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3. Plan: A plan is created to partition certain sections of the simulator’s environ-
ment to restore imbalances that might have manifested over time. Each section
is evaluated using its logged LCC and RCC. During partitioning, the algorithm
can decide to migrate a section which will switch LCC to RCC (and possibly vice
versa), and as a consequence reduce overall cost.

4. Execute: Each simulator executes his part of the established plan and possibly
migrates parts of its environment to another simulation process.

Figure 3.5: Results - with and without MAPE-K adaptive optimization, Sugarscape.

Results

To evaluate the performance of the adaptive approach, we ran 30 random initiated Sug-
arscape simulations and compared them to 30 non-adaptive simulations. Both simula-
tions are initiated with four LP’s managing each a quarter of the environment. The
simulation stops after 800 steps, the MAPE-k framework is executed every 50th step.
The results are illustrated in Figure 3.5. Image a) represent the initiated environment
divided over the four LP’s. Image b) shows the same environment where the borders are
optimized based on the current activity. Finally, c) illustrates the average step duration
and the standard error. From these results we can see that once the random activ-
ity of the agents is replaced with emerging behaviour, the adaptive approach improves
performance.

3.5 Conclusion

In this chapter, we presented a MAPE-K loop as a generic and effective framework
to implement a self-adaptive distribution for agent-based simulations. We evaluated
this framework by implementing two examples: a distributed traffic simulation and a
sugarscape simulation. We showed that MAPE-K can be used effictively in multiple
simulations to implement adaptivity. Furthermore, the results of the proposed adaptive
load-balancing heuristics show a significant reduction in computational cost while being
executed decentralized.
In chapter 5, we will leverage the framework presented in this chapter and apply it to a
dynamic model abstraction problem.
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Chapter 4

Dynamic Approximation

In this chapter, we look to reduce the computational complexity of large scale simula-
tions using model approximation. In the previous chapter, we discussed how dynamic
partitioning could improve scalability of large scale agent based simulations. In this
chapter, we apply model abstraction by approximating the model of simulation regions
by computationally less complex counterpart.

Transforming certain models to a less computationally intensive abstraction/approx-
imation, will lead to a reduction of the computational cost of the simulation which in
turn allows us to increase the overall scalability of the simulation. More specifically, we
present an opportunistic abstraction/approximation approach, that is able to dynamic-
ally transform low-information areas to more abstract representations. We show that by
using this method we are able to reduce the computational cost significantly.

The abstraction/approximation approach we present in this work is mainly based on
the work that has been done in the area of model abstraction which has been studied
extensively during the last 20 years. This research domain of model abstraction is in
related work also referred to as meta-modeling, surrogate modeling or model approxima-
tion depending on the research domain of the author. In the context of this thesis we use
these names interchangeably when we refer to certain related work, but in the scope of
this thesis they have the same meaning. Model abstraction allows us to represent mod-
els at an appropriate level of abstraction, which often comes down to making a proper
trade-off between computational cost, modeling effort and accuracy. In the scope of this
chapter we are interested in the entity aggregation abstraction technique, where multiple
models are replaced by a single approximated agent, that abstracts the overall behavior
of the collection of models. For example, Rodriguez et al. present various statistical
techniques that can be used to aggregate simulation models [14].

The technique that we present in this chapter dynamically approximates the behavior
of multiple agents in a certain area by moving from a simulation area containing multiple
individual car agents to a computationally more DES area. It is partly related to state
abstraction and entity-aggregation, in the sense that we can approximate multiple models
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by a single approximation and that we replace the initial behavior with an abstraction.

Figure 4.1: Feature Diagram - Contributions Chapter 4

The feature diagram in Figure 4.1 shows that our contributions in this chapter are
mainly in the Multi Formalism area, where we focus on entity aggregation by switching
multiple agent in the Agent Based Formalism to the DES formalism. Furthermore, we
apply a dynamic multi resolution approach where we can vary abstraction levels during
simulation run-time.

This chapter is structured as follows: in section 2, we introduce the core idea of switching
between simulation formalisms in order to switch between abstraction levels. In section
3, we introduce a traffic simulation use case that will help to build intuition about the
problems we’re trying to solve. In section 4, we introduce the idea of opportunistically
approximating simulation areas based on entropy. Section 5 shows the impact of the
our technique both on computational cost and on the simulation validity. Finally, we
position our approach from a more theoretical perspective.

4.1 Dynamic model approximation driven by information
theory

To improve the overall scalability of our simulation, we propose to dynamically approx-
imate models. Our hypothesis is that when the approximation is less detailed than the
original model, the overall computational cost will be lower. However, at the same time
we expect the models approximated with less detail and at a higher level of abstraction
to lose information. In this work we look to opportunistically approximate models, to
reduce the computational cost while maintaining the overall validity as good as possible.
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Furthermore, we assume that not all areas of the simulation environment are equally
important. The behavior in some areas have less impact to the global simulation beha-
vior. In this thesis we attempt to exploit that assumption by trying to identify those less
important areas and consequently remove details by replacing the original model with
an approximation.

To further clarify this we will first introduce some notations:
When we consider the full set of simulation models in our simulation to be M , the set
of low abstraction models, to be L and the set of high abstraction models to be H. Then
M = H ∪L . With high or low abstraction models we refer to models that are expressed
at a higher or lower level of abstraction. Explicitly modelled models are considered to
be part of the set of low abstraction model L, and the set of approximated models to be
part of the set of high abstraction models. The diagram below illustrates the hierarchical
topology of our conceptual simulation framework. The Full simulation consists of both
the set of high abstraction models and low abstraction models. In the remainder of this
chapter we look at how to facilitate a proper transition from a low abstraction model to
a high abstraction model. We want to maximize the size of set H while maintaining the
validity of the global simulation.

Figure 4.2: Topology of simulation models
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4.2 A traffic use case

Figure 4.3: Traffic simulation in Acsim.

To validate the computational impact of opportunistic entropy-based transformation we
introduce a basic traffic simulation use case using the agent-based IoT simulator Acsim
[69]. This will also help to build intuition of the problem we are trying to solve. The
simulation use case we present, consists of 1000 cars driving at various speeds as shown
in Figure 4.3. The average speed of a car depends on the speed limit of the road the
car is driving on. Based on the road type, the speed may deviate more or less from the
given speed limit. Furthermore, we consider different speed distributions depending on
the type of road the cars are driving on. These distributions are shown in Figure 4.4
below.

Figure 4.4: Car agent speed distributions per road type as observed in the simulation.

We expect more variability in the average speed on local roads due to traffic lights
and road priority rules. Whereas, the variability in speed is lower on highways. These
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assumptions give us a proper use case to evaluate the problem we’re trying to solve,
where, depending on the area, different types of behavior can be observed.
To model this simulation we use the agent-based Acsim simulator. The environment is
represented as a (directed) graph-based open street map environment. Roads are repres-
ented by edges and road crossing are represented by nodes. Furthermore, the environment
allows to efficiently run GIS range queries and calculate routes between various locations.
By default, each car is represented by a single agent. The simulation is time-driven, this
means that the simulation state is updated at discrete time-steps. For example, at each
time-step the car agents update their location and run some computations to simulate a
realistic, constant computational load. We do this because at this stage in the simulator
the computational complexity of the car models is limited, in later chapters this is not
the case. Therefore we simulate an increased computational complexity for now.

4.2.1 Area approximation

To move certain areas to a less-detailed approximation we allow the simulator to trans-
form specific agent-based simulation areas to a DES representation of the area. The DES
area approximation is also implemented as a single agent, which is running a discrete
event simulation internally. It leads to an aggregation of multiple agents into a single
model and an approximation given that we lose information regarding the individual
velocity of each agent. This enables us to reduce the computational cost significantly
but at the cost of losing local interactions. In the traffic use case, a simulation area is a
single road section. As can be seen in Figure 4.5 below, each time a car agent arrives at a
DES road-section area, it will be deactivated. This road section agent will then schedule
an internal event when the agent can leave the area. The duration depends on the agent
speed, which is sampled from the historical data of agents driving on the specific area. We
can say that the DES road-section area agent is approximating the behavior of incoming
agents by averaging its speed. Therefore, these agents are temporarily approximated and
are temporarily part of the set of high abstraction agents H.

4.2.2 Computational cost

We consider the computational cost to be a measure that illustrates the computational
cost to progress the simulation a single timestep t to the future. Many empirical, in-
direct execution time measuring techniques are described in literature to measure the
computational cost of a simulation. An example is the Wall Clock Time (WCT) which
measures the duration of the entire simulation from start to finish. However, as priorly
explained our simulation will need to run in a hybrid mode, where virtual, simulated IoT
entities need to interact with real-world IoT entities or IoT middleware systems in real-
time. Therefore, our goal is to satisfy the predefined amount of P simulation timesteps
per seconds in order that the simulation remains responsive to outside interactions. In
many cases this minimum required amount of timesteps P depends on the context of the
simulation. We apply the ’step-usage’ metric to indirectly measure the computational
cost of our simulation model. It is similar to the WCT of a single simulation step. The
step-usage compares the observed computation time Ot of a single timestep t of the set
of all simulation models M to the preferred timestep duration dt = 1

P .

Step− Usage = Ot

dt
.
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Figure 4.5: Road section with individual car agents vs. a Discrete Event Formalism agent that
approximates the entire road section.

We can express the computational cost of the simulation at timestep t as a function
C of set M , where we assume:

C(t,M) = C(t, L) + C(t,H) and,

C(t,Hi) ≤ C(t, Li) where Hi is an abstract approximation of Li and Hi ∈ H and
Li ∈ L .

4.2.3 Computational cost over time

Figure 4.6 shows the computational cost at each time-step of the simulation. The com-
putational cost is expressed as a step-usage ratio C, as introduced in section 4.2.2 . This
metric is sensitive to noise introduced by other processes, to remove this noise we ap-
plied a running average of 100 timesteps before plotting the data. It is expected that
the computational cost remains constant over time. Figure 4.6 below shows that the
computational cost during the first scenario remains constant over time as is expected.
However, the computational cost exceeds the 1.0 time-step usage ratio. This could lead
to the state of simulation agents being updated too late and as a consequence, to incon-
sistent or incorrect behavior of the simulation models.
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Figure 4.6: Computational cost over time without transformations to event-driven areas

4.3 Entropy based transformation

The overall properties of global emergent behavior of a simulation are created by the
properties of the individual simulation models. In order to maintain the validity of the
overall simulation, we will have to maintain the properties of the overall simulation and
the properties of the individual models or the collections of models. Also note that the
approximations we want to make are applied on an individual property of a model, in this
case the velocity. We assume that some areas of the simulation contribute more (AHC

)
to the properties of the simulation compared to others. Therefore, it would be interesting
to target simulation areas that contribute less to the overall behavior (ALC

). We can
assume that if we transform these low-contributing areas to more abstract approxim-
ations (A′LC

), the overall emergent behavior is less sensitive to the loss of information
and the inaccuracies introduced by these approximations. In other words, we expect the
simulated global behavior to be more accurate when more low contributing ALC

areas
are approximated opposed to when more high contributing areas AHC

.

Identifying low contributing simulation areas
When we continue to reason about this, we can conclude that after identifying the low
contributing areas ALC

, we can opportunistically transform these to more abstract rep-
resentations which helps us to achieve our main goal, which is to reduce the computational
cost while maintaining overall validity. This brings us to the core of this paper: finding
a technique to identify these low contributing simulation areas. To do this, we propose
to use the entropy measure from information theory [70]. Entropy is a measure that can
be used to determine the amount information or the amount of randomness in a dataset,
as expressed in formula 4.1:

E =

n∑
i=1

[pilog2(pi)]. (4.1)

There is a connection between the amount of information that can be observed in
a given simulation area and its contribution to the global emergent behavior of the
entire simulation. Furthermore, low information areas are often easier to predict and
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therefore, the properties of a more abstract approximation of the area are easier to be
maintained after a transformation. Another advantage of using entropy is that it is easy
to measure. We can easily extend the simulation to keep track of the entropy value
of individual areas. When comparing this with the entropy of the global simulation is
should allow us to dynamically transform low-entropy areas to higher abstraction levels.
This will decrease the computational cost while maintaining the validity. Furthermore,
entropy is a general-purpose metric, it can be used for multiple simulations in multiple
contexts without requiring expert domain knowledge. In related work, P. Lamarche,
leverages similar information theory inspired techniques to evaluate the information loss
of abstractions in the context of a multi-agent system [71]. The entropy-based technique
we present in this work, is similar but is not used to evaluate the information loss after the
abstraction, but rather estimates the possible impact on the global simulation behavior
when a given area is abstracted or transformed.
Measuring entropy in the traffic use case
To decide when and where we can transform standard areas to DES areas we need to
extend the simulation framework used in section 4.2 to measure entropy levels. We do this
by regularly measuring the speed driven at each area and categorize these measurements
at intervals of 5 km/h. This interval unit based on our observations because any value
below didn’t add a lot of information regarding the observed velocity distribution. It
allows us to measure discrete probabilities and as a consequence to measure entropy
as expressed by equation 4.1. When the entropy level exceeds a certain threshold we
transform the standard area to a DES area. We use a heuristic to determine the threshold,
it is set 1/3th of the global entropy value. This value is selected based on our experiments.
In practice, threshold value will strongly depend on the application. So an area will switch
from a standard to DES simulation when the area’s entropy is below 1/3th of the global
entropy value. In the section below we present the results on the computational cost of
the simulation after applying entropy-based transformations.

4.4 Results

In this section we verify the impact of our entropy-based approximation strategy on
both the computational cost and the validity of the traffic simulation use case. The
setup is similar to the results presented in section 4.2.3, except this scenario does per-
form transformations to event-driven areas based on the entropy measures introduced in
the previous section.

Transforming time-based simulation areas to event-driven areas
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Figure 4.7: Evolution of the conversion of time-driven agents to event-driven approximations

Figure 4.7.A shows the computational cost over time of the second scenario. Figure
4.7.B shows the evolution of standard areas being transformed to DES areas over time.
As can be seen at the beginning of the simulation all areas are running in the Agent-
Based formalism. However, after about 2000 timesteps the simulation has gathered
enough measurements and starts to slowly transform areas to DES areas. Note that this
only occurs when enough measurements are gathered and when the local area entropy is
below 1/3th of the global entropy value as mentioned in section 4.3. This directly leads to
more agents being approximated by the event-driven formalism. As a consequence, the
computational cost decreases. After 8000 simulation time-steps, 202 areas switched to the
DES formalism. Figure 4.7 B shows the gradual increase, starting from 0 areas switched
at the beginning of the simulation to 202 DES areas after ca. 7500 timesteps. By then
around 37% of agents are active in the approximated areas, the other 63% remain in the
agent-based formalism. Furthermore, the time-step usage ratio C decreases significantly
from 1.08 at the beginning of the simulation to .72 after about 8000 timesteps. That is a
33% decrease in computational cost, which can be used to scale up to even more agents.
Furthermore, after about 4500 timesteps the computational cost of the simulation is
below 1.0 time-step usage ratio, which is considered to be safe.

Impact of approximation strategies on simulation validity
To test the impact of approximating simulation areas on the overall validity of the simula-
tion we compare a random area selection strategy versus an entropy-driven area selection
strategy as presented in section 4.3. To quantify the validity we will monitor a global
simulation property that we expect to be invariant after multiple runs of different sim-
ulations. The invariant property selected for the traffic use case is the average distance
driven per car. When no approximations are applied we expect the difference in this
average distance to be minimal. However, after approximating certain simulation areas
we expect this difference to be larger because we’re losing accuracy in individual car
speed. The graph in Figure 4.8 shows the average error in distance at each simulation
timestep for all active agents. The random transformation strategy is our baseline, it
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approximates random simulation areas with a discrete event area simulation. The reason
we selected this as the baseline is that there are no other techniques described in literat-
ure that can be used in the context of this problem. The entropy based transformation
strategy only approximates simulation areas with a low entropy value as described in
section 4.3. After about 2000 timesteps the first areas are starting to be approximated.
After 8000 timesteps the error in distance of the random strategy is significantly larger
compared to the entropy based strategy. Therefore, we can conclude that the validity of
the simulation is substantially larger when we use the entropy-driven strategy compared
to a random uninformed strategy.
Note that for each traffic simulation the routes driven by the agents are deterministic,
but the speeds of the agents are not. The speed is sampled from a random normal dis-
tribution with a mean that corresponds to the speed limit of the road the car is driving
on, as shown in Figure 4.4. Therefore, the distance driven by each car will be slightly
different for each run of the simulation. In order to only visualize the average error intro-
duced by the random approximation strategy and the entropy approximation strategy,
we subtracted the average error of simulation runs that didn’t approximate any areas.
This explains why the strategy and entropy graphs in Figure 4.8 are not exactly zero
before 2000 timesteps, as would expected in a fully deterministic simulation run.

