
Split-Protocol-Stack Network Simulation and
Emulation of Wireless Embedded Systems

with Radio-in-the-Loop
Towards Accurate Wireless Network Evaluation

Von der Fakultät 1 für MINT

– Mathematik, Informatik, Physik, Elektro- und Informationstechnik –

der Brandenburgischen Technischen Universität Cottbus–Senftenberg

genehmigte Dissertation

zur Erlangung des akademischen Grades eines

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

vorgelegt von

Master of Science

Sebastian Böhm

geboren am 09. Dezember 1987 in Guben

Vorsitzender: Prof. Dr. rer. nat. habil. Klaus Meer

Gutachter: Prof. Dr.-Ing. habil. Hartmut König

Gutachter: Prof. Dr. rer. nat. Volker Turau

Tag der mündlichen Prüfung: 21. Oktober 2022

https://doi.org/10.26127/BTUOpen-6144

https://doi.org/10.26127/BTUOpen-6144

Abstract

Recent challenges and novel approaches of wireless communication networks are char-
acterized by high performance requirements on the radio channel and by concepts of
self-organization, in-network processing, or resource optimization which ultimately lead
to distributed network applications, communication architectures, and radio transceivers.
Associated evaluation is driven by a multitude of ever-increasing requirements that call
for multidisciplinary expertise. Depending on the discipline, simulation is one of the most
widely used technologies, whereby often abstract assumptions and models do not allow
for sufficiently accurate, comparable results. In contrast, real-world measurements and
field-tests can only be performed on actual systems, commonly under non-reproducible
conditions.

This thesis establishes with the Split-Protocol-Stack a new type of evaluation method that
intends to help closing the gap between purely simulative analyzes and real-world tests.
With the inclusion of real radio hardware and radio channels in the event-based simula-
tion, this central hybrid approach in connection with the Radio-in-the-Loop methodology
creates synergies in interdisciplinary fields. The approach contains analytical discus-
sions, methodological strategies, and practical contributions that are summarized as key
elements in the subsequent central considerations and challenges.

With Real-Time-Shift, a pseudo-real-time synchronization approach for parallel simu-
lation and radio channel emulation of communication flows is introduced. Based on
the underlying time compensation scheme, the discrete event simulation is decoupled
from real-time constraints when exchanging event messages with real-world wireless
hardware. A physical layer emulation methodology and radio channel interface concept,
called Radio-in-the-Loop, is introduced along with two practical realization approaches.
Furthermore, strategic details on radio network planning with an approach to automatic
hardware resource allocation are presented for radio channel emulation-capable network
testbeds.

The contributions of this work are evaluated using real-world reference measurements,
practical application scenarios, and experiments that provide proof of concepts. By means
of an exemplary selected cross-layer optimization scenario, the benefits are practically
demonstrated and discussed. Finally, based on IEEE 802.15.4 as the reference protocol
standard for low-power wireless networks, this thesis provides feasibility studies and
analysis results using the representative prototype SEmulate for the Split-Protocol-Stack
approach.

Kurzfassung

Aktuelle Herausforderungen und neuartige Ansätze drahtloser Kommunikationsnetze
sind geprägt durch hohe Leistungsanforderungen auf dem Funkkanal sowie Konzepte
der Selbstorganisation, netzinternen Verarbeitung oder Ressourcen-Optimierung und
münden letztendlich in verteilten Netzwerkanwendungen, Kommunikationsarchitekturen
und Funk-Transceivern. Die Evaluation ist dabei stark von fachspezifischen, simulativen
Analysen unter abstrahierten Annahmen und Modellen geprägt, so dass die Ergebnisse oft
keine hinreichend genauen, vergleichbaren Schlussfolgerungen auf die Leistungsfähigkeit
im Gesamtsystem zulassen. Praxistests hingegen, können nur für konkrete Systeme
am Ende des Entwicklungszyklus unter zum Teil nicht reproduzierbaren Bedingungen
durchgeführt werden.

Diese Arbeit begründet mit dem Split-Protocol-Stack eine neuartige Evaluationsmethodik
die dazu beitragen soll, die Lücke zwischen rein simulativen Analysen und realen Tests
zu schließen. Unter Einbeziehung realer Funkhardware und physikalisch realitätsnah
nachgebildeter Funkkanäle in die ereignisbasierte Simulation schafft dieser zentrale
hybride Ansatz in Verbindung mit der Methodik des Radio-in-the-Loop Synergien in in-
terdisziplinären Fachgebieten. Der Ansatz enthält analytische Diskussionen, methodische
Strategien und praktische Beiträge, die als Kernelemente in den nachfolgenden zentralen
Betrachtungen und Herausforderungen zusammengefasst werden.

Unter der Bezeichnung Real-Time-Shift wird ein Synchronisationsansatz für die parallele
Simulation und Funkkanalemulation von Kommunikationsabläufen eingeführt. Basierend
auf der zugrundeliegenden Zeitkompensation wird die Simulation von Beschränkun-
gen der Echtzeitfähigkeit beim Nachrichtenaustausch von Ereignissen mit reale Funk-
Transceiver-Hardware entkoppelt. Darüberhinaus wird mit Radio-in-the-Loop eine Meth-
ode zur Emulation der physikalischen Schicht sowie Schnittstelle zum Funkkanal definiert
und praktisch realisiert. Weiterhin werden strategische Details zur Funknetzplanung
vorgestellt und mit einem Ansatz zur automatischen Hardware-Ressourcenzuweisung für
die Funkkanalemulation analysiert und praktisch erprobt.

Bewertet werden die Beiträge dieser Arbeit durch Referenzmessungen, praktische Anwen-
dungsszenarien und experimentelle Analysen, die den Nachweis der vorgestellten Konzepte
erbringen sowie deren Nutzen evaluieren. Anhand eines exemplarisch ausgewählten An-
wendungsszenarios der Protokollschicht-übergreifenden Optimierung, wird der Zugewinn
praktisch demonstriert und diskutiert. Schließlich werden auf Basis von IEEE 802.15.4
als Referenz-Protokollstandard für drahtlose Niedrigenergie-Netze durch diese Arbeit
Durchführbarkeitsstudien und Analyseergebnisse zusammen mit dem repräsentativen
Prototypen SEmulate für den Ansatz des Split-Protocol-Stack bereitgestellt.

Table of Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and Contributions Overview 8
1.3 Thesis Structure . 10

2 Wireless Network Simulation 11
2.1 Simulation-based Network Evaluation . 11

2.1.1 Terminology and Classification of Simulation Modeling 12
2.1.2 Network Simulation Methodology 14
2.1.3 Discrete Event Simulation . 16

2.2 Modeling for Wireless Network Simulation 19
2.2.1 Radio Channel Modeling . 20
2.2.2 Physical Layer Modeling . 22
2.2.3 Data Link Layer Modeling . 25
2.2.4 Higher Layer Modeling . 27
2.2.5 Network Topology and Mobility Modeling 29

2.3 Selected Simulation Systems and Models 30
2.3.1 Discrete-Event Simulators in the Wild 30
2.3.2 Link Layer Simulation Models and Systems 31

2.4 Limitations of pure Simulations . 34
2.4.1 Validation and Credibility . 34
2.4.2 Performance and Scalability . 35
2.4.3 Cross-Protocol Stack and Interference 36

3 Wireless Network Emulation 37
3.1 Emulation Methodology and Classification 37

3.1.1 Methodical Delimitation . 38
3.1.2 Classification . 38

3.2 Radio Link Emulation Requirements and Strategies 40
3.2.1 Emulator Requirements . 40
3.2.2 Emulating Network Conditions 42
3.2.3 Emulating the Network Interfaces 44

i

Table of Contents

3.3 Selected Radio Link Emulation Approaches 46
3.4 Limitations of Radio Link Emulation . 51

3.4.1 Cross-Layer and Cognitive Radio 51
3.4.2 Real-Time Scalability and Mobility 52

4 Parallel Simulation and Emulation 53
4.1 Methodology and Requirements . 53

4.1.1 Terminology and Methodical Delimitation 54
4.1.2 Coupling Problems and Requirements 55

4.2 Split-Protocol-Stack Wireless Network Emulation 57
4.2.1 Pseudo-Real-Time Network Simulation 58
4.2.2 Radio-in-the-Loop Wireless Transmissions 60
4.2.3 Radio-in-the-Loop Analog Radio Channel Emulation 61

4.3 Analysis of HIL and Co-Simulation Approaches 62
4.3.1 Real Protocol Implementations in Simulated Networks 63
4.3.2 Simulated Protocols on Real or Emulated Networks 65
4.3.3 Analysis Summary and Concluding Discussion 67

4.4 Benefits, Use Cases and Scenarios . 71
4.4.1 Approach Benefits Overview . 71
4.4.2 Application Domains and Use Cases 72
4.4.3 Split-Protocol-Stack Reference Configuration Scenarios 74

5 Real-Time-Shift Discrete Event Simulation & Synchronization 77
5.1 Real-Time Synchronization Problem Statement 77

5.1.1 Real-Time Hardware-in-the-Loop Simulation 78
5.1.2 Real-Time Synchronizing Simulation and Emulation 79

5.2 Real-Time-Shift Network Simulation . 80
5.2.1 Event Transmission Latency and Jitter Compensation 80
5.2.2 Pseudo-Real-Time Event Scheduling 81
5.2.3 Real-Time Event Stream Processing 84
5.2.4 Determination of the Time Constants 86

5.3 Simulator Interfacing and Concept Implementation 88
5.3.1 Interface Modeling and Abstraction 88
5.3.2 Simulation Model Enhancements and External Interfacing 89
5.3.3 Radio-in-the-Loop Event Stream Forwarder 92

5.4 Evaluation and Discussion . 94
5.4.1 Emulation Scenario Model Validation and Verification 94
5.4.2 Event-Stream Forwarder Performance and Accuracy 96
5.4.3 Discussion of the Evaluation Results 100

ii

Table of Contents

6 Radio-in-the-Loop Physical Layer Modeling 103
6.1 Radio-in-the-Loop Modeling Strategy . 103

6.1.1 Interfacing and Scheduling Virtual Events on Real Hardware . . . 104
6.1.2 Physical Layer Modeling . 105

6.2 Chip Radio-in-the-Loop Wireless Transmissions 106
6.2.1 Message Event Handling at the Node Interface 106
6.2.2 Radio-in-the-Loop Real-Time Scheduling 106
6.2.3 Handling and Dispatching Protocol Primitives 107

6.3 Software Radio-in-the-Loop Wireless Transmissions 108
6.3.1 Data Link Layer Interface Modeling 109
6.3.2 Time-Aware Event Scheduling in Streaming Systems 109
6.3.3 Software-Defined Radio Physical Layer Modeling 110

6.4 Evaluation and Discussion . 113
6.4.1 Feasibility and Performance of the Chip Radio Transceiver 113
6.4.2 Feasibility and Performance of the Software Radio Transceiver . . 115
6.4.3 Discussion . 120

7 Radio-in-the-Loop Channel Emulation 123
7.1 Radio Channel Emulation Modeling Strategy 123

7.1.1 Wireless Network Planning . 124
7.1.2 Radio Topology and Channel Emulation Modeling 126

7.2 Chicken Creek Reference Measurements 129
7.2.1 Measurement Setup and Node Placement 130
7.2.2 Measurement Results and RIL Emulation Relevance 131

7.3 Hardware Allocation in Network Emulation Testbeds 132
7.3.1 Problem Statement and Model Definition 132
7.3.2 Allocation Approach . 135

7.4 Evaluation and Discussion . 138
7.4.1 Feasibility of Hardware Allocation 138
7.4.2 Enhancing the Hardware Attenuation 139

8 SEmulate Prototype and Use Case Study 141
8.1 SEmulate Overview . 141

8.1.1 Emulation Prototype Architecture 142
8.1.2 Creating, Building, and Running Emulations 143

8.2 Case Study Scenario: Cross-Layer Optimization 145
8.2.1 Motivation and Objective . 145
8.2.2 Modeling and Definition . 146
8.2.3 Results and Evaluation . 148
8.2.4 Discussion and Further Enhancements 149

iii

Table of Contents

9 Conclusion 151
9.1 Achievements and Contributions . 151
9.2 Outlook . 152

A Analysis and Discussion Details 157
A.1 Analysis of Radio-in-the-Loop Solutions 157
A.2 Analysis of Radio Link Emulation Systems 158
A.3 Analysis of HIL and Co-Simulation Approaches 159

B OMNeT++/INET Overview 161
B.1 Simulation Architecture and Components 161
B.2 Creating, Building, and Running Simulations 162

C Implementation and Configuration Details 163
C.1 OMNeT++ . 163

C.1.1 Scenario Configuration . 165
C.1.2 Cross-layer Optimization Scenario 166

C.2 SEmulate Backend . 167
C.2.1 Radio-in-the-Loop Event Stream Forwarder 167
C.2.2 Radio-in-the-Loop Transceiver Implementation 168
C.2.3 Prototype Configuration . 170

D Technologies, Protocols, and Standards 173

E Acronyms 179

Bibliography 183

iv

List of Figures

1.1 Layered protocol stack architecture and semantics 2
1.2 IEEE 802.15.4 and associated protocols 4
1.3 Structural outline of this thesis . 10

2.1 Model and system classification . 13
2.2 Network simulator abstraction . 14
2.3 Requirements and effects in communication networks evaluation 15
2.4 System state changes over simulated time 16
2.5 Behavior of a real-time simulation . 18
2.6 Modeling domains of wireless transmission systems 19
2.7 Block diagram of the IEEE 802.15.4 model in OMNeT++/INET 33

3.1 Radio channel emulation of wireless transmission systems 43
3.2 Example PHY SDR Transmitter . 45
3.3 Analysis of radio link emulation systems and approaches 48
3.4 RoSeNet radio emulation and test platform hardware panel 49
3.5 RoSeNet hardware architecture . 50

4.1 Communication relations in the RIL methodology 55
4.2 The Split-Protocol-Stack evaluation architecture 57
4.3 Overview analysis of approaches in simulated networks 64
4.4 Overview analysis of hybrid approaches on real or emulated networks . . 66
4.5 Configuration for pure wireless link emulated networks 75
4.6 Configurations for hybrid gateway networks 76

5.1 Time compensation in real-time event execution 81
5.2 Pseudo-real-time concurrent event scheduling 83
5.3 Example IEEE 802.15.4 PD DataIndication SDU 88
5.4 IEEE 802.15.4 simulation modules in OMNeT++/INET 89
5.5 Example of a Event-Stream Forwarder setup 93
5.6 Simulation event message log of the validation scenario 94
5.7 PCAP trace of the scenario protocol sequences 95
5.8 Histogramm of the real-time jitter . 97
5.9 The ESF accuracy as a function of event transmission parameters. 98
5.10 The ESF scheduling accuracy as a function of internal parameters. 99

6.1 Block diagram of a O-QPSK PHY SDR Transmitter 108

v

List of Figures

6.2 The SDR transceiver model in GNU Radio 108
6.3 PHY model of the SDR transceiver in GNU Radio 111
6.4 Received radio packets with SmartRF . 113
6.5 Chip RIL packet transmission performance 114
6.6 Received radio packets with SmartRF . 115
6.7 Deviation of the mean received RSSI . 116
6.8 Waterfall plot of the channel hop from 15 to 16 116
6.9 Received signal strength and packet count 117
6.10 Histogram of the GRC PCAP scheduling jitter 118
6.11 The GRC PCAP scheduling jitter according to the Beacon frame size . . 118
6.12 Software RIL packet transmission performance 119
6.13 Comparison of the Chip and Software Radio-in-the-Loop Solution 122

7.1 Example unit disk graph representation 126
7.2 Example constellation diagram of adaptive channel equalization 128
7.3 Chicken Creek ecosystem monitoring . 129
7.4 Reference coordinates for the RSSI measurements 130
7.5 RSSI measurement results . 131
7.6 Example scenario graph representation 133
7.7 RF network representation of a single emulation panel 134
7.8 Matrix representation of the MILP model 137
7.9 Allocation of the scenario . 137
7.10 Number of iterations for solving the allocation model 138
7.11 Attenuation measurements . 140

8.1 SEmulate Prototype RIL Architecture 142
8.2 Overview of building and running an emulation 144
8.3 IEEE 802.15.4 cross-layer communication based on an external PIB . . . 147
8.4 RX gain optimization from LQI . 148

B.1 Overview of building and running a simulation in OMNeT++ 162

C.2 Prototype scenario configuration in SEmulate 171

vi

List of Tables

2.1 Common PHY transmitter and receiver parameters 24
2.2 Comparison of recommended network simulation and emulation systems 31

3.1 Classification of network emulation systems 39
3.2 Radio link emulation systems and approaches overview 46

4.1 HIL and co-simulation approaches in simulated networks 63
4.2 HIL and co-simulation approaches on real or emulated networks 65

7.1 Variable definition for the scenario radio topology 133
7.2 Variable definition for the panel hardware 134

A.1 Analysis of Radio-in-the-Loop solutions 157
A.2 Analysis of radio link emulation systems 158
A.3 Analysis of HIL and co-simulation approaches 159
A.4 Analysis of HIL and co-simulation approaches 160

C.1 Selected emulation hardware commands and descriptions 171

vii

1 Introduction

Aurea Mediocritas

“The technique of network emulation is intended to bridge the gap between
simulation experiments and real-world testing. Emulation inherits repro-
ducibility and control from simulation, but makes possible direct experiments
with real components under test, thus increasing the realism of the results.
In this respect, emulation can be seen as aurea mediocritas, the golden mean
between simulation and real-world trials that trades off reproducibility and
control for realism.” [1]

1.1 Motivation

With the ubiquitous and rapid growth of new communication technologies, the wireless
medium is irretrievably gaining importance for many processes in almost all fields. The
design and development of wireless communication systems and networks in general and
Wireless Sensor Networks (WSNs), Low-power and Lossy Networks (LLNs), or the wireless
Internet of Things (IoT) in particular is becoming increasingly complex. Prototyping and
evaluating large-scale wireless communication systems is challenging. In this thesis we
consider such a system as network of resource-constrained devices. Various application
domains have very precise physical requirements, e.g., in terms of bandwidth, latency, or
packet loss ratio, and, on the other hand, extensive functional or algorithmic demands,
e.g., self-organization, in-network-processing, and resource limitation. Their requirements
necessitate many components, complex algorithms, and procedures implemented mainly
by means of distributed network applications, communication protocols, protocol stacks,
reconfigurable interfaces, and radio transceivers.

The protocol stack of individual resource-constraint wireless communication systems and
the Internet of Things essentially deviates due to the communication protocols used.
There is a large, constantly changing number of protocols which appear frequently, while
others disappear into obscurity. The network link layer of the protocol stack, e.g., plays
a major role in delivering satisfactory results for the performance of wireless networks.
Especially in the area of industrial process automation, safety-relevant and time-critical
control systems are increasingly affected. So, there are definitely many questions that arise
in advance when implementing these systems. Some of the current research issues will be
presented hereafter, but one of the most fundamental questions underlying the motivation

1

1 Introduction

of this thesis is: How to design and implement novel protocol schemes, innovative protocol
stack approaches, or optimized transmission methods for wireless communication systems
as a realistic lab prototype to gain confidence in its resilience and usefulness without the
technology already being implemented and widely used?

In the following subsections we will introduce dominant wireless network link layer
protocols and our candidate of choice for exemplary practical evaluation as well as the
basic idea behind protocol-based evaluation methods for wireless communication systems.
Furthermore, challenges for high-accuracy evaluation based on associated research issues
are addressed, seamlessly transitioning to the objectives and contributions of this thesis.

Wireless Network Link Layer Protocols

Wireless sense and control networks and the IoT are embedded in an ecosystem of different
protocols, including international standards, as well as industry-driven, or community-
oriented developments. Most of them can be classified into common architectural patterns
for interoperability with other communication systems especially the Internet. Figure 1.1
illustrates the different layers and semantics of the common models for communication
architectures Open Systems Interconnection (OSI) (a) and TCP/IP (c). Exemplary
relevant protocols used in the protocol stack for the Internet of Things are listed in
Figure 1.1 (b). The link layer for wireless technologies is particularly affected by this
diversity, since it is required for every type of physical communication and tends to be
technologically driven by a variety of industrial players. Because it is rather confusing
to list these in this figure as well, we apply here a rough classification of some relevant
technologies, protocols, and standards. In contrast to this, we highlight IEEE 802.15.4
as the standard we chose for our experiments.

Data

Segments

Packets

Frames

Bits

Transport

Network

Session

Presentation

Application

Data Link

Physical

Transport

Internet

Application

Network
Interface/

Link

Data

Segments

Packets

Frames
and Bits

6LoWPAN, IPv6, RPL

IEEE 802.15.4(e) MAC

IEEE 802.15.4 PHY

TCP/TLS, UDP/DTLS

CoAP, MQTT, AMQP,

DDS, HTTP, REST,

mDNS, DNS-SD

(a) OSI Reference Model (c) TCP/IP Stack(b) IoT Example Protocols

Figure 1.1: Layered protocol stack architecture and semantics of protocol data units for
(a) OSI and the (c) TCP/IP stack with (b) IoT example protocols.

2

1.1 Motivation

Because of different semantics of layering in the TCP/IP protocol stack and the OSI
reference model, the network interface or link layer designates the lowest layer of the
internet protocol suite and a combination of the Data Link Layer (DLL) (layer 2) and
the Physical Layer (PHY) (layer 1) in the OSI model point of view. Network link layer
protocols are typically hardware-dependent and provide an abstraction for the higher
layer protocols (e.g., TCP/IP) that are to run independently at any kind of network
interface. Particular protocol standards for wireless network technologies are commonly
designed in OSI fashion and thus comprising the Medium Access Control (MAC) at the
DLL and the PHY layer. They can be categorized according to specification complexity,
feature sets, common availability, energy consumption, and typical communication ranges
or data rates. Dominant link layer protocols, actively used in wireless IoT , industrial
automation, or monitoring applications, can be roughly classified by their communication
range. Comprehensive studies on current wireless network link layer protocols and network
technologies [2–7] are recommended for further reading.

Short range link layer technologies cover very limited distances of a few meters up
to 100 meters for Line-of-Sight (LoS) connections. The average power consumption and
data transfer rates are typically very low.Wireless sense and control networks usually
need multi-hop communication to propagate data by using multiple nodes. Example
short range link layer protocols for Wireless Personal Area Networks (WPANs) are:

• Bluetooth LE (BLE) (Bluetooth SIG) (short range)
• EnOcean (EnOcean Alliance / ISO/IEC 14543-3-10 [8]) (short range)
• IEEE 802.15.4 (LR-WPAN / IEEE 802.15.4 [9]) (short range)
• ISA100.11a (ANSI/ISA-100.11a-2011 [10] / IEEE 802.15.4) (short range)
• WIA-PA (IEC 62601 [11] / IEEE 802.15.4) (short range)
• WirelessHART (IEC 62591 [12] / IEEE 802.15.4) (short range)
• Z-Wave (ITU-T G.9959 [13]) (short range)
• DECT ULE (ETSI TS 102 939 [14]) (short/medium range)

Long range link layer technologies can reach devices in urban or wide transmission
areas up to kilometers, comparable to mobile phone or cellular networks. For low power
and low data rates there are specialized technologies. Typically, the end devices are
single-hop connected with a direct link to a central gateway. Example long range link
layer protocols for Low Power s (LPWANs) are:

• Wi-SUN (Wi-SUN Alliance / IEEE 802.15.4g/e) (medium/long range)
• LoRaWAN (LoRaWAN Alliance / ETSI TR 103 526 [15]) (long range)
• MIOTY (ETSI TS 103 357 [16]) (long range)
• NB-IoT (ETSI/3GPP Release 13 [17]) (long range)
• Sigfox (SIGFOX S.A.) (long range)

3

1 Introduction

In the technology chapter in the appendix we give an very brief overview and introduction
to selected protocol standards for wireless network technologies, apart from proprietary
solutions that still exist. The development and standardization of protocols is increasingly
fast. Significant research activities at the link layer are also emerging in the field of
reconfigurable MAC [18, 19] and Cognitive Radio (CR) [20–22]. One protocol standard
that has in particular shaped WSN and Internet of Things developments from the very
beginning, continues to play a decisive role in this context. This is the IEEE 802.15.4, as
highlighted in Figure 1.1. It is the most relevant open short range link layer protocol
standard for WPAN and associated wireless technologies.

IEEE 802.15.4, Associated Protocols and Technologies

The first version of IEEE 802.15.4 was adopted in 2006 [9] and has continued to evolve
and grow in importance with revisions and amendments since then. For a detailed
evolution of the standard, we recommend further reading [2, 23]. As one of the most
important extensions, the IEEE 802.15.4e [24] amendment was published in 2012 to
overcome a number of limitations, enhancing and extending the functionality to the
IEEE 802.15.4-2011 [25] protocol. The key MAC behavior enhancements are the TSCH
and the DSME . Furthermore, there are numerous amendments for the PHY over the
last decade [23], e.g., the IEEE 802.15.4g [26] in 2012.

802.15.4 MAC
802.15.4 868/915 MHz / 2.4 GHz

ISA DLL

UDP

ISA APL

6LoWPAN

UDP UDP
CoAP

IPv6IPv6

APL

(a) WirelessHART & ISA100 (b) Thread, ZigBee IP & ZigBee (c) 6TiSCH stack

APL

NWK

802.15.4e TSCH
802.15.4 2.4 GHz DSSS

6top(6TiSCH)
6LoWPAN

IPv6

UDP
CoAP

RPLRPLDVR

6LoWPAN NWK

APS
APL

TDMA Data Link
Physical

Network/
Internet

Transport

Application

Figure 1.2: Protocol stack architecture of IEEE 802.15.4, associated technologies and
communication protocols

The IEEE 802.15.4 WPAN protocol standard is still the pre-dominant technology for
LLNs and short range communication especially in industrial process plants but also
in wireless IoT based building automation and consumer electronics. Since the spread
across associated technologies and communication protocols is almost overwhelming,
only a selection of the currently important standards based on IEEE 802.15.4 is shown
in Figure 1.2. The de facto global standards of wireless instrumentation for industrial
automation WirelessHART , ISA100.11a (a), and WIA-PA (IEC 62601 [11]) extend IEEE

4

1.1 Motivation

802.15.4 with additional specifications for the MAC layer as well as higher layer protocol
functionality (cp. [27, 28]). In the IoT context, ZigBee (IP) [29] (ZigBee Alliance), Thread
(Thread Group) (b), and Wi-SUN (Wi-SUN Alliance) are among the most successful
and important technologies.

Due to the necessary interoperability and Internet connectivity intentions of wireless tech-
nologies, further adaptation and support protocols have been standardized internationally.
The Internet Engineering Task Force (IETF) has defined protocols to enable integration
of resource-constrained devices (i.e., sensor/actuator devices) into the Internet. The
over (6LoWPAN) (RFC 4944 [30]) and the 6top (RFC 8480 [31]) adaption protocols, as
well as the RPL (RFC 6550), and the CoAP (RFC 7252 [32]) are the most important of
them. In Figure 1.2 (c) the exemplary stack of over the mode of 802.15.4e (6TiSCH)
(RFC 8180 [33]) is illustrated. Because most of the vendors and Special Interest Groups
(SIGs) focus on interoperability and Internet-connectivity without incorporating custom
protocol gateways, the IETF specifications are meanwhile also integrated in many stacks
of proprietary technologies, e.g., 6LoWPAN over Bluetooth Low Energy (BLE) (RFC
7668 [34]), or IPv6 over DECT ULE (RFC 8105 [35]).

Evaluation of Wireless Communication Systems

There are several and partially complementary design and validation tools and methods
for the performance evaluation of communication technologies, protocols, and algorithms
[36]. These are extremely important for the research and development of improved
architectures and novel approaches for wireless communication systems and protocols
[37]. The most common methods are: analytical analysis, simulation, emulation, field
tests or testbeds, and real deployment.

Analytical analysis [1, pp. 27ff] is based on mathematical models which represent the
system in terms of a set of mathematical equations. It can predict the behavior of network
applications and protocols, and is used to understand phenomena in networked systems.
But these methods have to make over-simplified assumptions in order to keep their
models traceable. This severely limits insight into a complex system design and tends to
lead to untrustworthy results. Due to the inherent functional and algorithmic demands
of wireless communication systems, analytical methods are unsuitable for performance
evaluation.

Network Simulation [38, 39] (ref. simulation basics in Chapter 2) techniques are represent-
ing the more traditional model-driven evaluation methods for wireless communication
architectures and protocols. The network simulation approach simplifies the construction
of layered communication protocol architectures and application models for networked
systems. Simulation is usually the preliminary step when evaluating new protocol-based
approaches for WSNs and the IoT and is often used to compare different design alterna-
tives or to optimize given designs [38]. The major drawback of simulation is the inaccuracy

5

1 Introduction

representing the PHY and radio channel with reasonable computational effort. To achieve
an accurate representation of an entire network of wireless transmission systems, this
layer must be taken into account in detail. Some simulation models of the PHY are
presented in Subsection 2.2.2. However, these models are only an approximation of real
effects and are still expensive to compute. For this reason, we have to ask questions about
how to achieve a modeling of complex physical phenomena within pure simulations.

Field tests and testbeds [1, pp. 33ff] are used to perform automated measurements and
performance tests under real environmental conditions with complete system implementa-
tions. While placing hundreds of nodes in harsh environments is not feasible or practical
for field testing, testbed platforms can provide controllable environmental conditions for
deploying real systems in hardware and software. This provides a basis for experiments
in which the wireless network of sensor nodes is exposed to the physical influences of the
radio environment. A testbed platform can serve for planning real-world deployments
according to high-fidelity evaluation of sophisticated WSN designs [40]. Over-the-air
testing of large-scale wireless communication networks, however, and correcting design
errors that emerged as a result can be very time-consuming and expensive in general. Fur-
thermore, it requires a specific setup, customized hardware, software, and environments.
In practice, most of real-world-related experimentation is based on specific, custom made
testbed platforms. Well-known open testbeds are used less frequently for experiments
[37]. In [41] numerous testbeds for WSNs are introduced.

Emulation [1] (ref. emulation basics in Chapter 3) is considered as a hybrid approach
in which some system components are deployed on real target hardware and some are
reproduced by virtual or hardware-based models. Usually, network emulation aims to
combine the advantages of simulation, e.g., flexibility and observability, with real-world
runtime accuracy. Although there are a number of approaches for emulating networked
computer systems and emulation platforms, we state that network emulation is far
from being fully researched and understood, especially for the evaluation of wireless
communication systems. Rather, this term is used for several different techniques and
sometimes even misunderstood.

A detailed analysis of these techniques is required in order to precisely identify and
expound problems and limitations. In addition to the following summarized research
questions and challenges, we refer to a basic comparison of the aforementioned techniques
in the literature [1, pp. 37ff], [38, pp. 83ff] and to the corresponding summaries in
Section 2.4 as well as Section 3.4. Furthermore, we supplement the underlying motivation
in this short introduction in Chapter 4 with the objectives and envisioned benefits of the
approach we pursue in this thesis.

6

1.1 Motivation

Research Questions and Challenges

The basic evaluation methods have their significant drawbacks and limitations when used
in isolation. There are various surveys and sprawling discussions about when and how
to apply which technique [1, 38, 40, 42–48]. A detailed analysis of these techniques is
required in order to precisely identify and expound evaluation problems and limitations.
For this, we refer to (Section 2.4 and Section 3.4). The most important methods are
still simulations and testbed-like deployments, but only few studies apply multiple or
even combined evaluation methods. In addition, pure simulation studies of wireless
communication systems tend to decline, while real-world experimentation is still present
[37].

The wireless link layer for WSNs, Low-power and Lossy Networks and the wireless IoT
is still underrepresented within network simulators. Models reported in the simulation
literature are designed with simplified assumptions about the MAC and the PHY , as
well as the radio and channel models. Usually, the basic unit of a network simulation
is assumed to be a message which is a frame or a packet but rarely a single bit and
certainly not a (partial) wave of an electromagnetic field. Because channel models are
applied to frames as a whole, considerations of the PHY signal processing details, such
as fast fading, or frequency-selective channels as well as frame construction and reception
cannot properly be accounted for. Due to this methodical abstractions at the link layer
within pure network simulation, it is very difficult to study the impact of mechanisms of
the physical details on higher layers. For example, MAC protocol prototyping requires
close interaction with the PHY and the radio frontend [18]. Within Cognitive Radio
Sensor Networks (CRSNs) [20] and cross-layer design [49] approaches, there is a necessary
demand of information exchange between all of the higher communication layers with
the physical communication interface. Therefore, accurate models and realistic real-
time behavior for the link layer are requested in simulations [42, 50–52]. Normally, the
simulation can score in terms of scalability, but the more accurate the models are, the
more likely scalability will reach its limits.