Figure 4.8: Approximation error after a random and entropy-driven transformation strategy -
average of multiple runs of various simulations.

4.5 Discussion

In this section we present the proposed method in a more rigorous way. This analysis
was added to situate how this work and its contributions compare to the related work
published in the community of theory of simulation and modeling. From a more theor-
etical point of view we can consider the assumptions, guarantees and constraints that
are inherent in individual simulation models or agents to be part of a frame. An ex-
perimental frame is defined by Zeigler et al. as a specification of the conditions under
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which the system is observed or experimented with [6]. A frame provides the necessary
contextual information for a model. A frame specifies where the model is valid and the
results are considered valid [72] [73]. In our work, our simulation model is a composition
of different sub-models. The sub-models all have specific frames to denote the validity.
The composition also has a frame to specify for which properties this is a valid model.
When a sub-model is replaced by another model with the same frame or a bigger frame (a
frame with a model that is valid in a broader context, and gives more accurate results),
the composition is still valid. This is because the properties in the sub-model on which
the composition relies are at the same approximation (or better). However, this is not
what we consider in our work. We expect that the behavior after the transformation to
a more approximated model (MLA => MHA), to be similar (within given boundaries)
and is included under the same frame of the overall composed model.

In Figure 4.9 the difference in model behavior after transformation is represented by
a performance distance value D, which is the difference between two performance values
(that result in the property) P and P’. Ideally, this distance is minimal.

Figure 4.9: Model transformations and experimental frames: keeping track of the validity of a
model using experimental frames and performance values

We can more explicitly reason about this by looking into the different properties of
the sub-model and composed model. We use the framework proposed by Barroca et
al [74] to look at properties of models. A model defines its meaning through a semantic
mapping, notated as [[.]]. With simulation this usually results in a set of traces. These
traces are related to certain performance values (e.g. the speed of a specific car on a
certain road section). These performance values are translated to the ontological domain
where they are transformed to a Boolean value (e.g. no traffic congestion exists in the
city). The ontological domain consists of the properties we are interested in.

When reasoning about the sub-models of our simulation, we need to be aware of the
properties of interest of the sub-models on the properties of the composed model. Figure
4.10 shows this: both the sub-model MLA and its approximation MHA have a semantic
mapping to its corresponding performance values as illustrated in Figure 4.9. Both of
these performance values (P and P’) need to hold in the ontological domain in order for
the composed model and its simulation to be considered valid.

The previous allows us (in theory) to explicitly reason about the distance function
required for the two models to still be valid. This can be used to our advantage as
mostly more approximate models are usually better with respect to computational cost.
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We thus need to find a trade-off where the computational cost is much better but at the
same time the distance value D is within the bound of the validity so that the global
simulation remains within acceptable boundaries.

The approach that we present in our work replaces the use of this explicit reasoning
over performance distance and ontological properties with an entropy measure over the
performance values needed by the overall simulation. It is a pragmatic metric and we
assume that the representation of amount of information is indirectly related to the
validity of the model. A model that does not produce a lot of information with respect
to a certain performance value, will also not have a big difference in the distance function
between a more or less approximate model.

Figure 4.10: Semantic transformations to be evaluated in ontological domain

However, entropy is limited as a metric because it only represents a statistical measure
which loses domain-related context about the original model. Also, our experiments were
limited to unimodal distributions, which is unrealistic in practice. Many models can
only be represented by a multimodal distribution. For example, the unimodel highway
velocity distribution presented in our use case will in many cases only be valid outside
rush-hour when there are no traffic jams. When we want to incorporate rush-hour in the
highway distribution the outcome will become a multimodal distribution with a higher
variation. The measured entropy of this distribution will be much higher, and as a result
of this our proposed method will not be effective. Either, the entropy will be too high
to move to another model, or the model will not produce correct results with respect to
its properties (e.g. on the highway it will let the cars drive around 60 km/h instead of
20 km/h during rush hour or 120 km/h outside rush hours). Instead we could measure
entropy-levels based on context-information. For example, when we make a distinction
between the highway velocity distributions based on time our entropy value will become
valid again. This will then result in a unimodal distribution at rush hour and a unimodel
distribution after rush hour, opposed to a multimodal distribution when time is not taken
into account.
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4.6 Conclusion

In this chapter, we presented a method to opportunistically increase abstraction levels
of low-information areas to decrease the computational cost of our simulation. Our hy-
pothesis is that we can use entropy as a metric to identify these low-information areas
and that the global simulation behavior is less sensitive to noise in these low-information
areas. This makes these areas ideal to approximate by a less computationally intensive
proxy while maintaining the overall simulation behavior. Our experiment shows that
we’re able to reduce the computational cost by about 33% in our use case and that we’re
able to reduce the global approximation error when we opportunistically transform sim-
ulation areas with a low entropy value. This highlights the potential of our approach and
it shows that our technique succeeds in reducing the computational cost while maintain-
ing the validity of the simulation to a certain level. In the next chapter, we will expand
on this work, by developing a more realistic, state-of-the-art traffic simulation scenario
and work towards more measurable techniques to evaluate the model validity after ap-
proximation. Furthermore, we will implement the MAPE-K paradigm presented in the
previous chapter into the simulator architecture to allow a more generic implementation
of adaptive approximation behavior.
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Chapter 5

Dynamic model abstraction

As we’ve seen throughout this thesis, the scale of agent-based simulations is limited by
the availability of computational resources. Especially in the case of traffic simulations,
the limited amount of computational resources leads to the fact that the simulation is
either slow or that the amount of agents is limited. As a consequence, most commercial
traffic simulators reduce the amount of detail of their simulation models [75]. Traffic
simulation can then be modeled at the macro or meso level. At the macro level traffic
is simulated as a flow propagating through a street network. As a result, the notion
of an individual car disappears. This level of abstraction is often most appropriate for
non-urban simulations, where the interactions of individual cars are less important. At
the meso level, often groups of cars are simulated together. The car properties, regarding
speed or accelerations of spatially nearby cars could be shared instead of being calculated
for each individual car.

Choosing the most appropriate level of abstraction is a difficult task. It highly depends on
the context and the scale of the experiment, the availability of computational resources,
and the required accuracy of the models. For example, a macro-level traffic simulation
will be most appropriate to simulate highways, whereas a micro-level traffic simulation is
most appropriate in urban environments. As a consequence, most state-of-the-art solu-
tions rely on a multi-level simulation when large environments need to be simulated [76].
It allows to statically combine multiple levels of abstraction. This however limits the
flexibility during the simulation as the most appropriate level of abstraction for a certain
region often changes over time. A sub-optimal static selection of abstraction levels could
therefore lead to either under- or over-utilization of the computational resources or an un-
necessary amount of inaccuracies introduced by a higher level of abstraction than needed.

In this chapter, we look at tackling this lack of flexibility introduced in multi-level agent
based traffic simulation. We propose a framework that allows dynamic switching of
abstraction levels in a multi-level, more specifically a micro and meso level, traffic sim-
ulator. We present the architecture of a state-of-the-art traffic simulator that includes
the dynamic switching of abstraction levels. Our proposed method is inspired by related
work in the theory of simulation and modeling regarding model abstraction and by the
work of (dynamic) multi-level traffic simulation described in section 6.3. We validate the
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Figure 5.1: Feature Diagram - Contributions Chapter 5

accuracy and validity of our method on a realistic urban traffic simulation. We show
that our method can dynamically balance the trade-off between simulation accuracy and
computational cost. We do this by leveraging the concept of experimental frames [77],
this helps to determine if the context of a model is compatible with the model. When
this not the case we can switch models to improve accuracy while taking computational
cost into account.
The main contribution of this chapter is the methodology that we present to allow dy-
namic switching combined with a detailed discussion of how this methodology fits into a
state-of-the-art multi-level traffic simulation architecture. We discuss this simulation
architecture, together with the developed traffic models in detail. Furthermore, we
emphasize the reusability of the implementation of our method within the simulation
architecture. The feature diagram in Figure 5.1 shows that our contributions in this
chapter are mainly in the Multi Formalism area, where we focus on entity aggregation
by switching multiple agents in the Agent Based Formalism to an explicit macro model.
Furthermore, we apply a dynamic multi-resolution approach where abstraction levels
can vary during simulation run-time. In this chapter, we expand on the previous, but
instead of relying on an opportunistic approach where both approximation and area se-
lection are performed automatically we now take a different approach. We switch to an
explicit, state-of-the-art formalism and the decision where and when to switch is more
driven by domain knowledge. Furthermore, we present a method to encode this domain
knowledge into the simulation engine.
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In the first section, we discuss the related work regarding multi-level abstraction and
model validity, multi-level traffic simulation, and adaptivity in agent-based traffic sim-
ulation. In section 5.2, we present a use case that will be referred to throughout the
chapter and which defines the requirements needed for our simulator architecture. This
simulation architecture is introduced in section 5.3. We also provide more background
to the meso and micro traffic models that we use in our example. In section 5.4, we
present our method to allow dynamic switching in the simulator. Finally, in section 5.5,
we evaluate the proposed method and simulation architecture.

5.1 Background

In this section, we discuss the broad area of related research. The contributions discussed
in this chapter cover a wide area of topics. To keep things organized, we split this section
in multiple subsections, each discussing the related work of a certain topic. In subsection
5.1.1 we provide background about multi-level abstraction in simulation. In subsection
5.1.2, we discuss how we can define and evaluate the validity of a model formalism in a
given context. In subsection 5.1.3, we discuss how multiple levels of model abstractions
can be combined in the context of traffic simulation. Finally, in subsection 5.1.4 we
review techniques discussed in literature that allow to dynamically switch between these
abstraction levels.

5.1.1 Multi-level abstraction

Choosing the appropriate level of abstraction of a simulation model is one of the most
difficult challenges that occur during modeling and simulation. The level of abstraction
defines the amount of information that a model contains. The most appropriate level
depends on the context of the simulation and the questions that the model developer
is trying to answer. In an ideal scenario, each simulation model contains the maximal
amount of information. In other words, the model is represented at the highest possible
fidelity or at the lowest level of abstraction. But this leads to a significant increase
in modeling and validation effort. Furthermore, the impact on the computational cost
cannot be neglected. In practice, we want to avoid including unnecessary details in the
model, to both make the model analysis process less complex [78] and to reduce the
computational complexity. Therefore, abstraction is a core part of the modeling process.
During the modeling process, a modeler chooses a fixed abstraction level that seems most
relevant. In many scenarios, a single abstraction level is however not sufficient. During
the run time of the simulation, the context that the model operates in changes constantly.
A change of context might lead to situations where the abstraction level of a model is
not ideal. For example, a model that does not describe a car’s conflict behavior on traffic
intersections will not perform well at busy urban roads. This leads to an increase in
inaccuracies of the simulation results. To overcome this problem, a significant amount of
research has been published in the modeling and simulation community regarding multi-
level abstraction. The idea of multi-level abstraction is to use multiple models at various
abstraction levels and/or formalisms. Each abstraction level can then be used depending
on its operating context. Morvan et al. summarizes the three major challenges that need
to be solved during multi-level agent-based modeling [79]:
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• Modeling of interactions between abstraction levels

• Coupling of heterogeneous models

• The dynamic adaptation of the level of detail of simulations to save computational
resources or use the best available model in a given context

A large amount of literature is available regarding the first two bullets. But limited
work has been done regarding the last bullet, especially in the traffic simulation com-
munity. In this work, we attempt to fill this gap by building a framework that allows
for efficient dynamic switching of abstraction levels by taking computational cost and
accuracy into account. We discuss the related work of this topic in section 5.1.4. We
will focus in this chapter on integrating two models, a micro-level traffic model and a
meso-level traffic model. For the integration of these models we apply one of the multi-
level design patterns discussed by Mathieu et al. [80]. In their work, they present four
patterns to integrate simulation models at multiple levels of abstraction. One of them,
the puppeteer pattern, offers a solution to keep track of micro-level state while increasing
abstraction levels. This pattern freezes the micro-level state when agents switch from
the micro-level to a meso-level. Meanwhile, at the meso-level, a hierarchically higher
level agent, a ‘puppeteer‘ agent, takes control of the micro level agents and adapts the
state of these agents simultaneously. The micro-level behavior is thus delegated to the
puppeteer agent. This will reduce the computational cost of the model, but we will lose
the ability to model the individual behavior of agents based on their observation. This
will lead to a reduction in accuracy. When we switch back from the meso-level to the
micro-level the frozen state of the micro-level agents is restored, and they will regain the
ability to control their behavior.

5.1.2 Model validity and experimental frames

To decide from a validity point of view which level of abstraction is, most appropriate
in a given context we will leverage the framework of modeling and simulation (M&S)
as described by Zeigler et al. [77]. In their work, they introduce the concept of experi-
mental frames to specify the conditions under which a model can be observed in a given
context. We will leverage this concept in this chapter to define the levels of the validity
of a model. But before we discuss this idea it is important to understand some of the
related definitions and concepts introduced in Zeigler’s M&S framework.
They define the concept of a system as ”the real or virtual environment that we are
interested in modeling”. An Experimental Frame (EF) is then a specification of the con-
ditions under which the system is observed or experimented with. An EF can be seen as
a definition of the variables that specify a system. The EF can be specified at multiple
levels of abstractions. In the context of traffic simulation, one EF can include the driver
acceleration, whereas another might include only street-level density and velocity char-
acteristics.
The M&S Framework defines a model as a specification of a system.
The concept of model validity can then be defined as the relation between a model, a
system, and its experimental frame. A valid model is a model where, for all the exper-
iments possible within the experimental frame, the behavior of the model and system
agree within an acceptable tolerance.
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What makes this framework interesting within the concept of this work, is that for our
experiments we can define an experimental frame for a system. And multiple models,
at various levels of abstraction, are able to comply according to the experimental frame.
Taking efficiency into account, it makes more sense to leverage the computationally less
complex model from the set of available models that comply to the experimental frame.
However, when a given model is not able to adhere to the experimental frame, we will
need to switch to another model that does comply, to maintain the validity.
This framework provides the context to decide when we should select a model from
a set of given models, based on the pre-defined experimental frame. We will leverage
this idea to dynamically decide at run-time when we can switch models, to reduce the
computational cost, while maintaining the validity of the simulation.

5.1.3 Multi-level traffic simulation

In the previous section, we discussed the general idea of using multi-level abstractions.
In this section, we look in more detail at how these ideas are being applied in the context
of traffic simulation. Traffic simulators are used to model and simulate the dynamics of
complex traffic systems. They can typically be categorized based on their abstraction
level. These levels range from:

• Micro level: This simulation model describes the detailed behavior of a car at the
individual driver level. It is used to capture detailed behavior and interactions of
cars. This type of model typically requires a significant calibration effort, since the
amount of parameters is large compared to other abstraction levels. Because of
this, and because of the computational cost, this level is most often used on small-
scale simulations. State-of-the-art examples of these models include Car following
models such as the Intelligent Driver Model (IDM) [62] and lane changing model
such as the MOBIL model (Minimizing Overall Braking Induced By Lane Change)
[63].

• Macro level: The macro-level simulator models traffic at a continuous level. These
models are often inspired by flow theory. These models don’t include individual
car entities.

• Meso level: This level is somewhere in between the previous levels. It keeps track of
individual models but as aggregates. For example, they use speed-density relation-
ships at street sections. We use this model as our higher abstraction level in our
experiments. It can be used on urban environments and allows for the puppeteer
pattern to be implemented since the individual entities delegate their behavior to
a single entity, the meso model, which is hierarchically higher.

Each of these models has its limitations and trade-offs. The micro-level model can
only be used at a limited scale and the meso- and macro-model are not able to simulate the
detailed behavior of individual cars. To better balance these limitations and advantages
a hybrid model can be used. Burghout et al. have described a number of methods
to combine these different levels of abstraction in their work [76]. Their methods are
however limited to static multi-level traffic simulation. This makes it impossible to check
the validity of the models while they are being used. In this work, we will expand on this
static multi-level approach and discuss methods to allow dynamic updating of abstraction
levels by taking the validity of the model into account given a certain context.
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5.1.4 Adaptivity in agent-based traffic simulation

In this section, we discuss the state-of-the-art research regarding dynamic switching of
abstraction levels. There is a large body of research in the modeling and simulation
community that discusses the problem of model abstraction. More recently, we see an
increased interest in the dynamic switching of these abstraction levels.

In recent work, Franceschini et al. present an adaptive abstraction method where they
switch abstraction levels of a basic traffic simulation within the same simulation form-
alism [81]. They use a predefined trigger to decide when to switch between abstrac-
tion levels. In earlier work, the author presents a dynamic abstraction simulation that
switches between an agent-based formalism and a discrete event formalism [29]. The
decision to switch abstraction levels is motivated by statistical analysis of the observed
emergent behavior. In this work we expand on this and develop a more rigorous frame-
work to decide when and where to switch between abstraction levels.
In other related work, we see multiple positional papers that aim at introducing a dynamic
multi-level traffic simulation method. Bouha et al. [82] present a conceptual framework
that allows dynamic switching between traffic simulation formalisms. They present a
simulation framework that supportsIDM Micro-simulation and a Metanet macro-level
simulation model [83]. The framework allows switching between those levels, and de-
scribe how to integrate both levels in a single simulator. The experiments focus on a
highway environment, the results are however limited as this paper was presented as a
positional paper. Haman et al. also present a method that allows dynamic switching
between micro- and macro-level traffic simulation [84]. Their method is inspired by the
concept of a Holonic organizational meta-model [85][86] leveraged in the work of Gaud et
al. which allows dynamic multi-level switching between abstractions applied to a pedes-
trian simulation [87]. Gaud et al. present a generic method to switch abstraction levels
based on indicators that estimate the deviation of a simulation model in comparison with
the most accurate level.
In summary, most of the related literature, regarding dynamic switching attempts to
present a solution to decide when to switch between abstraction levels and how to integ-
rate multiple abstraction levels. Furthermore, the experiments presented in the literature
are limited in their complexity and scale. We present a framework that determines to
switch abstraction levels based on the validity of the experimental frames applied to a
realistic, large-scale use-case. Furthermore, we attempt to implement this as part of our
simulator architecture in a clear and standardized way. Regarding the transition from a
higher abstraction level to a lower abstraction level and vice versa, we aim to leverage
the puppeteer pattern discussed in section 5.1.1.

5.2 Use case

We want to combine the ideas of dynamic multi-level traffic simulation to balance between
validity and computational cost. We want to bring these ideas, based on the theoretic
foundations discussed in section 6.3, into a realistic simulation. To do this we define a
use case scenario in this section, that we will refer to throughout the remainder of the
chapter. The goal of the use case is to come up with a realistic, large-scale multi-level
traffic simulation example where we can show that dynamic switching of abstraction levels
will directly benefit the computational cost and overall validity compared to traditional
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Figure 5.2: Multi-level traffic simulation - colored regions can dynamically switch abstraction
levels. This is a screenshot of the simulation framework presented in this work.

single or static multi-level traffic simulators.
The simulation simulates urban traffic in a city center. The cars are simulated primarily
at the micro-level. The micro-level simulation will be the ground truth, the behavior
observed at this level is used to calibrate and validate levels that contain less detailed
behavior. This allows us to objectively compare the observed data between various levels.
An example environment is represented in Figure 5.2. This exact environment is used in
experiment 2 presented in section 5.5.2.

To simulate realistic emergent traffic patterns, the micro-level car agents have pre-
defined routes based on their origin and destination zones. The cars need to comply
to traffic regulations, have different driving characteristics, and can switch lanes. The
simulation includes traffic lights leading to interesting emergent behavior.
Besides the micro-level, the simulation use case also supports a meso-level model. The
meso-level model is solely based on a speed-density relationship. In other words, the av-
erage velocity observed at a street section directly depends on the observed traffic density
of the street. Each street that is part of the meso-simulation is calibrated on raw velocity
and density data that is observed in the baseline micro-level simulation. The meso-model
does not directly take traffic priority rules into account at intersections and does not dir-
ectly take traffic light states into account. This is an important difference between the
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two abstraction levels. Because as a result, the validity of the meso model decreases in
contexts where traffic lights or priority rules have an impact on the observed behavior.
This context-dependent information can be specified in the experimental frames. With
these specifications we keep track of when the model is valid or not in a specific context.
In this use case, we leverage the experimental frames to decide during the simulation
when one of the two models will be selected. In the next chapter, we discuss the im-
plementation of our custom simulation framework, the use case specifications and the
constraints discussed above, and how these ideas can be implemented in the simulation
engine. Finally, we validate these ideas in two experiments presented in section 5.5.

5.3 Dynamic multi-level simulation framework

In order to execute our dynamic multi-abstraction use case described in the previous
section we need a simulation framework that adheres to the following requirements:

1. ABS methodology: from a modeling perspective, we find that traffic can be best
described using the ABS paradigm. Where an individual agent represents a single
car at the micro-level or a single street at the meso-level. Each agent keeps track
of its own state, which it can update at discrete time steps. It has to ability to
observe and interact with its surrounding environment and with nearby agents.

2. Access to the simulation engine to be able to add custom functionality to switch
abstraction levels and manage transitions from one abstraction level to the other.

3. Ability to import geographical data that fully describes a road network. This
includes the number of lanes on a street, their direction, the speed limit, the allowed
turns, the possible priority conflicts at junctions, and so on.

4. A routing module that is able to determine shortest routes in a road network. These
routes are used by the car agents to navigate throughout the city environment.

5. A state-of-the-art micro-level traffic model that calculates driving parameters such
as acceleration based on the driving behavior and surrounding cars. Furthermore,
lane changing behavior is required.

6. A state-of-the-art meso-level traffic model that is computationally less complex
compared to the micro-level model. Furthermore, the limitations of the model
should be clear. We exploit these aspects in order to evaluate the performance of
our model using the predefined experimental frames.

7. We need to have detailed logging information regarding step duration in order to
measure performance bottlenecks.

8. We need the ability to collect aggregated statistics at both the car- and road-level.
This data includes total trip time, the average velocity at a road segment, average
density and average flow. We need this to calibrate meso models based on a micro
simulation baseline, and to compare validity between meso models.

9. Visualization engine: in order to debug, test and evaluate the simulator a visualiz-
ation engine will be required.
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10. High performance: in order to reach city-level scale during our experiments, we
need to be able to simulate a high amount of agents at acceptable durations.

We were not able to find an open-source simulator that fits all of these criteria. There
are many commercial micro-level traffic simulators such as Aimsum [75] and Vissim [88].
Although that these simulators adhere to most of our criteria, they even support a static
multi-level traffic simulation functionality, they lack the ability to access and adapt the
simulation core which is a hard requirement in order to implement dynamic multi-level
functionality.

There are however some very good open-source alternatives. The most famous open
source micro-traffic simulator is definitely Sumo [89]. Sumo is a powerful microscopic
simulator that is fully open-source. It does not support any multi-level functionality and
does not have any built-in macro-traffic models. Because of this, we decided to build a
custom traffic simulator which fully adheres to the functionality requirements described
above. We decided to leverage the network parser, Netconvert, from Sumo. This parser
has the ability to interpret and parse raw Open Street Map data [90]. Open Street Map
(OSM) offers open user-generated street maps of the entire world. Netconvert converts
this raw OSM data to a human-readable XML based format that stores detailed street
information such as lanes, priority rules, traffic light locations and configurations, pos-
sible turns, etc.

In the sections below, we dive deeper into the architecture of the simulation framework
that we developed.

5.3.1 Custom simulation framework architecture

Figure 5.3 shows the most relevant components that were tailored to the scope of this
chapter. We discuss each of these components in more detail in the following subsections.

5.3.2 Simulation core components

The components at the bottom of our layered architecture diagram in Figure 5.3 contain
supporting functions to represent a street environment. As mentioned in the previous
paragraph, we start from raw Open Street Map data that is parsed using the Sumo
netconvert engine. We then developed a custom parse, the Net Parser module, to
interpret this raw data and feed a traffic environment datastructure that can be used
throughout the simulation framework. This data structure contains both relevant street
meta data such as length, speed limit, geographical shape, lanes etc. But it also describes
intersections and the path on these intersections to connect incoming and outgoing steets.
It describes the priority rules and possible conflict situation on the intersection. The re-
lationships between roads, lanes, and junctions are described using a directed graph data
structure. A road is represented by a node and a junction connection between roads by
a directed edge. This enables the car agents to take turn regulations into account. The
routing module is responsible to calculate the shortest path between a given origin and
destination based on its distance. It leverages the directed graph to do this.
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Figure 5.3: Simulation Architecture

The core of the simulation is the simulation coordinator. This component is re-
sponsible to initialize the various simulators. We distinguish between a micro-level sim-
ulator and a macro-level simulator. Both of these simulator entities share the traffic
environment data structure. This might lead to conflicts between threads, because each
simulator level is executed on a given thread, but this is prevented by the fact that each
environment region is controlled by a single simulator entity. Simulation time progresses
in discrete timesteps. These timesteps are triggered by the coordinator. When a step is
triggered, the coordinator waits until all simulator threads are finished executing their
calculations before it triggers the next timestep.
The logging module is responsible for collecting road-based statistics related for short
periods of time. The variables that we capture are traffic volume, density, flow, and
average velocity. All of this data is logged into files.

5.3.3 MAPE-K: Adding dynamic behavior to the simulation engine

The MAPE-K module is the core of the dynamic abstraction methodology. MAPE-
K is short for Measure, Analyze, Plan, Execute, and Knowledge [91]. Each of these
words describes a phase that is part of an iterative loop that gets executed at reg-
ular intervals during the simulation execution. The MAPE-K framework is used in
many engineering applications to be able to appropriately react to dynamic changes.
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In our context, we use this framework in combination with the validity frame specific-
ations to detect when certain regions do or do not adhere to the validity frame. This
method has been used in the context of generating dynamic behavior in simulators. It
is a clear, application-agnostic method that allows model developers to specify dynamic
performance-optimizing strategies without building ad-hoc, non-reusable solutions dir-
ectly into the simulation core.

During the measure phase, we keep track of raw statistics (average velocity, density,
flow, amount of intersection conflicts, etc.). In the analysis phase we aggregate these raw
metrics and try to detect certain events. During the planning phase, we try to take steps
to react to these events, for example deciding to switch to a given level of abstraction.
And finally, during the execution phase, we execute these steps in the simulation envir-
onment. In our use case, the MAPE-K loop gets executed every 60 timesteps during
the simulation. This resolution is application specific. In the use case presented in this
chapter this resolution is sufficient based on our observations.

5.3.4 Micro simulator

The micro simulator is based on the agent-based paradigm. More specifically we im-
plement a structure that is inspired by the MESA simulator [59]. It is a very intuitive
modeling framework, that leverages the Object-Oriented Programming and applies it to
the Agent-Based Simulation paradigm. Within this structure, we differentiate between
four main entities: a simulator, an agent, a model and an environment entity. The sim-
ulator entity is responsible for triggering steps. The agent entity describes the behavior
of a single agent (e.g. a car or a traffic light), the model contains a collection of an agent
class and is responsible to collect statistics on this group of agents. Finally, the environ-
ment describes the position of the agents and the relations in space between agents.

Micro models

The car agent represents the state of a single car on a road. It has a source and destin-
ation, it determines its route based on a shortest path algorithm which is implemented
as part of the routing module. The driving model is based on the IDM as described by
Treiber et al. [62]. IDM is a typical car-following model, where the velocity and the ac-
celeration are determined by the velocity of the car in front. The driving characteristics
of the car are described given the parameters in Table 5.1. The changes in velocity are
calculated given the IDM equations described in Equations 5.1 and 5.2.

dv
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and, withsα = vα − vα−1, for vehicle α

where α− 1 is the vehicle in front of α.

(5.2)
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Variable Description Unit
l Vehicle length m
v0 Desired Velocity m/s
a Maximum acceleration m/s2

d Maximum deceleration m/s2

s0 Minimum distance m

Table 5.1: Intelligent Driver Model Parameters

Furthermore, a lane-changing model was implemented inspired by the Treiber et
al. MOBIL model (Minimizing Overall Braking Induced By Lane Change) [63]. The
model takes two criteria into account when deciding to make a lane change. An example
scenario is depicted in Figure 5.4. The center car on the right lane can for example
decide to change to the left lane. Within the MOBIL model first a safety criterion
gets evaluated, this criterion calculates whether the accelerations of the car and its new
follower f ‘ does not surpass a safe deceleration limit. Furthermore, from the perspective
of the car will be calculated whether its acceleration on the new lane compared to its
current acceleration surpasses a predefined margin. When both of the criteria succeed in
this test, a lane change event is executed. We added the ability to dynamically add bias
to the incentive criterion, which allows cars to change lanes in order to take the correct
turn at an intersection.

Figure 5.4: Intelligent Driver Model: acceleration of the car is influenced by the acceleration of
its surrounding agents

Junction behavior

We expand a bit more into the junction behavior of a car. Because much of the dy-
namic stop-and-go behavior is caused by junction conflicts. We define a conflict as the
situation where two cars approach a junction simultaneously. We modeled the conflict
context into the traffic environment by adding to each lane whether there is an upcoming
priority road. A car driving on this lane verifies whether an active conflict is nearby. In
the case of a conflict, it will gradually decrease acceleration depending on the distance
to the upcoming junction. If necessary the car stops right before the junction.
The simulation also supports traffic lights. Similar to the conflict behavior, a car agent
will verify whether there is a red or yellow traffic light located on the junction. Con-
sequently, it will stop in front of the junction and wait until the traffic light switches to
green.
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Furthermore, a model was added to prevent deadlocks. Deadlocks at intersections can
occur when there is a large amount of traffic on a priority lane without traffic lights. By
default, the cars located on non-priority lanes will endlessly wait. We added a mechan-
ism that, similar to real-life scenarios, cars located at the priority lane will stop, after a
while, for ”non-priority cars” that are waiting.
An additional technique that could help to prevent deadlocks is Dynamic Traffic Assign-
ment (DTA) [92]. DTA allows car agents to keep track of traffic density on their route.
When the traffic density is too high they can decide to pick an alternative route. But we
didn’t implement it yet in our simulator.

5.3.5 Meso simulator

The meso simulator leverages the same environment model depicted in Figure 5.3. It was
also implemented using an agent-based paradigm, but in this scenario, the primitive agent
is a road segment, instead of a car. The road segment is the puppeteer that takes control
of the incoming car agents. Time is modeled discrete and it progresses simultaneously
with the micro simulator. The meso model behavior is based on a density and velocity
relationship.

Macro model

Most state-of-the-art macro traffic simulation models are inspired by the LWR (Lighthill-
Whitham-Richards) model [93], where traffic behavior is represented by a continuous
equation that models the relationship between traffic density and traffic flow [94]. De-
rived from the LWR theory is the fundamental diagram. This diagram represents a curve
relating observed densities to observed flows [95] as shown in Figure 5.5. Traffic density
defines the number of vehicles per unit distance (vehicles/km). Traffic flow defines the
number of vehicles that pass a discrete location per unit of time (vehicles/h). Most macro
models construct such a fundamental diagram based on observations. These observations
can directly originate from real-life road measurements such as traffic loops. For each
of the road segments used in the simulator, a fundamental diagram can be created and
leveraged during the simulation. Figure 5.5 shows the three major phases of a funda-
mental diagram. The colored dots represent raw measurements, the lines represent a
linear equation that fits the part of the raw measurements.

1. Free flow phase: During this phase traffic density is building up, and as a result
traffic flow increases linearly.

2. Critical density phase: the maximum density for a given road is reached. This is
when congestion starts.

3. Congestion phase: As a result of the congested state of the road, the traffic flow
decreases steadily when the density increases.

During calibration, each of these phases needs to be identified and the parameters of the
equations representing the behavior of each of these phases need to be found based on
the raw measurements. Various techniques can be used to perform this calibration [95],
but this is beyond the scope of this work.