Physical testbeds are expensive to maintain and usually rather small. They typically
lack of reproducibility and flexibility [40], as they consist of a single type of sensor node,
radio interface, network stack, and operating system. Present testbed platforms are quite
different and provide a single, fixed network topology and constant or not reproducible
environmental settings. The number of recent publications that uses testbeds or field tests
experimentation allowing reproducible conditions is very low [37]. Compared to the large
number of testbeds [41], very few popular platforms do support mobility [53], which is
one of the key aspects of future wireless communication system designs. In addition,
each system requires guidance to achieve scientific results, whereas a number of relevant
operating parameters, such as radio interference or the transmission power, are beyond
user control. Limited, small-scale testbeds will no longer suffice if the number of network
devices in future wireless automation or IoT applications continues to grow.

7

1 Introduction

More than half of the research and evaluation activities of WSNs are related to MAC ,
DLL, PHY and cross-layer simulation studies and experiments [37]. Regardless of the
specific link layer protocol standard or radio technology, there is a need for concepts
for massively scalable evaluation environments that can answer ongoing practical as
well as research questions. As a fundamental motivation for our work, we derived (cp.
[18, 20, 42, 44, 46]) and identified four key challenges involving the wireless link layer
from different perspectives in the form of research questions for wireless communication
systems evaluation:

• For coexistence: Because of new technologies and higher channel utilization, espe-
cially within the 2.4GHz range, the wireless medium is becoming more and more
dense. How to design and evaluate resource sharing with other collocated WSNs in
the wireless spectrum that use different or even the same technology?

• For network robustness and resilience: Constantly changing environmental charac-
teristics due to mobility and harsh radio environments are key challenges of future
wireless communication system designs. How to achieve self-stabilization and what
is the impact of physical node mobility, density, and fluctuation within a WSN?

• For Cognitive Radio and cross-layer studies: Decision-making processes of higher
layers in CRSNs need detailed information about various parameters and the
current state of the link layer. How to consider impacts of constantly changing
physical parameters, radio effects, or transceiver techniques on the higher layers of
the protocol stack, up to the (distributed) application?

• For intelligent and energy-efficient media control: Static protocol schemes are
prospectively insufficient to deliver desired performance in a dynamic spectrum
environment. How to achieve model-based MAC protocol prototyping in realistic
protocol stack scenarios on accurate physical layers and realistic radio channels?

1.2 Objectives and Contributions Overview

There are always many limitations with all these evaluation techniques, in addition
to their benefits. As mentioned above, certain approaches of ongoing research issues
cannot be operable evaluated by these alone. Hybrid evaluation techniques attempt to
encompass different aspects according to concrete evaluation questions and thus make
use of the advantages of several techniques. We review related work in depth and discuss
the possibilities and benefits of hybrid approaches in Chapter 4.

What is desired to answer above mentioned research questions is a flexible model-driven
experimental environment for a realistic evaluation with accurate MAC , PHY , and
channel modeling in a hybrid manner. It should be able to overcome several limitations
by physically incorporating the influence of signal propagation effects and changes in
protocol flows, parameter settings, and distributed applications but without having

8

1.2 Objectives and Contributions Overview

all components already implemented. We contribute to address related problems and
research questions, and create a concept and prototype for a completely novel approach
to hybrid wireless network emulation.

The main concept includes several theoretical and practical contributions from various
perspectives that arise when incorporating substantially different techniques. Based on
common naming conventions introduced with the state-of-the-art concepts in Chapter 4,
we introduce a novel evaluation methodology, called Split-Protocol-Stack Parallel Simula-
tion and Emulation with RIL. While the conceptual overview is presented in Chapter 4,
the following is a brief summary of the key contributions with reference to the relevant
thesis chapters and the author’s publications.

• Interface control and abstraction is needed for accessing real radio transceiver
hardware among all involved subsystems, e.g., from model-based simulations. We
introduce a universally valid, system- and hardware-independent solution for control
and data exchange based on an intermediary subsystem (Section 5.3, [54]).

• In order to enable realistic PHY interaction and radio transmission on target
hardware, we propose an event-based scheduling process both on transceiver
chip hardware [55] and a Software-Defined Radio (SDR) system [56], called RIL
(Chapter 6).

• The resource allocation and optimization of target hardware in testbeds and systems
is an other difficult task. Here we suggest a graph-based Mixed Integer Linear
Programming (MILP) optimization approach for allocating nodes in radio emulation
testbeds (Chapter 7, [55]).

• With reference measurements from practical WSN deployments emulation scenario
results can be evaluated and compared. We present with practical Received Signal
Strength Indicator (RSSI) measurements of sensor node placements in both a
environmental monitoring scenario (unpublished) and a target emulation testbed
system (Chapter 7, [54]).

• For the synchronization of computer simulation with real-time transmissions on the
wireless medium we need to guarantee high accuracy. We recommend a new synchro-
nization scheme, suitable to enable accurate realization of wireless transmissions
(Chapter 5, [57]).

• Scheduling and dispatching events in a hybrid approach are a challenging research
problem. For this we extend Discrete Event Simulation (DES) capabilities with
a pseudo-real-time scheduling procedure [57], as a result of our synchronization
concept (Chapter 5).

• The implementation of the concept as a framework-like prototype is a necessary
step for experimental work and evaluation. We provide various prototype implemen-
tations of our concepts and significant system components on common platforms
(Chapter 8, [54–56, 58]).

9

1 Introduction

1.3 Thesis Structure

The structural outline of this thesis is shown in Figure 1.3. We have already introduced
the need for high-fidelity link layer evaluation and outlined the main objectives and
contributions of this thesis in Chapter 1. The analytical part of this thesis is essentially
covered by the following Chapters 2 and 3, each highlighting both the theoretical
and technical fundamentals of contrasting network evaluation methods as well as the
state-of-the-art in science and technology of comparable research. Furthermore, a broad
overview of comparative approaches of hybrid and parallel simulation and emulation
techniques for evaluating wireless communication systems is presented, which results into
the conceptual overview of our approach in Chapter 4. In Chapters 5, 6, and 7 the main
challenges and achievements of the approach are presented. In each chapter, conceptual
and experimental aspects are outlined in detail with different theoretical and practical
contributions and evaluations. Moreover, as a result of the conceptual work, Chapter 8
presents the exemplary SEmulate prototype system for experimentation as well as a
practical demonstration of the approach capabilities based on a state-of-the-art cross-
layer optimization case study. An executive summary of the results with an orientation
for future work and research in Chapter 9 concludes this thesis.

Introduction Conceptual WorkAnalytical Work Experimental Work Conclusion

approach
overviewfundamentals

approach
realization

approach
evaluationintroduction conclusion

Research Questions
Problem Statement

Related Work
Review & Analysis

Methodological &
Theoretic Contributions

Practical
Contributions

Summary &
Future Work

Chapter 1
Introduction

Chapter 3
Wireless
Network

Emulation

Chapter 2
Wireless
Network

Simulation

Chapter 4
Parallel

Simulation &
Emulation

Chapter 6
Radio-in-the-
Loop Physical

Layer Modeling

Chapter 5
Real-Time-Shift
Simulation &

Synchronization

Chapter 7
Radio-in-the-
Loop Channel

Emulation

Chapter 8
SEmulate

Case Study
Evaluation

Chapter 9
Conclusion

Figure 1.3: Structural outline of this thesis

10

2 Wireless Network Simulation

The performance evaluation of complex and dynamic real-world wireless network sys-
tems and applications usually requires the implementation of the entire system, whereby
network measurements can be performed at different vantage points, e.g., the end/interme-
diate systems, or the wireless links/environment. But, how to evaluate (new) algorithms,
protocols, or applications without having them already implemented and installed in the
supposed environment? In the network research community there is broad agreement
about the vital role of network simulation in terms of scalability, reproducibility, rapid
prototyping, and education (cp. [38, 46, 47, 59] for a detailed overview of this area).

In this chapter, we introduce important theoretical and technological fundamentals
of (simulation-based) wireless communication network evaluation and discuss in detail
modeling strategies for wireless network simulation and selected system models, which
partially serve as basis for this thesis prototype implementations. Based on the analytical
overview of related simulation tools and specific models, this chapter concludes with
a discussion about limitations of pure network simulation systems to underline the
demand for hybrid evaluation techniques in general and the Radio-in-the-Loop concept
and prototype introduced with this thesis in particular.

2.1 Simulation-based Network Evaluation

As briefly discussed in Section 1.1, for the most of the research questions in wireless
networks, the system complexity makes pure analytical analysis impossible. The simula-
tion, on the other hand, is based on arbitrarily accurate models which help identifying
potential problems and provide estimations of performance of a system for new algo-
rithms, parameters, policies, or different operating conditions. Thus, simulation is an
efficient and cost-effective way for experimentation using different time frames, such as
compressed time to speed up or expanded time to observe details of a study.

However, a simulation is only as accurate as precise the developed models are, i.e.,
whether they match the aspects of the real system, e.g., the protocol behavior. By
retracing the message and event flow of communication protocols, simulation provides a
suitable environment to evaluate the design of novel designed protocols or protocol stacks
without implementing them on physical real devices to answer questions like: How does
replacing individual protocols or protocol stacks, as well as changing protocol parameters
affect the performance of a network application?

11

2 Wireless Network Simulation

2.1.1 Terminology and Classification of Simulation Modeling

In this thesis we consider a dynamic hardware/software system or a time-dependent
information technology process as the basis for a common understanding. For the
mathematical modeling of such a system in general or a wireless transmission system in
particular, we also need to clarify the terminology, concepts, and delimitation. Because
there is no fully standardized set of terms in the literature, we loosely adapt definitions
from [1, 38, 60–62] and give an example corresponding the scope of this thesis for each.
Furthermore, we do not go into detail with specific modeling techniques, they are listed
and compared in [62, pp. 193ff].

Terminology

An entity [60, p. 30] is a particular object of interest which can be described by a variable
number of attributes [38, p. 2]. To give an example, we can have a look at an entity packet
in which the header (for addressing the communication endpoints) and the payload (for
the data to be transmitted) can be defined as attributes.

A (complex) dynamic system [38, p. 2] is a set of interconnected and interdependent
entities to create a purpose or function that is not reduced to the features of the individual
entities. Seen from the outside, we consider networked computer systems as incredibly
complex. Looking at different levels of abstraction though, a system can simplifying be
characterized by its parts and their interactions. In the wireless communication context of
this thesis, e.g., a WSN is a system with a set of interconnected wireless devices (sensor
nodes) that communicate by sending radio packets to provide end-to-end connectivity.
As the system is also effected by its surrounding, it is fundamental for the modeling
process to determine a boundary between the system and its environment depending on
the purpose of the problem under investigation [60, p. 30]. For each system the current
observation time must be taken into account. The state of a system can be continuous or
static (as introduced with the classification of systems and models hereafter), but it is
defined by a set of variables at a certain operating time.

In general, a model of a system (cp. [60, p. 33], [38, pp. 6ff.], [39, p. 3]) is a representation
of a specific view on that system for a studying purpose. This abstraction as a model
contains only some selected features and characteristics. It is, however, necessary to
consider all aspects of the system that effect the problem under investigation as complete
as possible. Often it is not easy to identify which aspects and features must be taken into
account [61, Sec. 5.2 or pp. 249ff]. Within the wireless communication domain, it could
be very extensive to model the system comprehensive and precisely. Therefore, we have
to make abstractions, simplifications, and assumptions in the modeling process. On the
other hand, we also have to keep in mind that there are a lot of pitfalls when creating a
model of a system. These have been summarized and discussed in [62, pp. 190f] and [38,
pp. 8ff].

12

2.1 Simulation-based Network Evaluation

Furthermore, the modeling process depends on the considered system aspects and can
be of very different abstraction levels. Looking at wireless communications, for example,
the model of a packet transmission involves continuous signals in a seemingly infinitely
complex transmission channel that includes not only the communication devices involved.
In contrast, a model of a higher layer communication protocol could be a rather simple
implementation of procedures from its specification. In this thesis context we focus on
holistic modeling the message exchange based on the wireless devices protocol stack, in
contras to application-specific peripheral processes, e.g., sensor readings or control tasks
at the concrete vendor device hardware.

Classification of Systems and Models

Models are generally considered as mathematical representation of dynamic systems for
the computer-aided analytical analysis. Physical models (cp. [61, pp. 4f] and Figure 2.1)
are rather created to illustrate and understand real systems with a more natural context
to the physical reality. A static model represents a system at a particular point in time,
a snapshot, which is not in focus when modeling dynamic communication networks.
However, a very important differentiation in the context of dynamic systems is the
classification into discrete and continuous systems and models [60, p. 32] [61, pp. 3f].

� Model of a System – with regard to the analytical evaluation approach.
� Physical � A smaller or larger physical copy of the object. �
� Mathematical � A description using mathematical concepts �

� Static � without time considerations �

� Dynamic � with reference to the behavior over time �

� Continuous � which changes continuously �

Deterministic � and no randomness is involved. �
Stochastic � and possess some inherent randomness. �

� Discrete � which can assume a finite set of data �

Deterministic � and no randomness is involved. �
Stochastic � and possess some inherent randomness. �

Figure 2.1: A classification of models. The relevant model characteristics for this work
are highlighted.

If we look at a discrete system, state variables change instantaneously at different points
in time of system execution. What happens between the state changes is not relevant for
the further execution of the system. A continuous system changes its state variables in
infinitesimal small time steps during the execution. Most systems in which a single type

13

2 Wireless Network Simulation

predominates can be classified as either discrete or continuous; others can be considered
as hybrid systems.

Analogous to the classification of dynamic systems, models (of systems) can also defined
as discrete or continuous. Discrete simulation models, however, are not always used
to model a discrete system (the same also applies to continuous models). Which type
of model is selected crucially depends on the system characteristics and the objective
of the studies. For example, a continuously changing communication channel can be
modeled discretely if only the change of the properties (e.g., the packet error rate) and
the time-scheduled sending and receiving of individual messages are of relevance. When
modeling complex systems, it is also conceivable to use continuous and discrete models
in combination [61, p. 713]. Moreover, communication processes should be modeled
stochastically to introduce some randomness because many properties are based on
probability distributions.

The overview of models in Figure 2.1 recaps the classification characteristics explained
above. Simulation models in the scope of this thesis are referred to as dynamic, discrete,
or stochastic (as highlighted), in the following: � A description using mathematical
concepts with reference to the behavior over time which can assume a finite set of data
and possess some inherent randomness. �

2.1.2 Network Simulation Methodology

Network Simulation is used to perform evaluations and measurements on models of com-
munication systems. Simplified, a network simulator is a software process (on specialized
or general purpose hardware) that generates outputs from given inputs. As depicted in

Components and Models
Output

Feedback

Node/Network Parameters Node/Network Performance
Network Simulation ProcessInput

e.g., signal/noise level, number
of nodes, network topology,
mobility, traffic amount, etc.

e.g., packet loss/error rate,
latency, queue levels,

throughput, link stress, etc.

Algorithms, Procedures,
Queues, Protocols, Policies

Figure 2.2: Network simulator abstraction

Figure 2.2, the network simulation process runs a set of algorithms, protocols, policies,
and others, representing the evaluation models. The input sequence of a wireless network
simulation can be quite diverse according to the research question, but some of the typical
model parameters are listed in Figure 2.2, e.g., physical channel properties like the signal
and noise level, the network topology, traffic and mobility patterns, or network dynamics
that include node and link failures (ref. Section 2.2 for an in-depth overview).

14

2.1 Simulation-based Network Evaluation

The result of the simulation is a representation of the behavior of the network based on
performance parameters which can have a dual purpose ([62, p. 192]). On the one hand,
this serves to validate and verify the implemented network models, especially since, unlike
many black box simulation systems, a network simulator can often visualize and record
the actual process flow of the simulation, e.g., the exchange of messages between model
entities, processes, and communication devices, to analyze and understand it in detail.
This enables, on the other hand, analyses of the specific network performance behavior,
regarding, for instance, the packet loss rate, end-to-end latencies between time-aware
network applications, or the utilization and throughput on individual links.

802.15.4 MAC
802.15.4 PHY

Network: IP
Transport

Application

802.3 MAC
802.3 PHY

Network: IP
Transport

Application

802.15.4 MAC
802.15.4 PHY

802.3 MAC
802.3 PHY

Wireless link

Wireless Station

Bridge/Gateway Network: IP
Internet Router

Fixed Station

Effect of wireless link congestion:
delay, BER, packet lost, number
of retransmissions, throughput

Satisfying the requirements of
applications: delay, packet lost
Effect of transport congestion

PPP link

Effect of a bootleneck link

Ethernet

Effect of BER and
data rate at fixed link

Effect of routing overhead

Data Link
Physical

Data Link
Physical

LLC LLC LLC LLC LLC

Figure 2.3: Requirements and effects in communication networks evaluation - a protocol
stacks perspective with relevant example protocols (inspired by [63])

The outcomes of the communication network evaluation from the protocol stack’s point
of view is shown in Figure 2.3, which also includes example protocols. When looking on
the different protocol stack layers, there are different requirements and effects in network
evaluation. Since this thesis considers lower layer wireless devices network simulation,
the special focus is on the effects of wireless link congestion, e.g., packet delay, Bit-Error
Rate (BER), packet lost, throughput, or the number of retransmissions.

Similar to simulation models, dynamic simulation systems can be classified in continuous
and discrete ones. Continuous Time Simulation (CTS) applies to system models that
continuously traces the system behavior according to a set of (typically differential)
equations. DES is the most common technique when simulating communication networks
based on communication protocols. This is because communication protocol specifications
allow to avoid system states between two discrete times. In the following we focus on the
latter here.

15

2 Wireless Network Simulation

2.1.3 Discrete Event Simulation

The dominant simulation technique in context of networked computer systems is DES .
This subsection represents the most important fundamentals referred to as basis in the
later chapters. For an in-depth introduction of DES , we recommend [38], [60], [39], and
[62].

The Basic Principle

The basic principle behind the DES [38, p. 3][1, pp. 30-31] paradigm is to handle
system events during the simulation execution. In communication systems a simple event
(often referred to as event message or just message) is represented, for example, by
triggering a packet transmission or the expiration of a timer. The execution sequence
can also compose complex events, e.g., receiving an application layer request over the
protocol stack. Nevertheless, each event may trigger specific system state changes and
thus the generation of new events to be executed in future. Simplified, the simulator
jumps from one event to another by increasing the simulated time, explained in the
following. This is in complete contrast to CTS , where the simulation applies to represent
a continuously changing system. Usually, DES completely decouples the simulated time
from the continuous real time. In Figure 2.4 you can see the state changes with events
(e) at discrete points over the time. With every event, the simulator creates a snapshot
of the system state, containing required data to progress the simulation (cf. [38, p. 3]).
Furthermore, the abstract simulation time has to be stored in a system variable as real
number. It is increased with the time of the next event. Although the event execution
is sequential, even for events with a high amount of CPU time, the simulation time is
equal for all events scheduled at the same time.

simulated time t
𝑒1 𝑒2 𝑒𝑖 𝑒𝑖+1 𝑒𝑖+2

simulation time

𝑡1

t
𝑇𝑒1 𝑇𝑒2 𝑇𝑒𝑖 𝑇𝑒𝑖+1

𝑡2 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2

Figure 2.4: System state changes are triggered by handling event messages that occur at
discrete points in simulated time (based on [38, p. 3]).

All events of a simulation run need to be managed in an appropriate data structure
called Future Event Set (FES) or list (FEL). Simulator implementations use schedulers
to retrieve the next pending event from the FES (sorted by the event time), advance
the simulated time, and delegate the event processing to the corresponding handlers.
This is exactly why each event must be composed of at least two entries (time, type).

16

2.1 Simulation-based Network Evaluation

While the time indicates the event occurring, the type refers to the handling procedure.
Additional information is given with parameters for the handler routines. Simple DES
engines only need to be single-threaded because each event time can be calculated which
makes simulations reproducible and repeatable. The Algorithm 1 shows exemplarily the
core of a DES engine: the event-scheduling and -processing (cf. [60, p. 148], [38, p. 4]).
DES extensions are mostly accompanied by adapted scheduling strategies, e.g., real-time.

Algorithm 1: Event-Scheduling Algorithm
Precondition : Initialize 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 and 𝐹𝐸𝑆
while (𝐹𝐸𝑆 not empty) and (simulation not complete) do

fetch first event 𝑒 from 𝐹𝐸𝑆
advance simtime with event timestamp 𝑡
Function process_event(𝑒):

perform model state transition
if (create new event 𝑣) or (cancel event 𝑤) then

insert 𝑣 into 𝐹𝐸𝑆 and delete 𝑤 from 𝐹𝐸𝑆
end

return
end

Real-Time Discrete Event Simulation

In contrast to non-real-time DES , where the simulation correctness only depends on
the deterministic event processing according to the FES , in real-time simulations the
advance of the simulated time is bound to the continuous wall-clock time. As there are
different naming conventions for the different concepts of time, the following definitions
are made according to Fujimoto et al. [64] and Wehrle et al. [38]:

• Simulation or physical time is the time flow introduced by the execution of the
event procedures on the simulator host’s CPU .

• Simulated or virtual time is the abstract value according to event timestamps.
• Wall-clock time is the elapsing real atomic time, regardless of the simulation or

the simulated time.

The term real-time simulation in the field of DES appears in the literature in connection
with emulation features of simulation environments (cp. [65], [66], or [67]). In general, it
can be stated that real-time simulations are always used when the simulation system
is coupled or has to interact with other non-simulated (at least real-time dependent)
systems. The execution of a simulation model (of a physical system) then occurs at the
same time rate as the actual physical system.

17

2 Wireless Network Simulation

In real-time simulations the simulation time is equal to the simulated time. The time a
simulator takes to complete all changes of state variables for an event execution varies
depending on the complexity, effort, and the amount of computations to be performed.
Therefore, two different situations can occur, as shown in the Figure 2.5. We can simply
assume that a simulation is real-time capable, if the event execution of every single event
is faster than the real time steps. If the execution time overruns the designated real time
step, the simulation is not real-time.

simulated time t
𝑒1 𝑒2 𝑒𝑖 𝑒𝑖+1 𝑒𝑖+2

(a)
simulation time t

𝑇𝑒1 𝑇𝑒2 𝑇𝑒𝑖+1𝑇𝑒𝑖

𝑡1 𝑡2 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2

real time t

idle time

(b)
simulation time t

𝑇𝑒1 𝑇𝑒2 𝑇𝑒𝑖+1

𝑡1 𝑡2 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2

real time t

overrun

Figure 2.5: Behavior of a real-time simulation. (a) The event execution time is smaller or
equal to the real time step. (b) The simulation needs more time to compute
the event execution than the designated time step. The simulator can not
schedule 𝑒𝑖 because this event is already in the past.

If simulation models are configured to run in real-time, it is possible to include real
hardware systems in the process. A real-time scheduler works differently than those
in DES . While the Event-Scheduler takes all events out of the event queue one after
the other and processes them immediately, the Real-Time Scheduler does not perform
processing until the time of the event is reached. The use of a real-time scheduler is an
elementary basis for a simulation coupled with real hardware.

18

2.2 Modeling for Wireless Network Simulation

2.2 Modeling for Wireless Network Simulation

Modeling refers to the creation and configuration of simulations, e.g., defining the network
topology, interconnecting models to represent different system functions, or defining
model parameters for systems and their network links. On the other hand, it comprises
the development of concrete models for specific network protocols and functions. The
latter is the focus of this section, which serves to present a basic state-of-the-art overview
about discrete-event modeling for wireless devices network (protocol) simulation as well
as to delimit the scope of this work. The following subsections present important insights
and key modeling practices on the substantial different layers and domains (cp. [38,
p. 137]). For a further decomposition of wireless communication systems and networks we
assume several domains and specifications besides the layers, based on common link layer
protocol specifications (ref. Section 1.1) and wireless transceiver designs. In Figure 2.6,
an overview about modeling layers and domains as well as used terms and conventions is
given.

Inter-Layer Access
(SAPs)

t Higher Layers ...

Data Link Layer

Physical Layer

frame domain e.g. framing, ...

waveform domain e.g. gain, ...

symbol domain e.g. modulation, ...

bit domain e.g. FEC coding, ...

packet domain e.g. routing, ...
Next Higher Layers ...

Data Link Layer
frame domain e.g. ACK, ...

packet domain e.g. reassembly, ...

Inter-System
Communication

(PDUs)

Inter-Layer
Communication

(SDUs) Physical Layer

waveform domain e.g. sensing, ...

symbol domain e.g. despreading, ..

bit domain e.g. CRC checking, ...

DLL-SAP

PHY-SAP

Radio Channel
analog radio domain e.g. antenna, interference, fading, mobility, noise, ...

TX RXRF-SAP

DLL-SAP

PHY-SAP

RF-SAP

Figure 2.6: Decomposition into protocol stack layers and modeling domains of wireless
communication systems for sender and receiver

Models of communication protocols and their layers (ref. Section 2.3) do not generally
apply to this formal made conventions and do not necessarily define all interfaces (Service
Access Points (SAPs)) and data units in the protocol stack. Especially in link layer
protocols, inter-layer communication between MAC and PHY (based on Service Data
Units (SDUs)) is often realized by function calls without modeling SAPs. Due to inter-
system communication interoperability, modeling the general Protocol Data Unit (PDU)
frame structure and (selected) management units has to be taken into account at least.

19

2 Wireless Network Simulation

2.2.1 Radio Channel Modeling

The analog radio domain (so-called propagation channel) of a wireless communication
system is affected by massive impairments. A good understanding of the radio channel
with its widespread effects is a key capability, when enabling the performance of a system
evaluable. This area is typically constrained, highly abstracted, or sometimes omitted
completely in network simulations, but there are research activities in simulation models
for radio channel effects to cover this domain within DES .

Propagation models can roughly be classified into deterministic and empirical approaches
(cp. [38, Sec.11.2, p. 199]). Deterministic models are based on field and wave theory,
as well as geometrical optics (e.g., ray-tracing) algorithms. These approaches are very
expensive in terms of computation complexity, time, and memory consumption because
the simulation needs to discretize the radio environment into a grid and model all objects
with its surfaces. This is only applicable for very small scale simulation scenarios, e.g.,
calculating the indoor coverage of a transmitter, or computing radiation patterns of an
antenna. On the other hand, empirical path loss approaches [38, Sec. 11.5, pp. 203f] are
based on statistical characterization from extensive, specific measurements and cannot
be generalized therefore. The channel quality within network simulation models often
assumes a fixed state (referred to as static channel), whereas a dynamic channel model
takes several parameters and properties of the analog radio domain into account.

• Large-scale fading or path loss modeling is the most encountered property. The
radio channel is modeled according to the attenuation of the analog signal along its
propagation distance from a single sender to the corresponding receiver(s) at LoS ,
denoted by ℎ2

pl. For example, a simplified uniform spread of energy in free-space is
given by the path loss model in Equation 2.1, adapted from [68, Sec. 2.5].

𝐹𝑆𝑃𝐿dB = −20 log10 (4𝜋𝑑
𝜆

) (2.1)

𝜆 – transmission channel center frequency wavelength
𝑑 – the distance between sender and receiver

• Shadowing models the deviations of the signal path loss according to the propa-
gation environment, denoted by ℎ2

sh. Thus, the radio environment with all kinds of
obstacles and materials is of crucial importance.

• Small-scale or fast fading, denoted by ℎ2
fad, of the transmission gain results

from multipath propagation, which means that the signal at the receiver is the
sum of several signal components that followed different propagation paths. When
combining these three basic effects, a commonly used model can be derived with
the following formula for the channel gain:

ℎ2 = ℎ2
pl + ℎ2

sh + ℎ2
fad (2.2)

20

2.2 Modeling for Wireless Network Simulation

• Propagation phenomena in further forms affecting the radio wave in multiple
forms. The basic effects are reflection and refraction, scattering, and diffraction. This
effects are really hard to model. They usually are based on ray-tracing technologies,
which assume massive computing power and simulation time to achieve a certain
degree of accuracy.

• Mobility is a further very important factor which influences all other radio
channel parameters according to varying positions within the radio environment.
Modeling physical node mobility is an individual and complex topic of interest. It
is usually done using special mobility models and movement patterns based on
positions usually abstracted in two-dimensional space (cp. [38, Ch. 14] for scenarios,
categorization, and examples of mobility models). There are significant effects on
almost all higher layers (ref. Subsection 2.2.5).

• Noise is always present in the radio environment, while it has several additive
sources, is of a stochastic nature and varies with time. There can be either naturally
generated thermal noise from atmospheric disturbances and electronic circuity, or
noise from human-made machinery. The noise power 𝑃dBm in decibels relative to
1𝑚𝑊 depends on the ambient temperature 𝑇 and the bandwidth Δ𝑓 of the channel
and can be calculated as follows, whereby 𝑘𝐵 is the Bolzmann [68] constant:

𝑃dBm = 10 log10(𝑘𝐵𝑇 Δ𝑓/1mW) dBm (2.3)

• Interference is caused by radio signals from other emitting sources, e.g., due
to the reuse of certain spectra of the available bandwidth from different network
operators and link layer technologies (especially in the unlicensed 2.4GHz Industrial,
Scientific and Medical (ISM) band) and mainly splits into two parts. On the one
hand, co-channel interference is described as a crosstalk from radio transmitters
using the same the radio channel, which is an important factor limiting the overall
wireless network performance. Otherwise, adjacent channel interference appears
when transmissions happen on closely neighboring frequency bands (channels).

• Antenna impact is an other important factor on the radio channel. A very easy
model assumes a so-called isotrophic antenna, which uniformly radiates the waves in
each direction, and thus adds an additional channel gain from both the transmitter
A and the receiver B to the Receiving (RX) power:

𝑃dBm = 𝑃tx,A + ℎ2(𝑡) + 𝐺Ant,A + 𝐺Ant,B (2.4)

These modeling parameters result in a radio channel behavior on the radio packet domain
in terms of packet throughput, packet delay, and bit-error rate. The channel quality can be
measured in a simple form by the Signal-to-Noise-Ratio (SNR) which enables bit-error
calculation depending on the modulation scheme and the transmit power 𝑃𝑡𝑥. The

21

2 Wireless Network Simulation

bit-error rate can then be used to calculate the packet error rate and overall throughput.
As the SNR [38, pp. 158ff] is defined as the ratio between the received power and the sum
of the impairing power sources, it can be calculated with the equation in Equation 2.5,
whereby ℎ2 is the channel gain and 𝜎2 is the background noise power.

𝛾 = 𝑃𝑡𝑥 ⋅ ℎ2(𝑡)
𝜎2 (2.5)

Approximate formulas or curves taken from real world experience (e.g. in [69]) can
provide a SNR-to-BER mapping (e.g. with a simple lookup table in [38, p. 159]). Once
the packet error probability is determined by the BER, the simulation can perform a
random decision according to the packet error rate threshold and mark the packet to
be erroneous (cp. [38, p. 159]). If the PHY adds Forward Error Correction (FEC) to
the radio packet, single or even multiple bit-errors can possibly be corrected. Thus, this
simple random decision can be modified either according to an increased SNR or by
obtaining a detailed lookup table considering the FEC coding in combination with the
modulation scheme.

2.2.2 Physical Layer Modeling

In the context of wireless communication systems, the literature often does not clearly
distinguish between the PHY in terms of a node’s protocol stack and the physical
(wireless) transmission as a whole (e.g., in [48, Sec. 3.3], Physical Layer models include
antenna, propagation and the radio medium). Accordingly, in the following the PHY can
be considered as protocol layer 1 with respect to the OSI reference model architecture
(ref. Figure 1.1 (a)), a physical interface to convert streams of bits into radio waves and
vice versa. Modeling the PHY [38, Ch. 9] [39, Ch. 3] must consider various parameters
and features in different domains (ref. bit, symbol, and waveform in Figure 2.6) to
ensure identical bit data when transmitting from the sender to the receiver over highly
error-prone analog radio channels. Our division into this three domains can be further
enhanced in modern transmission systems (see [38, Fig. 9.1]), but serves to facilitate
understanding and is quite sufficient to illustrate the modeling effort of this layer.