We initially decided to also leverage this fundamental diagram as basis to describe
the behavior of our meso model. But as part of our observation, we saw that it was
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Figure 5.5: Fundamental Diagram of traffic behavior: relationship between Traffic Density and
Velocity. (dummy data)

hard to accurately identify the three phases in the raw density and flow measurements
of an urban traffic environment. We noticed that the fundamental diagram is mainly
used to model highway traffic and that might not be ideal to model urban traffic. There-
fore, we decide to use a simplified model, which directly models the relationship between
traffic density and traffic velocity. In our observations, we saw that, in an urban context,
there tend to be a clear inverse relationship between density and velocity. Typically, the
velocity tended to decrease with increased density. In this model, we can use a single
equation to model this relationship. The parameters of the equations tended to vary a
lot depending on the road type and on the location of the road within the environment.
For example at busy intersections, an increase in density resulted in a stronger decrease
in velocity.

Model calibration
The model that we use in this simulation is based on a density - velocity relationship.
Each individual road segment in our simulation has its dedicated model. The model gets
calibrated based on raw density and velocity measurements. We use a polynomial regres-
sion technique to fit the model onto the raw measurements. An example is demonstrated
in Figures 5.6, 5.7 and 5.8. In order to prevent overfitting, the degree of the polynomial
is changed depending on the standard deviation. As can be seen in Figures 5.6, 5.7 and
5.8 the model can be either a zeroth-, first- or third-degree polynomial. Fitting to orders
higher than the third degree did not add additional accuracy based on our observations.
Furthermore, we added constraints to the model. We only use the model between the
range of observed densities. For densities below or above the observed density, the model
will return a fixed value, which is the corresponding velocity value for the respective
lowest or highest observed density. Finally, we define a maximum and minimum velocity
for each model.
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Figure 5.6: Zeroth degree polynomial

Figure 5.7: First degree polynomial

Meso model

The macro model from the previous section forms the core of our meso model. We ex-
tend the meso model with additional functionality that allows the model to keep track
of individual cars. That is why we refer to the model as a meso-level model instead of a
macro-level model. It functions according to the puppeteer pattern explained in section
5.1.1.
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Figure 5.8: Third degree polynomial

Figure 5.9: Meso Model: According to puppeteer pattern - micro agents enter the meso model
and are lose the control over their individual state to the overarching meso-level agent

The structure of the model is depicted in Figure 5.9. First, all roads in the envir-
onment are split into discrete parts of a predefined maximum distance. We then define
sources and sinks where cars can enter and leave. The sinks and sources also allow for
direct integration with the micro level simulation. The model consists of an internal pri-
ority queue data structure that keeps track of when a car should leave the road segment.
This travel duration gets calculated using the calibrated macro-model for the specific
road segment. When a car enters, the density of the road segment is increased, and
based on this density the average velocity and the car’s travel duration are determined.
Based on the travel duration, the car’s exit time is calculated and is then added to the

68



5.4. Dynamic switching between levels

priority queue. When the simulation time exceeds the car’s exit time, the car is removed
from the priority queue and then added to the queue of the next road segment or added
to the sink.
The route of the car is taken into account, and at intersections, different cars can take
different turns. Compared to the micro-level simulation, conflicts situations and traffic
lights are not included in the meso-level simulation. As a result, the meso-level is not
an appropriate abstraction level to simulate behavior at busy intersections. Instead, the
model can best be used to simulate busy roads without too many conflict situations.

5.4 Dynamic switching between levels

In the previous sections, we showed the implementation of a micro and a meso-level
traffic simulator. We also added the functionality to integrate both abstraction levels in
a multi-level simulation. Each part of the road environment will be handled by a single
dedicated simulator entity. The abstraction of the simulation entity (meso or micro) can
vary as depicted in Figure 5.9.

Each car agent in the simulation is aware of which simulator it is operating. When
a car enters a road that is not part of its current simulator, the simulator creates a
migration request. This migration request is handled by the simulation coordinator,
which will, at the end of a time step migrate the agents between simulators. We will
discuss below how migration between the various abstraction levels occurs:

5.4.1 Transitioning between levels

Micro to meso: To switch from micro to meso-level we use the puppeteer pattern
presented in section 5.1.1. We keep track of individual entities and their state, but
the road segment serves as a master entity that controls the behavior of the individual
entities. When a car enters a meso zone, the micro-level state remains in memory but
is not used in meso-level simulation. Instead, a reference to the vehicle agent state is
created in the meso-simulator while the micro-level reference is deleted from the micro
simulator. Also, a reference to the routing information of the vehicle is copied to the
meso-simulator. The current velocity and acceleration of the car are not used in the
meso-level simulation. The velocity is fully determined by the density - velocity function
which is part of the meso-model, as explained in section 5.3.5.

Meso to micro: Similar to the micro-to-meso transition, a migration request is
created when a car leaves a meso-zone. The meso-simulator has kept a reference to the
internal state of the original micro agent and this information is recovered in the micro
simulator.

5.4.2 Incentive for dynamic switching of abstraction levels

The simulator coordinator supports the functionality to dynamically switch the simu-
lator that is responsible for a region of the environment. This allows us to dynamically
detect when and where a region should be either simulated at the micro-level or at the
meso-level. And based on this we can balance between computational cost and validity.
We assume in the use case that the micro-level is the ’reference’ or baseline level, and
that the meso level is less accurate. The decision to switch is implemented by the use
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of experimental frames. The experimental frame defines the operating context of our
meso-level model. When we observe that the current context does not comply with what
is defined in the experimental frame we will trigger a switch of abstraction levels, more
specifically from meso to micro.
The meso-model is not able to simulate conflicts at intersections. As a result, the valid-
ity at busy intersections is not guaranteed. As a result the experimental frame of the
meso-model is limited to roads with a limited amount of conflicts at intersections. In our
simulator, we keep track of whether the context of the meso-simulation complies to the
experimental frame as defined above. We do this as part of the MAPE-K loop, which was
discussed in section 5.3.3. During the measure phase, we specifically keep track of the
number of conflicts that occur in a sixty-second period. During the analysis phase, we
evaluate whether a threshold is exceeded. When this is the case a plan is formulated to
move the region from meso to micro. Consequently, this gets executed by the simulation
coordinator between simulation time steps. As a result, all agent entities managed by
the simulator are migrated to the new micro simulator and are re-instantiated at their
corresponding locations. The accelerations and velocities are directly calculated again
by the micro simulator based on the IDM model.

5.5 Results

We test the dynamic micro to meso switching scenario in a small contained zone in
experiment 1. In experiment 2 we present a larger experiment, with multiple abstraction
zones. In each of the experiments, we keep track of the computational cost, which
is measured in ms per time-step. And we keep also track of the validity error. This
is measured by comparing the RMSE (Root Mean Square Error) between the velocity
observed at the street level in the meso simuation, compared to the baseline simulated
at the micro-level. The experiments were executed on a desktop computer with an Intel
i7-6700K - 4Ghz CPU and 16GB of memory.

5.5.1 Experiment 1: Dynamic switching between micro and meso

In this experiment, we set up a scenario of a single main road and traffic coming from
north, south, east, and west. We initiate the simulation in a hybrid setup, where the
main road is at meso level and the incoming roads at micro level. We measure the validity
of the meso level using the Root Mean Square Error (RMSE) of the velocity, where we
compare the observed velocity to the baseline velocity. The baseline is a fully micro-level
simulation. The meso model is calibrated on the baseline data. We start the first 300
seconds of the simulation with a steady inflow of cars. After 300 seconds we double the
inflow. As a result, there will be a large increase of conflicts at intersections on the main
road.
Figure 5.10 shows the computational cost of our experiment and Figure 5.11 shows the
validity or the RMSE error. We measure the computational cost based on the duration of
a single simulation step. We refer to this as the step duration, measured in milliseconds.
The baseline scenario is a fully micro-level simulation. The static meso and micro, is
a classic hybrid simulation scenario where the abstraction level of each region remains
constant. Finally, the dynamic meso and micro scenario allows the simulation coordinator
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Figure 5.10: Validity Error (RMSE) over time

to dynamically switch abstraction levels at simulation run-time. We do this by monitoring
the experimental frame of the meso simulation region, as discussed in section 5.4. The
results depicted in Figure 5.10 and 5.11 show that when dynamic switching is enabled
we can effectively detect scenarios that are not supported by the meso level simulation.
In this case, after 440 seconds, the simulator detects that the number of conflicts do not
comply with the experimental frame of the meso simulation. As a result, the MAPE-
K loop will execute a plan that switches the main road from a meso level simulation
to a micro level simulation. As a result, we can see a strong decrease in the velocity
RMSE, and thus a decrease in the error. At the same time, we observe an increase in
the computational cost.

5.5.2 Experiment 2: Full Experiment

In this experiment, we attempt to simulate a full urban environment using our dynamic
multi-agent simulation approach. This is one of the major contributions of this work,
given that we haven’t seen in related literature that a dynamic abstraction methodology
has been applied to a realistic, production-ready traffic simulation at this scale. The
setup looks as follows: the environment is based on the inner street network of Antwerp.
We identify four zones that can switch abstraction levels. The setup is visualized in
Figure 5.2.

We initialize the abstraction zone at the micro abstraction level. We then initialize
cars driving from fourteen origin zones to fourteen destination zones in the inner city.
During the first part of the simulation, the traffic volume is low but over time we increase
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Figure 5.11: Computational cost expressed as step duration over time

the volume by increasing the rate of cars being added to the origin zones. We then run
three variations of this experiment:

• Setup 1: Static Micro only: In this experiment the MAPE-K module is disabled.
Furthermore, the meso level is not initalized. All cars in the simulation are simu-
lated at the micro level.

• Setup 2 - Static Meso and Micro: In this experiment the MAPE-K module is
disabled. Switching between levels is not possible, and all four zones are running
at the meso level, the regions outside these zone are still simulated at the micro
level.

• Setup 3 - Dynamic Meso only: In this experiment we only allow switching from
micro to meso level, switching from meso to micro level is not allowed.

• Setup 4 - Dynamic Meso and Micro: In this experiment the MAPE-K module is
allowed to switch either of the four zones from micro to meso level and from meso
to micro level.

The results of the experiment are displayed in Figure 5.13 and Figure 5.12 below.
The results of this experiment prove that the proposed dynamic switching method-

ology allows effective switching between abstraction levels to properly balance between
computational performance and the validity of the simulation results. The MAPE-K
module is keeping track at the micro and meso level of the amount of conflicts that occur
at intersections. Initially this amount is very low in zone 2, 3 and 4, as a result these

72



5.5. Results

Figure 5.12: Experiment 3 - Validity Error (RMSE) over time

Figure 5.13: Experiment 3 - Computational cost expressed as step duration over time

Title Time Description Zones Setup 3 Setup 4
Migration 1 150 Migration from micro to meso 2, 3 and 4 yes yes
Migration 2 700 Migration from meso to micro 2 no yes

Table 5.2: Migrations occurring during the experiments

73



5. Dynamic model abstraction

zones will be migrated to the meso level after 150 seconds when the MAPE-K module
is enabled. Zone 1 experiences a high amount of conflicts from the start, therefore it
remains at the micro-level during setup 3 and 4. During setup 3 all zones are initialized
at the meso level and remain at this level during the entire simulation. The benefit of
the dynamic switching strategy is shown in Figure 5.12, the error of setup 2 is very high
from the start. Whereas the average error of setup 3 and 4 remain rather low because in
this setup zone 1 remains at the micro-level.
After some time, the traffic density increases. This leads to a significant increase in
conflicts in zone 2. As a consequence, we see a significant increase in the average error
in setup 3 compared to setup 4. The reason for this, is that only setup 4 allows zone 2
to switch from meso to micro level.

Figure 5.13 we show the computational benefit of dynamic hybrid simulation. Both
setup 2, 3 and 4 are significantly less computationally expensive compared to setup
1, which only supports micro level simulation. We show that after the first migration
(see table 5.2) the computational cost is significantly lower compared to the static micro
level simulation. After 700 seconds we can observe a significant increase in computational
complexity after the second migration of setup 2. This is the cost we pay for the migration
from meso to micro, which was needed to reduce the average error introduced by the
increase of traffic density in zone 2, as can be observed in Figure 5.12. When interpreting
the computational results, it is important to understand that the execution time of a
micro agent strongly depends on the context of the agent. This is due to optimizations
added to the micro agent. For example, when a car agent enters a new road it will need
to do additional calculations. Whereas, when a car is driving with one car in front on the
same street segment, this car doesn’t have to perform the computationally very expensive
calculations to determine if there are conflict situations at the upcoming intersection.
And, when an agent migrates from the meso zone to the micro zone this also adds
additional computational overhead. Furthermore, the meso level execution time is only
0.7 % of the micro level execution time, meaning that the the major share of stepdurations
demonstrated in Figure 5.13 is caused by the micro level simulator that remains active
in all four setups. This can lead to outliers in the step duration. For example, at time
step 1000 the execution time of Setup 4 (dynamic - meso & micro) is higher then the
setup 1 (static - micro only). This is because of a strong increase in migrations leading
to additional overhead and micro-level calculations. The most important observation is
that the general trend of Setup 4 is significantly better compared to Setup 1.

5.6 Conclusion

In this chapter, we presented a method and simulation architecture that is able to dy-
namically switch between abstraction levels of a traffic simulation use case. The results
show that we succeed in balancing computational cost and model accuracy. We show
that the concept of experimental frames to determine model validity based on context
and the MAPE-K paradigm allow for a generic, reusable way to dynamically optimize
simulation scalability. To our knowledge a dynamic multi-level traffic simulation has not
been presented before at this scale in related work. We show that our method could be
implemented in commercial traffic simulators and can also be leveraged in other agent-
based simulation domains. In future work, we will aim to add different macro models.
Furthermore, we want to combine the work of dynamic abstraction with dynamic load
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balancing. This will allow us to take advantage of large-scale computation infrastructure
such as Cloud infrastructure or High Performance Computing infrastructure. We also
want to test our framework in an optimization scenario, its dynamic scalability properties
could be interesting to be used in the context of traffic light optimization, where a large
amount of simulation runs are required and efficiency is key.
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Chapter 6

Data-Driven abstraction of traffic
simulations

6.1 Introduction

In this chapter, we discuss the work related to the implementation of data-driven traffic
models in the context of traffic simulation. As we’ve seen in previous chapters, creating
accurate simulation traffic models is not an easy task. These models are computationally
often very inefficient. As a result traffic simulation modelers leverage traffic models at
different levels of abstraction. This allows them to better balance computational cost,
scale of the experiment and accuracy of the simulation results.
In this chapter, we look into a different technique. Instead of leveraging explicitly de-
signed models we aim to learn the traffic behavior using machine learning models. We
will specifically discuss the implementation of a state-of-the-art Graph Neural Network
that was used effectively to predict traffic evolution over time. We will adapt this model
to make it compatible with our custom simulation framework and integrate it in a hybrid
simulation setup.
The integration of such a model leads to a number of challenges that we will discuss in
this chapter.

The feature diagram in Figure 6.1 shows that our contributions in this chapter are
mainly in the Multi Formalism area, where we focus on entity aggregation by switching
multiple agents in the Agent Based Formalism to a machine learning based approxima-
tion. Furthermore, we abstract not only in the model state representation space but also
in the temporal space. This is achieved by increasing the execution time intervals of the
abstract model. Furthermore, we work with a fixed model abstraction strategy where
some areas are abstracted from the simulation start.

In the first section, we provide the motivation on why leveraging data-driven abstraction
can be useful. In section 6.3, we provide background regarding data driven traffic sim-
ulation, the use of deep learning for modeling traffic and the architecture of the Graph
Neural Network that we use in this chapter. In section 6.4, we present a framework on
how the data-driven model can be integrated in a multi-level simulation setup. Finally,
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Figure 6.1: Feature Diagram - Contributions Chapter 6

we present initial results of how well the Graph Neural Network is able to predict the
behavior observed by the simulator.