All data frames from the DLL enter the bit domain [38, pp. 136ff], in which the functions
Cyclic Redundancy Check (CRC), FEC , and interleaving are performed. E.g. modeling
the position of a bit error can be very important for higher layers (header vs. payload,
according to the application). As these operations can be studied in the above literature,
all of them are realized on the binary data information which is no sufficient to model a
wireless transmission over the analog radio channel.

As in the analog radio domain information need to be transmitted over analog signals,
the symbol domain serves as an intermediate step, transforming one or several bits into a
data symbol, which can than represented with characteristics or parameters (amplitude,

22

2.2 Modeling for Wireless Network Simulation

phase, and frequency) of a (sine) wave. Furthermore, most PHY specifications of wireless
transmission systems add additional particular symbols to a data packet as preambles
for packet detection. To achieve better performance and reliability, there are further
functionality added in modern modulation schemes, e.g., spreading, space-time coding,
multi-carrier transmission, or pulse shaping. It is to be mentioned, that this processes
are usually performed by specialized hardware on System-on-Chips (SoCs).

The waveform domain assumes the tasks to covert and amplify between the digital
information and the analog antenna interface. Typical features, realized with additional
hardware components on the radio chips, are: sensing, packet synchronization, Digital-
to-Analog (DA)/Analog-to-Digital (AD) conversion, or interface up/down conversion.

The most important PHY features, responsibilities and requirements of the radio
transceiver for packet transmission and reception are summarized and presented in
an overview below, according to the modeling domains in Figure 2.6 and present link
layer specifications (e.g., IEEE 802.15.4 [9], ITU-T G.9959 [13], ISO/IEC 14543-3-10
[8], or ETSI TR 103 526 [15]) in Section 1.1.

• Packet Format and Coding: Depending on the PHY specification of a protocol
standard a Physical Layer Protocol Data Unit (PPDU) format specifies packet
header, payload, and trailer fields for synchronization, decoding and error control,
e.g., a preamble or a frame delimiter. The packet format may change within the
same protocol standard in different PHY definitions, mostly depending on the
modulation method (cp. IEEE 802.15.4, or ITU-T G.9959). Furthermore, PHY
usually specifies bit operations (mostly used for header protection) to detect (CRC
codes) or correct transmission errors (FEC codes).

• Modulation and Demodulation denotes the process of transforming bits into
(parameters of) a sine wave and back. The key parameters are the amplitude,
phase, and frequency. Popular modulation techniques in wireless transmission
standards have a major impact on the quality and performance of the transmission,
e.g., Amplitude Shift Keying (ASK), Binary (BPSK) or Quadrature Phase-Shift
Keying (QPSK). As mentioned before in Subsection 2.2.1, detailed modeling the
modulation is usually simplified and the most models translates a determined
modulation-dependent channel quality into BER based on lookup tables. Thus,
there is no modulated radio wave simulated within the network simulation.

• Carrier Sensing: feature detection or energy measurement reported as Channel
State Information (CSI) of the Clear Channel Assessment (CCA) service to the
DLL for particular MAC protocols, e.g. Carrier Sense Multiple Access Collision
Avoidance (CSMA-CA) in IEEE 802.15.4. Based on the carrier sensing information,
the MAC decide weather to access the channel or not. Also the a carrier sensing
process adds a delay, which has to be taken into account instead of being omitted
in network simulation [38, p. 171].

23

2 Wireless Network Simulation

• Packet Detection for receiving a message. Depending on the transceiver state, e.g.
the radio can only receive a radio packet if the transceiver is in receive state and is
not already receiving another packet. Furthermore the reception of a frame depends
on the detection of a signal Energy Detection (ED) within the current channel (e.g.
signal energy reaches a certain threshold and is above the noise level). Based on
the SNR, a Link Quality Indicator (LQI) for received packets can be calculated
The receiving process can be abstracted and modeled with certain decisions on an
”‘incoming”’ radio packet (cp. receiving process in [38, pp. 168ff, Fig. 9.10]), based
on appended meta data.

• Packet Synchronization is needed onto receiving a packet of the current transmis-
sion in exact timing which is achieved with preambles (cp. the detailed presentation
about the importance of the preamble particular for frequency-hopping radios and
Multiple Input Multiple Output (MIMO) systems in [39, pp. 59, Sec. 3.2]).

This features additionally results in different transceiver states and parameters, such
as transmission power and receiver sensitivity, channel and frequency selection, or the
activation and deactivation and state changing, (e.g., send, receive, and sleep) of the radio
transceiver. Switching the receiver state from one to another requires time, which depends
on the radio hardware SoC . Although transceiver parameters can vary widely, there
are some established values that are quite similar in the field of short range link layer
technologies. Timing- and frequency relevant parameters like the maximum Transmitting
(TX)-to-RX turnaround time, TX bit duration error, or frequency tolerance are of course
dependent on channel frequency, local frequency operating regulations, as well as the
modulation method and can therefore not be generalized. Some power parameters and
common value ranges from different protocol and transceiver chip specifications are
presented below in Table 2.1.

Minimum Maximum IEEE 802.15.4 O-QPSK
RX sensitivity -100 dBm -50 dBm -85 dBm
TX power -20 dBm 20 dBm -3 dBm
CCA threshold 10 dB 20 dB 10 dB (above sensitivity)
RX antenna gain 1 dB 18 dB 6 dB

Table 2.1: Common PHY transmitter and receiver parameters and value ranges, com-
pared to typical IEEE 802.15.4 O-QPSK chip hardware configuration.

Modeling from discrete data bits to continuous modulated waveform signals is hard to
achieve within a single evaluation environment. The limitations of pure virtual simulations
are discussed at the end of this chapter in Section 2.4.

24

2.2 Modeling for Wireless Network Simulation

2.2.3 Data Link Layer Modeling

In network devices, the DLL (ref. Figure 2.6) is often implemented in software, either as
device drivers or as firmware for dedicated network interface hardware (Network Interface
Controller (NIC)). Modeling the DLL (cp. [38, pp. 173ff] and [39, pp. 78ff]) for network
simulation is often included in connection with the NIC network access, which means
that it is not explicitly defined as a layer with independent communication protocols,
but more often as a communication technology or network interface/link (according to
the TCP/IP protocol stack in Figure 1.1 (c), e.g., the NetDevice abstraction in ns-3,
or the link layer in OMNeT++/INET). This may also be one of the reasons why in
the literature the modeling of the PHY often actually means the radio channel (ref.
Subsection 2.2.2), but there are of course many models that make a precise distinction
on the link layer. However, regardless of the assumed layer division, the modeling refers
to the domain of a frame, i.e., mechanisms and functions are generally represented by
the data PDUs (frames) of the link layer specification and not by single data bits.

As there are several different tasks and functions assigned to this layer, it is often classified
into MAC and link control functions. According to its architectural embedding, a link
control sublayer provides a uniform interface between the network interface hardware
below and the upper pure software layers above. Such a link control abstraction layer can
be found in almost all open standardized and partly proprietary protocols for wireless
link layer technologies analyzed in this thesis (ref. Section 1.1, e.g., Logical Link Control
(LLC) in IEEE 802.15.4 [9], LLC in ITU-T G.9959 [13], Logical Link Control and
Adaptation Protocol (L2CAP) in BLE , or Data Link Control (DLC) in ETSI TS 102
939 [14]). The features of this sublayer can be summarized as follows, but are not always
assigned the same. At least an interface SAP is defined here which describes the services
that the link control can request from the specific MAC sublayer below it.

• (De-)Multiplexing of incoming data, e.g., a default application data interface for
non IP PDUs, or a 6LoWPAN interface for Internet Protocol version 6 (IPv6)
frames, is a very common feature to allow interoperability with various higher
layer protocols within the node’s protocol stack. Multiplexing is, for instance, one
of the modeling features of the current OMNeT++/INET framework [48, Ch. 2]
realization in which dispatcher modules are inserted between layers allowing for
many-to-many or many-to-one communications between protocols (cp. [48, Fig. 2.2,
p. 60]).

• Error control is often assigned to the link control sublayer, or can also be found
also a MAC feature in common protocol specifications. The Packet Error Rate
(PER) is one of the most important performance parameters of the DLL. As
Automatic Repeat Request (ARQ) is usually assigned to the transport layer in which
packet loss is caused by overload on intermediate systems, in wireless networks these
mechanisms can be also found at DLL transmissions, since the wireless channel
is very error prone (e.g., ARQ in IEEE 802.11). Often used simplified modeling

25

2 Wireless Network Simulation

approaches are based on stochastic retransmission probabilities (cp. [38, Sec. 10.2.2,
pp. 186ff], e.g., either to add additional transmission delays or calculating the
statistical overhead introduced on the PER by retransmissions).

• Segmentation and Reassembly of exchanged PDUs is another important feature
because the amount of data that might be transmitted within a single frame
transmission varies with various PHYs. Thus, splitting data units into pieces
(fragments) of acceptable size is not negligible and modeling has to take care about
the impact on the transmission delays and resource utilization.

• Queuing is used to delay transmission when more data is provided than can
actually be transmitted over the capacity of the wireless link. Queuing is one of the
main application areas for DES (cp. [60, Sec. 2.3]) and usually considered when
modeling for network performance evaluation to obtain statistics of the queue size.

• Management and provision of applications and performance specific services
are less frequently found in the specifications and models, but they are typically
assigned to this sublayer (e.g., unicast/multicast, and, Quality of Service (QoS),
or, neighbourhood discovery, and handover).

Accessing a wireless broadcast medium is one of the most challenging tasks in wireless
networks, which makes the MAC a broad research area with its very own modeling
requirements, domains, and simulation platforms (cp. Subsection 2.3.2, e.g., [48, pp. 451ff]
and [70]. This means, a single packet transmission from a single node must result
eventually in a (multiple, when including multipath propagation) packet receipt at any
node within the transmission range of the transmitter. Considering events in a DES
setup, this is often achieved by creating multiple PDU message events for all nodes in
actually only a single transmission. While often only the data PDUs with their address
information and payload are taken into account, comprehensive modeling of the MAC
functions is a very elaborate task which requires a detailed well-considered strategy.

The MAC sublayer handles all accesses to the physical radio channel and is responsible
for frame validation, acknowledged frame delivery, and retransmission. In the following
we only present an excerpt of the most important and popular functions/tasks:

• Packet Format and Coding: Comparable to the PHY , there are also con-
ventions for the PDU at the MAC sublayer, the frame format. Medium Access
Control (MPDU) definitions are always present in link layer specifications to enable
end-device addressing, payload data, and operation control coding. Usually, the
MAC frame format classifies different frame types for signaling/management and
payload data exchange. In network simulation modeling, the MAC sublayer is often
abstracted to this (data) frame format (not binary coding, but meta information).

• Radio Resource Management is a common task of the MAC sublayer (cp. [38,
Sec. 10.1.5, pp. 181ff]) because the PHY cannot know whether a received packet is
intended for the given node. The general purpose is to save energy when transmitting
and receiving, e.g., by setting the transceiver gain and amplification, or put the

26

2.2 Modeling for Wireless Network Simulation

radio into sleep mode.
• Multiple access is the most challenging and extensive research area in wireless

link layer technologies with a long history. They also occupy a significant portion
of the entire WSN field (cp. [37]). Multiple access techniques constitute the main
part of a MAC protocol. They are substantially developed to avoid collisions when
transmitting and can be roughly divided into three categories (cp. [71, pp. 15ff]):
fixed assignments (FDMA, or TDMA, e.g., channel hopping, or handling and
maintaining Guaranteed Time Slot (GTS) mechanisms with network Beacons),
random access (e.g., ALOHA, or CSMA-CA), and demand assignment (e.g., polling,
or token passing). Modeling . . .

• Management functions are provided according to operation modes and device
types of a certainMAC specification, e.g., Personal Area Network (PAN) association
and disassociation, notification, and device security. These are difficult to generalize
within network simulation modeling.

These features eventually result in partially huge DLL models when incorporating all
specified details. The simulation of MAC protocols can be considered as an independent
domain in the field of network simulation when looking at current simulation models
(ref. Subsection 2.3.2). Especially for the accurate performance evaluation of multiple
access techniques, the core of any MAC protocol, a close and accurate interaction with
the PHY is required, which provides the necessary channel information and performs
the corresponding physical processes. Common pitfalls are discussed in [39, pp. 92ff].

2.2.4 Higher Layer Modeling

The modeling of the higher layers of a node’s protocol stack is generally a well-established
domain in network simulation (cp. [38, pp. 357ff] and [39, pp. 97ff]) and is only marginally
considered in the context of this work, but of course it also plays a crucial role in the
performance evaluation of a wireless network. As communication protocols are usually
implemented in software running on the nodes of the host system, the requirements are
more of an algorithmic nature that can excellently be served by DES . The processing
is based on data packets at the packet domain (ref. Figure 2.6 accordingly). Using real
implementations with special wrappers that interact with simulators is an often chosen
approach, especially for the higher layers With the Network Simulation Cradle (NSC),
real-world node software is included, to be executed in simulation software. The central
features and functions of the higher layer modeling are usually assigned to the established
protocol layers, namely network, transport, and application layer and their communication
protocols (ref. Figure 1.1, e.g., 6LoWPAN , Routing Protocol for Low-power and Lossy
Networks (RPL), TCP, and Constrained Application Protocol (CoAP)):

• Adaptation introduces features to support protocols from the internet protocol
suite to work with short range link layer technologies (e.g., header compression

27

2 Wireless Network Simulation

or fragmentation), very often realized as a sublayer in the Network Control Layer
(NWK), but can also reside in the DLL as link control feature. The most important
adaptation protocol is 6LoWPAN (cp. [72] for a OMNeT++/INET simulation
model based on a real implementation, applying the NSC approach), which is
indispensable especially in the IoT world (e.g., 6LoWPAN over BLE , or the IEEE
802.15.4 based stacks Figure 1.2). Through IETF standardization efforts, a separate
IoT protocol stack has even emerged in practice, embedding this features with
an own additional adaptation layer located between the link and the network
layer (cp. 6LoWPAN adaptation layer in [73, Fig. 5.9]. Modeling these features
and protocols for network simulation is a necessary step to accurate evaluation of
wireless networks in the context of the IoT .

• Routing is one of the central tasks communication networks and thus also an
integral part when modeling the network layer for wireless network simulation.
The procedures for traditional IP Wide Area Networks (WANs) differ from those
in resource-constrained wireless mesh and ad hoc networks. In [38, Sec. 16.2] a
classification of mechanisms for the key modeling features (e.g., addressing, topology
maintenance, and for the path selection) are summarized. A protocol typically is
used in WSNs and in the IoT is RPL (cp. [2] and Figure 1.2).

• Transmission flow and congestion control on the transport layer are well-
established with the most important internet protocol suite protocols TCP and
User Datagram Protocol (UDP). They have a major impact on the overall network
performance in terms of Round Trip Time (RTT) and troughput. Especially at
the transport layer, an indirect modeling approach based on real packet traces in
contrast to correct protocol models is discussed, as trace files are easy to utilize
and implement in packet-level DES [38, Sec. 17.4].

• Traffic modeling is usually assigned to the Application Layer (APL) and highly
depends on the application area, e.g., amount of (sensor) data or burstiness of a
stream transmission. Modeling is either based on algorithmic packet generation or
application protocol based processing of data objects.

• Application paradigms and mechanisms can usually be modeled well for sim-
ulation, but depend in particular on the very diverse application areas (ref. [74,
Ch. 3]) and protocols (cp. Figure 1.1 (b)). An application protocol which has
particularly shaped the application layer of resource-constrained wireless networks
is CoAP [75, Sec. 3.4]. As CoAP is also a fundamental part of the Contiki operating
system, simulation based performance evaluation is often conducted with the Cooja
(ref. Section 2.3) simulator [76], based on the native protocol implementation.

28

2.2 Modeling for Wireless Network Simulation

2.2.5 Network Topology and Mobility Modeling

Modeling the network topology and mobility is substantially different for resource-
constrained wireless networks compared to the traditional IP-based wired WAN . Wireless
network modeling is based on geographical positions within a radio environment and must
be abstracted for simulation. In the following, we briefly introduce these two modeling
areas which are of major importance in this work in addition to the lower protocol
layers.

Network topology modeling is a key task for evaluating wireless communications, as
the underlying structure of a node network has a significant impact on the operating
mode and the complexity of devices and protocols. The topology represents a certain
reachability (edges, 𝐸) among different devices (vertices, 𝑉) of the network in a defined
structure, which can optimally be represented by a graph 𝐺 = (𝑉 , 𝐸). In layered network
architectures, we have to distinguish between the physical (link) and the logical (overlay)
topology. The former is defined through the device connections by the physical medium,
which is within the scope of this thesis.

Because the wireless channel is inherently a broadcast medium, even the physical link
topology is an abstraction and must carefully be considered in modeling wireless networks.
This process includes several levels of abstraction (e.g., the classification and unification
of different device types into vertices, the conversion of the attenuation values between
nodes into edge attributes (weights), or the elimination of vertices and edges according to
merging network components to a single entity). Furthermore, a graph can be described
with structural properties to achieve the required characteristics of a given network
evaluation scenario. In network simulation modeling, topology models (generators) can
be used to obtain different pseudorandom graphs depending on the desired properties
(cp. topology models in [38, Sec. 22.4]).

Mobility modeling for a network is based on the link topology whose graph properties
change depending on the node movement. Mobility, however, can also be considered as
an effect of higher protocol layers according to the overlay topology, e.g., the NWK [38,
Sec. 16.3], since address allocation is dynamic at this layer and thus address changes
are possible without physical movement in the radio channel domain, e.g., according
to network failures or logical reconfiguration. On the other hand, a handover due to a
change of the physical location (which must then be modeled accordingly in the radio
channel domain), for example, does not necessarily constitute a change of address.

Mobility effects can ultimately have an impact on the operations at the higher layers,
so they should also be considered in the modeling of more complex topologies and
applications, especially related to the IoT protocol stack. As defining physical node
movement is very elaborate from scratch, mobility modeling is an important field of
research with many different models and approaches, also applied in communication
network simulation (cp. mobility models in [38, Sec. 14.3]).

29

2 Wireless Network Simulation

2.3 Selected Simulation Systems and Models

Practically all simulators for (wireless) communication networks and protocols serve the
DES domain. This section does not aim at completeness because the number of available
simulators for different research aspects is almost unmanageable and the commercial
sector also plays a significant role, which is more or less neglected here. However, some
simulators that can be used in academia have become established over the years and are
currently being developed further, while other tools are losing relevance.

2.3.1 Discrete-Event Simulators in the Wild

With the adoption of the IEEE 802.15.4 WPAN standard specification and the rise
of WSNs in the 2000s and 2010s, specially tailored and derived network simulators or
virtual testbeds with software emulation support became popular alongside sensor node
operating systems (cp. [77] for a comparative analysis) and hardware platforms. Some
relevant examples of this classification include

• TOSSIM [78] (a DES environment, simulating real code applications of the TinyOS
[79] operating system with the latest release version 2.1.2 in 2012),

• Cooja [80] (a simulation facility for the Contiki [81] operating system with latest
release version 3.0 in 2015, still supported with Contiki-NG1 version 4.7 in 2021),

• AvroraZ [82] (builds upon TOSSIM with AVR2 processor emulation for specific
sensor node platforms), or

• Desvirt [83] (a testbed virtualization framework alongside the native3 motes hard-
ware virtualization of the RIOT [84] operating system).

As WSNs and the IoT become commercial in the last decade, these tools are play only
a minor role according to deprecated hardware, use-spread or their software specificity,
when looking at modern system requirements and widespread hardware platforms.
Nevertheless, current state-of-the-art simulation software for wireless communication
networks and protocols without node hardware or platform dependencies is also divers.
Its representatives can be found, e.g., in [85], [86], [43], [87], [88], and [89]. In Table 2.2
some recommended software for the simulation and emulation of wireless networks is
shown. The selection in [88] is based on several requirements in addition to wireless
simulation capabilities, e.g., low investment, suitability for higher education, ease of use,
features covered, popularity, skills required by users, and evidence that it is a vibrant
and active project.

1 Contiki-NG designates the successor development of the Contiki operating system for resource-constrained
devices in the IoT : https://www.contiki-ng.org/

2 AVR is a family of microcontrollers from the Microchip Technology company.
3 RIOT native corresponds to a hardware virtualizer allows the compilation and execution of wireless

sensor node applications as a user process on the host operating system, e.g., Linux.

30

https://www.contiki-ng.org/

2.3 Selected Simulation Systems and Models

Packet
Tracer

Mininet ns-3 OMNeT++ CORE

Mobility * **** **** **** ****
Handover * **** **** **** ****
Device Config ***** ** * * *
Radio Packets ** ***** ***** ***** *
Signal Range * *** **** **** ****
Interference * **** **** **** ***
IoT *** **** **** **** *

Table 2.2: Comparison of recommended simulation and emulation systems based on
usage criteria in the context of wireless networks (excerpt taken from [88],
whereby pure IEEE 802.11 Wireless Local Area Network (WLAN) relevant
features and systems are eliminated).

Whereas Mininet (ref. Table 2.2) is a still very young project, predominantly featuring
IEEE 802.11 features (Mininet-Wifi [90]), the analysis in [88] shows that the most
prominent simulators OMNeT++ [91] and ns-2/ns-3 [92] do not differ significantly in
the selected properties for wireless network simulation (according to WPANs, WSNs,
and the IoT). Furthermore, analyzes in [87] have demonstrated that they are capable of
carrying out large-scale and efficient simulations, while OMNeT++ can be considered as
viable in terms of availability of wireless communication models. As this thesis prototype
is build upon OMNeT++, a brief overview is given in the Appendix B.

2.3.2 Link Layer Simulation Models and Systems

This section gives an overview of models and systems with relevance to wireless link layer
simulation, besides model frameworks coming with the simulation tools (e.g., OMNeT++
models4 or ns-3 models5). In the following, we give an overview and present selected
tools with different approaches for link layer modeling of wireless systems in the field of
WSN and IoT . Furthermore, our OMNeT++/INET IEEE 802.15.4 simulation model is
introduced in detail, which provides due to its modeling accuracy a decidedly valuable
basis for the objectives in this thesis.

In [70], E. Municio et al. present a tool for simulating 6TiSCH networks to estimate the
performance according to the 6TiSCH specification (cp. Figure 1.2 (c) in Section 1.1 for
a stack reference and RFC 8180 [33] for the specification). It focuses on simulating the
network behavior that can be observed from the MAC , e.g., accurately monitoring the
network formation, routing, and scheduling. Since the PHY abstraction level is based

4 OMNeT++ Simulation Models and Tools: https://omnetpp.org/download/models-and-tools.html
5 ns-3 Model Library: https://www.nsnam.org/docs/models/html/index.html

31

https://omnetpp.org/download/models-and-tools.html
https://www.nsnam.org/docs/models/html/index.html

2 Wireless Network Simulation

on the Time Slotted Channel Hopping (TSCH) slot time quantization, modeling the
PHY features (ref. Subsection 3.2.3, e.g., ED, Modulation, etc.) or standard-specific
services and general radio specifications (cp. [9, pp. 27ff]) is completely omitted. A
further abstraction was introduced with the protocol message objects that carry only
relevant parameters without regarding the accurate message bytes. The higher layers
(from the MAC and above) with its protocols (e.g., TSCH , 6top, IPv6, etc.), are highly
configurable. Besides a variable, generic traffic scheduling, specific models for transport
or application protocols were not implemented in the simulator.

Simulating the IEEE 802.15.4e [24] Deterministic and Synchronous Multi-channel Ex-
tension (DSME) MAC is presented by F. Kauer et al. with the OMNeT++ simulator-
integration of the research platform openDSME [48, pp. 451ff]. It has been the first
open-source implementation of the DSME MAC specification (cp. [48, pp. 454ff] for an
explanation) and as such it can run on real sensor nodes with Contiki and CometOS6 [93]
host operating systems. The sensor nodes DSME stack layers provided with the platform,
are integrated as a monolithic DLL module in OMNeT++/INET via the IMACInterface.
Thus, the communication between modules inside the DSME protocol implementation
is not traceable with OMNeT++ messages. As a DLL in the simulator, on the other
hand, openDSME communicates with the NWK and the PHY via message events, while
OMNeT++/INET provides the upper and lower layers. While the SAPs to the upper
layer are modeled according to the standard specification, the interfacing to the Physical
Layer Management Entity (PLME) of IEEE 802.15.4 is omitted, and the inter-layer
communication is realized by means of the DSMEPlatform.

M. Slabicki et al. have introduced FLoRa7 (Framework for LoRa) [94], a framework
to enable end-to-end simulations of LoRa networks in OMNeT++/INET. The LoRa
networks technology relies on two components that correspond to different layers of the
protocol stack: LoRa PHY and Long Range (LoRaWAN) open specification for the
MAC protocol and NWK layers (cp. [94, Fig. 1] for the LoRa protocol stack and the
available simulation modules). For the PHY model, the transmission parameters, e.g.,
spreading factor, center frequency, bandwidth, code rate, and transmission power, can
be configured to determine the communication range and the occurrence of collisions. To
support urban and sub-urban radio environments, the model is parametrized with real
measurements from a parameter study [95] in corresponding areas. Furthermore, FLoRa
supports transmission interference based on a model that assumes collision occurs in
non-orthogonal channels when two messages overlap in time, but, with a sufficient power
difference (assumption: more than 6 dBm) between two colliding signals, the stronger
one is decoded due to the capture effect [94]. However, the PHY model is solely based
on a parametrized path-loss model with shadowing (cp. [68, Sec. 2.8]) in which no radio
modulation characteristics, interfaces, services, or features are modeled.

6 CometOS: A component-based, extensible, tiny operating system for wireless networks, highly similar to
OMNeT++’s communication paradigm: https://www.ti5.tuhh.de/research/sensornet/cometos/

7 The FLoRa framework project page: https://flora.aalto.fi/

32

https://www.ti5.tuhh.de/research/sensornet/cometos/
https://flora.aalto.fi/

2.3 Selected Simulation Systems and Models

OMNeT++/INET IEEE 802.15.4

In [96], we introduced a new simulation model for the popular IoT and WSN com-
munication standard IEEE 802.15.4 [9]. This OMNeT++/INET model was created to
simulate the complex behavior of the 802.15.4 MAC and PHY layers in a detailed
fashion. We modeled the two layers with their connecting interfaces and the used service
primitives according to the IEEE standard specifications (ref. protocol stack reference
in Figure 2.7b) and general modeling guidelines for 802.15.4 [97], close to the formal
protocol layer model in Section 2.2. In Figure 2.7a an exemplary IEEE 802.15.4 host
with its submodules is shown.

(a) The exemplary simulation host with its sub-
modules (taken from [96])

Other
LLC-Layer

Upper Layers

MAC Layer

PHY Layer

SSCS

IEEE 802.2 LLC

Physical Medium

MCPS-SAP:
MAC Common
Part Sublayer
Service Access Point

MLME-SAP:
MAC Sublayer
Management Entity
Service Access Point

PD-SAP:
PHY Data
Service Access Point

PLME-SAP:
PHY Layer
Management Entity
Service Access Point

MCPS-SAP MLME-SAP

PD-SAP PLME-SAP

(b) The IEEE 802.15.4 protocol stack ref-
erence according to [9]

Figure 2.7: Block diagram of the IEEE 802.15.4 model in OMNeT++/INET compared
to the protocol standard specification.

The model itself consists of several layers and individual model components that are
combined into a so-called IEEE802154Host. The NIC includes the parts of the IEEE
standard that are most relevant for the communication, whereby the packet reception and
transmission is modeled according to the service primitives as specified in the standard.
The MPDU packet definitions include all types and fields that are specified in the IEEE
802.15.4 standard [9]. All the modules are initialized with parameters (either set to
default values or specified by he user in the simulation configuration) according to the
OMNeT++ stage initialization procedure. The model also includes prepared use cases in
different operation modes (e.g., direct data transfer, indirect data transfer, GTS handling)
as example configurations. Depending on the MAC operating mode to be simulated (cp.
[9, pp. 67]), different timers (e.g., the Beacon Interval (BI) in Beacon-enabled PAN , or
the receiver state change of the radio module) are started internally with the module
initialization. For the higher layer simulation, the 6LoWPAN model [72], for instance,
can be set up to work with.

33

2 Wireless Network Simulation

2.4 Limitations of pure Simulations

In this section, we conclude the analysis of modeling and simulation for resource-constraint
wireless communication networks by showing the limitations of purely virtual simulations.
There are a few surveys about network simulation limitations in general in [37, 47, 59,
98] and sprawling specific discussions about limiting factors by utilizing a concrete model.
The analysis in this section provides a specific overview of the limitations based on this
thesis’s focus on simulating the wireless link layer within an evaluation of holistic wireless
networks from the protocol stacks point of view. The most notable limitations can be
classified into the categories presented below in the appropriate subsections.

2.4.1 Validation and Credibility

Important limiting factors of wireless network evaluation with pure simulations are the
validation and credibility of simulation results. The validation of simulation results is
usually based on comparisons with field tests from an input-output transformation point
of view, but they only consider a selected set of parameters which is not sufficient to
evaluate the quality of a model. For conformance tests and validation, a solution is to
let all simulation models and tools pass through an independent test regarding their
standard specifications provided either by an RFC , ETSI , ITU-T , IEEE , or proprietary
specification (ref. wireless network link layer protocols in Section 1.1). Appropriate
Independent Verification and Validation (IV&V) attempts have rarely been undertaken
in the network simulation community [98] so far.

Developing simulation models for a specific purpose or application is still the prevailing
opinion [38, Sec. 1.2], [74, Sec. 6.2], [39, Sec. 1.3] which leads to over-simplistic models, a
reduced reusability, and, in the end, a generally large model variety. Especially in the
OMNeT++ ecosystem, a strong community with very many simulation frameworks has
been formed in the last decade (cp. [48, Ch. 2]). This is at the same time a drawback,
because most of the models are developed for a certain purpose and abstract or neglect
other features (cp. analyzed models in Subsection 2.3.2). They are unsuitable for other
research questions and far away from being universally valid. Therefore, we propose to
pay attention to the exact and holistic protocol modeling according to its specification,
especially in the architecture of the model and an easy parametrization according to
the respective requirements (cp. [48, pp. 451ff] for the simulation model of the DSME
MAC). Furthermore, our IEEE 802.15.4 simulation model (ref. Subsection 2.3.2) for
OMNeT++/INET claim to satisfy the requirements of the PHY protocol architecture,
features, and interfacing. In the result of the other analyzed link layer models, there is no
simulation model that tries to exactly represent the PHY protocol architecture, neither
in functional scope nor in structure of modeling.

Protocol simulation studies are often conducted to show the algorithmic effectiveness

34

2.4 Limitations of pure Simulations

of selected protocol schemes and features by abstracting or omitting several details
[98]. For example, the model of the IEEE 802.15.4 GTS simulation study in [99] has
several limitations regarding MAC features and abstracts completely from the PHY
details. The modeling features (Section 2.2) and the state-of-the-art simulation models
for wireless link layer protocols (Subsection 2.3.2) indicate the increasing abstraction,
when modeling the lower layers of a wireless transmission system. It is also noticeable
that often when PHY models are mentioned the signal propagation is actually meant
(e.g., the LoRa PHY model in [94] or the 6TiSCH simulator PHY model in [70]). But
any ignoring of protocol parameters and properties from the specification will cause the
results to deviate from reality. Almost all physical layer models belong to the frame or
packet domain and assume that the most PHY functions work perfectly without any
performance degradation [38, p. 157]. There is practically no performance simulation
study that involves signal modulation. In contrast, most simulation studies make highly
simplified assumptions about the physical conditions which provides little confidence in
the credibility of the simulation results.

Regarding a concrete specification, such as the IEEE 802.15.4, there is in addition many
room for interpretation or explicit hardware dependance within the standard definition,
e.g., a concrete parameter setting of a radio module is often left to the manufacturer. For
IEEE 802.15.4, this leads to differences in the calculation of GTS time slots, ED range,
energy consumption, and execution times. To mitigate these issues in pure simulations,
system designers would have to need explicit chip models to cover special value ranges
and options. Summing up, it can be stated that accurate environmental and radio channel
modeling is exceedingly unfeasible in discrete network and protocol simulation. While
models of the PHY mostly surely represent the data transmission and reception, this
assures that simulation alone is not the first tool of choice in the field of wireless network
performance evaluation. This is also reflected by the current trend that the majority of
evaluations are conducted using experimental studies in testbeds and that this number
has been increasing slightly in recent years [37].

2.4.2 Performance and Scalability

Some obvious advantages of network simulators, e.g., high scalability, are only valid when
purely virtual evaluations are performed in which simulation time is not an issue. However,
if the algorithmic complexity of the simulation models and thus the simulation time
increases enormously, studies can become unmanageably time-consuming and exclude
the coupling with external interfaces in a Real-Time DES setup (ref. Section 2.1.3). In
[100], E. Egea-Lopez et al. surveyed the main scalability issues in WSNs simulation
and showed both, the need for integrating detailed and accurate physical models, and
the crucial impact on scalability (both network load and number of nodes) with partly
exponentially degraded performance (cp. the performance results of the full model in
[100, Tab. 1]). A similar effect (albeit only with quadratic complexity) can already be

35

2 Wireless Network Simulation

observed in simulations without considering exact physical transmission models, e.g., the
6TiSCH MAC simulator [70] presented in [70].

These problems are further amplified when other model-relevant aspects in the context
of WSNs (e.g., node mobility, energy consumption, or sensors) are added to the protocol-
related modeling. Managing these performance and scalability issues eventually leads
to sacrificing accuracy by partitioning and optimizing the network model and by using
lightweight mathematical abstractions [100]. Parallelizing computations with Parallel
Discrete Event Simulation (PDES) setups can also possibly reduce this problem, but
there are still a lot of open issues in network simulation for future research [101], so
sequential simulations remain the norm.

2.4.3 Cross-Protocol Stack and Interference

Most of the simulators and models are designed for evaluating the performance of
protocol algorithms in homogeneous protocol architectures and networks. For example,
with the INET framework, the OMNeT++ community has created a basis for modeling
heterogeneous networks by means of different host types and protocol stacks. When
looking at the protocol variety of the wireless link layer (which is more complex to model
in DES , but indeed responsible for the physical data transmission), there is still some
potential for model development. In fact, many existing simulation models of wired
broadcast networks ignore collisions and interference completely by loosing only little
accuracy [64, pp. 27ff] because of the well-known collision detection mechanisms and
the exactly predictable signal degradation on a wired medium. However, this cannot be
applied to wireless networks, since the effects of collisions and interference are significantly
influenced dynamically.

Simulation models describing the effects of Cross-Technology Interference (CTI) are
practically non-existent. If CTI is considered in network simulation it is usually based
on data sets from real-world experimental measurements (e.g., [102]). The few existing
physical Inter-Channel Interference (ICI) models greatly simplify [103] and are not
used in practice. Finally, simulating protocol interference and physical interference
(ref. Subsection 2.2.1) at the wireless link layer is unsuitable in DES . Also the review in
[104] shows this little significance in network simulation. Studies of cooperating wireless
link-layer technologies, as well as the ICI , are obviously still the domain of experimental
evaluation in field tests.

36

3 Wireless Network Emulation

Realistic evaluation plays a crucial role in commercial and academic development of
network devices, communication software, and applications. In contrast to academic
research which focuses more on simulation for the evaluation of algorithms or protocol
procedures, industrial development is mainly characterized by often extensive and costly
device testing in real or emulated networks, e.g., in addition to in-house test departments
in companies developing and manufacturing wireless communication systems. For this,
there are dedicated specialists for modern wireless test procedures. Nevertheless, network
emulation is a broadly established and fundamental evaluation approach with a beneficial
tradeoff when considering experimentation cost, reliability of the results, and flexibility
(cp. [1, pp. 16ff], cp. [38, pp. 83ff], [36], [105] for a detailed overview of this area).

In this chapter, we summarize important basics and emerging techniques for emulation-
based wireless communication network evaluation. In addition to basic requirements
and strategies, we present several approaches in overview and comparison, as well as
selected concrete systems in detail. Accordingly, the RoSeNet system (ref. Section 3.3) is
considered exemplary as a hardware platform on which the prototype for evaluation in
the context of this work is built. Based on the analytical overview of related emulation
techniques, systems, and approaches, this chapter concludes with a discussion about
the limitations of network emulation to underline the demand for hybrid evaluation
techniques in general and the Radio-in-the-Loop concept and prototype introduced with
this thesis in particular.

3.1 Emulation Methodology and Classification

Network emulation aims at creating an environment for interconnecting real-world
components (e.g., devices, applications, services) being tested in a controlled laboratory
environment with regard to network conditions [1, p. 14]. The emulation technique
often uses both physically real network hardware and virtual components, e.g., based on
computer models. Thus, network emulation approaches can increase the accuracy and
reliability of evaluation results in comparison to the simulation. They help to answer
questions like: What performance can be achieved by the implementation of a particular
protocol, application, or transceiver device architecture in a wireless network? Since the
field of network emulation is sometimes very vaguely defined in the literature and used
in different contexts in practice, a methodical delimitation and a concrete classification
is presented in the following for this thesis.

37

3 Wireless Network Emulation

3.1.1 Methodical Delimitation

The basic methodology aims to produce the network conditions for a test scenario as
realistic and accurately as possible to obtain reproducible and detailed feedback from the
designed system, but without modeling all components exactly (compared to simulation).
Thus, emulation can be described as an imitation of a real-world process based on
“something such that it is equivalent to the original entity” [39, p. 3]. The application
domains of network emulation in the field of wireless communication systems are the lower
protocol layers, topology and mobility, and device hardware. Appropriate approaches
and architectures can also usefully extend or combine existing evaluation concepts, such
as simulations (e.g., network emulation in OMNeT++/INET [48, pp. 88f]) and testbeds
(e.g., Network Emulation Testbed (NET) [1, p. 205] and Virtual Testbed (VTB) [106]), to
enable more accurate investigation results. The emulation of the device hardware (e.g.,
processors, control units, or the sensors/actuators) is explicitly not considered in this
thesis.

As the network emulation methodology does not necessarily focus on models, the ter-
minology can be different from simulation modeling. Basic terms like entity, system,
and attributes are used in the same context. However, when not considering models as
a basis for the network emulation setup, a common understanding is given with the
generic term black box. Thus for network emulation, only the inputs and outputs are
important and not the internals. Nevertheless, emulation systems are built up from
individual building blocks (modules) to enable configurability and reusability, and to
ensure certain properties. For example, the link quality degradation Δ𝑄 [1, p. 9] can be
an important property of the black box system for a network link emulation. Thus, a
network link emulator appears to be a real wireless communication link to which physical
real end-systems can be attached.

3.1.2 Classification

Since network emulation covers a large area between model-based evaluation and real
component tests, we summarize possibilities for classifying network emulation systems in
specific categories in the following. Based on the architectural composition of network
emulation systems using real and virtual components, a subdivision into hardware- and
software-based techniques is obvious. The principle of real hardware-based emulation
involves the use of hardware components to statically specify and influence network
properties or to decouple time-critical functions and computations from complex models.
Especially on the PHY and the radio channel domain, where the involved hardware is
specifically adapted to the network technology, this primarily supports the repeatability of
tests under reproducible conditions. For example, analog or digital hardware components
can emulate the radio link via parameterizable link properties, or parts of the device
hardware and network interfaces can represent a transceiver.

38

3.1 Emulation Methodology and Classification

(Real) software-based emulation also serves the purpose of influencing network properties
in a controlled manner, such concepts though are mainly considered beyond physical
transmission. Thus, the execution of real communication software can be embedded or
used as a host operating system service, e.g., to avoid abstract and inaccurate modeling.
This can be performed both on the general purpose processor of the control or runtime
system, and with the help of special instruction-level processor emulation systems. Virtual
software should be mentioned in relation to model-based emulation which requires no
special hardware. These components are quite versatile. They can, for example, enable
artificial delays or losses during a real packet transmission.

Nevertheless, the concrete implementation of all components for emulation depends
decisively on their purpose and classification within the communication network. A
fundamental classification (derived from [1, p. 270]) following the protocol layer models
(ref. Figure 1.1) is presented below in Table 3.1. The classes allow an beneficial char-
acterization and assignment of approaches and systems of network emulation with the
delimitation areas, the testbed, and the simulation (class D corresponds to the simulation
when all layers are pure model-based). Based on the classification keywords, the layer

Testbed Class A Class B Class C Class D
Applications real real real real emulated
Protocols real real real emulated emulated
Interfaces real real emulated emulated emulated
Conditions real emulated emulated emulated emulated

Table 3.1: Classification of network emulation systems (derived from [1, p. 270])

structure from the physical radio environment via the network interface to the network
application is apparent: Network applications map services, (distributed) applications
and tasks, and application data flows in the node network. Network protocols map the
functional specification, from transport to application layer protocols (APL). Network
interfaces refer to the link layer with the associated hardware (e.g., digital and analog
signal processing in the circuits) to access the radio channel (cp. modeling domains of
the PHY in Figure 2.6). Network conditions represent the effects of signal transmission
at the analog radio domain, according to Figure 2.6 in Section 2.2.

As already mentioned in the previous chapters, the performance evaluation is highly
effected by the link layer (cp. the internet protocol suite in Section 1.1). It is therefore not
surprising that in the field of wired and wireless network emulation approaches are mainly
present at the lower layers of the protocol stack. The classification in Table 3.1 also
highlights that emulation of the physical connection (network interfaces and conditions) is
the most important component of network emulation systems, as it is involved regardless
of the system class. The emulation of the physical connection (radio link) is considered
as a basis in this thesis context and is presented hereafter.

39

3 Wireless Network Emulation

3.2 Radio Link Emulation Requirements and Strategies

Radio link emulation covers the network interfaces and radio conditions in the network
environment (ref. Table 3.1). The emulation domains for applications and higher layer
protocols are omitted in radio link emulation. A link-level emulator (cp. [1, pp. 56f])
recreates the end-to-end characteristics, often expressed as network quality degradation
of a connection between devices (according to the effects of wireless link congestion in
Figure 2.3). In the following, basic requirements for emulation systems are explained in
order to subsequently indicate various emulation strategies for network conditions and
interfaces.

3.2.1 Emulator Requirements

The requirements for network evaluation techniques (cp. [1, pp. 16ff] and [38, p. 85]) in
general and the emulation in particular are summarized briefly here. We consider some
of them as basis in this context. They should be fulfilled from all radio link emulation
systems:

• Repeatability of an evaluation scenario is usually one of the main objectives
and a basic requirement. Therefore, the system must have the full control over
experimental conditions to reproduce the evaluation results. A distinction can be
made between centralized and distributed approaches for emulation control (cp. [1,
pp. 64ff]). For the centralized emulation control, e.g., based on a single control unit,
the processing of the configuration commands (both node and network components
interaction) can become a bottleneck with an increasing network size.

• Real-time capability is usually an important requirement for various emulation
strategies. Depending on the system characteristics and the objective, this usually
plays a superordinate role when connecting and running real-world components, e.g.,
a precise timing of MAC algorithms, the communication with real chip hardware,
or the signal transmission within a real fading channel. This implies, however, that
model-based components also comply with the requirements for real-time execution
and are accordingly ready with their calculations on time.

Furthermore, some more requirements are discussed in addition which should be met
to a desired degree depending on the evaluation goal. This parameter selection and
differentiation serves at the same time the comparability of different approaches analyzed
later in Section 3.3:

• Scalability at a high level is necessary to show how the network behaves and
performs for a given network size, as well as to figure out the limitations of the
network size, especially in wireless networks with shared medium communication.
The parameters of scalable wireless networks are, for instance, the number of

40

3.2 Radio Link Emulation Requirements and Strategies

nodes, the amount of traffic, the number of parallel networks according to channel
multiplex, or the number of hops in a mesh network. Because commonly designs for
emulation testbeds or Device Under Test (DUT) evaluation scenarios are limited
to several single nodes, evaluating large-scale deployments is often unfeasible.
According to Beuran [1, p. 256], the size of an emulated network is limited to tens
of nodes in centralized control solutions. Adding computing resources in distributed
and parallel approaches can increase the scalability and overall system performance,
but they are very complex to implement.

• Mobility refers to the capability to emulate physical node movement. As there
are several techniques to achieve mobility, presented in the following section, this
requirement may vary in accuracy or may be absent entirely. However, a small,
imprecise degree of mobility is always present when it is possible to switch nodes or
their radio links on and off during emulation. In terms of modeling node position
changes in a scenario, simplicity and the use of models, such as motion patterns, is
crucial.

• Modularity is a property that goes hand in hand with configurability and in-
terchangeability, which is difficult to achieve with an inadequately structured
architecture. It should therefore be consistently layer- and module-based, easy to
extend, and not a monolithic black box for a single application. What is the stan-
dard for model-based simulation (e.g., model libraries or community frameworks)
is partly not very common in various emulation techniques. It is not uncommon
for emulation systems to have a strong proximity to application-specific testbeds.

• Configurability refers to the flexibility to adapt the emulation setup for a certain
research question. Because an emulation system that can only represent a single
scenario is more likely to be considered a field test with emulated properties. For
this reason, why it must shielding the complexity and abstract from hardware
and system details by offering adjustable levels of the above mentioned emulation
features. Usually, a Hardware Abstraction Layer (HAL) [38, p. 88] is considered in
the system architecture to reduce the complexity of the configuration. It is also
beneficial to offer (external) tools to automate the scenario configuration, e.g., by
the use of a GUI . Since the network emulation is an abstraction of a real network,
its modules should be configurable by a parameterizable model representation.
Due to diverse dependencies (e.g., regarding real hardware components or system
limitations), low flexibility often causes the biggest limitations in the wide use of
emulation systems [1, p. 256f].

• Traceability is also important, as it enables further processing and evaluation of
the achieved emulation results. What is desired, is a possibility to record nodes’
packet data exchange as a trace, a monitoring of component events and execution
processes, as well as but not even, a selection of emulation result parameters. This
is certainly reflected in the degree of traceability. Simple evaluation data, such

41

3 Wireless Network Emulation

as data rate and bandwidth, might be insufficient for obtaining insights into the
emulation process.

• Accuracy is generally really good (cp. [38, Fig. 6.2, p. 85]), because by using
real components, the overall system is usually closer to reality than with purely
model-based methods. With regard to the emulation of the radio link, however,
a distinction and quantization must be made according to several aspects, e.g.,
on the one hand, realistically modulated packet data including transmission by
means of real wireless hardware and, on the other hand, purely virtually generated
packet data (sometimes with attached frame meta data) and a transmission on a
wired testbed network. In addition, the accuracy of radio transmission effects, e.g.,
interference and noise, plays a significant role compared to a pure consideration
of the device under test transmission signals which can ultimately have a strong
impact on the accuracy of an evaluation question.

• Isolation for hardware-based approaches with real interfaces means the protection
against radio pollution and disturbances. We can distinguish internal isolation, on
the one hand, to prevent undesired multipath effects and avoid signal leakage and
spreading via control network and, on the other hand, external isolation to shield
the internal Radio Frequency (RF) architecture and components from interferences
[107, p. 98ff]. In purely model-based/virtual emulation approaches, of course, this
physical isolation does not matter, since no real packet transmissions are triggered.
In this context, isolation means protection against other effects that influence
the transmission parameters or computing performance of the overall system. For
example, if the emulation system is based on a testbed infrastructure, it must
be ensured that transmission power and resources on this network system are
sufficient for all relevant operations and that these are not disturbed by other data
transmissions (e.g., higher priority protocols, management, cyclic control, etc.).

3.2.2 Emulating Network Conditions

In simulation systems signal propagation effects are usually abstracted through virtual
packet data modification. When considering radio link emulation, the physical packet
transmission with configurable network conditions is recreated based on different strate-
gies. Solely emulating the radio environment (in class A emulation systems) results in a
single discipline, called radio channel emulation or fading simulation (when using digital
hardware). The emulation of network conditions is often applied only to a sender-receiver
relationship, as depicted in Figure 3.1. We wdistinguish here between the emulation of
radio channel effects of a single network link, the radio topology of the network, and the
mobility of the physical nodes. An overview analysis of concrete systems strategies is
presented in Section 3.3.

42

3.2 Radio Link Emulation Requirements and Strategies

Radio Channel Emulation
analog radio domain e.g. interference, fading, mobility, ...

Receiver
(RX) RF
Front End

Transmitter
(TX) RF
Front End

Figure 3.1: Radio channel emulation of wireless transmission systems for sender and
receiver according to the analog radio domain in Figure 2.6

Radio Channel Emulation

Radio Channel Emulation offers a way for recreating realistic RF communication con-
ditions. Beuran [1, pp. 264ff] distinguishes between real network conditions for wired
network emulation, which can be either uncontrolled or controlled, and the use of compu-
tation models for virtual emulation. This classification does not fit exactly for wireless
networks. Uncontrolled real conditions arise when using real components, as much as
possible, in a real environment, which increases the result accuracy, but can be regarded
more as a field test rather than an emulation with a limited ability to reproduce certain
conditions. Pure software-based (virtual) emulation is build up on modular software com-
ponents, whereby, in contrast to simulators, no exact model is reproduced for simulation,
but instead existing infrastructure (for a purpose other than the intended one) is used
(e.g., emulating wireless transmissions over wired networks).

In order to provide the system user with a controlled influence on the real conditions
(e.g., for repeatability with modifications), the use of configurable system components
is indispensable. This is achieved in practice by using dedicated emulation hardware
(analog or digital) to capture and process real radio signals. The emulation hardware
components can then be configured to affect the channel quality parameters presented in
Subsection 2.2.1 The wireless devices are isolated from each other and connected over their
radio interfaces to the RF channel emulator hardware, which emulates signal propagation
effects, as already presented in Subsection 2.2.1. A common and important feature of
these systems is the ability to control the large-scale fading between transmitters and
receivers. Practical deployments vary from laboratory test setups with coaxial-based radio
links to complex analog or digital radio channel emulators which support hundreds of
interconnected nodes. Nevertheless, applications run as static firmware implementations
on real-life wireless network hardware and flexible adjustments of applications or protocol
parameters are complicated compared to network simulators.

Network Topology and Mobility Emulation

The most of the modern link-level emulators attempt to achieve a realistic or high
accuracy end-to-end connection with a complex setup. Thereby often only two systems
(sender and receiver) are related to each other. Advanced approaches also allow the
emulation of a whole network topology, so that connections of several different nodes and

43

3 Wireless Network Emulation

scalable networks are taken into account, such as topology-level emulators [1, pp. 57ff]
different device types (device topology), and equal devices in a network eventually
resulting in a certain radio topology. What is still relatively easy to implement for a
single transmitter-receiver system becomes highly complex for larger topologies and
complicated environmental conditions (especially in industrial environments, indoors),
e.g., the setting of appropriate attenuators in analog hardware emulation is done on the
basis of the model-based attenuation value calculation.

Mobility is a very important feature when looking at wireless network modeling in general
(ref. Subsection 2.2.5) and channel emulation in particular, because it introduces special
network situations (e.g., reaction to a sudden decrease in signal strength). This can be
either based on robots, moving a node around in a controlled environment, antenna
switching approaches [105, Sec. 3.2] or variable step attenuators (e.g., with an attenuation
matrix in [108]), which set the appropriate values for long-term fading emulation. The
movement of nodes in a radio channel results in a constantly changing radio topology. For
this purpose, mobility models must be developed that permanently generate technology
parameters, such as attenuator values, from changing node positions.

3.2.3 Emulating the Network Interfaces

When looking at class A emulation systems, usually real network devices and interfaces
are used in the evaluation setup. What is very suitable for device testing can no longer
be applied when complete control over the behavior of the interface is required (e.g.,
flexibility of interface-to-channel interaction). The emulation of network interfaces is
mostly based on abstract parameters (e.g., bandwidth, PER, or operating channel
frequency) comparable to the abstraction in simulations. When incorporating a detailed
view on more realistic strategies, from our point of view, the emulation of wireless
interfaces must be divided into the radio front end and the specifics of the network
interface protocols at the link layer (mainly MAC and PHY features).

Radio Front End Emulation

The emulation of the radio front end is assigned to the nodes signal processing or
the waveform domain when considering the decomposition into modeling domains of
wireless communication systems (ref. Figure 2.6 in Section 2.2). This area includes
components where the signal processing for the generation of radio packets can flexibly
be adapted. This can be achieved on the one hand with highly configurable Digital Signal
Processor (DSP) and Field Programmable Gate Arrays (FPGAs) and on the other hand
based on SDR concepts on general purpose hardware. Although SDR techniques are
not ubiquitously assigned to emulation, concepts in which signal processing (i.e., on
hardware devices) is modeled on general purpose hardware formally meet this definition

44

3.2 Radio Link Emulation Requirements and Strategies

and can often be found in the literature (e.g., [109]). Pure software-based transceiver
modeling can be used to enable realistic but flexible and configurable PHY transmissions.
In Figure 3.2 the signal processing of a PPDU via an generic PHY SDR transmitter
(e.g., QPSK modulation) to the antenna interface is depicted.

SDR HardwareSDR Runtime Software

Bit-to-
Symbol
Bit-to-
Symbol

Symbol-
to-Chip
Symbol-
to-Chip ModulatorModulator D/A

Converter
D/A

Converter
Amplifier/
RF Mod

Amplifier/
RF Mod

PHY Coding, Spreading, and Modulation

PPDU
Data

Figure 3.2: Example PHY SDR Transmitter

The concept of real-time streaming is the basis for SDR concepts at large and a very active
area of research, but not state-of-the-art in radio module development. It is very complex
to develop a complete SDR transceiver front end and, in general, the designs are more
energy-intensive and costly as single-chip solutions. Other limitations of SDR concepts
can be studied in [110, Ch. 4]. On the other hand the deployment of flexible wireless
network evaluation can be very beneficial, when getting along with the performance
issues in scalable network scenarios.

Link Layer Protocol Emulation

According to the TCP/IP protocol stack, the network interface (link layer) comprises
MAC and PHY features. The PHY (layer 1) architecture or service procedures are
often not of any interest because they increase the system complexity without a clear
accuracy gain. However, to access and configure platform-depended components in a
standardized manner or to feed physical real signal processing with virtual or even
simulated higher-layer protocol data an accurate architectural implementation of the
protocol interfaces can dramatically increase the flexibility of the emulation. Integrating
(parts of) real protocol implementations, e.g., from open-source operating systems, is
one of the key strategies for protocol emulation of the layers 2 and above (ref. emulation
approaches in Section 3.3). This method is sometimes not clearly delineated as emulation
in the simulation literature, e.g., it appears in the field of simulation as NSC [38, p. 88].

It is, however, also possible to setup alternative strategies to emulate protocol functions,
some of which can be used in the emulation of higher-layer protocols, but also regarding
the link layer. For example, the MAC can virtually be emulated by recreating several
protocol properties (e.g., traffic patterns, frame delay, and frame drop) based on black
box modules, which outwardly deliver exactly the desired properties. According to an
IEEE 802.15.4 beacon-enabled PAN , this can mean to schedule a beacon frame every 𝑥
milliseconds with a certain transmission probability using any data generator.

45

3 Wireless Network Emulation

3.3 Selected Radio Link Emulation Approaches

In addition to the methodological classification of network emulation systems presented
at the beginning of this chapter, the characteristics of the technical implementation
(with hardware or pure software components) can become a decisive differentiator. The
exclusive emulation of the network conditions with real physical interfaces results in an
emulation system of class Class A (ref. Table 3.1, in practice called Channel Emulator)
with analog or digital hardware channel emulation. Class B approaches aim to increase
the flexibility of interface-to-channel interaction and are either purely virtual, or use
model-based calculations like in simulations.

Channel Emulation (Class A) Class B
analog digital virtual model-based

Jung and Ingram [111] Beshay et al. [112] Beuran et al. [113] Elsner et al. [114]
RoSeNet [115] Borries et al. [116] Wu et al. [117] Flynn et al. [118]

Onishi et al. [119] Matai et al. [120]

Table 3.2: Radio link emulation systems and approaches overview, according to their
class and technical implementation

In contrast to simulators and their models, network emulation systems are rather
rare. They cannot always be classified exactly or follow a very different approach
sometimes. Table 3.2 lists the most important research approaches for radio link emulation
regarding scientific relevance and comparability, distinguished by their class and technical
implementation (apart from a very few commercial channel emulators). Emulation
approaches of the higher classes (e.g., Comer et al. [121], or Nasreddine et al. [122])
also emulate the network interfaces and conditions, but they do not introduce further
concepts for radio link emulation and are not considered in detail in this analysis. On
the other hand, the highlighted approaches in Table 3.2 are explained and compared in
more detail below to illustrate the methodological diversity.

Class A small-scale testbed-like network setups (e.g., [111] and [119]) and, rarely to find,
large-scale test solutions (e.g., RoSeNet [115]) can be realized with analog radio hardware.
Since it can become very complex to enable high configurability with analog components,
these approaches usually focus on a few aspects of the evaluation. Jung and Ingram
[111], for instance, propose a highly accurate channel emulation testbed for evaluating
cooperative transmissions of real nodes wireless communication with an adjustable fading
channel. For another research problem, this exemplary testbed hardware connection of
nodes and RF components (cp. Fig. 2 in [111]) is unsuitable. An excellent approach for
scalable analog channel emulation is offered by the emulation system RoSeNet, which we
introduce separately in Section 3.3 and which at the same time forms the basis for the
prototype implementation of some approaches developed in this thesis.

46

3.3 Selected Radio Link Emulation Approaches

Digital channel emulation is usually based on DSP with configurable FPGAs hardware
(e.g., [112], [116], and [120]). In [112], for instance, Beshay et al. present WiNeTesTer, a
FPGA-based digital channel emulator for real wireless devices testing. At the channel
emulation core, the modulated analog transmission signals from the DUTs are digitized,
processed in the digital domain, and converted back to analog for the receiving site.
Within the digital processing, attenuation and amplification can be applied to emulate
fading and multipath effects. Due to the modular architecture of this approach, the
authors claim to enable a high scalability with minimizing the hardware resources. The
general goal of both analog and digital systems is to test individual radio modules or the
network performance of multiple nodes under controllable channel conditions.

Class B offers primarily pure virtual, emulation of interfaces and conditions. Selected
approaches in this class range from model-based radio link emulation on real wired
testbed networks (e.g., [113] and [117]) to pure virtual testbeds for SDR terminals in
[114]. A virtual channel in VMNet [117], for instance, is based on software components
manipulating UDP packet transmissions over a dedicated Local Area Network (LAN).
The parameterization of individual software modules (e.g., delay module, collision module,
and bit-error module) enables a defined influence on the propagation characteristics.
Thus, both this and the following approach use a standard wired TCP/IP network as
the test infrastructure for radio link emulation.

Beuran et al. [113] introduce a combined approach for network, processor, and sensor
emulation as an extension of a wired network testbed. The radio link emulation is
based on the transmission of modified PDUs by a channel model library. They use
processor emulation to generate the IEEE 802.15.4 PHY compliant radio packets at the
network interface and reproduce a the channel condition (path loss, PER, transmission
delay) with abstract parameters for the conditions emulation. E.g., a path loss model
(ref. Subsection 2.2.1) is used to calculate the received power at a certain distance,
including empirically-determined in-house wall attenuation values and a shadowing
component (cp. (1) in [113]). The PER is used to introduce statistical probability
for a successful frame transmission. Thus, the channel parameters are applied to the
transmitted frames on the wired testbed network to decide whether to eventually deliver
or discard received frames.

Elsner et al. [114] propose amodel-based approach for emulating the node signal processing
in software using an SDR environment. This enables switching between real software
execution in a pure virtual software radio network and on the target SDR hardware.
They model the radio front end as well as the radio channel with software components.
A channel matrix component operates synchronously to the SDR nodes and simulates
signal propagation effects (e.g., Doppler shift or fading) for each individual channel
between a pair of nodes. The effects of the propagation path are modeled individually by
a time-variant impulse response. Thus, the channel matrix becomes increasingly complex
for large-scale virtual networks.

47

3 Wireless Network Emulation

The following Figure 3.3 compares the selected approaches in an overall view based on
the properties introduced in Subsection 3.2.1. Note that the scale does not represent
defined quantities, but a linear level of performance from very poor (center of the radar
plot) to excellent, compared to the highest property values of the selected approaches1.

Scalability

Mobility

Modularity

Configurability

Traceability

Accuracy

Isolation

Jung and Ingram [111]
Ludwig et al. [115] (RoSeNet)
Beshay et al. [112]
Beuran et al. [113]
Elsner et al. [114]

20/42 points
33/42 points

30/42 points
33/42 points

27/42 points

Figure 3.3: Analysis of radio link emulation systems and approaches based on the prop-
erties performance level. The overall performance is additionally represented
by a score and highlighted for the RoSeNet emulation testbed1.

To briefly summarize the current approaches, it can be stated that radio link emulation is
a very heterogeneous field of research with partly very different approaches. Considering
the overall performance on the basis of this requirements there are three systems that
are in the particular focus, namely RoSeNet, WiNeTesTer, and the emulation testbed
introduced by Beuran et al. These systems are particularly characterized by their broad
applicability, because they are not oriented to specific communication technologies or
concrete issues. It can also be recognized that the most accurate testbed-like approaches
tend not to be very scalable. An exception is RoSeNet, which is analyzed in more detail
subsequently, since it is the experimental platform of this thesis. Except for the model-
based systems in [114] and [118], all approaches rely on several real hardware resources
(either emulation hardware or testbed infrastructure) which makes them particularly
costly, but very accurate methods of network evaluation.

1 The exact interpretation of the radar plot evaluation is given in Table A.2 in Appendix A.

48

3.3 Selected Radio Link Emulation Approaches

RoSeNet Emulation Testbed

RoSeNet [115] was emerged from a joint project of Fraunhofer IIS / EAS and dresden
elektronik company. The elementary goal of RoSeNet was to provide procedures and
methods for the design of robust, reliable, and functionally safe wireless network solutions
in the context of Low Rate s (LR-WPANs). It features a low-power wireless technologies
hardware test platform (hereinafter referred to as RoSeNet) developed by dresden
elektronik for the analysis of the robustness in load scenarios for large-scale WSNs with
a size of up to 1000 radio modules.

Figure 3.4: RoSeNet radio emulation and test platform hardware panel (taken from [55])

Figure 3.4 shows a photo of a single Emulation Panel of the entire RoSeNet platform. All
“wireless” nodes on the hardware system are interconnected through a controllable coaxial
cable radio environment and do not use actual external antennas. As a representative
of a class A emulation platform, all other components, such as sensor node hardware,
communication interfaces, network stacks, and application firmware, are real.

Testbed Hardware and Control Architecture
RoSeNet has a very modular hardware architecture that is composed of individual
hierarchy levels, but it is not necessarily bound to a fixed structure. A single Emulation
Panel forms the basic component of the emulation hardware system. It is responsible for
the inclusion and control for up to eight radio modules. A panel can either be operated
stand-alone or in association with others. Multiple panels are interconnected in two
different hierarchical networks: a RF and a Control Network. The basic characteristics
of these network views on the hardware architecture and its components are analyzed in
Figure 3.5 and explained below.

The basic RF Network hierarchy is presented in Figure 3.5a in which coaxial cables
connect all components. From the RF point of view, a panel is a compound of eight
nodes whose wireless interfaces are connected to one another by a power splitter (power
divider). The resulting signal path is linked to the panel output and can be adjusted
by digital step attenuation. There are BNC connectors on both interfaces of the panel
Input/Output (IO) that connects to adjacent panels. A series connection of multiple
panels forms a RF chain. Eventually, the entire RF network is formed by multiple chains
that are attached to a root power splitter.

49

3 Wireless Network Emulation

� root power splitter
� chain 0

� panel i/o 0
� power splitter 0

� node 0
� ...
� node 7

� ...
� panel i/o n

� chain 1
� ...

� chain 2

(a) RoSeNet RF network

server switch
panel 0
� management controller 0

� attenuation switch 0
slot 0 [module type X]

...
slot 7 [module type Y]

panel 1
� management controller 1

...
...
panel n

(b) RoSeNet control network device hierarchy

Figure 3.5: RoSeNet hardware architecture

In this overall hierarchical configuration, the maximum number of “wireless” intercon-
nected nodes in a WSN test scenario can scale up to 1000. This is because with each
connected panel in a chain, the signal attenuation to a distant node increases. Due to
common hardware values for the transmission power and receiver sensitivity of common
radio modules, the radio signal can no longer be detected at some point. The node
network hierarchy can also be used partly or even freely configured with power splitters
and coaxial cables in other topologies.