6.2 Motivation

In chapter 5, we saw that traffic macro-models were often explicitly modelled. These mod-
els typically need a high modelling development and calibration effort. In this chapter,
we propose a data-driven method to mitigate the shortcomings of explicitly modelled
traffic models. Data-driven models have capability to learn behavior based on raw data.
This could make calibration much easier. Furthermore, the model can predict for a long
time in future, highly reducing the required amount of model executions. This can signi-
ficantly reduce the execution time of a data driven macro model opposed to a traditional
macro model. This is, because the model we present allows to predict the behavior for a
longer time in the future with a single execution step.

One of the other disadvantages of this model is that it assumes the availability of high
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quality and large datasets of traffic in certain regions. In practice, such datasets are often
not available. But with the increase of Internet of Things deployments and smart city
environments we assume that over time this availability will continue to improve.

6.3 Background

In this section, we discuss the relevant work and relate it to the contributions that we
make.

6.3.1 Using data-driven models for traffic simulation

The use of data-driven models to work together with traffic simulation is most described
in the context of optimization where surrogate models, or simulation approximations,
are used to reduce the computational cost of the optimization process. We provide an
overview of most relevant related work in this section. Osorio et al. [96] [97] present
in their work a manually modelled surrogate model. They leverage two models, a high
fidelity model and a low fidelity surrogate model. During the optimization process they
switch between the models based on the expected accuracy of the model. As a result
they were able to reduce the computational cost by 78% percent.
Gil et al. [98] leverage a fuzzy rule surrogate model to approximate the behavior of a
micro traffic simulation. They use this model to reduce the computational cost of traffic
light optimization.
El Vlahogianni et al. [99] use an ensemble of surrogate models based on machine learn-
ing techniques to predict traffic data based on raw sensor data. They don’t combine the
surrogate models with a simulator but directly learn from the surrogates.
Finally, Chen et al. [100] present a surrogate model to replace a computationally ex-
pensive traffic simulator to optimize highway toll charges.
Most of the related work presented in this section leverages surrogate models to reduce
the computational cost of optimization problems. They often propose a surrogate model
that replaces the entire simulation. This can lead to a significant reduction in accuracy.
We believe that a combination of both a surrogate model or an approximation with ac-
tual traffic models will be able to better balance between accuracy and computational
efficiency. Especially when the models are used on longer time horizons, because in that
case the validity error tends to increase over time.
Furthermore, there are many scenarios where high fidelity information regarding the
traffic state is required. For example, in the case of traffic light optimization it makes
sense to keep track of individual cars entering intersections and keeping track of their
local behavior when crossing the intersection. Most of this information would be lost
when approximating the entire simulator by a surrogate model. The same for simulating
the impact of local events (e.g. car crashes) holds on the rest of the network. The tech-
niques discussed in this section are mainly implementations of classic machine learning
and surrogate modeling techniques, with the rise of deep learning in the last years there
might be more effective techniques to model traffic behavior. We’ll provide an overview
of the latest research in this area in the next section.
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6.3.2 Deep learning for short-term traffic prediction

Most related research in the context of modeling traffic environments and their behavior
can be found in the context of traffic prediction. The goal of such model is typically
to predict the upcoming traffic based on past observations. This research hasn’t been
published with a goal to create traffic surrogate models but since it is able to properly
learn the dynamics of traffic we believe it can be used as a surrogate model as well. While
in the earlier days, traffic models were purely based on explicit models like flow models,
or differential equations, current state-of-the-art short-term traffic prediction techniques
are based on machine learning [101]. Such systems, however, either fail to capture the
actual physical characteristics of the road network and/or fail to preserve the spatial and
temporal relation of the traffic data, resulting in poor traffic predictions.

Further, training such systems is a tedious and costly process as they require a vast
amount of training data. Yu. et al [102], created a spatio-temporal graph convolutional
neural network (STGCN) solving the scalability problem and allowing the model to bet-
ter learn the spatial and temporal relationships. This leads to a significant increase in the
performance of the traffic predictions. Zheng [103] used the same idea and implemented
the attention mechanism into the STGCN resulting in better performance in accuracy,
but a decrease in training speed. The STGCN is also used in other domains: Cases. et
al. [104] developed an STGCN architecture for relational between sensor data, while He.
et al. [105] implement this architecture for context trajectory predictions with respect
to autonomous driving. Yet there are still some gaps within the state-of-the-art such as
transferability of knowledge, context-aware predictions and street network adaptivity. In
this work, we make use of a novel STGCN architecture that has been designed to cope
with the above mentioned drawbacks. We do this by developping an adapted architec-
ture that relies on graph convolution to better take regional information into account
and allow it to transfer this knowledge to other regions.

Traffic networks are commonly represented using graph structures. In our work, we
represent individual road segments as nodes and connections between these segments as
edges. A road segment is defined as a part of a road where cars that enter the segment
also leave this segment. For example, a road will be split in multiple segments if there is
an adjacent street. A road graph does not change frequently over time and thus can be
presented as a static graph. Each node in the graph has features describing its state such
as velocity, density and flow. The state of the nodes changes over time, in our case the
average velocity aggregated over one minute intervals. The aim of our STGCN neural
network is to use past traffic states to predict future states. Graph convolution [106]
is the core operation used in our model to achieve predictive power. Similar to a reg-
ular convolution, spatial information will be aggregated. Each node will be aggregated
with its direct neighbours, and this is done in a node per node fashion resulting in an
identical graph containing aggregated node states. This operation is repeated multiple
times to include the influence of indirect neighbours with a residual connection to achieve
more numerically stable gradients. The graph convolution is applied over all time steps,
sharing weights, resulting in a series of traffic states. These states are evaluated over
time to create prediction for future traffic states. Figure 6.2 gives an abstract view of
the spatio-temporal graph convolution neural network illustrating the difference between
historical input states and future output states. The model first applies the convolution
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operation to the input states, this results in an abstract embedding state of the input.
This embedding is then mapped using a Recurrent Neural Network architecture, which
allows to model time-based relationships, to the output states that represent the future
timesteps of the traffic network. In the remainder of this chapter, we discuss the imple-
mentation of the STGCN network in a simulation context where we attempt to predict
future traffic states of parts of the simulated traffic network.

Figure 6.2: Abstract implementation of the spatio-termporal graph convolution neural network.
Past traffic states are used to predict future traffic states across the road network

6.4 Implementation

In this section, we discuss how we can implement the Spatio Temporal Graph Convolu-
tionalNeural Network (STGCN) model in a multi-level or single-level simulation envir-
onment to reduce the computational cost and increase accuracy of the macro-level traffic
models. One of the main advantages of using the STGCN is that it can accurately pre-
dict over longer time horizons compared to the meso and macro models often used in the
state-of-the-art. Furthermore, it is able to learn and represent complex traffic behavior
directly observed by the data.
This makes it a perfect candidate for a simulation model at a higher abstraction level.
As explained in chapter 5, we assume the micro-level model to be the most accurate
representation of traffic behavior, because it contains the highest level of granularity.
But, it is computationally too complex, and we don’t need this level of accuracy in all
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regions of the simulation. Therefore, a multi-level simulation is often proposed. In such
a simulation we combine multiple traffic models at various levels of abstraction.

In this thesis we want to leverage the STGCN model as a macro-level model. We use
a similar setup as the one presented in chapter 5 but replace the meso-model with the
proposed STGCN model. It will be implemented in a multi-level simulation setup where
the simulation environment is partitioned in multiple zones. Each zone can be simulated
either using a micro-model or a STGCN macro model. In the scope of this chapter, we
use a static configuration of the abstraction levels of each zone.

The model will be fed with traffic observations of the last five minutes and it will
predict the relevant traffic parameters over the next thirty minutes. These parameters
are the traffic density, traffic velocity and flow at each street of the STGCN zone. The
fact that we can predict for up to thirty minutes leads to a temporal abstraction, which
we discussed in the introduction of this thesis. The meso model and micro model used
in chapter 5, were executed 4 times per second. Whereas, in the model that we propose
a time horizon of thirty minutes is used. This leads to an enormous reduction in com-
putational cost.
One of the main consequences of abstracting over this time axis is that the model can’t
react to sudden changes of behavior caused within this 30 minute time frame. As a con-
sequence, the predicted traffic behavior can be invalid for maximum the duration of the
specified time horizon. After this time the model will be executed again, now taking the
changes in the previous time interval into account. This is also one of the main challenges
when we integrate models with different time resolutions in the same simulation, as is
the case in our proposed setup.
We aim to solve this using the MAPE-K framework presented in chapter 5. At the edges
of the model we can use this framework to detect such events. When such an event
occurs we can automatically trigger an additional execution of the model, taking the
unexpected behavior into account, and limiting the invalid behavior resulting from the
STGCN model.

Another challenge is the integration of the micro-level model and the STGCN model.
The STGCN zone is characterized by a number of streets, we can differentiate between
regular streets, sinks and sources. The sources are the streets where cars enter the
STGCN zone from the micro-level simulation. At the sinks the car leaves the STGCN
zone and enter the micro-level model. These sources and sinks are where the major integ-
ration challenges occur. Because when a micro-level car enters a STGCN zone we can’t
keep track of this individual model during its propagation in the zone. Furthermore, we
can keep track of the traffic density at the sinks, but we won’t be able to identify which
car is leaving there. We also won’t know at which exact timestep the car will leave the
sink because of the mismatch in time resolution between the models.
This means that we can’t prevent information loss when integrating these models. But
we can limit this information loss by storing the information of the cars entering the
STGCN zone. Each car stores it routes, so we can use this information to find the sink
it will leave the zone from. Instead of fully removing the car from the simulation, we
can thus store its state. At the sinks we can store a FIFO queue of all cars that will
leave from a given sink. At each sink, the STGCN model will have information about
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the traffic density and average velocity of the cars. Based on this density we can sample
cars from the queues during this 30-minute interval and restore the state of the car in the
micro model. Furthermore, we can adapt the current velocity to the velocity observed
at the edges.

6.5 Experiment

In this section, we evaluate the effectiveness of the STGCN when trained on simulation
data. This gives an insight in whether the STGCN is a viable candidate for replacing
explicitly modelled macro traffic models. We will evaluate the model based on the ac-
curacy of the predicted velocity. To do this, we simulated a couple of thousand cars
driving through the city center in the micro simulator and log the average velocity and
density observed at the street level for two hours and a half. Based on the data of the
first two hours we both trained the explicit macro level model presented in chapter 5
and the STGCN. We then evaluated the model on the last half hour. This should give
a representative indication on how well the STGCN model is able to learn the traffic
dynamics of our simulation. Furthermore, it allows us to directly compare the STGCN
with the explicitly modelled macro model presented in chapter 5.
The results are presented in Figure 6.4. We gathered data of 960 streets and use both the
macro model and the STGCN to predict the traffic velocity in the upcoming 30 minutes
based on the previous observations. We evaluate the accuracy of the models by calcu-
lating the Mean Squared Error (MSE) between the actual observed values in the micro
simulator with the predicted values. We did this for the entire 960 streets and for a zone
of a limited number of streets shown in Figure 6.3, which is referred to as zone 1. The
reason for this separate evaluation on zone 1 is that zone 1 contains a high number of
traffic lights on the main street. This leads to deviating velocity patterns in the observed
traffic behavior compared to the average behavior observed for the entire street network
of 960 streets.

Figure 6.3: Experiment Evaluation Zone showing traffic lights and the streets of interest
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Figure 6.4: MSE Error on traffic simulation test set

The results in Figure 6.4 show that the error of the STGCN model on the entire
traffic network is low. The average observed error, an MSE of 3.173 on the test data.
Which is squared, so when we take the square root it can be interpreted as an average
error of 1.78 km/h in predicted velocity which is a very promising result, close to the
local performance of the macro model. It shows that the model is able to learn the
overall traffic behavior. The error of the STGCN model is higher because of the impact
of the traffic lights on the observed behavior. The error of the macro model starts low
but increases over time. This resulted in an average observed error at street-levels that
is near zero at the beginning of the test-set, but the error increase to an average plateau
near an MSE value of 5. The reason for this is that the STGCN predicts the network
state for the following 30 minutes within a single execution, whereas the macro model
gradually alters its state during the many executions of the model in this 30 minute
time period. The STGCN error is higher from the start, but remains stable over time.
The STGCN currently doesn’t take input data at the sources of its zone into account,
which refrains the model from adapting to newly incoming observations. To solve this, a
different approach would be to predict only for a single timestep and use the output of
the predicted timestep, combined with new observations again as input to the STGCN
model. This is an autoregressive approach, but it has as disadvantage that the error at
a later timestep might increase due to the vanishing gradient problem.
When we compare the macro and STGCN results after 10 minutes, we see that the Macro
model is less stable. This is also because the model is not adapted to taking traffic light
behavior into account as was discussed in chapter 5, leading to sudden increases in errors
depending on the traffic light state. The STGCN is more stable because it is better able
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to anticipate to these spikes in velocity changes. In future work we will continue to adapt
the STGCN to better take the impact of the traffic lights into account in order to reduce
the gap in MSE between the predictions in zone 1 and the predictions of the entire traffic
network.

6.6 Conclusion

In this chapter we presented the work we are currently doing in the context of integrating
a data driven model in a state-of-the-art traffic simulation framework. Our main focus
was on training the STGCN on data observed by the traffic simulator to show that
the STGCN could operate as macro-model in a traffic simulator. We showed that the
STGCN was able to effectively do this, but needed to be better tuned to cope with the
impact of traffic lights on the observed traffic behavior. Furthermore, we proposed an
implementation architecture of how we can integrate the STGCN in a multi-level traffic
simulation setup. Because of the abstraction in time resolution that can be obtained
by the limited amount of predictions the model needs to execute we expect significant
reductions in the execution time of the simulation.
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Chapter 7

Conclusions

In this dissertation we looked at how we could test large-scale Smart city or Internet of
Things environments using simulation. We saw that there is limited related work avail-
able which allows for simulating large-scale smart environments. We did an in-depth
analysis of the possible solutions to improve simulation scalability. And we then fo-
cused on developing a methodology for large-scale agent-based simulation in the context
of smart traffic environments. We put special emphasis on the fact that the proposed
methodology is able to dynamically optimize the computational cost based on the con-
text of the simulation.

The methodology presented in this work is based on two major pillars inspired by our
initial analysis. In the first we looked at improving partitioning capabilities, we presen-
ted a generic, decentralized method to dynamically reduce overall computational cost,
taking both communication and model computation cost into account (chapter 3). We
demonstrated its efficiency using a custom developed distributed traffic simulating.

In the second pillar we looked at switching model formalisms and abstraction levels
to balance between model accuracy and computational cost. We presented a toy method
where we used information theory metrics as a generic approach to detect easy to approx-
imate areas (chapter 4). When such an area was detected we switched model formalisms
from a detailed agent-based model to less complex discrete event based approximation.
We expanded on this work by implementing a traffic simulator that switches between
a state-of-the-art agent-based traffic micro-model and a meso-model (chapter 5). We
leveraged the MAPE-K framework into the simulator architecture to allow generic im-
plementation of context-based dynamic abstraction. Furthermore, we showed to we are
able to simulate large-scale realistic scenarios and both maintain simulation accuracy
while reducing the computation cost. Finally, in chapter 6 we discussed the implementa-
tion of a state-of-the-art machine learning model in a traffic traffic simulator. We showed
that the model is able to learn relevant traffic behavior patterns.
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Chapter 8

Future Work

In future work we would like to continue to validate our method on various scenarios
that could take advantage of large-scale simulation. We developed the work presented in
this thesis with a smart city environment in mind. We would like to look at integrations
of our method and traffic simulation framework as part of a traffic management decision
support application. To do this, we will need to combine our parallel and distributed
traffic simulator with our multi-model traffic simulator. During this thesis we always
took the assumption that our micro-models, which are state-of-the-art, could be used as
a baseline for real-world behavior, which was sufficient to prove the effectiveness of our
methods. But to make the simulation behavior representative for the real world, we will
need to calibrate these models on actual real-world data. Especially in the case of the
micro models, the complexity of this work cannot be underestimated.

In a related scenario, we aim to leverage our framework in the context of traffic light
optimization. Modern optimization techniques, such as deep reinforcement learning,
heavily rely on proper simulation models. This simulation often forms a bottleneck when
executed at scale. We believe the methods presented in this work can partly mitigate this
bottleneck. We envision a method where we could dynamically switch abstraction levels
during the learning process. In theory, the control of abstraction levels could become
part of the learning process.