From the control servers point of view, there is a Control Network (see Figure 3.5b)
based on a switched Ethernet LAN which connects to all emulation panels. Hence,
every panel can be attached via Ethernet-Switches by its MAC address. A management
server is responsible for controlling each individual panel and coordinating the panel
access within a test sequence. For the communication with each panel, a simple panel
command protocol over the common TCP/IP-Stack is used. A single panel features a
variable operating voltage for the module slots and a power consumption measuring
circuit. For each module slot, certain node interfaces can be controlled, e.g., the Universal
Asynchronous Receiver and Transmitter (UART) and analog/digital IO. In addition, radio
modules on the panel slots can be of different device types because they are connected via
individual interchangeable adapter circuit boards. There are control commands specified
for the panel and each single node on the module slot.

50

3.4 Limitations of Radio Link Emulation

3.4 Limitations of Radio Link Emulation

This section concludes the analysis of emulation for resource-constraint wireless commu-
nication networks by showing the limitations of pure network emulation. As, for example,
the criteria-based tool comparison and overview with advantages and disadvantages in
[38, p. 88] is too general, the analysis in this section provides a specific overview of
the limitations with a particular focus on radio link emulation with respect to current
research questions. Some general limitations, presented below, are complemented by
specific constraints in the corresponding subsections.

As mentioned before, the most limiting factor is probably the costliness of the system
hardware to enable accurate hardware-based channel emulation. Even with virtual
approaches based on a testbed infrastructure, the enormous demand for resources,
especially for large WSN and IoT deployments, drives up costs. Since commercial
channel emulators support fine-grained emulation of the wireless channel only among a
very small number of nodes, evaluating new device, implementations or applications are
limited in network scale. Moreover, considering the hardware-based emulation, it is a
very difficult task to provide internal isolation in a testbed-like system, e.g., to avoid
multipath effects of radio signals over the wired control network.

As in digital and software-defined network emulation approaches, e.g., [112] or [114],
the RF path is digitized, signals could be manipulated with full control. The high
computational demands, however, results in low scalability, very complex and still
abstracted algorithms for the incorporation of propagation effects or interference, and
coexistence with other technologies. Furthermore, these concepts focus on network
condition emulation and require real transceiver hardware and software, which at the
same time excludes aspects of a flexible protocol stack interaction.

3.4.1 Cross-Layer and Cognitive Radio

Although radio interface emulation is based on real protocol implementations and even
radio channel emulation relies on real transceiver chips and interface hardware, they
lack in flexibility of collaborating with configurable radio interfaces and higher protocol
layer features. Considering the approaches in [113] and [114] or the generally limited
scope of SDR concepts (cp. [110, pp. 40f]), only the PHY and the radio channel should
be considered for accurate modeling. Furthermore, the link layer is often based on an
implementation of the standard as a NIC , whereby changes on the PHY parameters are
not possible by design. As highlighted in this thesis’ introduction chapter, there is an
increasing demand for cross-layer evaluation approaches allowing information exchange
between all higher communication layers with the physical communication interface.
Several problems created by wireless links are addressed in [49] which cannot be evaluated

51

3 Wireless Network Emulation

with pure radio link emulation due to the lack of interactivity and configurability of the
higher layers or NIC -based implementations (cp. MAC prototyping survey in [123])

On the other hand, radio link emulation provides a very good basis for cognitive radio
networks ([124]). As mentioned before, without incorporating the effected higher layer
protocols and applications, there is a huge tradeoff in terms of flexible experimentation.
Therefore, from our point of view, there is a great need of expansion and coupling radio
link emulation approaches with flexible higher-layer modeling.

3.4.2 Real-Time Scalability and Mobility

When demanding high reality with real-time execution, the best results can be achieved
in testbed-like channel emulation systems of class A, but they are often not very scalable
(cp. [111], [119], [116], or [120]). Class B emulations, on the other hand, focus on
emulating the communication interfaces for resource constraints of wireless devices which
can become difficult to emulate on general purpose single host systems like in [114].
In distributed approaches at least one central controller is needed to synchronize the
infrastructure components, feed them with commands, and process the result data.

When using model-based calculations for the environment emulation, real-time execution
is limited depending of the level of abstraction. Especially software-based channel
emulation reaches the limits of real time computability with a large number of nodes at
the inputs and outputs. In large-scale networks there must be a high degree of distributed
control, parallelism, and modularity which is complex to achieve in channel emulation.
The problem becomes even larger if node mobility is to be taken into account because
then channel parameters must constantly be recalculated with complex algorithms at
runtime. Mobility calculation in real-time emulation is practically unfeasible in analog
hardware setups because it requires highly complex calculations for larger topologies.

52

4 Parallel Simulation and Emulation

It inevitably follows from the findings of the previous chapters that certain approaches
of ongoing research issues cannot be operably evaluated by pure simulation or emulation.
Hybrid evaluation techniques can achieve great added value for certain evaluation
questions and thus mitigate the highlighted practical as well as methodological limitations
of stand-alone techniques. There are a number of single-purpose evaluation tools which
provide a specialized solution for a specific problem. As a result of our analysis, we
propose a novel general-purpose conceptual approach in this chapter that combines
protocol simulation and hardware-based radio link emulation, called Split-Protocol-Stack
Wireless Network Emulation with Radio-in-the-Loop (RIL).

Subsequently, we present the terminology of the relevant state-of-the-art coupling tech-
niques and our derived RIL methodology with regard to wireless communication systems,
sensor networks, and the IoT . We highlight fundamental requirements, current research
questions, and problems addressed by RIL which seamlessly leads into the conceptual
design and architecture of our Split-Protocol-Stack strategy. We introduce a generic
splitting into different evaluation levels and communication system domains. Based on
three main challenges, we show respectively how the identified research questions and
problems are addressed in this thesis. Furthermore, the singularity of our strategy is
highlighted and contrasted by a specific survey of the most significant related approaches
to hybrid network evaluation, which deal with comparable research challenges. Finally,
we discuss the main benefits, use-cases, and scenarios when using parallel simulation and
emulation based on our example and prototype architecture.

4.1 Methodology and Requirements

With consideration of hybrid simulation systems that integrate real or emulated hardware
resources, established key concepts, such as Hardware-in-the-Loop (HIL), are influencing
the field of network evaluation, but they are not applied for their original purpose. These
techniques must be adapted and enhanced for their use in wireless network evaluation.
While the basic concepts of simulation and emulation have already been presented in
Chapter 2 and 3, some terminology, methodical delimitation, and classification of parallel
simulation and emulation methodology have to be pointed out in the following. Moreover,
we introduce the RIL terminology for the Split-Protocol-Stack approach and analyze the
most important problems and requirements of coupling simulation systems with real
hardware.

53

4 Parallel Simulation and Emulation

4.1.1 Terminology and Methodical Delimitation

The concept of HIL simulation has its origins in the field of testing embedded systems,
especially in the automotive industry, where prototypes are fed with simulated data
generated from a virtual environment. Hence, the HIL simulator replicates the operating
environment of the real electronic component and processes the results generated by the
hardware for further analysis. In the context of network modeling and simulation this
concept is applied rarely, which means there is no standard procedure for implementing
HIL-based network evaluation. In general, HIL network simulations incorporate physical
network hardware as integral parts of a larger simulation system. Practical use cases can
be found in interoperability or performance tests of varying vendor hardware platforms
[39, p. 114], for example.

The terminology of the cluster simulation is very similar to the HIL simulation approach.
In the area of network evaluation, e.g, the simulation environment is connected to
the system-on-chip hardware, a node microcontroller, or a network of nodes via a
communication interface (cp. [125] for an example use case). The difference to HIL is
that the simulator is only responsible for generating data packets as input signals to the
system under test. Since no return channel exists to feed data from the hardware into
the simulation, it is only possible to verify the behavior of the system under test. Thus,
it is not possible to increase the simulation accuracy. Both HIL and cluster simulation
fall under the category of real-time simulation and usually require high-performance
hardware and real-time operating systems.

In a co-simulation, several simulation programs are used which feed each other the data for
the next simulation step. Co-simulation is mainly used when a simulation model is needed
for the analysis of special effects whose modeling requirements go beyond the functional
scope of a single tool. With respect to wireless network evaluation, co-simulation in
practice is mainly applied to extend network simulations with other networking aspects,
e.g., mobility in Vehicular Ad Hoc Networks (VANETs), cp. [126]. Furthermore, decoupling
complex calculations of physical effects from the network simulation can help to increase
the scalability of the simulation.

The terminology of a RIL simulation was first introduced by our practical investigations
of integrating real radio transceiver hardware into model-based simulation software in
[55]. The parallel simulation and hardware-based emulation is a combination of the HIL
and co-simulation methodology. The sensor network to be analyzed, i.e., the deployment
environment of the hardware used, is represented by models in the network simulation
and fed by the results of the computations on the real hardware. Thus, the accuracy
of the real hardware improves the overall simulation credibility with this method. To
roll out a basis for common understanding of our classification in the area of wireless
networking we define some terminology for parallel simulation and HIL based emulation.

54

4.1 Methodology and Requirements

Real
transceiver
hardware

Real
transceiver
hardware

Real
transceiver
hardware

Real
transceiver
hardware

Real
transceiver
hardware

Real
transceiver
hardware

Virtual
wireless
device

Virtual
wireless
device

Virtual-to-virtual
communication
(virtual events)

Real-to-real
communication
(radio packets)

Simulation SystemSimulation System Emulation SystemEmulation System

Virtual-to-real
communication

(emulated events)

Real-to-virtual
communication

(external events)

Figure 4.1: Definition of terms and communication relations for the parallel simulation
and emulation RIL methodology.

Figure 4.1 introduces the relevant terminology for the parallel simulation and emulation
setup. There are different types of communication whose messages are called radio packets,
virtual events, emulated events, and external events. While virtual events correspond
exactly to those in the pure simulation and radio packets represents real data transmission
between real radio transceivers, emulated events refer to those events that are generated
virtually and processed by the emulation system on the real transceiver hardware. On the
other hand, external events are generated from real hardware resources and transmitted
to the simulation system.

4.1.2 Coupling Problems and Requirements

The requirements for using simulation and emulation in parallel are fundamentally
the same as introduced for emulation systems in Section 3.2. Real-time capability is a
key requirement for HIL simulation scenarios, as the hardware resources are running
in a continuous environment. Thus, HIL is delay-sensitive by design, which means an
experiment setup is often bound to a fixed transmission rate in network traffic with low
latency and minimal jitter. This requirement becomes hard to achieve when increasing
the complexity of the models on the simulation part, as already discussed with the
limitations of simulation environments in Section 2.4. In addition, there are some further
requirements or research problems which occur when incorporating substantially different
evaluation methods to a hybrid approach. These problems are summarized and discussed
below, derived from various related work HIL modeling aspects, e.g., in [127], [66], [128],
and Section 4.3.

• Interfacing between the simulation and the hardware system is substantially for
all HIL approaches, as it enables the message exchange and control. For a widely
applicable and general solution, the interface must support different simulation
environments and allow the exchange of the above mentioned emulated and external
events between real and simulated system parts. A generic interface solution is
able to support different physical interfaces based on standardized and well-known

55

4 Parallel Simulation and Emulation

data formats. Thus, both standard-conform wireless transceiver hardware and
virtual or model-based emulation can be attached to the simulation. Furthermore,
interface abstraction can enable a configurable or exchangeable interfacing, e.g.,
for accelerating communication based on a customizable level of detail or message
priorities.

• Synchronization is a key issue when coupling a simulation system with another
system to run in parallel. The synchronization should prevent that the events from
the two systems arrive too late for the execution. Two different and commonly
used event orderings are the receive order and the timestamp order [129]. They
must ensure the causal order of the events caused by various logical processes.
When running a real-time HIL simulation, the correct order of scheduled events
is maintained by the simulation scheduler. Since data transmission and compu-
tation latency though produce different times on different systems, a precise and
accurate synchronization of all logical processes in the whole evaluation setup is
needed additionally. Furthermore, an evaluation system with several CPU s on
different hardware systems (usually within hardware-based parallel simulations
and emulations) runs with independent physical clocks, each at slightly different
rates.

• Scenario modeling as well as scenario generation, is a central task of the simula-
tion software, according to the common definitions of HIL, cluster, or co-simulation.
While network simulators provide a dedicated toolset for configuring a simulation
(e.g., the configuration files for the simulation kernel and model parametrization
in OMNeT++/INET), a hybrid simulation approach relies on further configura-
tion management of the coupled system, e.g., the radio link emulation. Usually,
simulation models and systems are parameterized by configuration files to facil-
itate parameter studies and to enable reproducible research. Otherwise, default
or preconfigured parameters are applied to the simulation setup. The automatic
generation of a scenario, e.g., for a variable number of nodes in a specific topology, is
another key task of the network simulator (cp. topology generation in Section 2.2).

• Hardware abstraction of specific nodes increases the modularity and config-
urability of the evaluation system. This allows device hardware from different
manufacturers to be set up with the same software and interfaces. Also in embedded
wireless devices, these functions are performed by operating systems. Furthermore,
the testbed hardware infrastructure also needs abstraction to decouple universal
system features from specific hardware components.

• Resource allocation of nodes and infrastructure hardware is closely tied to the
scenario configuration and the infrastructure-hardware abstraction. It enables a
precise mapping between a certain simulation scenario and the corresponding node
hardware. Since the device hardware and network configurability in hardware-based
radio link emulation has fixed boundaries, this is a problem of high complexity
with limitations regarding accuracy and feasibility.

56

4.2 Split-Protocol-Stack Wireless Network Emulation

4.2 Split-Protocol-Stack Wireless Network Emulation

The Split-Protocol-Stack approach is a result of our analysis, practical experimentation,
and contributions ([54–56, 58, 130]) and constitutes the heart of this thesis. This strategy
and architecture for simulation-driven wireless network evaluation is superordinate to the
successively following research challenges and thus forms the methodological framework
of all further details, individual contributions, and discussions in the subsequent chapters.
Based on aforementioned naming conventions introduced with the parallel simulation and
emulation methodology in Section 4.1, it is called Split-Protocol-Stack Parallel Simulation
and Emulation with RIL.

t Higher Layers (Network Layer and above)

Data Link Layer

Physical Layer

Wireless Medium
analog radio domain antenna, frequency,

frame domain CRC insertion, framing,

waveform domain gain, energy detection, ...waveform domain gain, energy detection, ...gain, energy detection, ...gain, energy detection, ...waveform domain gain, energy detection, ...

symbol domain modulation, coding, ...symbol domain modulation, coding, ...modulation, coding, ...modulation, coding, ...symbol domain modulation, coding, ...

bit domain interleaving, FEC encoding, ...bit domain interleaving, FEC encoding, ...bit domain interleaving, FEC encoding, ...

1

Protocol
Network

Simulation
Protocol
Network

Simulationaccess ctrl, ACK insertion ...

fading, interference,
2.4 GHz

250 kbps

802.15.4 MAC

802.15.4 PHY802.15.4 PHY802.15.4 PHY

915 MHz

40 kbps
868 MHz

20 kbps

PD-SAP

RF-SAP

MCPS-SAP

PD-SAP PLME-SAP

MLME-SAP

PLME-SAP

PLME

e.g. 6LoWPAN, RPL, ... packet domain

2

in-the-
Radio-

Loop
in-the-
Radio-

Loop

3

Emulation
Channel

Emulation
Channel

mobility, path loss, ...

(c) Evaluation(a) Wireless Transmission System Domains (b) Reference Protocol Stack

Figure 4.2: The Split-Protocol-Stack architecture with the protocol stack decomposition
(a), the reference protocol IEEE 802.15.4 (b), and the evaluation levels (c).

Observing the protocol stacks of wireless transmission systems, a division of the network
interface into the Physical Layer and the Data Link Layer (especially MAC functions) is
apparent, regardless of the specific wireless technology (cp. clearly assigned responsibilities
explained in Section 2.2). The Split-Protocol-Stack strategy applies exactly this formal
approach of different responsibilities as its concept and assigns these tasks to different
evaluation levels, as illustrated in Figure 4.2. In addition, a comparison with the IEEE
802.15.4 example is given which we use as reference protocol stack. The DLL, mainly
covered by the MAC features. All further (hardware-independent) higher layer protocols
are assigned to the pure virtual protocol simulation (level 1⃝ in Fig. 4.2). We involve

57

4 Parallel Simulation and Emulation

the PHY layer specifications and the main radio transceiver features for transmitting
standard-conform radio packets over real radio interfaces (level 2⃝). As this evaluation
layer covers most of the radio transceiver hardware, it represents the RIL methodology.
The Split-Protocol-Stack builds upon a hardware analog radio channel emulation for
resource-constraint wireless communication systems (level 3⃝).

We further decompose the protocol stack layers into sub-domains (ref. Figure 4.2a) to
indicate the wireless lower layer functions, presented in Section 2.2. The frame and packet
domains of wireless nodes can be represented in this framework with sufficient accuracy
when evaluated in discrete event simulation. As most simulation models and frameworks
consider events at the frame level, we split the evaluation at the layer boundary to the
bit domain. Thus, the bit-level and below operations are processed at the RIL transceiver
hardware. The symbol and the waveform domain define the steps to transform a bit or
several bits into a modulated symbol and transmit it via digital-to-analog conversion on
the radio interface. The analog radio domain represents the wireless transmissions of the
nodes in which radio propagation effects and characteristics of the wireless medium are
emulated.

With respect to the realization of the Split-Protocol-Stack approach and architecture, we
give an overview about three fundamental research challenges associated with the three
different evaluation levels 1⃝, 2⃝, and 3⃝ (ref. Figure 4.2) in the following. Respectively,
the addressed coupling problems and requirements of the RIL methodology, introduced in
Section 4.1, are highlighted. Full details about our specific contributions associated with
these research challenges as well as the evaluation results are presented in the subsequent
Chapters 5, 6, and 7.

4.2.1 Pseudo-Real-Time Network Simulation

The pseudo-real-time network simulation is our suggestion to enable scalable HIL simula-
tion coupling needed for the Split-Protocol-Stack approach. As discussed in Section 2.4,
real-time capability can become a complex problem for accurate and scalable model-based
network simulations. Because of this we introduce enhancements of the simulation sce-
nario modeling and an extended real-time simulation scheme that enables the connection
to real-time hardware.

Scenario Modeling and Configuration

The overall scenario modeling and configuration for the RIL wireless network simula-
tion, running virtual higher layer protocols (ref. frame and packet domains, level 1⃝ in
Figure 4.2) on physical real node hardware is based on the simulation environment. In
order to enable standard-conform access over the service access points and exchange the

58

4.2 Split-Protocol-Stack Wireless Network Emulation

necessary service data units with the real hardware transceivers, an accurate representa-
tion of a desired link layer protocol specification is inevitable. Therefore, we rely on our
high accuracy IEEE 802.15.4 simulation model [96, 97] which is modeled in OMNeT++,
strictly according to the specifications and general modeling guidelines of IEEE 802.15.4
[9]. For the RIL concept, we adapt and add emulation extensions to the simulation model
for the scenario, dispatching, and scheduling introduced in [54]. All details of the protocol
and scenario modeling, configuration, and execution in the simulation environment are
presented in Chapter 5.

As modeling, the scenario configuration and the execution control are also handled by
the simulator. Due to our parallel simulation and emulation environment, the emula-
tion domain also needs parameterization depending on the simulation scenario. Since
congruently manual configuration of the emulation system can lead to a challenging
and cumbersome task, we introduce an assisted emulation scenario configuration. We
implemented prototypical parsers and generators for the emulation control system which
accepts the simulation configuration files (esp. the OMNeT++ .ned network definitions
and .ini configurations) as inputs and generates the appropriate emulation system
setup for a given scenario. Important parameters that must be configured consistently
for the simulation scenario by the emulation system are, for example, the specified
(geographic) position, the device type of a node, the PHY technology, and the radio
channel parameters (e.g., frequency band, channel, and modulation scheme).

Synchronization Concept

Due to the splitting between the MAC and the PHY , which are usually implemented
to keep latencies in function calls between the two sub-layers as short as possible, the
time-synchronization between two different domains and systems becomes a fundamental
problem and bottleneck. Since the emulation hardware is connected via LAN requires
communication with other control computers, the required microsecond accuracy cannot
be met, even over a dedicated network connection. However, if a constant, even (within
limits) arbitrary, delay between the components is achieved, this can be recalculated
afterwards, according to our synchronization concept.

We introduce a pseudo-real-time scheduling as solution approach and basis for the
synchronization called Real-Time-Shift. Pseudo means that the simulation runs at real-
time, but the simulated real-time is temporarily manipulated by waiting times during the
transmission of emulated and external events. Accordingly, the (virtual) simulation time
is permanently shifted back and forth due to the event transmission delays. However,
the basic requirement is a precise clock synchronization of all attached components in a
dedicated LAN , e.g., using the Precision Time Protocol (PTP).

59

4 Parallel Simulation and Emulation

4.2.2 Radio-in-the-Loop Wireless Transmissions

With RIL wireless transmissions, we assume that real radio hardware (components)
represent the radio transceiver interface of a communication system that is able to send
(TX) and receive (RX) real radio packets. On the other hand, the hardware must be
able to process several PHY functions, e.g., carrier sensing or ED (cp. PHY modeling
responsibilities in Section 2.2). Thus, the use of real transceiver hardware in wireless
network simulations allows for an accurate representation of the PHY domains (e.g.,
symbol and waveform domains, level 2⃝ in Figure 4.2). Furthermore, the radio hardware
takes over the interface function from the simulation domain to the real radio environment
in the emulation domain.

Interfacing the Radio Channel

The type of coupling can be accomplished either using a gateway architecture or a
one-to-one mapping of bridged simulated and real nodes. While the former is primarily
suitable to extend a real network by simulated nodes, the latter can achieve the increase
in simulation accuracy aimed at in this work. From the simulators point of view, the
emulation domain is considered as a black box and, on the other hand, the RIL gateway
nodes only know the interface which generates the message input data. For each bridge
node, a physical data communication interface to the control subsystem is necessary.

We have chosen the PCAP container as transmission control and data exchange format
among all involved subsystems, not least because it supports the individual extensibility
of frame formats with embedded optional fields and the capability of carrying data
frames from multiple network interfaces within one single data stream. This coupling
methodology makes the Split-Protocol-Stack a universally valid strategy for experimenting
with different radio hardware, simulation frameworks or protocol models, and hardware-
based radio emulation setups.

Abstracting from Node Hardware

In order to transmit simulated protocol data over the radio channel and vice versa an
accurate execution of the PHY functions is needed in the RIL hardware. These functions
depend on the concrete link layer protocol standard properties. As various vendor devices
are suitable for this which are slightly different in core in terms of performance, features,
and energy consumption, we implemented an independent stream processing and interface
control which is capable for the transparent handling of multiple interfaces with virtual,
emulated or real hardware devices. With this abstraction, we present and experiment
with two different approaches of modeling the PHY layer, both related but not limited to
the IEEE 802.15.4 link layer protocol specification. All conceptual and practical details
of interfacing and abstraction are explained later in Chapter 6.

60

4.2 Split-Protocol-Stack Wireless Network Emulation

• Real-Time Operating Systems for wireless devices (e.g., TinyOS, Contiki,
or RIOT, introduced in Section 2.3) support different vendor device hardware.
We developed a bridge transceiver software in Contiki and RIOT which handles
incoming messages over a serial line (UART) for executing radio driver processes
and eventually transmits real radio packets.

• Real-Time Streaming with SDR is a more flexible solution for experimenting
with PHY operations and parameters, since available vendor device hardware
supports only a reduced feature set of a given link layer specification. With our
SDR transceiver model in GNU Radio we enable PHY modeling diversity with
respect to a single or even multiple radio technologies. Thus, we are able to
physically switch channels, modulation schemes, or sensing parameters.

4.2.3 Radio-in-the-Loop Analog Radio Channel Emulation

The real packet data from the PHY are transmitted as analog signals in the controllable
RF channel emulation environment and can thus be manipulated in real-time. Network
emulation testbeds, such as the RoSeNet hardware subsystem, are particularly suitable
as closed systems. Besides the control and data communication to the hardware nodes,
the main tasks of the emulation hardware are on the one hand to provide resources for a
given scenario, and on the other hand to emulate the effects in the analog radio domain
(level 3⃝ in Figure 4.2). The most important feature of such systems is the configurable
long-term fading.

Radio Topology and Mobility Modeling

Based on the attenuation values, a static network is obtained which becomes a network
with mobile nodes when changing these values permanently. For pseudo-random mobility,
fixed intervals can be defined for each attenuator and continuously changed during the
system runtime. We discuss several suggestions for extending the emulation capabilities of
network emulation testbeds, in particular the RoSeNet hardware, to increase the mobility
support which need particular and invasive adjustments of the emulation hardware.

Resource Allocation

The most hardware-based channel emulation approaches provide configurable RF compo-
nents (e.g., step attenuators) between the nodes, but they do not discuss how to configure
the radio frequency hardware equipment for a given scenario (e.g., a multi-hop network)
with relative physical positions and distances of the nodes. With our work, we provide
first results of an approach for solving this complex task based on a MILP optimization
scheme in Chapter 7.

61

4 Parallel Simulation and Emulation

4.3 Analysis of HIL and Co-Simulation Approaches

Well-established simulation tools, e.g., OMNeT++/INET, ns-2/ns-3 or J-Sim [131],
enable real applications within the network simulation by implementing an API to the
transport layer protocols (TCP and UDP) or a raw socket interface to capture and
transmit packets from and to the simulators host network interfaces (e.g., [66]). These
embedded emulation features of simulators often form the prerequisite for parallel-coupled
HIL simulations. Nevertheless, there are no general modeling guidelines for HIL and co-
simulation/emulation systems. It is very difficult to define an appropriate classification,
since most approaches develop a very specialized system depending on the research
question pursued. In the last two decades several diverse methods have been proposed
which are reviewed in more detail next. We compare the specific contributions with the
Split-Protocol-Stack approach and give a posssible classification of the approaches.

Co-simulation approaches that do not focus on enhancing the protocol stack accuracy
but only virtual-to-virtual communication, e.g., coupled network simulation and road
traffic simulation with Veins in [126], are not considered in the following analysis. In
[132] has been shown, how to enable application-specific interfacing between automotive
and network simulation models, e.g., for exchanging traffic positions, scheduled within
synchronous message cycles, but this is in contrast to a protocol stack based HIL
concept. There are a few HIL approaches that focus only on code generation for specific
node hardware platforms (cp. [133] or [134] for example) or for the verification of
specific protocol functions for single devices under test (e.g., [135]). They are not
suitable for scalable network evaluation. Concepts of SDR Hardware-in-the-Loop-based
channel emulation primarily focus on software radio testing, completely isolated from the
communication protocol stack of wireless systems and application-related processes, e.g.,
featuring a simulation of the point-to-point performance with pure virtual RF front-ends
[114], or a FPGA-based digital wireless channel emulation [120].

When looking into practical contributions in the field of protocol-stack-related network
evaluation, a distinction of HIL and co-simulation approaches is emerging based on
how hardware resources are represented in the overall setup. These can be either fully
simulated in a co-simulation system design, integrated by real, or virtual components
of a general purpose host computer system or correspond to real external devices. A
further distinction can be made according to how protocol implementations of network
devices are represented and what role simulation plays in the overall setup. This can
be real hardware protocol implementations used in a simulated network environment or
simulated protocols that interact with the network interface hardware. Related approaches
can be assigned to this distinction and have many similarities in their characteristics.
Therefore, we make a division into two basic strategies in the following, each with the
three different ways to incorporate hardware resources.

62

4.3 Analysis of HIL and Co-Simulation Approaches

4.3.1 Real Protocol Implementations in Simulated Networks

simulated hardware virtualized hardware external hardware

Jung et al. [136] Kato et al. [137] Staub et al. [138]
Riliskis et al. [139] Weingärtner et al. [140] Unterschütz et al. [141]
Zhang et al. [142] Wehner et al. [143]

Table 4.1: Overview of HIL and co-simulation approaches running real or emulated
protocol implementations in simulated networks

Running real-world protocol implementations in simulated networks has been the most
widely considered approach with the most practical research over the last two decades.
They allow the execution of unmodified wireless communication software running on real
hosts in a virtual protocol stack network simulation, but without enhancing the modeling
of the PHY or the radio environment, which is one of the most limiting constraints
(cp. Section 2.4). The approaches in [136], [139], and [142] demonstrate the emulation
of code execution on hardware models and the use of the peripheral hardware and
instruction-set processor emulation coupled with discrete event simulation to provide
accurate measurements of the nodes hardware dependencies, e.g., the energy consumption
on the transceiver hardware. Nevertheless, these systems are specific to node hardware
platforms and/or operating systems (e.g., AVR hardware in [136] or TinyOS in [142]).

According to the NSC approach in [38, p. 88], real software can be directly integrated
in network simulators on host systems. This is possible under certain conditions by
modifying the existing software implementations and compiling them as a shared library.
Using (standard) host computer network stacks in simulations enables the execution of
unmodified real host network stack software [137, 140] combined with virtual node data
transmission within the simulator. As the scheduling of Weingärtner et al. [140] is based
on sequentially executed equal time slices for the participating devices in ns-2/ns-3, it
cannot be applied to a true parallel real-time radio channel access of multiple devices.

In [141], Unterschütz et al. present a hybrid testbed based on connecting testbed nodes to
an OMNeT++ simulation. The application layer implementations can run on real nodes
in which the below layers are simulated in OMNeT++. A similar approach is taken by
the work of Staub et al. in [138]. Here the upper protocol layers (NWK and above) run
on real nodes with virtual interfaces connected to a virtual mesh. Wehner & Goehringer
[143] include real IoT radio interface hardware that exchanges real radio packets with
the simulation, but primarily focus on the translation of proprietary protocols and
application control messages (for Z-Wave and EnOcean) to connect different vendor
devices. There are no real-time dependent timing considerations for scheduling events in
scalable network scenarios and no accurate modeling of the radio channel.

The approaches listed in Table 4.1 are analyzed in overview to compare the properties,

63

4 Parallel Simulation and Emulation

which can be seen at a glance in Figure 4.3. The selection of approaches compared is
based on methodological diversity - the most divers ones are contrasted1. What can be
figured out in is that the overall system performance of all approaches is very similar,
besides the very specific setup in [143]. No general methodology for a HIL evaluation
can be derived from this approach by Wehner et al.

Scalability

Mobility

Configurability

Traceability

Accuracy

Zhang et al. [142]
Weingärtner et al. [140]
Unterschütz et al. [141]
Wehner et al. [143]

20/30 points
23/30 points
22/30 points

12/30 points

Figure 4.3: Overview analysis of approaches running real or emulated protocol implemen-
tations on hardware resources in simulated networks based on the properties
performance level, additionally represented by an overall score1.

When considering the traceability and accuracy of the entire modeling domains, the
approach of Zhang et al. [142] turns out to be very detailed and accurate, but it is
difficult to parametrize the models, configure a scenario, or analyze protocol-related
features at a high level because they are implemented in the node firmware. These are
certainly not ideal conditions for research in cognitive radio and cross-layer systems but
for performance evaluation of TinyOS network applications. The characteristics of Staub
et al. [138] and Weingärtner et al. [140] do not differ significantly, as they implement
very similar approaches for OMNeT++/INET and ns-2/ns-3, which are both suitable
for wireless network simulation (cp. Section 2.3). The overall configurability in [140] is
high because the radio link can flexibly be parameterized in model-based simulations. In
contrast, however, the adaptation of the host network protocol stacks is only possible to
a limited extent. As the real-time scalability is very limited due to complex radio link
simulation models, with SliceTime [144] Weingärtner et al. mitigate this issue by relieving
the network simulation from its real-time constraint. They demonstrate a scenario with
15000 simulated nodes which executes about 15 times slower than real-time due to the
high event load. A big advantage of the approach of Unterschütz et al. [141] is the use

1 The exact interpretation of the radar plot evaluation is given in Table A.3 in Appendix A

64

4.3 Analysis of HIL and Co-Simulation Approaches

of the CometOS operating system both in the simulation and in the testbed domain.
Since the hybrid sensor nodes in the testbed communicate over the same protocol stack,
a high overall accuracy can be achieved. The scalability of setups with hybrid nodes
though is not entirely clear and the reproducibility of evaluation scenarios is limited to
the simulated part. The latter can be extended when running the nodes on a network
emulation testbed like RoSeNet (cp. Section 3.3).

4.3.2 Simulated Protocols on Real or Emulated Networks

simulated hardware virtualized hardware external hardware

Mittag et al. [52] Obermaier et al. [145] Ding et al. [124]
Klingler et al. [146]
Split-Protocol-Stack

Table 4.2: Overview of HIL and co-simulation approaches running simulated protocols
on real or emulated networks

There are only a few approaches that focus on the simulation of communication protocol
designs and application software which simultaneously emulate the impact of hardware
interfaces and radio transmissions at cycle-level accuracy. Mittag et al. in [52] present
an appraoch to bridge the gap between network protocol and PHY signal simulation.
They show how to integrate a simulator software for OFDM -modulated IEEE 802.11
communications as the PHY and radio channel into the ns-2/ns-3 network simulator.
As the PHY simulator is implemented as a state machine according to the IEEE 802.11
specification, it transforms the data input bits into the time domain samples, where
several propagation models can be used for the radio transmissions. They validated their
experiments against the wireless network emulator [116] presented in Section 3.3.

Enabling real transmissions from the simulator computer system by using SDR is applied
by Obermaier et al. in [145] who present a single node device testbed for VANET HIL
simulation based on IEEE 802.11p. They split the network architecture vertically to
implement a virtual network bridge for transmitting only the PHY data frames via a
single gateway node, called physical twin, within an uncontrolled radio environment to
the real device under test.

Running external radio transceivers connected to the network protocol simulation enables
larger-scale HIL evaluation setups. Ding et al. [124] present a cognitive radio network
testbed based on parallel-coupled protocol stack simulations, configurable RF front-ends,
and proprietary channel emulation hardware2. In a short demo abstract without evalua-
tion, Klingler et al. [146] present the concept of a bridge based coupling to IEEE 802.11p

2 RFnest™ is a hardware channel emulator (class A), developed by Intelligent Automation, Inc.

65

4 Parallel Simulation and Emulation

router hardware connected via LAN . They consider real but uncontrolled radio commu-
nication to a single device under test via the so called LAN Radio (proprietary gateway
router hardware with open-source configuration software to process radio transmissions).
This approach is similar to [145], but difficult to compare because of missing evaluation.
In contrast, the Split-Protocol-Stack approach allows for an accurate PHY representation
of all nodes on a real hardware NET . Similar approaches that use external hardware to
control the radio packet transmissions on the channel from virtually modeled protocols
for each node are not found.

The listed approaches in Table 4.2 are additionally analyzed regarding the Split-Protocol-
Stack methodology to compare the properties and illustrate the methodological diversity
which can be seen at a glance in Figure 4.43. Due to the early development stage and
lack of details and evaluations, we cannot include the approach of Klingler et al. [146] in
this comparison, but the similarities to [145] potentially lead to similar results.

Scalability

Mobility

Configurability

Traceability

Accuracy

Mittag et al. [52]
Obermaier et al. [145]
Ding et al. [124]
Split-Protocol-Stack

20/42 points
16/42 points
17/42 points

26/42 points

Figure 4.4: Overview analysis of parallel HIL and co-simulation approaches running
simulated protocols on real or emulated networks based on the properties
performance level in comparison with and highlighted for the Split-Protocol-
Stack3. The overall performance is additionally represented by a score.

The virtual signal simulation in [52] can achieve a better scalability (up to 100 nodes),
compared to [145] or [124]. Looking at the evaluation in [52], it can be stated that they
achieve a much higher accuracy of the radio link, particularly similar performance results
as on real hardware chipsets, than traditional packet-level simulation models. Furthermore,
the runtime analysis in [52] indicate that most of the computational overhead (approx.
50%) is due to complex channel models in a pure virtual environment, even without
node mobility. This problem reminds of what was already discussed for pure discrete

3 The exact interpretation of the radar plot evaluation is given in Table A.4 in Appendix A

66

4.3 Analysis of HIL and Co-Simulation Approaches

event simulation in Section 2.4. In contrast to the channel emulator use in [124], mobility
emulation capabilities in [145] are limited to the virtual nodes (the radio link to the real
device under test remains the same). The configurability in [124] is limited with respect
to the simulator, as it does not seem to provide a variety of protocol models compared to
OMNeT++/INET or ns-2/ns-3. Due to pseudo-real-time synchronization and real-time
hardware-based channel emulation, the Split-Protocol-Stack can achieve high accuracy
and scalability with attenuation-based mobility for all nodes. Furthermore, the consistent
interfacing for the modular general-purpose concept is particularly configurable and
enables high traceability based on system events in all evaluation levels.

4.3.3 Analysis Summary and Concluding Discussion

After the basic strategies and performance-related properties of the selected contributions
have been contrasted in a comparative overview, we summarize the state-of-the-art in
parallel simulation and emulation to highlight the Split-Protocol-Stack approach and
discuss the compliance to the imposed requirements in Section 4.1. Of course, all co-
simulation/emulation or HIL approaches try to overcome some of the limitations of
the basic methods (cp. Section 2.4 and Section 3.4), but the methodological diversity
highlights the purpose-based tool development and eventually the need for a universal
approach. Due to the necessary categorization, a direct and overall comparison of all
approaches is not very promising, but problems and requirements (cp. Subsection 4.1.2)
as well as some properties can be discussed beyond these boundaries.

What is striking is that related systems either focus on protocol emulation including real
software implementations in simulations or they consider real transmissions, but without
the PHY layer or higher layer modeling flexibility. In our experience, the reasons for this
particularly lie in the different views of the communication systems and communication
engineering communities. Network-wide performance implications are covered by the
protocol algorithms and data frame exchange of the nodes in a network simulation,
whereby PHY - and radio-channel-oriented research studies primarily address signal
processing and propagation of point-to-point connections in practical test setups. The
combination of the two research areas potentially creates new synergies that lead to high
credibility in evaluating the results of modern wireless research.

Usually, dedicated and partially proprietary components are used, which complicate
the configurability and thus exclude a universal evaluation strategy. When looking at
approaches for wireless sensor networks, the nodes’ operating system is often in particular
focus (e.g., TinyOS in [136, 139, 142]) On the other hand, not only proprietary host
devices and stacks are set up according to IEEE 802.11 WLAN in [140] and [138], but
modular SDR components are used as well (e.g., in [124, 145]). Furthermore, Figures 4.3
and 4.4 highlight that real-time hardware-coupled simulations do not enable large-scale
network scenarios. As expected, the common simulators OMNeT++ and ns-2/ns-3 are

67

4 Parallel Simulation and Emulation

mainly used (e.g., OMNeT++ in [136, 138, 141, 143, 145] and ns-2/ns-3 in [52, 139,
140]).

What also can be figured out in general is that HIL approaches with connected real
external hardware components usually verticaly split the node network, i.e., some nodes
are pure virtual and some of them are real. Often only one single bridge, gateway, border,
or proxy node serves as an interface to a real network which enables to extend a small
testbed to a large-scale hybrid network (cp. [145], [146], or [147]). Unterschütz et al. [141]
show the splitting of a testbed network in two sets with several gateways, extended by a
large-scale intermediate network simulated in OMNeT++. It does not aim to increase the
radio channel accuracy, but extending a network for certain evaluation questions with
reduced accuracy. Finally we can recognize a huge trade-off between scalability, accuracy,
and flexibility in parallel simulation and emulation.

Interfacing and Hardware Abstraction

In systems with simulated hardware, an instructions-set simulator can provide clock-
accurate communication interfaces, depending on the microcontroller architecture (cp.
[142] or [136]). As all components virtually run on the same host system, they use
host-based Inter Process Communication (IPC) for the inter-simulator communication.
The authors of [136] describe their concept as an asynchronous remote method invocation
with additional message queues for in- and outgoing traffic. Since these systems needs
interfaces for cross-domain data exchange, they have to convert between functional-level
network and cycle-level hardware simulation events. In [142] the data packet bits from
the processor simulator are stored in a transmit FIFO of the radio chip module. As
soon as the radio chip receives the send command, an event converter transforms the
simulation time and sends the packet to the simulated channel. The direct access to
the network stack with Packet Capture (PCAP) system libraries is also an important
method for connectivity within fully virtualized systems when the virtual hardware runs
on the same host system as the network simulation (cp. [148] or [128]).

Virtualization of network hardware with virtual device-driver-enabled interfacing is
presented in [140] and [137]. Weingärtner et al. [140] implement a gateway node which
bridges the logic of the ns-2/ns-3 IEEE 802.11 model with the device driver. Thus, they
are able to receive raw data frames from the virtual network adapter which is used by real
applications. Virtual interfaces can potentially be provided for different devices, enabling
different configurations, protocol stacks and application implementations for both wired
and wireless technologies and network setups. Interfacing a real device unter test via the
radio channel in [145] is based on the physical twin, a proxy between a simulated and a
SDR-based IEEE 802.11 interface. Simulation events of MAC data frames are translated
into over-the-air messages, while the over-the-air interface is a global OMNeT++ module,
handling the MAC data exchange with the Application Programming Interface (API) of

68

4.3 Analysis of HIL and Co-Simulation Approaches

a well-known but specific SDR hardware platform (USRP). Thus, it is a very specific
setup with a very low hardware device abstraction level which cannot serve for a general
methodology.

The interfacing of external devices with the simulator is usually based on the standard
host operating system sockets (e.g., raw IP, datagram, or stream sockets), but real,
resource-constraint wireless device hardware usually does not support sockets and has
to be attached via lower layer interfaces. A connection to an external hardware node
is achieved by a gateway software, which forwards the data from a socket to the nodes
wired communication interface. This is either based on a testbed IEEE 802.3 Ethernet
infrastructure [124, 138, 143, 146] or simple serial interfaces, e.g., an UART , for resource-
constrained devices (cp. the transparent forwarder in [141]). Thus, contributions featuring
external radio device hardware implement additional bridge software to connect via
transport layer socket IPC to the simulator. The use of standard hardware platforms as a
gateway (e.g., a Raspberry Pi in [143]) offers generally a good opportunity to interconnect
different wireless hardware in a uniform way.

Synchronization

When running a real-time simulation, the scalability of the setup is limited by the
system performance as discussed in Section 2.4 and Section 3.4. Since, pure virtual
parallel simulation and emulation do not need to run in real-time, approaches can deploy
parallel DES synchronization methods which satisfy the local causality constraint [129].
E.g., in [136] synchronization is required regarding a packet transmission on the wireless
channel in OMNeT++. Thus, the overall simulation progress is controlled by the hardware
simulation and proceed when an emulated node starts a packet transmission on the
channel. Zhang et al. [142] alternate the execution of both engines (network simulator
and cycle-level node simulator) by comparing the timestamps of the next execution step
or event message. Because both simulators are running on the same host system, they can
use the same clock source for fetching the next event timestamp and execute the earliest.
Since the PHY simulation and virtual channel models are used directly in ns-2/ns-3
with a library, [52] do not need any event synchronization.

Considering the cooperation with real components in simulation setups, some of the
approaches run a real-time scheduler in the simulation. They do not consider or even do
not mention any further synchronization (e.g., [124, 143, 146]) which eventually yields to
real-time violations. Kato et al. [137] discuss the challenging communication overhead and
real-time violations, but a time synchronization is not implemented. Also Obermaier et al.
[145] discuss that delayed events from the SDR introduce real-time losses and real-time
violations are unavoidable with a high amount of external events. Nevertheless, besides
the thread-safe real-time event scheduling no solution is presented for this issue. The
only approach in our analysis that enables scalable hybrid setups with real components

69

4 Parallel Simulation and Emulation

is SliceTime introduced by Weingärtner et al. [140, 149]. They use equal time slices for
an alternating execution of real nodes and the simulator with synchronization barriers,
similar to parallel DES synchronization methods. This is possible because the real-time
execution of the nodes higher layer protocols are not influence each other, compared
to a PHY emulation where several nodes need true parallel radio access. The very
similar emulation approach presented by Staub et al. [138] also refer to the SliceTime
synchronization in consequence to their observed real-time simulation issues. In [141],
it is argued that higher-layer protocols used in a hybrid testbed should not rely on
accurate timing constraints due to the high latency between simulated and real networks
and the ease socket synchronization within the single-threaded simulator. The latency
measurements in [141] show that accurate real-time simulation is not possible with hybrid
testbeds.

Resource Allocation and Scenario Configuration

When configuring a virtual scenario with a simulated network, the allocation of nodes
can simply instantiate virtual components based on the number of simulated devices in
the network (e.g., virtual device driver instances in [137, 140], or hardware simulator
instances in [136, 142]). Allocation of external hardware nodes is mostly done manually,
since scalable scenarios with multiple HIL devices are not very common. There are
no statements of a testbed node allocation procedure, but very small-scale and simple
test setups in [124, 141, 143, 145, 146]. For larger-scale scenarios with real nodes, the
allocation and assignment of radio resources becomes a state-of-the-art research issue.

Most approaches do not detail their scenario configuration procedure. This is why it can
be assumed that the scenario configuration is mainly done manually. Due to the purpose-
bound development background, mostly only specific scenarios with small networks are
set up (e.g., single communication links in [52, 143, 145]). The described larger-scale
evaluation scenarios present simplified topologies (e.g., placing sensor nodes in a straight
line in [52, 139], nodes in a fixed grid in [136], or a peer-to-peer network with a straight
line backbone and multiple hosts on each access router in [144]). A randomly distributed
network with paired nodes, a ring, star, and tree topology is used to evaluate the approach
in [142]. Mobility support is usually limited to model-based virtual mobility. In [124] the
nodes can be moved manually or automatically by random mobility. Finally, no general
suggestions for the scenario configuration are made within the analyzed approaches, high
configuration efforts are also addressed, e.g., in [141].

70

4.4 Benefits, Use Cases and Scenarios

4.4 Benefits, Use Cases and Scenarios

Parallel network simulation and emulation combines evaluation techniques for different
disciplines of wireless communication expertise, e.g., software development, protocol
design, radio channel propagation effects, radio frequency physics, and hardware devel-
opment. Approaches featuring HIL techniques for the link layer are common. At higher
layers, these techniques are rarely deployed [39, pp. 120ff].

4.4.1 Approach Benefits Overview

With the Split-Protocol-Stack approach, we are able to execute the entire protocol stack
in a configurable radio link hardware accurate laboratory setting for realistic protocol
and network performance evaluation with state-of-the-art analysis tools. As a novelty,
the behavior of new protocol procedures for wireless access technologies in a real radio
channel network setting can be investigated, instead applying abstracted propagation
models for the wireless transmissions which helps to increase confidence in the protocol
simulation-based network evaluation. This allows simulation-generated packet data to be
transmitted over real radio data packets on the radio channel. As a result of our related
work analysis, some of the benefits of combining protocol simulation and radio link
emulation with our evaluation approach are summarized shortly below and illustrated
using various use-cases and configuration scenarios.

• Radio link accuracy is often considered as very limited in pure network simula-
tions as discrete event simulation cannot model the dependencies, characteristics
and parameters of the radio transceivers. With RIL, these issue can be eliminated
by improving the accuracy of the PHY layer and radio simulation models. Thus,
the overall credibility of simulation-based performance results can be increased.

• Real-time scalability can be increased because of real-time channel transmissions,
since propagation models are very resource-expensive.

• Traceability of network and node states, processes, and events reaches a very
high level, as all protocol-related inter-layer and inter-system interactions as well
as several hardware-related properties, e.g., node energy consumption, can be
monitored.

• Scenario configurability in model-based design is very high, since many system
and network components can be adjusted precisely, e.g., network topology, protocol
arrangement, algorithms, applications, and traffic patterns simultaneously to PHY
parameters, procedures, and the environmental radio settings.

• Node mobility is still model-based or from scratch, but has a real impact on the
retrievable channel state information because the attenuation between real nodes
will also be affected.

71

4 Parallel Simulation and Emulation

4.4.2 Application Domains and Use Cases

The Split-Protocol-Stack emulation methodology ultimately represents a proposal for a
modern evaluation and research platform for opportunistic and future wireless networks
when conservative approaches reach their limits. In the following, we point out some
state-of-the-art use-cases where we expect a particular benefit.

(a) Cross-Layer Optimization in Cognitive Radio Networks

Based on our analysis, we argue that the functional requirements for accurate cross-layer
optimization and cognitive radio evaluation can be fulfilled by parallel simulation and
emulation. For example, the authors of [123] present a list of requirements for prototyping
the MAC layer. Among other things, they refer to access to accurate PHY information
and the need for PHY reconfiguration based on the MAC . They conclude that mixed
hardware/software architectures of embedded SDR platforms are the best choice to
provide full flexibility and reconfigurability. In cognitive radio networks also the higher
protocol layers are effected by the spectrum management and need reconfiguration based
on the PHY sensing information and the radio access scheduling. Thus, cross-layer
optimization plays a crucial role in cognitive radio networks and can involve all layers of
the communication protocol stack (cp. [150] and [20] for the information exchange based
on cross-layer interaction). With the Split-Protocol-Stack approach, detailed channel state
information can be obtained from an accurate emulated channel and PHY parameters
can precisely be adjusted on real transceiver hardware or completely reconfigured based
on SDR modules instead of applying abstract information for packet data in pure discrete
event simulation [50]. In addition, our methodology offers great research and prototyping
opportunities regarding cross-layer optimization of the energy efficiency.

(b) Network Robustness and Resilience in Dense Radio Environments

In network simulations dense radio environments with a huge amount of transmitting
nodes are unfeasible because the calculation complexity causes high computing demands
and runtime (cp. analysis results of [144] in Section 4.3 in which large-scale scenarios
with radio link simulation models are 15 times slower than in real-time). Furthermore,
modeling co- and inter-channel interference incurs a high overhead in addition and is
a feature that is often missing in current simulators [44]. On the Split-Protocol-Stack
NET , hundreds of nodes can be set up to form multiple networks on neighbored channels
(potentially with different radio link technologies) in real-time. Dense radio environments
can also be extended with a SDR-based hardware to introduce specialized PHY features,
e.g., high noise levels or even frequency-selective blocking and jamming signals. Protocols
and algorithms that ensure robustness and resilience with intelligent methods at the
higher layers can be analyzed in the simulation.

72

4.4 Benefits, Use Cases and Scenarios

(c) Heterogeneous Wireless Networks, Technology Coexistence and Interoperability

Usually, simulation studies focus on homogeneous wireless networks which share the
same technology and radio channel resources. In real world, however, wireless networks
are rarely homogeneous, since various radio technologies are deployed, especially in the
unlicensed ISM frequency bands. Especially in the field of industrial IoT , there are
many vendor devices and protocol stacks that use different access technologies but affect
each other. Often they even have to take over the control tasks in interworking network
architectures, where, for instance, mechanisms for prioritizing communications become
necessary (cp. [151]). But even in a homogeneous setup, cooperative spectrum sharing
is needed in parallel networks. The Split-Protocol-Stack approach provides an excellent
environment for testing cooperating protocol and network architectures on heterogeneous
and cooperative wireless access networks.

(d) Wireless Internet of Things Perception Layer Security

The Perception Layer [152] unifies the PHY from a communication protocol point
of view with all other sensors for capturing and gathering information in the nodes’
environment. Studying security vulnerabilities based on the perception layer in real
wireless IoT networks needs physical access to the radio channel and to the physical
sensing environment. It is therefore usually performed in testbeds. Thus, a specific test
setup with node firmware is required for each vulnerability or demonstrated attack. The
RIL bridge node can be used as a sniffer device for only frame reception and monitoring
or for demonstrating protocol layer vulnerabilities to study the impacts of injecting
radio frames into a real network. Thus, radio link attacks, such as jamming, tampering,
exhaustion, collisions, or higher layer protocol attacks, e.g., replay, flooding, spoofing,
malicious data, and many more, are feasible with great model-based flexibility for the
insertion of malformed or modified radio communication. For example, a simulated
attack network scenario from well-established internet protocols can result in attacking a
real-world wireless IoT network in a testbed which can be analyzed in detail (cp. [153] for
an exhaustive survey on perception layer security and protocol layer based attacks).

(e) Machine Learning for Physical Layer Communication and Wireless Networks

Machine Learning (ML) strategies for PHY wireless communication are a red-hot research
area with potential synergies with advanced link layer technologies. Learning from channel
state information and beyond [154] [155] [156] needs real-world data sets or even physical
real networks in a testbed for the learning phase. On the other hand, discrete event
simulation can easily integrate algorithms besides the communication protocol stack for
studying possible use cases. Thus, the Split-Protocol-Stack is a perfect basis for integrating
channel state information into the simulation of machine learning techniques.

73

4 Parallel Simulation and Emulation

4.4.3 Split-Protocol-Stack Reference Configuration Scenarios

From a methodology perspective regarding the protocol stack, there are three basic
kinds of nodes: simulated, Split-Protocol-Stack emulated, and real ones. Simulated nodes
are entirely virtual. They consist of simulation modules for all system components and
the communication protocol stack, whereas real nodes are implemented holistically in
hardware and firmware. Split-Protocol-Stack emulated nodes are composed according to
the methodology presented in Section 4.2 which in addition to simulated higher-layer
protocols provide a real transceiver hardware and a PHY implementation capable of
transmitting real packet data on an emulated channel via the RIL technique.

From an application point of view, the nodes can of course provide diverse device types,
services, and functions and thus various protocol stacks and link layer technologies. These
nodes can be realized by means of the three basic types in the scenario configuration.
In particular, this means, e.g., a network coordinator or end device according to IEEE
802.15.4 can exist physically real, hybrid, or purely virtual in the application scenario.
With the consideration of the approach benefits, an internet gateway according to IETF ,
for example, is more likely to be implemented in the simulation domain, whereas sensor
devices are more likely to be set up with real nodes.

Considering the evaluation use cases mentioned above from a protocol stack’s point of
view (as introduced in Subsection 2.1.2), we present two different generic configuration
schemes as a basis for purpose-specific application scenarios in the following. In doing so,
we illustrate the integration of the Split-Protocol-Stack in a simulation-driven evaluation
system instead of constructing application-specific network topologies. This scenarios
simultaneously serve as reference configurations for the exemplary system and prototype
evaluation in the subsequent chapters.

Pure Wireless Link Emulated Networks

Considering the whole setup as a homogeneous wireless network (e.g., a WSN), all
nodes radio communication is emulated on the hardware testbed. These can either have
completely static real transceiver hardware and implementations or be modeled using the
RIL approach. The latter is referred to below as emulated or Split-Protocol-Stack nodes
and can be analyzed in the simulation regarding the communication with the PHY and
all protocols of the higher layers. Real nodes do not offer these insight analysis properties,
only the external radio communication can be monitored. Emulated nodes can be used to
create simulation-based network topologies for the testbed that are otherwise elaborate
to reproduce. Figure 4.5 shows a generic configuration scenario with purely emulated
radio links in which the number of real and emulated nodes can be adjusted individually.
Note that the view of the nodes’ protocol stack does not show a specific topology, but
only several nodes that are part of the same channel emulation and can form different
radio topologies, as introduced in Section 3.2.

74

4.4 Benefits, Use Cases and Scenarios

802.15.4 O-QPSK 2.4 GHz

802.15.4 MAC
external PHY

Network: IP
Transport

Application
Simulated Stack

LLC
virtual MAC
802.15.4 PHY

Emulated Wireless Links
Stream IPC

Emulated Stack
802.15.4 MAC
external PHY

Network: IP
Transport

Application
Simulated Stack

LLC
virtual MAC
802.15.4 PHY

Stream IPC

Emulated Stack
802.15.4 MAC

Real Stack
Higher Layers

802.15.4 PHY

Real Node
Split-Protocol-Stack Node Split-Protocol-Stack Node

Figure 4.5: A configuration scenario for pure wireless link emulated networks. Nodes can
be either completely real at hardware and firmware or simulated at higher
layer protocols with the Split-Protocol-Stack.

This configuration scenario is fundamental to create dense radio environments for the
analysis of protocols and applications based on emulated nodes for robust networks (cp.
4.4.2b). In addition, it serves as an excellent basis for studying cross-layer optimization
strategies for cognitive radio networks (ref. 4.4.2a), as well as for machine learning
strategies embedded in the protocol stack (ref. 4.4.2e).

Hybrid Gateway Networks

A gateway configuration scenario extends the pure emulated wireless network with other
nodes and network components in the pure virtual simulation domain to form a hybrid
network. This can be either wired network devices or wireless nodes with model-based
virtual channel communication and interfacing. A protocol gateway node is equipped with
a minimum of two parallel network stacks because it translates from one communication
protocol to another. It can operate on all layers of the OSI reference model or the
TCP/IP protocol stack. Considering a Split-Protocol-Stack node, a gateway at least has
to translate to and from the RIL external node. With the focus of this thesis, we consider
layer 2 and layer 3 (router) emulation gateway nodes. Higher layer gateways can be
modeled based on the same scheme, but because of the all-embracing IP, a translation of
the network layer is usually not necessary. Figure 4.6 shows two configuration scenarios
with a Split-Protocol-Stack gateway each. A router (layer 3 gateway) node connecting to
a different technology virtual wired network (e.g., IEEE 802.3 Ethernet) is abstracted
in Figure 4.6a. It shows a configuration scenario with a bridge (layer 2 gateway) node
connecting to a same link layer technology (IEEE 802.15.4 PHY) virtual wireless network.
Of course, these hybrid network configuration scenarios can also include additional basic
Split-Protocol-Stack nodes, as depicted in Figure 4.5.

75

4 Parallel Simulation and Emulation

GatewayReal Node Simulated Node

(a) 802.15.4 MAC

Simulated Router Stack

LLC

802.3 PHY
802.3 MAC

802.3 PHY
802.3 MAC

802.15.4 O-QPSK 2.4 GHz
Emulated Wireless Link

external PHY
virtual MAC
802.15.4 PHY

Stream IPC

Emulated Stack
802.15.4 MAC

Real Stack
Higher Layers

802.15.4 PHY

Network: IP
Transport

Application

LLC

Ethernet

Network: IP

Split-Protocol-Stack Wireless Router

(b)

802.15.4 O-QPSK 2.4 GHz
Emulated Wireless Link

802.15.4 MAC
external PHY

Simulated Bridge Stack

virtual MAC
802.15.4 PHY

Stream IPC

Emulated Stack
802.15.4 MAC

Real Stack
Higher Layers

802.15.4 PHY

Network: IP
Transport

Application

LLC

802.15.4 PHY 802.15.4 PHY
802.15.4 O-QPSK 2.4 GHz

Simulated Wireless Link

802.15.4 MAC
LLC

Split-Protocol-Stack Wireless Bridge

Figure 4.6: Two configuration scenarios for hybrid gateway networks. (a) shows a router
(layer 3) connected network to a Ethernet-based virtual wired standard
computer network. (b) shows a bridge (layer 2) connected network to a
802.15.4-based virtual wireless sensor network.

Since star networks are still the most widely used topologies for wireless networks in
practice, often only one central node of the scenario is emulated as a gateway that
connects to a larger (wired or wireless) control network, while other nodes are running
sense and control applications. Extending a radio channel emulated network with a virtual
control network is the recommended configuration scenario, as it serves as a perfect
basis for wireless IoT perception layer security research (ref. 4.4.2d) or heterogeneous
wireless networks and technology interoperability (ref. 4.4.2c). Inside the simulation
environment, for example, a larger network attack scenario can be prepared, which
eventually results in attacking or disturbing a real network on the testbed. On the
other hand, a heterogeneous network with interoperable technologies usually needs a
backbone control network for the management and configuration, which can be perfectly
modeled within the network simulation domain. These two suggestions usually rely on
standard network components (e.g., servers, routers, switches) with their appropriate
links in arbitrary network topologies for which common simulation frameworks provide
an extensive model library.

76

5 Real-Time-Shift Discrete Event Simulation
& Synchronization

With the analysis of parallel simulation and emulation approaches in Chapter 4, it
can be stated that there are no synchronization methods for simulating protocols on
real or emulated networks. This is because of the limitations when running real-time
simulations. Related synchronization approaches for running real or emulated protocol
implementations in simulated networks, e.g., SliceTime [144], cannot be applied here
because the emulation of the PHY and the radio channel in a cooperative wireless network
needs true parallel radio access of the nodes. With the Real-Time-Shift synchronization,
we contribute with an approach that decouples the simulator from real-time constraints
by introducing a pseudo-real-time simulation [57].

In the following, we give a detailed overview of the addressed synchronization problem
with regard to related work in PDES and co-simulation. From the findings of this
analysis, we derive our solution approach and present the conceptual design of the
Real-Time-Shift pseudo-real-time synchronization between simulated protocols on an
emulated network. In addition, we give important details on the concep implementation,
the interface definitions, and the IEEE 802.15.4 model-interaction in OMNeT++. The
chapter concludes with an evaluation regarding the feasibility, a performance parameter
study, and a discussion of the achievements.

5.1 Real-Time Synchronization Problem Statement

Communication between two layers of the same system is very fast and complete in
contrast to a communication between two systems over their network interfaces. Because
the link layer protocols are usually implemented in a single embedded network interface
of a standard specification (cp. link layer technologies in Section 1.1, e.g., IEEE 802.15.4,
Z-Wave, or LoRaWAN), the communication time between the MAC and PHY can be
compared to a system call or a simple Local Procedure Call (LPC). When running the
simulation and real hardware components in the emulation domain in parallel with the
Split-Protocol-Stack, additional time for the transmission of the external and emulated
event messages is needed. Thus, the communication between MAC and PHY needs
IPC on the same system or even Remote Procedure Call (RPC) between fundamentally
different host systems via network communication. Since link layer specifications define
strict constraints and thresholds to enable a time-accurate medium access, this overhead

77

5 Real-Time-Shift Discrete Event Simulation & Synchronization

in time will violate the MAC procedures. For example, in order to comply to the fixed
time intervals between radio packets, called Inter Frame Spacings (IFSs), the PHY has
to process the MAC instructions just in time. This means in particular for a RIL setup:
when a request is transmitted with a time overhead to the real hardware, the response is
always delayed.

Behind the scenes of distributed and parallel DES , there are two ordering strategies
[129] for the execution of external events: the receive-order (1), and the timestamp-order
(2). When applying the first type, events are scheduled immediately after arriving at the
destination process. This might be too late or too early due to the varying transmission
latency (jitter). With the timestamp-order, events can be put into a sorted queue before
execution, but they need to be created and buffered before reaching their schedule time.

5.1.1 Real-Time Hardware-in-the-Loop Simulation

Real-time HIL simulation approaches usually use the receive-order strategy (1) with no
further synchronization of event messages, as observed in Section 4.3 (cp. e.g., [141],
[143], or [145]). This is only possible when the processing of an event can be handled
until the occurrence of the next event, as mentioned with the DES basics, depicted in
Figure 2.5. In a hybrid simulation and real-time emulation setup it must be ensured that
both the scheduling of the emulated events to be transmitted on the real hardware and
the scheduling of the external events in the simulation are possible. Since simulation
overload and event execution delays consequently lead to real-time violations, often
applied approaches limit the number of simulated events by scaling-down the scenario,
enlarging the real-time threshold, or powering-up the simulation core with sufficient
computational resources for virtual event processing (e.g., the number of simulated nodes
in [145] is limited to 3 while a high threshold of 100ms is accepted). These strategies
are not feasible when a microseconds timing accuracy in large-scale network scenarios is
needed.

To prevent event dependency violations, time-accurate scheduling based on a timestamp-
order (2) of the events is required when running multiple interdependent simulation and
emulation processes in parallel. Since usually a DES core runs in a single thread, each
simulation step is required to be synchronized with the event scheduler (ref. Algorithm 1
in Subsection 2.1.3). This means, that the simulation cannot proceed with the execution
of internal events until a dependent emulation event has finished. In the research domain
of PDES two classes of synchronization algorithms are distinguished to guarantee the
compliance with the causal order, conservative and optimistic synchronization schemes.
In optimistic schemes events are processed speculatively during the previous computation
and are rolled back in case of synchronization errors. A hardware-based channel emulation
cannot be rolled back as in optimistic interactive simulations because the hardware is
running in real-time. Conservative schemes, on the other hand, guarantee an error-free

78

5.1 Real-Time Synchronization Problem Statement

execution without the need for a roll-back mechanism. These approaches, however, are
only suitable for non-real-time parallel and distributed simulations, as they block the
simulation process from further processing until it can be assured that the next event in
a simulator’s Future Event List (FEL) can be executed before any external event arrives
in the future. Therefore, they often require a look-ahead about the future behavior of a
connected system which is not possible with real-world systems.