We have shown that Graph Convolutional Neural networks are able to effectively rep-
resent, and thus simulate traffic dynamics. We will continue to fine-tune the model and
work on the implementation of the model within the micro traffic simulation architecture.
Furthermore, to reduce the error in the early timesteps we will look at implementing an
autoregressive approach to the STGCN model and also take input data at the STGCN
zone sources into account. This will lead to additional challenges related to the vanishing
gradient problem that needs to be addressed.

We have tested our multi-abstraction method with a fixed amount of regions that could
switch between abstraction levels. It would be interesting to dynamically highlight re-
gions, which were not predefined, that are allowed to switch abstraction levels. Generic
metrics, such as entropy, as presented in chapter 5 can be used to do this.
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One of our main contributions with regards to dynamic partitioning was the generic
MAPE-K method. We would like to implement load-balancing methods described in the
state-of-the-art as part of our method. This would allow us to compare and validate
multiple load balancing algorithms. The MAPE-K method allows these same algorithms
to be used in very different simulation applications. Furthermore, We want to explore
the benefits of a hybrid decentralized and centralized adaptive load balancing approach
in micro traffic simulation. In this hybrid scenario we envision two MAPE-K loops: 1) a
decentralized heuristic, as proposed in this chapter, and 2) a centralized load balancing
algorithm that is able to find global optimum.
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ternational Conference on P2P, Parallel, Grid, Cloud and Internet Computing
- Springer - 2016

2. Journal Papers (A1)

a) Adaptivity in multi-level traffic simulation - Stig Bosmans, Toon Bogaerts,
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b) Testing IoT systems using a hybrid simulation based testing approach - S
Bosmans, S Mercelis, J Denil, P Hellinckx - Computing - Springer - 2019

c) Cost-aware hybrid cloud scheduling of parameter sweep calculations using pre-
dictive algorithms - Stig Bosmans, Glenn Maricaux, Filip Van Der Schueren,
Peter Hellinckx - International Journal of Grid and Utility Computing - 2019
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Appendix B

Acsim Architecture

B.1 Introduction

This appendix summarizes the early state of the Acsim architecture. It was published
as a workshop paper to the 2017 edition of 3PGCIC. This was an initial version, and
throughout the dissertation we discussed various iterations of the Acsim simulator that
expanded on the work presented in this appendix.

The Internet of Things (IoT) paradigm has gained a lot of attention in the last years.
Both in an academic context as in the industry. This has lead to many innovative
solutions improving the lives of citizens and workers for the better. Examples of such
solutions can be in found in areas such as smart health-care where sensors can be used
to measure certain health parameters of a user or in areas such as smart grids where the
power consumption of consumers are monitored in order to better match the supply of
energy. However, we are still at the start of the revolution that IoT might bring. At
the moment, many solutions rely on centralized processing of sensor data in order to
perform some actions in a reactive manner. This form of centralized decision making
can lead to performance bottle necks when applied to ultra large scale IoT environments
such as smart cities. Instead, a decentralized decision making strategy will be much more
powerful as it could lead to a dynamic, adaptive emergent behavior. This type of behavior
is characterized by the fact that it emerges from interaction of individual (IoT) entities
that interact with each other and with a changing environment, leading to a preferably
optimized global behavior. Actually, this type of IoT systems can be seen as Complex
Adaptive Systems (CAS) , which is defined as a system characterized by apparently
complex, adaptive behaviors that results of often nonlinear spatio-temporal interactions
among a large number of component systems at different levels of organization [107]. This
field of study has mostly been applied to studying the emergent behavior of biological
or economic systems such as the immune system or the stock market, but can also be
applied to studying the emergent behavior of a decentralized large-scale IoT system
birdsey2017large [108].
In order to study the emergent behavior of such complex adaptive IoT systems, simulation
is key. The required cost and effort to deploy the vast amounts of IoT entities in the
real world would otherwise be too high. Simulation techniques can be used to validate
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and verify if the demonstrated emergent behavior is preferable [4]. In this paper we
will often refer to a Python IoT simulation framework that can be used to test both
virtual and real-life, large-scale, complex adaptive IoT systems and allows for integration
[109] with a real-life IoT environment. We pay special attention to study the domain-
specific characteristics of IoT systems and try to leverage those as much as possible in
the simulation framework in order to reduce the required modeling efforts. In section
two, we look at the characteristics of modeling IoT entities and the IoT environment.
Section three zooms in on various modeling strategies that can be applied and Section
four discusses the high level architecture of the simulation framework.

B.2 Characteristics of modeling the Internet of Things

The contribution of the simulation framework that we present in this paper is the fact
that we add domain knowledge into the framework. This has two major advantages: 1)
Reducing the modeling effort: This is possible because we can include domain specific
features in the framework. 2) Improve the opportunity to scale: when, in a later phase,
the simulation architecture moves from a monolithic architecture to a parallel and dis-
tributed (PADS [110]) architecture, we can leverage IoT domain specific assumptions
in our favor to include prebuilt simulation partitioning and scaling strategies. In this
section we look into more detail what the high-level characteristics of IoT systems are.
As mentioned in the introduction, from a behavioral perspective, we consider a large-
scale IoT system as a complex adaptive system. This is because on an abstract basis
an IoT system consists of many individual, heterogeneous, autonomous components that
have the ability to interact with each-other and with the environment. Furthermore,
the behavior of these components is preferably adaptive, given that the environment
in which they operate is chaotic and quickly changing. Examples of such systems are
smart cities, smart grids, smart buildings etc. Therefore, more reactive, low-scale IoT
systems such as body sensor networks are not taken into consideration in the scope of
this work. From a modeling perspective, we can look at IoT systems, and also CAS
systems in general, as multi-agent systems (MAS) [111]. MAS systems are defined from
the bottom-up, whereby the individual entities and the environment define the dynamics
of the entire systems. It is therefore vital to better understand the characteristics of the
different types of IoT entities and environments.

B.2.1 IoT Device Characteristics

The key entities of IoT systems are of-course the devices itself, for example, sensors such
as GPS sensors, temperature sensors or air quality sensors. But also actuators such as
smart traffic lights or autonomous vehicles. Most of these entities interact with their
direct environment. The spatio-temporal properties are an important characteristic of
these devices. Furthermore, these devices often employ a level of intelligence, apart
from standard reactive behavior they can also demonstrate some advanced planning
behavior, for example, a smart traffic light could adapt its light toggling behavior when
an emergency vehicle is nearby. This requires coordination and integration of the traffic
light with a number of sensors and middleware systems.
In many cases IoT devices are limited in terms of the power they can consume. As a result,
their processing power and their connectivity properties are limited. Furthermore, IoT
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devices are characterized by the heterogeneity of underlying operating systems and their
hardware properties. Most of the IoT simulators described in literature focus on testing
and modeling these low-level resource-related properties, both on a small scale [112] [113]
and on a larger scale [114]. However, in the scope of this work we are less concerned about
these aspects, because we don’t consider them vital for testing the emergent behavior of
the entire system. The spatio-temporal properties and the intelligence employed by the
device are of more concern to the emergent behavior, therefore the focus of our simulator
will be on modeling and simulating these characteristics. But of-course, the modeler is
free to integrate low-level aspects into the simulation models, this will however require
additional effort.

B.2.2 IoT Actor Characteristics

Apart from the sensors and actuators, another important, however often ignored, com-
ponent of an IoT simulator is the human actor. As argued by Nunes et al, humans are
an essential part of cyber physical systems (CPS) or IoT systems, but should no longer
be considered an external or unpredictable factor [43] . Instead, they should become a
key part of the overall system. Especially, when looked at the system for an emergent
behavior perspective, we will see that the human actor, and the interaction of the human
with the devices leads to emergent behavior. For example, it would be extremely difficult
to optimize a distributed traffic light optimization system without taking actual traffic,
which is generated by human behavior, into account. Therefore, when modeling a real-
istic simulation of a large-scale Internet of Things systems, we cannot ignore individual
behavior of human actors.

B.2.3 IoT Environment Characteristics

Finally, the dynamics of the environment must be taken into account. The environment
will mainly define how IoT entities are related to each other and how they can interact
with each other. We take following IoT environments into consideration:
Network environment: A network environment defines the relations between indi-
vidual entities based on an undirected graph datastructure. For example, a mesh network
of sensors can be represented by a network environment. The interactions of individual
sensors are based on how the devices are connected to each other in the graph. This
type of environment can also be used to represent smart grid systems where different
households are connected to various energy providers.
Street network environment: Within a street network the interactions of entities are
based on both the direction and the street where an IoT entitity is positioned. A street
network is similar to a network environment, in the sense that it is represented by a
graph datastructure, however, instead of an undirected graph a directed graph is used.
This type of environment is mostly used for smart city or smart traffic use cases.
Continuous space environment: Finally, an IoT environment can also be represented
by 2D or 3D continuous space. Here the interaction of IoT entities relies on the spatial
relationships between the entities in 2D/3D space. This type of environment can for
example be used to represent smart buildings or smart offices.
Combined environment: The environment types described above can also be com-
bined. In many cases this is even preferable. For example in the case of a smart city
system, a smart traffic light should be able to interact with other smart traffic lights to
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improve overall traffic flow, in this case a network environment seems most appropriate
to model the relations of the traffic lights. On the other hand, mobile cars should also
interact with the traffic lights, in this case a street network is more appropriate.

B.3 IoT modeling strategies

In this section we look at how the characteristics of IoT devices, which we defined in
the previous chapter, can be leveraged in our framework in order to reduce the modeling
effort without sacrificing too much computational efficiency. In some cases the ease of
modeling and maintaining performance leads to a trade-off. For example, our modeling
framework is built in python. This allows for an easy development and modeling envir-
onment which leads to faster prototyping. However, given that Python is an untyped
interpreted language, a lot of efficiency is lost and as a result performance is drastically
lower compared to other high-level programming languages such as Java and C++. We
solve this in our framework by leveraging python’s capability to closely interact with
pre-compiled C libraries by means of the Cython compiler. Parts of the framework that
are critical for performance are compiled to C or are implemented by C-based libraries
wrapped in Cython. The goal of the framework is to match these two factors as good
as possible, this is done by providing the modeler with domain specific functionality
which is optimized and easy to implement using a high-level API. The domain specific
functionality that we offer is based on the IoT modeling characteristics presented in the
previous section. In the remainder of this section we discuss some of the domain-specific
modeling techniques that the framework offers.

B.3.1 Agent based modeling

As pointed out by K. Batool et al. [115] there is currently no standard methodology
available for modeling complex real-world IoT scenario’s. However, when looking at the
literature, many practical IoT applications are modeled using a discrete event simulation
(DES) approach [116] [37], an agent based simulation (ABS) approach [112] [117] [111],
or a combination of both [44] [114]. As mentioned in the previous sections B.2.1 and
B.2.2, IoT devices and actors are characterized by their heterogeneity, their individual
and adaptive behavior, and consequently their unique interactions with the environment.
Based on these characteristics the Agent Based Modeling (ABM) paradigm allows for
a very expressive way to model both IoT device and IoT actor behavior. With ABM
a bottom-up modeling approach is taken, whereby individual entities are implemented
as an individual agent. Each agent has individual properties and has the ability to
communicate with other agents or with the environment [118]. As noted by G. Fortino
et al. agents represent a very expressive paradigm for modeling dynamic distributed
systems. Their primary features (autonomy, social ability, responsiveness, pro-activeness,
and mobility) perfectly fit both generic and specific requirements of IoT systems [44]. G.
Fortino also notes that the ABM paradigm isn’t suitable for dealing with certain low-
level network aspects, in their work they propose a combination of ABS and DES, where
a DES simulator is responsible, and better suited, to simulate these low-level aspects.
Since the scope of the simulation framework that we present in this work is limited to
simulating overall behavior, without directly taking low-level aspects into account our
framework is limited, and build around the agent based simulation approach.
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B.3.2 Domain specific environment capabilities

Based on the IoT environment characteristics described in section B.2.3 we can conclude
that a proper representation of a physical environment is important when developing IoT
applications. Especially in the context of smart city applications, knowledge of street
networks must be taken into account. We offer this functionality in our framework by
means of a Geographic Information System (GIS) engine. More specifically, an Open
Street Map (OSM) [90] parser was included in the GIS engine of the framework. Open
street map is an open source project that collects street and other geographical data of
the world. The OSM parser in our framework extracts streets data and loads it into
a directed graph so that it can be used and queried efficiently by modelers from an
environment object. It offers functionality to calculate routes between locations and it
allows to easily determine which entities are located on a street or crossing. Optimization
is of course key in the domain specific functionality that the framework offers. Therefore
all environments are driven by optimized data structures. Especially, locality information
is an important feature in the context IoT modeling, for example a modeler often wants
to know what the nearest neighbors of a given entity are, or in other words which entities
are in closest proximity of another entity. Proximity in this context is an abstract notion,
as the way to find this locality information depends on the type of environment that is
used. In a street network or graph network, proximity between entities depends on
the distance between graph vertices. This information can quite easily be determined
by using a graph data-structure and traversing the graph using breadth- or depth-first-
search. While in a 2D or 3D environment locality depends on the distance in continuous
space determined by Euclidean distance for example. In the latter case we could naively
calculate the distance between all agents, this would however lead to a very inefficient
and unscalable solution. Instead, we optimize this by implementing an R*-tree data-
structure [119] that allows nearest neighbor or range queries to performed in logarithmic
time versus linear time.

B.3.3 Modeling IoT agent behavior

Based on the characteristics of IoT devices we look at three different approaches to model
IoT device and actor behavior. All of the approaches have been implemented and tested
in the framework that we present. Overall, we assume a discrete time-stepped simu-
lation, whereby behavior is updated at each time-step interval. Therefore each agent
implements a step method, which is called by the simulation kernel at a fixed interval.
During the execution of this step method agents are able to interact with each other,
with the environment and consequently update their internal state.
Reactive Modeling: The most basic behavior to model is that of simple ’if-then’ react-
ive rules [120]. This can either be implemented directly in code as part of aforementioned
step method or via an additional domain specific language on top such as state charts.
Reactive modeling is thus mostly appropriate for modeling simple, reactive behavior.
This type of behavior often occurs in IoT devices, take for example a smart traffic light
that toggles lights based on perceived traffic or a predefined schedule. A problem how-
ever is that modeling more complex behavior often gets complex and unmanageable.
Take for example the modeling of a (smart) vehicle, many different behaviors and states
need to be tracked: driving behavior, collision avoidance, adhering to traffic regulations
such as speed limits, stopping for a red light etc. In such case it is often preferable to
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split up behavior in logic classes to maintain both readability and maintainability. This
is called a layered modeling approach. For example the behavior to drive at a certain
speed on a given route can easily be isolated. Actually, since modeling driving behavior
often occurs in smart city applications the framework offers predefined driving behavior
classes that can easily be reused by other applications. This layered approach offers a
clean decomposition of overall functionality or behavior, however, it is not always clear
how to decompose such behavior of a system, and also it requires interactions between
layers [121].
Belief Desire Intent (BDI) Modeling: A major shortcoming of reactive modeling is
that more advanced and high-level human-like planning behavior is hard to implement in
such formalism. This will however be required when implementing increasingly complex
reasoning in either advanced IoT devices or human IoT actors. Since the goal of the
framework is to test and evaluate IoT systems as a whole, this type of complex, not
always deterministic behavior will need to be taken into account. This is definitely the
case when our goal is to evaluate complex adaptive behavior. A technique that allows
modeling of such planning behavior, is the belief-desire-intent (BDI) architecture. This
model is based on practical reasoning that we do in everyday life. The modeler needs to
declare the beliefs, desires and intents of system. A belief, represents the information an
agent holds about the environment, these beliefs exist by perception of the environment
or by interaction with other agents. The desires represents the goals of an agent. Finally,
intents are the actions that can be taken based on the current desires and beliefs. In
other words, the intents represent a plan of action that an agent can take in certain
scenario’s. Note, that often part of the plan has to be implemented in a reactive way,
often by more low-level programming languages. Various BDI engines have been imple-
mented in the past, many of them based on AgentSpeak, a programming language that
combines the ideas of logic programming and the BDI architecture in order to model
abstract reasoning behavior in agents [122].
Lom et al. demonstrate in their work by means of example how BDI and AgentSpeak can
be used to model behavior of smart city entities. For example, they model the behavior
of a smart street lantern. The beliefs of the lantern are its current states, its energy
consumption, its schedule and its maintenance status. It desires are to measure or pre-
dict its consumption, send its status to maintenance companies, fulfill actions based on
its schedule and send its energy consumption predictions to a smart power grid system.
Based on the current belief state of the smart lantern, many plans of actions can be taken
to accomplish its desires. These plans of actions are not necessarily deterministic, and
its sequence of actions can change based on changes in its beliefs.
BDI is a technique that has been researched in-depth for years in the context of modeling
multi-agent systems. It should however be also very useful for describing complex reas-
oning behavior in Internet of Things agents. Although, the idea of AgentSpeak was to
allow for an easy modeling approach that is also accessible for people without a computer
science background. We see that in practice, the complexity of the architecture and the
programming language is high and as a consequence an in-depth knowledge is required
to get started with it. Also, BDI lacks the capability to adapt its behavior over time.
This prevents us from fully adopting this technique. However, in literature initiatives
are described to make the BDI idea less complex to implement.
Data driven Modeling: Finally, another approach to modeling behavior of IoT entities
is using a combination of data mining and machine learning techniques. This approach
is especially useful when the behavior of IoT entities needs to resemble that of already
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observed data which is stored in a data stream. In consequence it leads to implicitly
validated behavior when the trained model’s accuracy is appropriately high. Kavak et
al.[123] demonstrate in their work how a data-driven modeling approach can be used to
create realistic mobility patterns. They use geo-tagged twitter data to predict certain
movement patterns and use this to drive high-level decision making of individual agents.
Just like BDI, also this data driven approach is ideal for modeling high level behavior and
planning but still requires low-level modeling in order to implement reactive behavior.
For example, in the example of Kavak et al. it the data driven model can be used to
decide when and where an agent will navigate to, but the actual driving behavior still
needs to be implemented by another more appropriate formalism.