This has been already figured out by Weingärtner et al. [140] when coupling real nodes´
network stacks on Virtual Machines (VMs) with a PHY network simulation. The
methodology of SliceTime [144] consequently decouples the overall simulation time from
the runtime using a synchronization scheme similar to the Conservative Time Windows
(CTWs). It allows every attached peer to execute for a certain amount of time, a so-
called time slice, until a synchronization barrier is reached by all other peers. Thus, the
synchronization accuracy is given by the size of the time slice, (e.g., sufficient in the range
between 0.1ms and 2ms), whereby smaller time slices (higher synchronization accuracy)
directly yield to a higher accuracy of network measurements (cp. latency measurements in
[144]). A global synchronizer component is responsible for signaling the time slices to all
connected peers. With small time slices, there is a large amount of messages that need to
be exchanged (e.g., a time slice of 0.1ms needs to issue 10000 time slices to all VMs each
logical time second). The synchronization overhead compared to a real-time execution
is comparatively low for a single VM , but increases linear when incorporating multiple
nodes (e.g., emulating 20 nodes, need approx. 20 times of the real-time). Running CTWs
with SliceTime is possible when running higher layer protocols of multiple nodes which
do not influence each other, but is not suitable when running a PHY emulation in which
multiple nodes need parallel radio access. The difficulties occur when many participants
in the network want to access the medium or even start it at the same time.

5.1.2 Real-Time Synchronizing Simulation and Emulation

When running multiple subsystems in parallel while relying on timestamp-order for the
event execution, all peers need to synchronize with a global clock source to calculate a
common time base in addition to the aforementioned event synchronization. On the same
host system, the global time can simply be given by a precise operating system timer,
whereas it has to be assured in distributed systems that the clocks of all systems are
synchronized precisely. For standard host systems, the deviation from the global exact
time can, of course, be decreased by clock-synchronization for which well-known network
protocols (e.g., the Network Time Protocol (NTP), or PTP on dedicated LAN for high
accuracy clock synchronization) still exist. However, especially on resource-constrained
sensor node hardware, the oscillators for the system clocks are usually particularly
imprecise and interfaces and implementations for network clock synchronization are
missing. For example, on typical wireless sensor nodes it is about 10 − 100ppm (thus
after 1h operating time, the deviation is between 40 − 400ms).

79

5 Real-Time-Shift Discrete Event Simulation & Synchronization

5.2 Real-Time-Shift Network Simulation

When analyzing a Split-Protocol-Stack parallel protocol simulation and network emulation,
only the access to the radio channel in the emulation domain has to be executed in
synchronized real-time. With each radio access of a single node, all nodes need to be in
their currently assigned state. On the other hand, when only virtual events occur in a
certain time, there is no need to care about the emulation domain. Therefore, we rely on
an alternating execution of the protocol stack operations and the radio communication.

We propose Real-Time-Shift pseudo-real-time synchronization as solution, a conservative
scheme to strictly avoid the occurrence of causality errors and ensure real-time execution
of the PHY emulated events. Pseudo means that the overall evaluation process runs at
real-time, but the simulated time is stretched by waiting times during the transmission
of emulated and external events. This waiting times have to be compensated by the
simulated time to stick to the actual real-time. Accordingly, the (virtual) simulation time
is permanently shifted back and forth by the scheduler due to the event transmission
delays. In the following subsections we introduce the fundamental concept of event
transmission latency and jitter compensation, the pseudo-real-time scheduling approach
within the DES , and the real-time stream processing to the RIL hardware.

5.2.1 Event Transmission Latency and Jitter Compensation

Besides the overall evaluation runtime (wall time), there are three different observable
times: the simulated real-time, the emulated real-time, and the emulated/external event
transmission time. The emulated real-time is defined as the sum of the event execution
times on the real hardware PHY processing and transmission on the radio channel. The
emulated/external event transmission time is limited by an upper boundary and the
simulated real-time is the overall evaluation runtime minus the emulated/external event
transmission time. The time that elapses during the transmission between the involved
systems is neither constant nor can be exactly predicted before sending. Inevitably,
network transmissions introduce a variance in end-to-end latency, called jitter. The
latency and jitter depends both on the event message length, which is comparably
small and has an upper limit, and on the underlying control network in the emulation
domain. Within a dedicated LAN or on a single host system, an upper boundary for the
transmission time can be determined. To compensate event transmission latencies this
upper boundary is needed to define the fundamental pause time interval or maximum
transmission latency (𝜏𝐿).

The Figure 5.1 shows a real-time simulation setup with compensated event transmission
latencies. The events 𝑒1, 𝑒2, and 𝑒5 are pure virtual, while 𝑒3 represents an emulated
request and 𝑒4 the respective external response from the physical hardware. The event
processing time of the emulated event (𝑇𝑒𝑖

) represents the real execution on the target

80

5.2 Real-Time-Shift Network Simulation

hardware, e.g., the time to perform a channel switching. The pause time (𝜏𝐿) defines
the determined maximum amount of time (event transmission time in Figure 5.1) when
transmitting emulated and external events. The actual transmission time is designated
with (𝐿𝑒𝑖

) in Figure 5.1. With every (emulated) request event message from the MAC ,
the PHY generates a timestamped (external) response event. Thus, the execution time
of the request (event emulation time (𝑇𝑒3

) in Figure 5.1) on the physical hardware can
be calculated in the simulation. The real hardware execution and event compensation
remain invisibly in the simulated time (removing the pause times).

simulation time t
Te1 Te2

t1 t2
real time tw

t3

Te3 Te5

emulated time te
Te3 Te4

τ L

t4

τ L
Le4

Le3

τ L τ L

t3 +tp t4 -tp t3 +2tp

Te4

simulated time ts
e1 e2 e3 e4 e5

t5

event transmission time event emulation time
max. link latency

Figure 5.1: Time compensation in real-time event execution (cp. basic real-time simula-
tion in Figure 2.5)

5.2.2 Pseudo-Real-Time Event Scheduling

A pseudo-real-time scheduler in a DES must take the above mentioned time compensation
into account when running the event routine on the FES . Our solution here is an extension
of pure real-time DES (ref. Section 2.1.3) to enable the accurate scheduling on multiple
interface-connected real hardware systems, e.g., RIL transceiver. Depending on the
number of RIL nodes in the emulation domain, all relevant events of a time period in
case of concurrent media access have to be distributed to all involved hardware nodes
with exact timing. To achieve this, some fundamental assumptions have to be made:

(a) The simulation must be real-time capable and all events must be scheduled in
real-time (ref. real-time DES in Subsection 2.1.3),

(b) The simulator must be able to interrupt and resume the real-time event processing
without terminating the simulation,

(c) The simulator must be able to distinguish between event types (virtual, emulated,
and external),

(d) The maximum event emulation time of a single event on the real hardware must
be ensured to be smaller than the pause time (𝜏𝐿) in the simulation.

81

5 Real-Time-Shift Discrete Event Simulation & Synchronization

The approach is to pause (freeze) the scheduling in the simulation at certain times when
violations occur due to latency or long computation cycles. The resulting simulation pause
time is subsequently called the Real-time-Shift Vector (RSV), which must be configurable
according to the time interval for inter-layer communication in the emulation setup. The
clock source of the scheduler is the simulator’s host system wall clock (𝑡𝑤), but the
overall simulation time base is mentioned the Global Virtual Time (GVT). Since the
scheduler is running in real-time speed, the GVT is equal to the elapsed real-time since
simulation start minus the number of simulation pauses (𝑛𝑃) multiplied with the RSV .
If there is a simulation start time not equal to zero it must be taken into account also.
Since the RSV is equal to the event transmission time or link latency (𝑡𝐿) multiplied by
two, the following equation can be used to calculate the current GVT :

𝐺𝑉 𝑇 (𝑡𝑠) = 𝑡𝑠𝑆𝑡𝑎𝑟𝑡
+ (𝑡𝑤 − 𝑡𝑤𝑆𝑡𝑎𝑟𝑡

) − 𝑅𝑆𝑉 (2𝜏𝐿) ⋅ 𝑛𝑃 (5.1)

𝑛𝑃 – number of simulation pauses
𝜏𝐿 – max. event transmission time (link latency)

𝑡𝑠 – simulation time (virtual clock)
𝑡𝑤 – real-time (wall clock)

Equation 5.1: Calculation of the GVT based on the link latency 𝜏𝐿.

If there is only one single emulated RIL protocol stack and device the scheduling can
be achieved according to the basic latency compensation mentioned above. If there
are multiple nodes in the network simulation all simultaneous events (occurring within
the time of the scheduled emulated event) have to be calculated and scheduled also.
According to the fundamental assumption in (b), the simulation must be fully responsive
during the pause to schedule all concurrent events from competing nodes and receive
external events as responses to the emulated ones.

A concurrent event scheduling and execution based on the fundamental latency and jitter
compensation scheme is depicted in Figure 5.2. According to this example scenario the
external event 𝑒3 is detected by the scheduler which introduces a simulation pausing due
to the transmission latency 𝜏𝐿 to the RIL hardware. Consequently, the FES is looked
up to determine the events that will occur during the pause time (𝜏𝐿). All other future
events are shifted in time with the amount of RSV (2𝜏𝐿 is added to the timestamps).
The simulator proceed with the real-time scheduling and the remaining events within 𝜏𝐿
are scheduled according to their timestamps. Thus, pausing the simulation is done only
virtually by manipulating the FES , but the simulation scheduler is not interrupted in its
execution.

The influence of the RSV on the GVT (𝑡𝑠) is abstracted at the top of Figure 5.2. Thus,
the real-time emulated event is shifted with a statical amount of time to be executed on
the target hardware. According to the general time compensation scheme the emulation
time of each emulated event can be calculated based on the succeeding external event
occurrence time. This opens up possibilities for profiling that are not possible in an

82

5.2 Real-Time-Shift Network Simulation

ordinary real-time simulation, since when an emulated event is scheduled no reference
is made to its processing time. For example, regarding the scenario in Figure 5.2, the
execution time of 𝑒3 on real hardware is equal to the difference of 𝑒5 (response) minus 𝑒3
(request) in GVT .

tw
Te1 Te2 Te3 ,Te4, ... Te7

te
Te3 Te5

τ L τ L
Lei

Lei

τ L τ L

Te5

ts
e1 e2 e3 e5 e6

te
Te4 Te6

e4

Te6 ...Te5Te5T
e4

event emulation time

Real-time-Shift Vector (RSV)

Figure 5.2: Pseudo-real-time concurrent event scheduling within the basic time compen-
sation scheme

In order to enable the scheduler to distinguish between normal event execution and the
simulation pause state we introduce two new event types, called

• simulationPause – all future events in the FES will be delayed with the time
amount of the RSV , and

• simulationResume – the simulation time is shifted back with RSV and the before
mentioned delayed messages will reset to the original creation timestamp.

The insertion of the pause and resume events is performed by the simulation model to
facilitate event handling within the scheduler. Thus, the Real-Time-Shift scheduler only
need to handle pause states of the GVT and do not need to know about virtual, emulated,
and external events.

The procedure of the Real-Time-Shift simulation scheduling is shown in Algorithm 2.
According to the fundamental DES scheduling in a real-time setup, each event is not
processed until the event time is reached. During these waiting periods, the scheduler
listen for external events on the connection interface to the emulation domain. Since
a receive is a blocking function call that prevents the single-threaded simulation from
processing further code, it should be executed in chunks of a predefined timeout constant
𝜏𝑇 /𝑂 (line 6 in Algorithm 2). Between this chunks, the simulator can check for non-
scheduling related activity, e.g., interrupts from the simulation user interface. If something
appears on the connection interface, an external event 𝑣 is created and inserted in the
FES within the receive routines. According to the pseudo-real-time strategy, 𝑣 is inserted

83

5 Real-Time-Shift Discrete Event Simulation & Synchronization

with the time shift offset 𝜏𝐿 and marked as shifted from real-time.1 This causes 𝑣 to
be executed not before the correct processing time is reached with respect to the offset
compensation. During the RSV pause time, further external events can be received on
the connection interface and no external events will be executed. Thus, the correct next
event 𝑒 will be processed by the corresponding event handler routine.

The indication for the scheduler to release a real-time shift operation is given with
an simulationPause event as a result of an emulated event from the simulation model.
Consequently, all events 𝑒 in the FES with a timestamp (𝑡𝑠 + 𝜏𝐿) < 𝑡𝑒 < (𝑡𝑠 + 2𝜏𝐿) are
shifted by that amount for future processing and marked as shifted with the remembered
original timestamp (lines 14-15 in Algorithm 2). The already scheduled pause and resume
events are excluded from this shifting. Finally, the event processing is executed analog to
the normal DES scheduling in Algorithm 1.

5.2.3 Real-Time Event Stream Processing

As long as considering only the virtual event scheduling within the simulation domain
according to the GVT , the simulation scheduler can serve for the time-accurate handling,
but in order to execute emulated events on the RIL nodes, events must be transferred
across system domains. Because interfaces on the different domains vary, there is a need
for intermediate components to decouple the simulator from specifics of the emulation
domain. Thus, information about the GVT and the event message data must be streamed
to the targets.

We introduce a streaming interface between the simulation and the emulation domain
for real-time aware processing of emulated and external, called Event Stream Forwarder
(ESF) (ref. realization in Section 5.3). During the execution of purely virtual events
in the simulation, the stream processing at the ESF is in a waiting state. Looking
at PDES implementations, one usually can find a time control interface and a data
communication interface. Within the Split-Protocol-Stack, the timing control interface is
seamlessly combined with the data communication interface, because each event has its
own execution time attached to it.

Due to the stream-based event transmission, the start of the data transmission can be
used to initialize the GVT from the simulation system. Furthermore, the GVT increases
with the amount of the RSV when the initial emulated event is detected by the ESF
in this time interval. When no emulated or external events occur in a pure RIL nodes
scenario, the ESF is in an active waiting state and the GVT proceeds according to the
synchronized wall clock. The question at which point in time external events happen
automatically arises from the fact that the PHY (on the real hardware) cannot continue
to run without the MAC (the virtual node), as it controls the accesses to the RIL nodes.

1 Note that the event timestamps are always set according to the GVT .

84

5.2 Real-Time-Shift Network Simulation

Algorithm 2: Real-Time-Shift Event-Scheduling Algorithm
Precondition : Initialize simulation model, FES and time constants 𝜏𝐿, 𝜏𝑇 /𝑂

(1) while (𝐹𝐸𝑆 not empty) and (simulation time limit not reached) do
(2) fetch first event 𝑒 from 𝐹𝐸𝑆
(3) calculate event target time 𝑡𝑒 with 𝑡𝑠𝑆𝑡𝑎𝑟𝑡

(4) get current simulation time 𝑡𝑠
(5) if 𝑡𝑒 > 𝑡𝑠 then
(6) receive until 𝑡𝑒 ▷ blocking receive in chunks of 𝜏𝑇 /𝑂
(7) if something is received then
(8) create event 𝑣
(9) if simulation is paused then

(10) remember arrival time and mark 𝑣 as shifted
(11) 𝑡𝑣 += 2𝜏𝐿 ▷ add 2𝜏𝐿 to the actual timestamp

end
(12) insert 𝑣 into 𝐹𝐸𝑆
(13) break

end
end

(14) if 𝑒 is pause event then
(15) for all events 𝑒 excerpt pause and resume in 𝐹𝐸𝑆 do ▷ time shift
(16) if (𝑡𝑠 + 𝜏𝐿) < 𝑡𝑒 < (𝑡𝑠 + 2𝜏𝐿) then
(17) remember arrival time and mark 𝑒 as shifted
(18) 𝑡𝑒 += 2𝜏𝐿 ▷ add 2𝜏𝐿 to the actual timestamp

end
end

(19) else if 𝑒 is resume event then
(20) for all events 𝑒 marked as shifted do ▷ reset shift
(21) reset arrival time and remove shifted mark

end
(22) 𝑡𝑠 −= 2𝜏𝐿 ▷ subtract 2𝜏𝐿 from simulation time
(23) else
(24) process event 𝑒 ▷ normal event execution

end
end

85

5 Real-Time-Shift Discrete Event Simulation & Synchronization

Thus, external events can only occur if an emulated event for data transmission has been
previously executed by the scheduler of the simulation, i.e., only if a node has sent an
air frame before another node can receive one.

Clock Synchronization

The execution of a Split-Protocol-Stack scenario requires all systems running in a dedicated
LAN or at the same host system, so that system clocks can be synchronized accurately.
Thus, the event processing can assign the respective time stamp directly when the
external event occurs from the local time or wait with the execution of the emulated
event until the time stamp of this request is reached. This requires knowledge about the
current simulation time. If all sensor nodes are of the same type, initial synchrony can be
achieved by starting the event processing on the hardware execution in parallel. However,
due to effects like clock drift, it must be ensured that the execution time also remains
synchronous over the entire emulation run.

In order to keep the intermediate system flexible in terms of the used end systems we
assume an active time synchronization to decouple the timestamp generation from the
intermediate system event scheduling. Thus, the intermediate scheduling system does not
need to take the current hardware configuration into account (e.g., switches, controllers,
link technologies). PTP is assumed for synchronizing the wall time of all involved host
systems because the accuracy of the NTP protocol is not sufficient for this purpose. Due
to our RIL modeling strategy in which the time-accurate scheduling is part of the host
software (ref. Section 6.1), we do not synchronize the RIL transceiver hardware. The
clock drift on low-power wireless nodes can be neglected.

Offset Real-Time Jitter Compensation

To schedule the events at the accurate real time the amount of 𝜏𝐿 is added to the
original event timestamp. According to the basic latency compensation mentioned in
Subsection 5.2.1, the event 𝑒 is processed after a waiting 𝜏𝐿 − 𝐿𝑒. Thus, the processing
of the event is shifted with the offset 𝜏𝐿. Based on our RIL strategy, introduced in
Section 6.1, we cascade these offset time compensation with the RIL host system. Thus, a
time-accurate execution at the real hardware can be achieved by a constant transmission
rate due to a fixed step speed on dedicated point-to-point transmissions.

5.2.4 Determination of the Time Constants

According to our fundamental assumption in (b) that the maximum event emulation time
𝑇𝑒 must be smaller than the pause time 𝜏𝐿, the emulation time of a single event has to be
figured out first. The event emulation time heavily depends on the used protocol standard

86

5.2 Real-Time-Shift Network Simulation

because it represents the maximum amount of time, a PHY operation can take on the real
hardware. Due to a radio packet transmission, this is the processing time of a maximal-
sized data frame which is mainly affected by the modulation scheme. In addition, also
particular PHY procedures like the ED according to the actual configuration and scenario
must be considered as time-consuming. Looking at our reference protocol standard IEEE
802.15.4, the exemplary ED execution time of 138ms provides a good balance between
scan duration and accuracy under coexistence with IEEE 802.11b (cp. [157]).

Furthermore, the maximum event transmission time 𝐿𝑒 between the connected subsystems
is an important indicator, but one needs to distinguish between dedicated point-to-
point (e.g., RIL hardware link) and point-to-multipoint (e.g., simulator to ESF link)
connections. The data rate on the bottleneck link (e.g., UART RIL connection) and the
maximum event message frame size is used to determine the maximum point-to-point
event transmission time 𝐿𝑒𝑅𝐼𝐿

. Moreover, also the number of RIL nodes in the scenario
configuration must be considered for the point-to-multipoint event transmission 𝐿𝑒𝐸𝑆𝐹
from a single-threaded simulator, since multiple emulated events can possibly transmitted
within the same pause time 𝜏𝐿. In addition, there is a time variance of the end-to-end
delay 𝐽𝐿𝑒

(jitter) which is included twice to achieve a certain reserve. Thus, the pause
time can be calculated using Equation 5.2 for a single link:

𝜏𝐿 = 𝑚𝑎𝑥(𝑇𝑒, (𝐿𝑒𝑅𝐼𝐿
, 𝐿𝑒𝐸𝑆𝐹

⋅ 𝑛𝑁) + 2𝐽𝐿𝑒
) (5.2)

𝑛𝑁 – number of nodes
𝑇𝑒 – event emulation time

𝐿𝑒 – event transmission latency on a RIL or ESF link
𝐽𝐿𝑒

– event transmission jitter on the link

Equation 5.2: Determination of the maximum event transmission time 𝜏𝐿.

For an example setup with serial-line-connected RIL hardware nodes, 𝐿𝑒𝑅𝐼𝐿
should

become the bottleneck link with the highest latency. Depending on the maximum event
data size and the UART connection speed (e.g., 115200 BAUD2), 𝜏𝐿 will range in
milliseconds (typically 1-100ms). Contrary, the link latency on a standard host system
(e.g., between the simulator and the ESF) should not exceed 1 ms. When cascading the
time compensation scheme with multiple subsystems, the number of link delays 𝜏𝐿 is
added up. For example, considering a standard configuration for the Split-Protocol-Stack
emulation (simulator - (a) - ESF - (b) - RIL - (c) - hardware), there are three independent
links a, b, and c.

2 The most resource-constrained devices are capable of running their UART at the standard 115200
BAUD rate.

87

5 Real-Time-Shift Discrete Event Simulation & Synchronization

5.3 Simulator Interfacing and Concept Implementation

As our prototype is based on the IEEE 802.15.4 protocol standard and the OMNeT++
simulation environment, we now point out some important details of implementing
abstract and generic interfaces among the involved systems and frameworks. We first
introduce the basic interface modeling and abstraction, then the implementation of the
interfacing as well as our synchronization concept on the specific components.

5.3.1 Interface Modeling and Abstraction

In order to support the interoperability among the architecture’s components there is a
strong need for a consistent semantics and data interpretation in all involved subsystems.
Within the computer network community, PCAP (or PcapNG for the next generation
frame format, commonly and hereinafter simply referred to as PCAP) is considered as a
de facto standard for network packet readings from a network interface (e.g., NIC on
general purpose host systems). We have chosen it as control and data exchange protocol
frame format among all involved subsystems, not least because it supports the individual
extensibility with embedded optional fields and the capability of carrying data frames
from multiple network interfaces in one single data stream. We break with the regular
usage that PCAP streams only carry DLL PDUs or frames. For the internal message
processing and handling of SDUs, we have implemented a subset of the PcapNG IETF
Internet-Draft authored by Tuexen et al. [158]. The following three basic block types are
most relevant for our use case:

• SHB (initialization of the PCAP stream)
• IDB (assignment of the device interface)
• EPB (processing of the PHY SDUs)

We have modeled all specific MAC PDUs and created respective serializer functions to
convert the internal representation and an ordinary byte format into each other. Since
there is no specification in the IEEE standard of how PHY -SDUs should be modeled
internally, we have added a simple byte format in which all these protocol primitives for
the data and management service are represented. In Figure 5.3 an example Physical
Layer Service Data Unit (PSDU) shows an indication of an incoming DataIndication
(PPDU) from a RIL hardware node.

type: data
indication length link

quality PSDU data

headerheader type specific formattype specific format

EPB
header

EPB
trailer

PSDU
length

Figure 5.3: Example IEEE 802.15.4 PD DataIndication SDU byte format, encapsulated
in an EPB

88

5.3 Simulator Interfacing and Concept Implementation

Since the event transmission latency cannot be neglected, we focus on limiting the
IPC latency and message jitter to a minimum by applying lightweight stream-based
technologies among components of the same host system and networked components.
Furthermore, using stream-based IPC also keep the sequential order of the event messages.
Latency and jitter can be decreased to a minimum using fast stream-based IPC via Unix
Domain Socket (UDS) at the same host system (localhost). UDS communication is faster
than TCP communication on the local host system due to the reduced protocol and
network driver overhead. In Section 5.4, we show results of reducing the jitter, using
UDS compared to TCP sockets. This increases the performance of the overall system,
but does not dissolve the latency issue when communicating between MAC and PHY .

5.3.2 Simulation Model Enhancements and External Interfacing

In order to make the simulated nodes capable to connect to real sensor nodes on
the emulation hardware platform we have added some emulation features and interface
modules to our OMNeT++ IEEE 802.15.4 simulation model [96], introduced in Section 2.3.
In the following we give a detailed overview of our simulation model architecture and its
modules. Figure 5.4 depicts the emulation and interface modules as well as the event
and information flows from a simulated node to the host system. It serves as basis for
the further explanation of our RIL simulator implementation.

IEEE802154
ExtInterface

IEEE802154
Serializer

RealTime
Scheduler

Stream
Socket

Simulation EmulationSimulation Emulation

SDU
msg 2

3

4 6

PCAP
Reader

5

IEEE802154
ExtHost n

IEEE802154
MACLayer

IEEE802154
ExtPHY

IEEE802154
ExtHost n+1

IEEE802154
MACLayer

IEEE802154
ExtPHY

1
SDU
data

PCAP
frame

(a) Scenario Event Generation (c) Scheduling(b) Dispatching

Figure 5.4: IEEE 802.15.4 simulation modules in OMNeT++/INET

(a) Scenario Event Generation

To enable the external communication for the RIL emulation mode from a virtual
wireless node we created the IEEE802154ExtHost which acts as representation of a real
or emulated wireless node in the simulation system. This module is derived from the
standard wireless host of our simulation model [96], but it has no radio interface and is
not able to communicate with a virtual/simulated wireless channel. Instead of a PHY
layer simulation module with gates to a radio interface, we apply an IEEE802154ExtPHY

89

5 Real-Time-Shift Discrete Event Simulation & Synchronization

module (ref. 1⃝ in Figure 5.4) that models the handling and transfer of all management
and data services (SDUs) standardized in IEEE 802.15.4 to the external PHY . The
IEEE802154ExtPHYmodule can be considered as an abstract PHY with no IEEE 802.15.4-
related but SAP interfacing functionality within the simulation. The core function of this
module handleMessage() deals with events that can be either MAC -generated regular
simulation events or RIL external messages (ref. Listing C.2 for an example MAC event
handling to instruct external PHY to set the TRX state).

(b) Dispatching

The communication of the virtual nodes in the simulation scenario is transferred via
the IEEE802154ExtInterface module (ref. 2⃝ in Figure 5.4). The mapping between
simulation nodes and PCAP interfaces is performed with the help of an interface table
that stores the simulation module identifier for the corresponding hardware identifier. The
dispatching adds this identification of the node for the later PCAP interface assignment
and serializes the internal SDU message representation of the simulation module to the
before mentioned ordinary byte format via the IEEE802154Serializer module (ref. 3⃝
in Figure 5.4) which is transferred for processing to the scheduler then. In the case of
the Data Service (PD) (e.g., a DataRequest or DataIndication), the encapsulated MAC
frame is also serialized and included in iteration. In Algorithm 3 an iterative serialization
inside the IEEE802154ExtInterface module is shown. If the SDU message from the
MAC module is a packet it carries an encapsulated MAC frame.

Algorithm 3: Serializer call - iterative serialization of a DataRequest message
Function handleMessageSim(cMessage *msg) ▷ message from virtual MAC

initialize buffer
if (msg is packet) then

Function serialize(msg, buffer) ▷ iterative serialization
serialize(encapsulated packet, buffer)

end
return

An incoming external IEEE 802.15.4 MAC PDU is deserialized from a DataIndication
and send via the corresponding IEEE802154ExtPHY to the virtual MAC simulation
module. Hence, the IEEE802154Serializer module is responsible for the conversion
between the two message representations of PSDUs and MPDUs (ref. Listing C.1 in
appendix Section C.1). For further encapsulated PDUs, we also need to call higher layer
protocol serializers that are often provided by the higher layer simulation models.

The IEEE802154ExtInterface is also responsible for dispatching the Real-Time-Shift
synchronization events. When an emulated event leaves the simulation, the virtual event

90

5.3 Simulator Interfacing and Concept Implementation

scheduling needs to be paused for the RSV time interval and resumed afterwords. Because
the simulation scheduler needs to be fully reactive for incoming external event messages
(e.g., confirmations), the pause and resume events are only inserted in the FES , but the
actual event scheduling is not interrupted. The synchronization event handling is taken
over by the scheduler module.

(c) Scheduling

The basic concept for connecting an OMNeT++ simulation with a host system was first
published in [66]. We have adapted and extended this approach to enable the RIL-
related node operations over PCAP streams with the Real-Time-Shift pseudo-real-time
event scheduling. The RealTimeShiftScheduler (ref. 4⃝ in Figure 5.4) is derived from
OMNeT++’s cRealTimeScheduler class and enables sending and receiving packets to
and from the external world via the configurable stream socket (e.g., TCP or UDS) (ref.
5⃝ in Figure 5.4). In a DES , the event scheduler is one of the most important components,
as it controls the event processing and manipulates the FES .

The scheduler class provides a function, called setInterfaceModule(), which enables the
connection of external interfaces (e.g., a TCP socket or UDS in our case) to the simulation.
The scheduler function getNextEvent() is synchronized to the host systems real-time
clock and checks the socket periodically (e.g., the scheduler accuracy of the base class in
OMNeT++ is set to 5ms). We implement the pseudo-real-time event scheduling according
to the fundamental approach of the Real-Time-Shift synchronization in Figure 5.2. Thus,
we introduce two new particular core event types (ref. the event scheduling main routine
in Listing C.3 and the event shift procedures in Listing C.4 for OMNeT++):

• pause() (shift already scheduled virtual events and hold pseudo-real-time clock)
• resume() (resume pseudo-real-time clock)

With respect to the PCAP file format, the scheduler implements various functions for
writing and especially reading the specified blocks to and from the socket stream in the
separate PCAPNGReader (ref. 6⃝ in Figure 5.4) module. For the handling of PCAP events,
we only implemented the three basic block types that are relevant to our use case. These
are:

• handleSHB() (init PCAP handling based on the SHB)
• handleIDB() (assign hardware interface module from IDB)
• handleEPB() (process PHY SDU event from EPB)

For transmitting SDUs from the dispatcher simulation module, the specific PCAP block
header is generated and the resulting frame is send out. On the return path of the
messages, the PCAP blocks from the socket byte stream are identified in the receiving
process. The scheduler interacts with the PCAPNGReader, which assembles the resulting
frames from stream segments.

91

5 Real-Time-Shift Discrete Event Simulation & Synchronization

5.3.3 Radio-in-the-Loop Event Stream Forwarder

The ESF is the implementation of the pseudo-real-time scheduling and the intermediate
system between the simulation and emulation domain. By default, a simulator is not able
to handle the connection to multiple hardware interfaces at the same time because of
running in a single thread. Furthermore, a direct communication from the simulator to
hardware resources via different interfaces is neither simply to achieve nor a transparent
and modular solution. With the transparent ESF component in the overall emulation
setup, it surrenders a resulting cascaded time event transmission latency compensation
scheme. The cascade where the individual node scheduling happens is not visible to the
simulation process.

The implementation of the core component, the event scheduler, strictly follows the DES
paradigm and is highly inspired by OMNeT++’s message handling within the cScheduler
class. The implementation uses threads and acts as a dispatcher and aggregator which in-
terchanges stream data in the PCAP format. On the hardware side, assigned destinations
can be single sensor node platforms, individual transceiver chips, or whole testbed control
systems. While PCAP is able to handle multiple hardware interfaces and link layer
protocols, the forwarder application can aggregate data from different end-devices to
constitute a single socket data stream for further scheduling in the OMNeT++ simulation.
Figure 5.5 depicts the event processing according an example configuration setup with
multiple serial-connected devices.

The ESF multi-threaded application processes PCAP frames to and from multiple inputs
and outputs and enables their manipulation and display. Furthermore, the event process
is responsible to schedule the events in accurate real-time. In Listing C.7 in appendix
Section C.2, the ESF scheduler main thread procedure is shown. Like a DES , the event
scheduling implements a FES which contains all events to be handled in the respective
modules. When a new event is received from the simulation, other coupled systems, or
device hardware, the corresponding execution timestamp is generated and this event
is queued into the FES . Once the execution time is reached, the event is forwarded
accordingly (ref. line 419 in Section C.2).