In this section we presented various modeling approaches that can be used when
modeling behavior of IoT entities. This list is driven by the characteristics of Internet
of Things devices. When each formalism should be used will depend on the type of
behavior that needs to be modeled. The BDI and data driven modeling approach are most
appropriate when modeling complex behavior and decision making. Whereas reactive
modeling is used to represent more simple behavior patterns.

B.4 High level framework architecture

Figure B.1: High level architecture of agent based simulation framework
Figure B.1 shows the architecture of the IoT simulation framework. Most of it is

based on the Mesa simulator [59]. Mesa is a generic agent based simulation framework.
It aims to enable users to quickly build agent based simulations and can be seen as
the Netlogo and Repast alternative for the Python language. We leveraged many of
the architectural ideas and extended them with IoT domain-specific models and a more
in-depth functionality to integrate a running, real-time simulation with an existing IoT
environment. As shown in figure B.1 the simulator component is the main component and
is used to configure overall simulation information like the models and the environments
that are be used. It implements a step method, which, when triggered, cascades down
to trigger the model and agent step methods. The model component is responsible
to initializing and managing the individual agents of a certain type, for example the
car model will initialize all car agents. Furthermore, it interacts closely with the data
collector component to collect and modify state data of one or more agents.The Agent
implements the behavior of the individual agent and will update its state when the step
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method is triggered. Various behavior modeling strategies can be taken, as explained in
section B.3.3. The environment component allows interaction with agents and between
agents. Various environments are already implemented based on the overview in section
B.2.3. Finally, the Web based GUI component, the Rest interface and Pub/sub interface
communicate with the data collector to visualize and collect state information of the
agents.

B.5 Conclusion

In this work we presented the characteristics of Internet of Things devices, actors and
environments. We looked at how we can optimize simulation related implementations
of these entities using an agent based simulation approach. Optimization is possible
by including domain knowledge in the simulation engine, by means of optimized data-
structures and techniques. Finally, the advantages and disadvantages of a reactive, data-
driven and belief-desire-intent modeling approach were discussed. We looked at how each
of these modeling approaches can be applied to Internet of Things modeling. In future
work, we will pay special attention to the simulation architecture that is used and how we
can move from a monolithic architecture to a distributed architecture so that large-scale
simulations can be included.
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Appendix C

Cost-aware hybrid cloud scheduling of
parameter sweep calculations using

predictive algorithms

Abstract

This paper investigates various techniques for scheduling parameter sweep cal-
culations cost efficiently in a hybrid cloud environment. The combination of both a
private and public cloud environment integrates the advantages of being cost effect-
ive and having virtually unlimited scaling capabilities at the same time. To make
an accurate estimate for the required resources, multiple prediction techniques are
discussed. The estimation can be used to create an efficient scheduler which re-
spects both deadline and cost. These findings have been implemented and tested in
a Java based cloud framework which operates on Amazon EC2 and OpenNebula.
Also, we present a theoretical model to further optimize the cost by leveraging the
Amazon Spot Market.

C.1 Introduction

This appendix presents work not directly related to this dissertation that was part of my
master thesis. The core of the work has been executed in 2013 - 2014, an expansion of
this work was later submitted for publication in 2017, during the first year of my PhD.

The increasing demand for processing power over the past years forced technology to
evolve from supercomputers to other solutions. Grid systems have been a viable solu-
tion for a long time, however these resources aren’t unlimited. For additional computing
power, techniques were developed to address idle resources on desktop computers. Idle
desktop computers were used to create a heterogenous grid. [124] [125] [126] More re-
cently, cloud computing is changing information technology. Various companies offer
public cloud services, providing virtually unlimited resources on demand, but with a
cost. These resources can be complemented with self owned resources such as a private
cloud. To keep the cost at a minimum, a scheduler will distribute a minimum of workload
to the public cloud, but the workload is still processed before a deadline. Related work
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shows how a cost optimization scheduler can reduce the cost to process a workload [127]
[128]. However, this research uses heuristics to estimate the workload. In this paper,
various (non-heuristic) techniques will be discussed in depth to create a cost efficient
scaler which will allocate resources in the public and private cloud.

In our research the workload is defined as a parameter sweep which is an application
that executes the same piece of code multiple times with a set of input parameters. For
example the surface of an airplane wing or the weight of an airplane can be parameters
to determine the fuel consumption of the plane. Each combination of different input
parameters is referred to as a job. Our research focuses on how we can cost efficiently
schedule a parameter sweep application in a hybrid cloud environment while respecting
the deadline. In order to do that prediction techniques are used to estimate the total
execution time to construct a reliable model as fast as possible. [129] Different sample se-
lectors schedule the workload of the parameter sweep by increasing priorities, the higher
the priority the sooner the job has to be executed. A scaler is used to divide the workload
on both the private and the public cloud. Also, the scaler is responsible to start extra
instances when the predicted runtime exceeds the deadline. To respect the cost it might
be possible that the scaler will stop public instances in order to save money.

We present a novel theoretical approach to further optimize the cost by combining amazon
spot market instances with regular reserved cloud instances using predictive scheduling
techniques.

This paper is organized as follows: Different sample selectors are discussed in section
two. Section three focuses on the implementation of various prediction techniques. Scal-
ing and scheduling are discussed in section four. Section five describes the developed
framework. The results of our research are evaluated in section six. In the seventh
section we present a theoretical approach for further optimizing the cost of the system.
Finally our work is concluded and the future research is outlined in section seven and
eight.

C.2 Sample selector

The sample selector assigns priorities to each individual job of a parameter sweep. The
higher the priority of the job, the sooner that the job will be executed. Once a job or
parameter combination is executed the runtime of that job is logged into a database.
These runtime measurements are then used as scattered points in the prediction model
(section 3). The order of the execution of the parameter combinations is very important
in regard to get a reliable prediction as soon as possible. In order to have a reliable
prediction, testing reveals that the whole range of parameters should be covered. The
random sample selector (Figure 1b) is clearly the most promising because samples in a
wide parameter range are selected at an early stage.

We implemented three different sample selectors in our framework:
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Figure C.1: Sample selector example

C.2.1 Sequential

When using a sequential sample selector, parameter values will be fetched from the
database one after another. This will make it very difficult to estimate the runtime at an
early stage because only one part of the parameter range is taken into account (Figure
1a).

C.2.2 Random

A random sample selector will select random parameters within the parameter range. The
random sample selector is the most effective because each part of the parameter range is
taken into account. Experimental results show that a wide area of the parameter sweep
is covered at an early stage.

C.2.3 Spread Algorithm

The goal of this algorithm is to maximize the spread of the selected samples. The
algorithm will select unprocessed samples so that the distance between processed samples
is the greatest possible. The algorithm works as follows:

1. Increase priority of the highest value of the unexecuted parameters;

2. Increase priority of the unexecuted parameter closest to the last increased priority
parameter divided by two;

3. Increase priority of the unexecuted parameter closest to the highest unexecuted
parameter divided by two + the highest unexecuted parameter divided by two;

4. Repeat step two until parameter zero is reached;

5. Repeat the algorithm from the beginning.
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Figure C.2: Scattered points before and after interpolation (y-axis: duration (s), x-axis: job
position)

C.3 Prediction techniques

To execute a parameter sweep application as cost efficient as possible and to respect a
deadline, it is necessary to estimate how much resources will be required to execute a
complete parameter sweep. Regression algorithms are used to create an estimate of the
runtime and of the corresponding resources required to construct a reliable model as fast
as possible. A significant dataset needs to be fetched to the algorithms in order to obtain
a reliable estimation. Depending on this estimation the framework will automatically
start or stop cloud instances to optimise the cost. In our research we implemented
three different mathematical approaches to predict the duration: Polynomial, Radial
basis functions and Kriging [129]. To build the prediction models the Java Jama matrix
library is used. [130]

C.3.1 Polynomial

When using the polynomial regression technique, a polynomial will be constructed with
runtimes of jobs that are already executed. The constructed polynomial model approx-
imates the known points as good as possible using the least squares method. To limit
the processing power required and prevent the polynomial from overfitting, the degree
of the polynomial will be set independent of the number of points provided to construct
the polynomial. This results in a polynomial which will not intersect with the provided
points, but they will be approximated as good as possible using the least squares method
(Figure 2).

C.3.2 Radial Basis Functions

The RBF model constructs a function around all the known runtimes. The weights of
these functions will be adapted with the least squares method to approximate the model
consisting of the existing durations as good as possible. RBF has a faster convergence
and is more accurate in many situations. Different kernel functions [129], [131], [132] can
be implemented in the radial basis functions. In the framework we used the following
functions:
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• Multiquadric function

• Inverse multiquadric function

• Epanechnikov kernel function

These enumerated functions are also referred to as kernel functions.

C.3.3 Kriging

Kriging is very similar to radial basis functions, but Kriging evaluates the kernels in every
dimension of a sample[129] [132] this results in better results when multiple dimensions
are used. The dimensions of the samples are defined by the number of parameters. Just
as with radial basis functions the three described kernel functions are implemented in
the framework.

C.3.4 Other prediction techniques

In related work[129] [132], the use of neural network were investigated, but results were
very poor for this technique. Our developed framework is modularly constructed so that
other prediction techniques can be easily incorporated.

C.3.5 Overhead

Each job has to be fetched from the database before it can be executed and after the
execution the result has to be written to the database. These operations take about
1,5s on average in the test environment described in section 6. When a single parameter
sweep consists of 1000 jobs we will have to take 1500s of overhead into account. The
overhead is monitored and logged to the database so that the real total duration of the
parameter sweep can be estimated. Equation (C.1) describes how the total duration is
determined:

Totalruntime = (d+ (o ∗ jobs))/workers (C.1)

d is the predicted runtime
o is the measured overhead
Jobs is the total amount of jobs in the parameter sweep
Workers is the amount of active workers

C.4 Scaling

Scaling keeps the balance between the provided deadline and cost optimization. The
scaler will evaluate the predicted remaining durations and consider whether the current
deployed cloud resources are feasible to reach the deadline. If the predicted duration
exceeds the deadline multiple successive times, extra resources are allocated. Multiple
instances will be scaled at once until the predicted duration matches the deadline. The
deadline is evaluated multiple times before actually scaling. If there is no hardware avail-
able to host a private cloud, it might be beneficial to use a public cloud provider. In this
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thesis however, we assume there is enough hardware available to profitably host a private
cloud and that this is more profitable than a public cloud. To reduce cost, the scaler will
always opt for private instances unless these are already exhausted. The scaler will also
monitor if the allocated resources are redundant. If the parameter sweep can finish on
time without an instance, this instance will be terminated for further cost reduction.
In this thesis we used OpenNebula as the private Cloud Provider.[133] OpenNebula is an
Open Source cloud management platform. OpenNebula has the ability to manage mul-
tiple hypervisors from one place.[134] Amazon EC2 was picked as public cloud provider
because it is the biggest IAAS provider which provides an extensive Java SDK.awssdk

C.4.1 Scaling mode: Private, Public, Hybrid

Scaling modes provide more control over different clouds. When using private or public
cloud, only the selected one will be used. In a hybrid environment, both clouds will be
used, with the private cloud as the preferred cloud provider. If the private cloud provider
is not able to provide the requested resources, public instances will be used instead. When
using OpenNebula (ON) as the private cloud provider, this method of ”cloud bursting”
is also manageable by the private cloud provider[134]. If all resources available in the
private ON network are exhausted, public instances can be ran and managed from ON.
While these instances are not in deployed to hardware managed by OpenNebula, they
can still be used as a native ON instance.

C.4.2 Strict versus Tolerant scaling

When using Amazon EC2 as a public cloud provider usage per hour will be charged
amazonpricing. If the instance is only used for 5 minutes and terminated afterwards, a
full hour will still be charged. To make a cost effective scaler, it is necessary to keep the
remaining time of the instances in mind. When set to tolerant, scaling will not occur if
the deadline will be missed, but there is enough time left in running instances to finish
the parameter sweep. The maximum time passed a deadline with tolerant scaling is 1
hour. If the deadline is very important, the strict scaling method will deploy instances,
without considering remaining time for the running instances. Strict and Tolerant scaling
has no effect in a private cloud.

C.4.3 Private Greedy

When a private greedy scaler is used, all resources available to the private cloud will
be allocated. Using This overallocation of resources will cause a parameter sweep to
be processed as fast as possible. If a deadline for a specific parameter sweep requires
more resources than the private cloud can provide, the scheduler would use all private
resources, whether the private greedy method was used or not. Private greedy is only
available when using a private cloud (private/hybrid mode).

C.5 Cloud framework

C.5.1 Overview

The architecture of the framework consists of three major components (Figure 3):
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Figure C.3: Overview architecture of the cloud framework

• Input

• The Cloud Manager

• The Database

• The Workers

• Output

The cloud manager is the heart of the framework. It will generate all possible para-
meter combinations of a parameter sweep and it will write these parameter combinations
to the database. At the same time the server installs, configures and launches the work-
ers. The workers are public or private cloud instances operating on a Linux Ubuntu
operating system. Once the workers are launched, they will get and execute the next
job with the highest priority. The worker will then write the result and the execution
time to the database. The server constantly reads the measured runtime of the jobs that
are already executed from the database. Using these runtimes it can build a prediction
model which estimates the total execution time of the entire parameter sweep. This
process will repeat until all the jobs are solved.

C.5.2 Input

To submit a new parameter sweep three components are required. A parameter csv file
will provide the parameters, a parameter sweep executable is a piece of code that will
run multiple times and finally the configuration file defines how the framework interacts.

Parameter CSV

The CSV file contains a table with all possible input parameters. Each column is a
different parameter. The framework will use this table to generate all the possible com-
binations. These parameter combinations will be written to the database.
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Parameter Sweep Executable

The executable is the actual parameter sweep application. It is a Java JAR file that
can be executed when all the parameters are passed as arguments. The application will
return its result after completion.

Configuration

The whole configuration of the framework can be set using a JSON configuration file
json. The most important configuration variables are discussed:

• NumberOfInstances: Defines the amount of workers to start with.

• ParameterFile: The path to the CSV file that contains all the parameters.

• PredictionModel: Defines the prediction technique that will be used.

• PredictionKernel: Defines the kernel used by the prediction technique.

• LoggingEnabled: When logging is enabled all the predictions are logged to the
database. They can be reviewed using the web based GUI.

• ConsoleAWSInstanceFeedback: When enabled this will show all the installation
feedback for each worker.

• InstanceSize: Defines the amount of resources necessary for an individual worker

• Deadline: Defines the deadline in dd/mm/yyyy hh:mm format.

• Strict: Defines the scaler to be strict or tolerant in the deadline (section C.4.2).

• PrivateGreedy: Defines whether or not the Private Greedy option will be used in
the scaler (section C.4.3).

C.5.3 Cloud Manager

The cloud manager is an application written in Java that runs on the server. It handles
and processes the input data and writes all the possible parameter combinations to a
database. At the same time the cloud manager communicates with a cloud provider to
launch and set up workers. Once the workers are launched and set up, an sftp connec-
tion is made to upload the parameter sweep and the workermanager executables. These
executables are started using ssh commands.

The cloud manager will also assign priorities to the jobs. A job is referred to as a
unique parameter combination, so each row in the database can be seen as a single job.
The priority of the job influences the order of execution. The execution order is very
important to build a reliable runtime prediction because each job logs its individual
runtime which is then used to predict the runtime of the entire parameter sweep. By
using priorities, there is no need for communication between the cloud manager and the
active workers after these have been setup and the worker manager is started.
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Figure C.4: Database structure

Prediction Scaler

The prediction scaler operates on a single thread which is started by the cloud manager
application. The prediction scaler will read the runtimes from the jobs that are already
done and fetch these runtimes to incorporate them in a prediction model which estimates
the total execution time. The estimated runtime is then used to upscale or downscale
by starting or terminating workers in order to meet a given deadline and to stay below
the maximum cost. The prediction scaler is also responsible to log the predictions to the
database.

C.5.4 Database

The database is used to act as a queue for all parameter combinations and to store
additional information for the parameter sweep currently executed. The information is
stored in different tables. (Figure 4).

The Job Info table contains all information about a job. A row in this table contains
the parameter itself, the instanceID which processed the job, a state which determines
if the job is already processed, the result of the processed parameters, a queue position
and priority, an estimated and actual runtime and the overhead time.
The Worker Info table contains all information about all the workers for a parameter
sweep. In this table, the worker ID, IP address and starttime are stored.
The Predictive Algorithm Parameters table contains all the information about the cur-
rent predictive algorithm, the used kernel, sample selector and the time the prediction
started.
The Predicted Durations Info table contains the total estimated runtimes and the num-
ber of points in the model used to obtain this estimation.

The database component of the framework is also interchangeable with other databases
by implementing an abstract class. In this framework, a MySQL database with an In-
noDB engine was used because of its row-locking features [135] mysql. Without these
it might be possible for jobs to be fetched and processed multiple times. A MongoDB
implementation for example with a shadow table which overcomes this shortcoming was
implemented as well. Nevertheless MySQL was better suited to deal with the different
synchronisation issues and for this selected as database component in this project.
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C.5.5 Workers

Cloud instance

Cloud instances can be deployed to a private or public cloud. In our research OpenNebula
was used as a VIM to create our own private cloud provider and Amazon EC2 as the
public cloud provider. The greatest advantage to use a private cloud provider is that it
runs on your own system, in a controlled environment, however resources are limited to
the available hardware. To overcome this, a public cloud provider is also incorporated in
the framework. The great advantage of using a public cloud is that there is a virtually
unlimited amount of resources available on demand, but at a greater cost than a private
cloud provider. Our framework can run in different configurations: public (using the
public cloud provider only), private (using the private cloud provider only) and hybrid
(using both cloud providers). How the public and private cloud provider complement
each other in this hybrid configuration is discussed in section 2.4. Other cloud providers
can be easily integrated in our framework by implementing an abstract class.

Worker manager

The worker manager is an application written in Java that will be executed on each
worker. The worker manager connects to the database and fetches the next job with
the highest priority. It will invoke the executable parameter sweep JAR file and record
its runtime. The result, runtime, overhead and information about the instance which
processed the job are written back to the database.

Graphical User Interface

The Graphical User Interface (GUI) collects data from the database and shows it using
a web based interface. (Figure 5) The GUI is build for testing purposes making it much
easier to evaluate different parameter sweep configurations. Three charts are shown
using jqplot javascript library [136]. For each parameter sweep it will show the following
information:

• General information about the parameter sweep:

– Prediction model

– Prediction kernel

– Sample Selector

– Starttime

– Endtime

• Active workers:

– Starttime

– Number of jobs executed

– Public IP address

• A chart that shows the estimated runtime in function of the position of all the jobs
that are executed.
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Figure C.5: GUI

• A chart that shows the predicted runtime in function of the position of each job.

• A chart that shows the total predicted execution time of the entire parameter sweep
in function of the amount of samples into the prediction model. Each sample can
be seen as the runtime of an executed job. The more samples, the more accurate
the prediction model should be.

C.6 Test results

C.6.1 Test setup

In this test setup two simulations of a parameter sweep application were build. The
simulation uses only one input parameter. We decided to use simulations instead of real
parameter sweep applications because this gives us the possibility to fully control the
runtime of each job. The input parameter immediately influences the runtime because
this parameter is passed into a polynomial and kriging model, the output of these two
models results into the final duration.

Each simulation uses a different polynomial and Kriging model and in one of the two
simulations pseudo random noise was added. The use of only one parameter enables us to
easily plot the data into a two-dimensional graph, which is more convenient to evaluate.

C.6.2 Results

In this section we will evaluate all implemented prediction techniques, scheduling tech-
niques and sample selectors. All tests were executed ten times to be statistically signi-
ficant.
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Figure C.6: Three sample selectors combined - Real runtime: 12003s

Sample selectors

Figure 6 shows the predicted total duration in function of the number of samples added
into the prediction model. To come to these results the parameter sweep application with
noise described in section 3.1 was used together with a radial basis function predictor
and a multiquadric kernel. The real total duration was on average 1203 seconds.

The figure clearly illustrates that the sequential sample selector is of no use because
it fluctuates too much. The spread sample selector performs better but still isn’t perfect
because it stabilizes only after 800 input samples. Optimization of the spread algorithm
to decrease the gaps between the selected samples (Figure 1c) might improve this. The
results of the random sample selector are very stable. Tests with other configurations
and parameter sweep applications confirm these results.

Predictions

All three prediction techniques and all kernels discussed in section three were tested
multiple times with different applications. The three best techniques are covered: Poly-
nomial, Kriging with an inverse multiquadric kernel and RBF with a multiquadric kernel.
The predicted duration in function of the number of samples added into the prediction
model are plotted in Figure 7 and 8. Both tests were performed using a random sample
selector. Figure 7 uses the parameter sweep application with noise and Figure 8 uses the
parameter sweep application without noise.

Both graphs show that it takes a to long until the Kriging technique reaches a trust-
worthy estimate. Other techniques perform better, the RBF technique and the polyno-
mial technique are well matched. However most of the tests with different parameter
sweep applications pointed out that the RBF technique performs slightly better.

Scaling

• Test setup 1: No scaling, 2 instances started

• Test setup 2: Scaling, started with 2 instances (tolerant)

• Test setup 3: Scaling, started with 2 instances (strict)
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Figure C.7: Prediction techniques compared - Noise added

Figure C.8: Prediction techniques compared - Without noise

Figure C.9: Cost and duration of a parameter sweep with scaling
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• Test setup 4: No scaling, 12 instances started

Tests were performed in Public mode, the deadline was set one hour later, using radial
basis functions with a multiquadric kernel and a random sample selector.

As we can see in the results (Figure 9), scaling has a significant impact, even with a
very short deadline and relatively simple parameter sweep. We can see that test setup
one (without scaling) processed the full parameter sweep the fastest, but it is also the
most expensive option.
The other test setup without scaling, setup four is the cheapest setup, but the deadline
was abundantly exceeded. In both setups where scaling was used, the deadline was met,
but when using the tolerant method, parameter sweep was executed as cost effective as
possible.
The reason why the strict method is almost as expensive as the setup without scaling is
because of its behaviour to strictly reach the deadline. When the predictor’s estimation
went up at the end, the scaler deployed extra instances just a few minutes before the
deadline, while the tolerant method would consider the remaining time of the running
instances.

C.7 Cost effective scheduling

Until now we focused in this paper solely on reserved instances in a private or public
cloud environment. The advantage of working with public reserved instances is that the
required cost is fixed and that your instance is operational during a predefined or virtu-
ally endless period of time. This fixed approach makes it easy for our model to predict
runtimes and to predict the cost that will be required to run certain jobs as demonstrated
in the earlier sections of this paper.
However, when the main goal is to run these calculations as cost-effective as possible,
having a fixed price might not be the best way, especially not when knowing that dur-
ing certain periods of time the load on the overall public cloud infrastructure is low as
a result of a lower demand. And as basic economics prescribes, a low demand should
decrease the cost when the supply remains constant.

This is exactly what the Amazon AWS platform tries to achieve with their spot market.
It allows users to bid on EC2 instances and when the demand is low, amazon will be able
to offer their cloud resources at a much lower cost compared to the reserved resources
(Figure 10). But note that this works both ways, when the demand is high, the biddings
will increase and as a result the cost of the cloud resources will increase as well. Because
of that, the Amazon platform allows you to bid a certain price for using their spot market
resources, and as long as the market price is below your bidding amount you will be able
to make use of these resources. However, when the market price exceeds your bidding
amount the processes running on the spot market resources will be terminated.

C.7.1 Integrating Amazon spot market

Leveraging the Amazon spot market as a tool to lower the cost of running parameter
sweep calculations on public cloud instances can be very powerful and can result in major
cost savings but will come with extra challenges and a more complex prediction model.
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Figure C.10: Spot market price fluctuations for a linux micro instance (Oct 2016-Jan 2017)

In this section we will discuss the challenges necessary to overcome in order to integrate
the amazon spot market in our framework.

Reliability

As mentioned in the previous section the reliability of using spot market resources will
decrease severely compared to the reserved cloud instances. Using historical pricing data,
which is publicly available for the last three months, we can use predictions techniques
to predict when the demand will be at its lowest. Using these predictions, we can then
automatically schedule certain parameter sweep jobs during low-demand periods. The
predictions can also be used to determine the most optimal bidding price that provides
some certain level of reliability and remains below the default price for reserved instances
at the same time. Using the public spot market API, offered by amazon we can then
fully automate the bidding and orchestration process of the spot market instances.

Interruption safe model

Although the prediction algorithms can provide a very powerful way to schedule para-
meter sweep calculations in the spot market, we still have to prepare for interruptions
caused by unexpected rise of demand and price. This can be achieved using a termination
message that will be send to each spot instance two minutes prior to termination. This
functionality is offered by the Amazon AWS platform by default. During this two minute
period the instances will off-load the state of the running calculations to an Amazon S3
cloud storage container. This will then be automatically logged in the database of our
system, so that when the prices decrease again below our optimal bidding price we can
automatically relaunch the terminated instances and continue from where we left off by
fetching the calculation state from the S3 container to the relaunched spot instances.

Hybrid model

The disadvantage of solely relying on spot instances is that it will be much harder to
complete the jobs before a certain deadline. This is because the system when the spot
market demand is too high the predicted schedules will prescribe to wait a certain period
of time. To mitigate this, we propose a hybrid model that combines the use of one or more
reserved instance, so that when the spot instances have to be terminated, the reserved
instance can add these running calculations to their job-queue. This allows the system
to continuously make progress instead of being idle while still combining the benefits of
having an acceptable level of stability at a much lower cost.
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Although, it must be noted that the tradeoff between cost and deadline will have to be
made for each individual use case separately.

C.8 Conclusion

Different techniques are discussed on how a parameter sweep application can be cost
efficiently scheduled in a hybrid cloud environment while respecting the deadline. Pre-
diction techniques are used to determine the remaining execution time. The radial basis
function with a multiquadric kernel together with the polynomial technique showed the
best results depending on the application. In order to schedule the jobs of the parameter
sweep a sample selector was used. The sample selector assigns priorities to each job, the
higher the priority the sooner it will be executed. The execution order has a great impact
on the predicted execution times. Results showed that the random sample selector as
the better one. The spread algorithm is also very promising but it needs further optimiz-
ation. The implementation of various scaling methods makes it possible to launch extra
instances in the private or public cloud when the estimated execution time exceeds the
deadline. On the other hand the scaler will also downscale to not over allocate resources
and thus reduce the cost. Globally we can conclude extensive cost optimisation in dead-
line dependent parameter sweeps can be reached by introducing runtime prediction in
scaling and load balancing algorithms on a public, private or hybrid cloud environment.
The theoretical hybrid spot market model we discuss promises great results that can
further downsize the costs required to run parameter sweep calculations in the public
cloud. However it comes with a reduced reliability which will impact runtimes of the
system compared to the original approach.

C.9 Future Work

We want to further reduce the overhead when launching new parameter sweep jobs. Also
we want to increase the performance of the predictive models by reducing overfitting is-
sues that exist in the current models. Finally, we believe that integrating the theoretical
spot market model might largely reduce costs required to run parameter sweep calcula-
tions in a public cloud environment.
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‘Activity regions for the specification of discrete event systems,’ in Proceedings
of the 2010 Spring Simulation Multiconference, Society for Computer Simulation
International, 2010, p. 136 (cited on pp. 9, 28).

[22] L. Lamport, ‘Time, clocks, and the ordering of events in a distributed system,’
Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978 (cited on p. 10).

[23] D. M. Nicol, ‘Principles of conservative parallel simulation,’ in Proceedings of the
28th conference on Winter simulation, IEEE Computer Society, 1996, pp. 128–
135 (cited on p. 10).

[24] J. Misra, ‘Distributed discrete-event simulation,’ ACM Computing Surveys (CSUR),
vol. 18, no. 1, pp. 39–65, 1986 (cited on p. 10).

[25] G. D’Angelo and M. Marzolla, ‘New trends in parallel and distributed simulation:
From many-cores to cloud computing,’ Simulation Modelling Practice and Theory,
vol. 49, pp. 320–335, 2014 (cited on p. 10).

[26] D. R. Jefferson, ‘Virtual time,’ ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 7, no. 3, pp. 404–425, 1985 (cited on p. 10).

118



Bibliography

[27] S. Bosmans, S. Mercelis, J. Denil and P. Hellinckx, ‘Testing iot systems using a
hybrid simulation based testing approach,’ Computing, vol. 101, no. 7, pp. 857–
872, 2019 (cited on pp. 13, 15).

[28] S. Bosmans, T. Bogaerts, W. Casteels, S. Mercelis, J. Denil and P. Hellinckx,
‘Adaptivity in distributed agent-based simulation: A generic load-balancing ap-
proach,’ in International Workshop on Multi-Agent Systems and Agent-Based
Simulation, Springer, 2020, pp. 1–12 (cited on p. 14).

[29] S. Bosmans, S. Mercelis, P. Hellinckx and J. Denil, ‘Reducing computational cost
of large-scale simulations using opportunistic model approximation,’ in SpringSim
19 (cited on pp. 14, 29, 58).

[30] S. Bosmans, S. Mercelis, M. Ceulemans, J. Denil and P. Hellinckx, ‘Acsim: To-
wards hyper-scalable internet of things simulation,’ in International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, Springer, 2017, pp. 743–
750 (cited on p. 14).

[31] S. Bosmans, G. Maricaux, F. Van Der Schueren and P. Hellinckx, ‘Cost-aware hy-
brid cloud scheduling of parameter sweep calculations using predictive algorithms,’
International Journal of Grid and Utility Computing, vol. 10, no. 1, pp. 63–75,
2019 (cited on p. 14).

[32] A. Bertolino, ‘Software testing research: Achievements, challenges, dreams,’ in
2007 Future of Software Engineering, IEEE Computer Society, 2007, pp. 85–103
(cited on p. 17).

[33] S. Nidhra and J. Dondeti, ‘Black box and white box testing techniques-a literature
review,’ International Journal of Embedded Systems and Applications (IJESA),
vol. 2, no. 2, pp. 29–50, 2012 (cited on p. 17).

[34] B. Beizer, Black-box testing: techniques for functional testing of software and sys-
tems. John Wiley & Sons, Inc., 1995 (cited on p. 17).

[35] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon and P. Demeester, ‘City of
things: An integrated and multi-technology testbed for iot smart city experiments,’
in Smart Cities Conference (ISC2), 2016 IEEE International, IEEE, 2016, pp. 1–
8 (cited on p. 17).
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