This approach allows us to connect between the different evaluation systems. We use
in-band signaling for the synchronization based on the PCAP frame format. PCAP can
handle multiple interfaces (Interface Description Blocks (IDBs)) with own link layer
protocols and options. Hence, our application can aggregate or filter data from different
end devices to compose a single data stream for further processing in the simulation
system. Our first experiments are based on a TCP socket connection to the simulator.
Since the simulator and the stream forwarder are running on the same Linux host system
in our case, we also implemented and primarily use UDSs. The forwarder has a modular
and easy extensible structure with several stream-based connection interfaces on Linux
systems, e.g.,

92

5.3 Simulator Interfacing and Concept Implementation

• TCP (for standard remote interfacing),
• UDS (for interfacing host-based emulation),
• REST (for interfacing with high-level APIs)
• Serial Port Terminal (for serial-line connected device hardware),
• Pseudo Terminal (for virtual device hardware), and
• File I/O (for tracing and testing).

A great advance of this solution is that the simulation system does not need any infor-
mation about the emulation domain or implement possibly specific interfaces. Figure 5.5
depicts a possible setup as a Terminal Forwarder with one simulation interface and
multiple connected hardware devices.

Aggregate/Filter

Terminal Forwarder

SHB IDB IDB EPB1

to/from simulation to/from device pcapng_queue

...

to Wireshark

Serial Port
Terminal

Stream
Socket EPB2

Serial Port
Terminal

...

EPB3 ...

Aggregate/Filter

Terminal Forwarder

SHB IDB IDB EPB1

to/from simulation to/from device pcapng_queue

...

to Wireshark

Serial Port
Terminal

Stream
Socket EPB2

Serial Port
Terminal

...

EPB3 ...

Figure 5.5: Example of a ESF setup with multiple serial-connected RIL devices

The stream forwarder is not allowed to lose any packets that arrive at the various
interfaces at the same time. Therefore, we have implemented every single interface
connection and the central forwarder logic as separate threads. As a common data
structure for processing the PCAP data of different interfaces, we have implemented a
thread-safe queue. For example, to consolidate packets from different hardware instances
into a single output stream to the simulator we manipulate each packet to ensure the
correct interface assignment of each individual PCAP frame of this hardware. Vice versa,
we have to dispatch all packets from the simulation domain to the respective hardware
devices based on the interface identifier.

Furthermore, we have implemented an interface to the de facto standard packet analyzer
Wireshark (ref. Figure 5.5). Thus, we are able to send the PCAP frames at run-time
to the Wireshark software application for monitoring and further processing of the
transmitted streams. A custom packet dissector visualizes the IEEE 802.15.4 PHY SDUs
for analyzing and debugging purposes. For our purposes, we use the PCAP block types
Section Header Block (SHB), IDB, and Enhanced Packet Block (EPB). The SHB and
one IDB for every used hardware node are exchanged at the beginning of the scenario
execution. The EPBs represent the MAC data frames.

93

5 Real-Time-Shift Discrete Event Simulation & Synchronization

5.4 Evaluation and Discussion

With the following evaluation scenarios and measurements, we demonstrate the feasibility
of our approach running our IEEE 802.15.4 OMNeT++ simulation model connected
to the ESF emulation runtime backend with attached virtual or real hardware RIL
prototypes. We validate the simulation model implementation by comparing the message
sequences with the given charts in the standard specification (cp. MAC -PHY interaction
message sequence charts in [9, Sec. 7]). Furthermore, we point out several performance
measurements of the implemented components and finally conclude with a discussion of
the evaluation results.

5.4.1 Emulation Scenario Model Validation and Verification

As an example reference scenario, we choose the start of a PAN in which only a single
device tries to start a network as a coordinator (PAN start based on an active channel
scan [9, pp. 217ff]). The scenario is executed according to a pre-configured settings of the
simulation model (cp. [96] and the attached scenario configuration files in Subsection C.1.1
for further details). Figure 5.6 shows the scenario event message log in OMNeT++ that
corresponds to the message sequence charts in the IEEE 802.15.4 standard specification.

Figure 5.6: OMNeT++ event message log of the test scenario run. The event log is
cleaned to show only the most important modules and events of this simulation
scenario for a clear overview (e.g., all PLME SetTRXState messages, changing
the radio transceiver state, are removed).

At first an active channel scan according to the IEEE 802.15.4 protocol specification
(1⃝ in Figure 5.6) is performed. The PHY switches to the channel by setting the
phyCurrentChannel with an PLME SetRequest accordingly. Then the radio transmitter
is turned on and the PHY transfers a Beacon Request command frame (2⃝ in Figure 5.6).
After this the transceiver is put into receive mode and waits for incoming beacon packets.
Since there is no beacon received during the active channel scan, the MAC finishes
the channel scan request. Finally the MAC starts a new network and selects a node

94

5.4 Evaluation and Discussion

as coordinator, which periodically sends beacons (3⃝ in Figure 5.6) according to the
calculated BI (Equation 5.3).

𝐵𝐼 = 𝑎𝐵𝑎𝑠𝑒𝑆𝑢𝑝𝑒𝑟𝑓𝑟𝑎𝑚𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 2𝐵𝑂𝑠𝑦𝑚𝑏𝑜𝑙𝑠 (5.3)

Equation 5.3: Calculation of the IEEE 802.15.4 BI (taken from [9])

The PHY sets the transceiver state to TX_ON, transmits the beacon according to the
calculated time interval (Ieee802154BEACONTimer → PD-DATA.request) and then sets
the transceiver state to RX_ON. For each beacon, the beacon timer is restarted. As with
the scenario in Figure 5.6, the beacon packets are scheduled with the static simulation
time difference of 983.232ms, according to the calculated beacon interval with a Beacon
Order (BO) of 6.

Protocol Message Sequences

The correct flow of the SDU event messages can be observed at the ESF and the
simulation as backend and initiator. In OMNeT++ (Figure 5.6) the interchanged SDUs
in the protocol sequences according to [9] can be analyzed in detail. The event sequence
at the ESF is recorded or can be live viewed with the associated PCAP packet dissector
for IEEE 802.15.4 PHY in Wireshark (ref. Figure 5.7). If the PCAP events are recorded
it is possible to execute or replay a simulation run without coupling the simulator with a
realistic analog hardware radio environment.

Figure 5.7: PCAP trace of the scenario protocol sequences (IEEE 802.15.4 PHY SDUs) in
Wireshark. The SetRequest for switching the radio channel (1⃝ in Figure 5.6)
is highlighted.

The execution of the SDU commands and the transmission of the respective real radio
packets (PDUs) from RIL hardware nodes depends on the transceiver implementation
and is validated by a radio Packet Sniffer reference module. This validation is part of
the RIL PHY modeling in the following chapter (ref. Figure 6.4 in Section 6.4).

95

5 Real-Time-Shift Discrete Event Simulation & Synchronization

5.4.2 Event-Stream Forwarder Performance and Accuracy

As our forwarder application acts as a transparent bridge between the simulation and
the emulation domain, it must ensure the fast reception, processing, and transmission of
PCAP events. The performance and accuracy of the pseudo-real-time event scheduling and
time compensation can be evaluated by performance and accuracy measurements when
aggregating, splitting, and filtering the data streams. Figure 5.5 shows the corresponding
test setup for the ESF performance and throughput measurements considering File I/O
for PCAP event tracing, as well as real transceiver chips (via Serial Port Terminals) and
full virtual components (via Pseudo Terminals) as hardware devices. The ESF records
the arrival and departure time for each processed PCAP event frame by means of precise
time-stamping based on high resolution clock timers. For running pure performance and
accuracy measurements, we performed the measurements with generated IEEE 802.15.4
PHY PCAP traces.

Throughput

A stress test of the ESF event handling is performed by measuring the maximum
throughput with generated PCAP traces over TCP connections. Within the corresponding
test setup, a PCAP traffic generator sends a data stream from a trace file to the ESF
which assigns and forwards the analyzed messages to a virtual node. The node simply
reply to this messages by repeating the exact same data content3 which is in return
aggregated by the ESF and sent back to the generator. For this measurements, we vary
the data size of the encapsulated frames which are IEEE 802.15.4 PD DataRequest’s in
this case. We did not observe any dropped frames; all packets sent by the PCAP traffic
generator were received by it after they passed through the ESF and were returned by
the node.

Looking at a data transfer of maximum sized IEEE 802.15.4 data frames (10, 000 data
frames with 127B each – overall PCAP data amount of 1.52MB), we measured an
exemplary throughput of 91.5Mbit s−1 from the sender (TCP stream traffic generation)
to the event stream forwarder and 91.4Mbit s−1 from the sender to the receiver module
(TCP stream traffic repetition) on an Ubuntu Linux4. Since the traffic at the local
host gets processed by a loopback adapter in the kernel, we cannot evaluate the precise
throughput readings, but our measurements show a sufficient packet throughput for
transmissions in larger wireless networks with low data rates (e.g., 250 kbit s−1 for IEEE
802.15.4 O-QPSK 2.4GHz). Thus, we can demonstrate that our packet handling routines
play a subordinate role on the overall data throughput and will thus not cause a bottleneck
of the overall Split-Protocol-Stack emulation.

3 The virtual nodes are set up as simple PCAP repeaters with no PHY -related functionality.
4 Ubuntu Linux (64 bit) virtual machine with 7 vCPUs (Intel Xeon X3470 Quad Core @ 2.93 GHz)

96

5.4 Evaluation and Discussion

Scheduling and Event-Processing Accuracy

Contrary, when connecting RIL nodes in a simulation scenario with timestamped event
messages, a high ESF scheduling accuracy plays a superordinate role. With a single
UART -connected IEEE 802.15.4 chip hardware transceiver, comparative measurements
to evaluate the real radio packet transmission jitter were performed based on the
aforementioned OMNeT++ reference simulation scenario as a first step (the 6 BO result
in 983.232ms time difference between packets). The Figure 5.8 clearly shows the impact
of the ESF offset jitter compensation scheme on the accuracy of the received real
radio packets compared to pure TCP- and UDS-based transmissions. This analysis
also indicates the more reasonable use of UDS instead of TCP to send events from the
simulator to the ESF on a local host system. The effects of the reduced protocol-overhead
result in a smaller overall radio packet transmission jitter which eventually will lead to a
smaller scenario pause time 𝜏𝐿.

(a)

𝜇𝜇 = 991.444ms𝜎𝜎 = 104.605ms

𝜇𝜇 = 983.01ms𝜎𝜎 = 9.283ms

(b) UDS (no compensation)

𝜇𝜇 = 983.274ms𝜎𝜎 = 2.673ms

(c) UDS (offset compensation)

Figure 5.8: Histogram of the real-time jitter: (a) TCP (no compensation), 𝜇 refers to
the mean value, 𝜎 refers to the standard deviation and beacons are scheduled
from the simulation scenario with a size of 51B and a BI of 983.232ms.

For evaluating the actual scheduling accuracy of the ESF in scalable scenarios, parameter
studies are performed with a stream-generator application that sends time-accurate
IEEE 802.15.4 PD DataRequest SDUs. The RIL nodes are based on the native virtual
platform running their event handling routines as application-level processes concurrently
on the Split-Protocol-Stack emulation host system5. The ESF dispatches the individual
emulated events to the corresponding nodes via Pseudo Terminal connections and replies

5 Chip RIL transceiver implementation using the RIOT operating system on the native platform.

97

5 Real-Time-Shift Discrete Event Simulation & Synchronization

the aggregated returning IEEE 802.15.4 PD DataConfirm SDUs from the nodes back
to the initiator, where the resulting event stream is recorded. All measurements were
performed based on the Real-Time-Shift scheduling and demonstrate the accuracy of
ESF with respect to internal parametrization and external input event data streams.

(a)

Err (%) = 0.0 Err (%) = 0.0 Err (%) = 18.5 Err (%) = 49.9 Err (%) = 0.0 Err (%) = 0.0
Shift (%) = 4.9 Shift (%) = 21.2 Shift (%) = 32.5 Shift (%) = 51.1 Shift (%) = 100.0 Shift (%) = 100.0

(b)

La
te
nc
y
(m
s)

Figure 5.9: The ESF scheduling accuracy as a function of the event (request) transmission
parameters: (a) transmit interval and (b) payload size. Mean value and
standard deviation are reported with parameters: 𝜏𝐿 = 10ms, 𝑛𝑁 = 20
(payload size 48B in (a), transmission interval 50ms in (b)).

The input time interval of the event messages (requests) affects the accuracy of the
scheduling. Figure 5.9a shows that at an interval below 𝜏𝐿 the standard deviation of the
event transmission latency is reduced approximately by a factor of two, compared to
send intervals greater than 2𝜏𝐿. If the interval is exactly once or twice the offset time
(𝑇 𝑋(ms) = [10, 20], 𝜏𝐿 = 10ms), several events are sent together with its predecessor
(resulting in an event scheduling error rate of up to 50%). However, within a RSV (event
𝑆ℎ𝑖𝑓𝑡 < 100%) only events with an offset smaller than 𝜏𝐿 can occur, which is why
these can be excluded from consideration6. The accuracy increases significantly when a
separate Real-Time-Shift is performed for each emulated event (𝑆ℎ𝑖𝑓𝑡 = 100%).

6 These values were removed from the accuracy consideration in the figure based on this finding.

98

5.4 Evaluation and Discussion

Figure 5.9b exemplarily demonstrates for the offset compensation time 𝜏𝐿 = 10ms in
a scenario with 20 connected nodes that the payload consequently affects the latency
and increases linearly with the packet size due to the serial-port terminal connection
to the nodes. The latency mainly depends on the properties of the terminal connection
and the event handling routines on the RIL hardware. It increases of course when real
node hardware with comparatively slow BAUD rates and more inaccurate clocks is used.
Nevertheless, to evaluate the impact of the event creation strategy different measurements
were performed to record the PCAP timestamps either on the host system or right on the
node hardware. The results clearly indicate an influence on the accuracy is not observable
independent of the individual node or timestamp creation (host vs. node) even when
applying virtual nodes.

(a)

(b)

16 = Err (%) = 12.8Err (%) = 0.0Err (%) = 0.0Err (%) = 0.0

Figure 5.10: The ESF scheduling accuracy as a function of internal parameters: (a)
number of nodes and (b) offset time 𝜏𝐿. Mean value and standard deviation
are reported with static input event (request) parameters: payload size 48B,
transmission interval 50ms (offset time 𝜏𝐿 = 10ms in (a), 𝑛𝑁 = 20 in (b)).

As the number of nodes increases, the number of threads for the connections to the end
devices and event handling routines on the host system increases linearly. The evaluation
was carried out exemplary for different numbers of nodes up to 500 to increase the process
load at the emulation backend (Figure 5.10a). Due to the Real-Time-Shift scheduling

99

5 Real-Time-Shift Discrete Event Simulation & Synchronization

with the corresponding high waiting times depending on 𝜏𝐿, the set of events scheduled
in the offset time from the scenario does not increase systematically with the number of
nodes. In contrast, the set of events within an RSV is highly dependent on the specific
application scenario and network topology. Further investigation has shown that even
the scenario- and system-dependent offset time 𝜏𝐿 selection has no observable effect on
the scheduling accuracy (except for the special cases from the results in Figure 5.9a). At
least, no general influence can be derived from our measurements (cf. Figure 5.10b).

5.4.3 Discussion of the Evaluation Results

We have proven the feasibility of our Real-Time-Shift discrete event simulation approach
with selected reference simulation scenarios and measurements, and demonstrated its
emulation capabilities. The emulation extensions of the IEEE 802.15.4 simulation model
have been validated according to the IEEE standard specification to demonstrate the
seamless integrability of the WSN simulation with external nodes. The protocol primitives
and frame structure can easily be extended with future revisions of the protocol standard
which happens comparatively often (cp. the overview of multiple amendments a year
in the evolution of the IEEE 802.15.4 specification in [23]). Based on this emulation
capabilities of the simulation model, we can verify the standard-conform operation of
a specific layer including the PHY by recording the inter-layer protocol sequences in
simulation scenarios without the need of standard-conform real hardware resources. Thus,
a high insight into all link layer protocol operations with a simultaneous interaction
with the real radio channel can be achieved. Furthermore, the recorded simulation
traces from pure virtual scenarios can be played back in real-node testbeds applying
real radio interactions from simulation generated SDU traffic. This means that our
approach allows a physical radio transceiver to be put into any specified state within
the simulation. Thus, incoming responses from the hardware reflect true PHY behavior
(inter-layer communication). Up to our knowledge, this is a real innovation in the field of
hardware-device coupled wireless network emulation, in which only approaches exist so
far to transfer single MAC frames out of the simulation in the context of inter-system
communication.

Using the high-precision microsecond event scheduling, we have shown how RIL event
execution is initiated by the ESF emulation backend. As the results illustrate, using
the pseudo-real-time approach, a normally hard-to-predict execution of emulated events
on hardware is almost limited to the accuracy of the emulation backend host operating
system scheduler. For the specific evaluation host system, a mean event-processing
accuracy of the Real-Time-Shift network simulation can be calculated which depends
on the accuracy of the operating system process scheduling (arithmetic mean standard
deviation of the ESF event scheduling latency 𝜎 = 0.35ms). Due to the evaluation on a
general-purpose host system, no generalization, however, can be made from this specific

100

5.4 Evaluation and Discussion

value. The absolute accuracy depends of course on the operating system used, kernel
process scheduling, and crucially on the specific CPU .

Furthermore, it can be ensured that the accuracy of the event scheduling does not
significantly depend on the input event stream and the configuration parameters of the
ESF . The strategy for performing the creation of the timestamps on the host system to
reduce the complexity of the RIL hardware and the associated synchronization does not
limit the accuracy. On the contrary, in comparison with initial measurements using real
sensor node hardware (Figure 5.8c), it has been demonstrated, that the reduced accuracy
is caused by the hardware itself and not by the ESF scheduling. Thus, an accuracy in
the sub-millisecond range can be achieved independent of the parametrization. On an
operating system with a real-time kernel or even a dedicated emulation backend system,
the accuracy can be increased further and, above all, the number of outliers can be
eliminated sufficiently. Therefore, running the Real-Time-Shift network simulation on a
real-time system is appropriate for practical use.

What has to be considered in a specific RIL emulation scenario is that the maximum
amount of concurrent emulated events is limited to the length of the maximum latency
constant 𝜏𝐿. Within the range of 𝜏𝐿, all emulated events must be transmitted over the
connection interface. Depending on the actual throughput of the connection interfaces
between the simulator and ESF components, the offset time 𝜏𝐿 can reach a high value
with regard to a high amount of nodes and events in the scenario. For the evaluation
on a single host system, the PCAP events are transmitted with an average latency of
approx. 1.0ms. Thus, the overall emulation execution time depends on the number of
emulated events per second and the actual choice of the offset time which can completely
be different according to the number of nodes in a scenario and the frequency of emulated
events. Since in WSNs the radio communication between the nodes is reduced to a
minimum (low duty-cycle), we argue that the pseudo-real-time event scheduling can
handle large networks in a non-exhaustive runtime. Theoretically, there is no limit for
the number of nodes for the Real-Time-Shift network simulation. Of course, the runtime
cannot eventually be determined across the board without an exact scenario application
context.

101

6 Radio-in-the-Loop Physical Layer Modeling

The motivation for modeling the PHY as HIL interface layer arises according to the
Split-Protocol-Stack methodology. As standard-conform transceiver hardware usually
implements a radio access technology as a network driver, incorporating a seamless
interaction between the MAC and the PHY , there is a need for investigating in modeling
the PHY as high configurable standalone component. Our RIL modeling strategy allows
for an event-driven channel access via standard-compliant SDU message exchange of a
given protocol. It eventually enables the generated traffic from a network simulation to
be reproduced in a hardware-based analog channel emulation.

This chapter considers the RIL approach regarding the modeling strategy and the
respective implementation. At first we state our basic strategy for interfacing real node
hardware and discrete-event modeling the PHY for RIL real wireless transmissions.
Derived from this strategy, we introduces two different solution approaches with concept
and implementation details. Particular attention will be given to the interpretation and
discussion of the evaluation results of the two approaches, demonstrating applicability
and suitability for the Split-Protocol-Stack emulation.

6.1 Radio-in-the-Loop Modeling Strategy

First we run experiments with “feeding” real sensor node hardware of the RoSeNet
emulation system with generated MAC PDUs from a simple TCP/IP OMNeT++/INET
example scenario (cp. [58]). We hence transmitted non-compliant protocol data to the
destination hardware over the HIL interface in this “first step” scenario. RIL was later
introduced in [55] with our basic methodology for wireless network emulation, combining
radio channel emulation with a HIL concept. With RIL, we assume that the hardware is
represented only by the radio transceiver interface of a communication system. Using real
transceiver hardware in wireless network simulations allows for an accurate representation
of the PHY domains (e.g., symbol and waveform domains, level 2⃝ in Figure 4.2). The
modeling of RIL wireless transmissions fundamentally splits into three parts: the hardware
device interfacing, the real-time-aware scheduling of protocol messages (SDUs), and the
modeling of the PHY services and procedures according to the standard specification.
We summarize the basic requirements for interfacing and scheduling simulated protocol
sequences on real node hardware and motivate a sophisticated RIL PHY modeling
practice in the following.

103

6 Radio-in-the-Loop Physical Layer Modeling

6.1.1 Interfacing and Scheduling Virtual Events on Real Hardware

The key requirements for real-time event processing in the node hardware are reactivity,
timeliness, and concurrency. To avoid unpredictable additional event scheduling latency in
terms of event processing on the the RIL hardware subsystem in the Split-Protocol-Stack,
this means:

• Reactivity is required according to the event detection and generation. Retrieving
the inputs from the data links and returning the outputs as soon as the data of
the message event is available.

• Timeliness is required for an immediate and interrupt-free event processing. Thus,
performing the execution of requested PHY services must be ensured as fast as
possible and without buffering.

• Concurrency is needed according to multiple wireless transceivers in the setup.
The detection and processing of events must be ensured simultaneously from all
nodes at the required simulation time, even if they overlap in execution times.

For reactivity and timeliness, embedded systems necessarily use precisely tailored node
firmware or real-time-capable operating systems and error-resistant data links. For
tiny and low-power embedded wireless systems, employing preemptive real-time multi-
threading mechanisms can become a huge overhead, which why they often implement
lightweight execution models (cp. [159] for a comprehensive overview). For example, the
concept of event scheduling in which event handling routines run to completion as in
DES (ref. Subsection 2.1.3) is also often used in popular tiny operating systems [159], e.g.,
Contiki or TinyOS, but it cannot applied for the real-time processing of multiple parallel
tasks. Because the operation of the RIL transceiver comprises only interrupt-driven
tasks but no concurrently running high-level applications, the operating system must not
necessarily implement multi-threading mechanisms. Thus, reactivity can be achieved with
an interrupt-driven PCAP event-detection concept on the communication-interface (ref.
Section 5.3). Timeliness is perfectly assured by running the event-handling routine to
completion with an event-based approach or by a high priority, interrupt-free execution
in real-time multi-threading.

In addition, to meet the concurrency requirement when emulating wireless networks,
parallel control and event execution of all nodes can be ensured by two conceivable
methods. If the hardware of the node runs completely synchronous in time to the
simulation system, when an external event occurs, the event processing can directly
assign the respective time stamp from its local time or delay the execution until the time
stamp of the emulated event is reached. Initial synchronicity can be achieved by starting
the event processing on the hardware execution in parallel. However, due to the effect
of the clock drift, which becomes more challenging on low-cost wireless devices, it must
be ensured that the execution time also remains synchronous over the entire emulation
runtime through regular synchronization by means of updates. This can be achieved

104

6.1 Radio-in-the-Loop Modeling Strategy

using high accuracy time synchronization schemes for Ethernet-connected embedded
systems, e.g., PTP [160], that can achieve an accuracy of less than 100 ns compared to
the NTP protocol (> 1ms) that is not sufficient for this purpose. On the other hand,
the node can also run completely asynchronously to the simulation system, i.e., it cannot
perform any time compensation but execute or forward all events immediately without
paying attention to the timestamps. This requires a high reactivity of the hardware
system and a constant transmission rate at the communication interface and exactly
timed event interaction to and from multiple hardware nodes.

In order to keep the intermediate system flexible in terms of the used end systems we
assume an active host time synchronization to decouple the timestamp generation from
the intermediate system event scheduling with the ESF (c.p. Subsection 5.3.3) but asyn-
chronously running transceiver hardware to avoid frequent time synchronizations with
the node hardware due to the clock drift. Thus, the intermediate scheduling system does
not need to take the current hardware configuration, e.g., switches, controllers, link tech-
nologies, into account. But, another real-time event scheduler is running independently,
closely connected to the actual transceiver hardware. This strategy allows us to neglect
the timing on the RIL hardware, including the clock drift, since the real-time scheduling
is done before the event messages are transmitted through a dedicated interface where
the transmission latency can be calculated and taken into account beforehand. In case
of embedded transceivers, these are often serial interfaces with fixed transmission rates.
By means of the event message length, the scheduler is able to start the scheduling in
advance of the actual timestamp. With regard to the ESF concept, this is a further
cascading of the event stream processing, which additionally increases the simulation
pause time (𝑡𝑃).

6.1.2 Physical Layer Modeling

Modeling the PHY from a protocol stack’s perspective is achieved by modeling the
interfaces, protocol primitives, parameters, services, and internal procedures. We focus
on the use of shared libraries among all Split-Protocol-Stack components for the protocol
service primitives (SDUs), parameter definitions, and data frame formats (PDUs) of the
given protocol specification. Thus, the RIL nodes additionally need to model the PHY
interfaces, service routines, and internal procedures. Considering the PHY modeling basics
in Section 2.2, the most important features to enable wireless packet transmission and
reception are modulation, carrier sensing, packet detection, and packet synchronization.
Usually a standard specification does not define how to implement or model these features
on specific platforms. Furthermore, modeling of PHY functions for wireless transmissions
in real hardware can conceptually be achieved in fundamentally different ways, e.g., either
in software via the SDR concept or by implementing interfaces and firmware for real
radio chip hardware. We present these technologically different strategies of modeling
and implementing the RIL hardware in the subsequent two sections.

105

6 Radio-in-the-Loop Physical Layer Modeling

6.2 Chip Radio-in-the-Loop Wireless Transmissions

Event-driven operating systems are the best choice for implementing RIL wireless
transmissions, as the multitasking is very similar to the event-processing in DES . We
experimented with implementing our RIL concept for the Contiki [81] and RIOT
[84] operating systems. Contiki is a very modular tiny operating system for resource-
constrained devices and wireless sensor nodes. A process in Contiki is defined by an
event handler function and an optional poll handler function. Communication between
processes (IPC) is achieved by posting events.

6.2.1 Message Event Handling at the Node Interface

To enable the inter-operation with standard-conform transceiver chip procedures we
implemented the event-communication with PCAP protocol frames via the serial interface.
The real-time communication on the serial interface is based on the polling mechanism
of the kernel which provides high priority to the PCAP event communication via the
serial interface UART . Because no other high-level tasks are running in our transceiver
implementation, it causes serial line events immediately be handled by the corresponding
routine. We extended this event handling by implementing a PCAP event detection and
dispatching algorithm, similar to the RIL event stream processing of our ESF emulation
backend. Eventually PCAP message events are generated for handling in the main routine
of the transceiver application. Our Contiki-based transceiver firmware is available at our
fork of the official repository1. We also offer our PCAP event handling procedures for
the RIOT operation system with the driver implementation uart_pcap2.

6.2.2 Radio-in-the-Loop Real-Time Scheduling

To omit the clock drift problem our chip RIL transceiver runs completely asynchronously
to the ESF emulation backend. This means the nodes’ transceiver process has no
knowledge about the GVT of the overall emulation setup and does not care about
timestamps in PCAP events. However, the accurate event execution is assured by the
time-aware transmission from the event ESF and the immediate handling of the serial
interface. The encapsulated PHY SDU s for all PHY services are processed by the
PCAP event handling. Algorithm 4 illustrates the main transceiver process with the
corresponding transmit and receive functions in pseudo-code. The required promiscuous
mode in line 1 enables a network interface to pass all received network traffic captured
from the medium to the system’s CPU .

1 Contiki (fork of the official project): https://git.informatik.tu-cottbus.de/boehmse1/contiki/
2 RIOT (fork of the official project): https://git.informatik.tu-cottbus.de/boehmse1/RIOT/

106

https://git.informatik.tu-cottbus.de/boehmse1/contiki/
https://git.informatik.tu-cottbus.de/boehmse1/RIOT/

6.2 Chip Radio-in-the-Loop Wireless Transmissions

Algorithm 4: Chip RIL Transceiver Process
(1) Precondition : Init radio driver in promiscuous mode
(2) Function receive() ▷ radio driver callback
(3) generate DATA_indication PHY SDU
(4) serialize and send indication via PCAP serial interface

return
(5) while (running) do ▷ main loop
(6) wait until PCAP serial interface event occurs
(7) deserialize encapsulated request PHY SDU
(8) Function handle_Message(&msg)
(9) decode SDU and handle PHY request ▷ radio driver operation

(10) generate confirmation PHY SDU
(11) serialize and send confirmation via PCAP serial interface

return
end

6.2.3 Handling and Dispatching Protocol Primitives

For processing the requests from the serial interface, we utilize the NetStack concept from
Contiki which defines four driver layers (radio, duty cycling, MAC and network layer)
following OSI (ref. Figure 1.1a layer 1-3). The interaction with the radio chip hardware
only needs to utilize the radio driver (NETSTACK_RADIO) with the radio parameters
(RADIO_PARAM_*). The data link and network layer related drivers are simply turned
off in the transceiver configuration (cp. null*_driver in Listing C.9). This makes the
transceiver operate like a device driver from the network interface controller’s perspective,
where simple function calls are mapped to execute the commands from the MAC request
SDUs (ref. line 9 in Algorithm 4). Some example driver operations are

• NETSTACK_RADIO.get_value(RADIO_PARAM_TXPOWER) (get the TX power),
• NETSTACK_RADIO.channel_clear() (perform a CCA), or
• NETSTACK_RADIO.send(&data, size) (send a radio packet from data).

For each request from the virtual MAC , a corresponding confirmation SDU is generated
(ref. line 10 in Algorithm 4) that includes the result (e.g., data, a radio parameter value,
or status). An incoming data packet also generates an event in the operating systems
kernel and is retrieved via the NetStack with its parameters, such as the associated
received signal strength, and put into an indication SDU (ref. the receive() proceedure at
line 2 in Algorithm 4). Thus, the PHY modeling is more or less given by the radio driver
of the operating system and depends on the features of the used radio chip hardware for
the chip RIL solution. Excerpts of the of the transceiver main event handling and driver
configuration can be found in the Listings C.8, C.9, and C.10 the appendix Section C.2.

107

6 Radio-in-the-Loop Physical Layer Modeling

6.3 Software Radio-in-the-Loop Wireless Transmissions

The SDR communication system implements traditional RF hardware components in
software and thus serves as an enabling technology of the cognitive radio, as it is able to
change PHY parameters and components in real-time. In Figure 6.1, a block diagram
of a PHY SDR transmitter with O-QPSK modulation is abstracted as example. With
reference to the general modeling scheme presented in Figure 2.6, it depictes how the
PHY packet data (PPDU) is transformed in software from the bit to the symbol and
waveform domain eventually accessing the radio channel via real hardware.

SDR HardwareSDR Runtime Software

Bit-to-
Symbol
Bit-to-
Symbol

Symbol-
to-Chip
Symbol-
to-Chip

O-QPSK
Modulator
O-QPSK

Modulator
D/A

Converter
D/A

Converter
Amplifier/
RF Mod

Amplifier/
RF Mod

O-QPSK PHY Spreading and Modulation

PPDU
Data

Figure 6.1: Block diagram of an O-QPSK PHY SDR transmitter

The SDR-based evaluation methodology for the Split-Protocol-Stack was introduced in
[56]. The implementation of the example IEEE 802.15.4 SDR model for the transceiver
is based on GNU Radio framework, an open source, multi-threaded streaming system
in which models are build from basic building blocks. Figure 6.2 depicts the layered
software radio transceiver processing flow based on the top-level SDR components. We
have modeled the transceiver according to the division of the link layer into MAC and
PHY which can clearly be observed in the hierarchical module structure of our model:

• IEEE 802.15.4 MAC: The virtual mode of the
MAC module connects to a PCAP event-
generating host and schedules the encapsu-
lated SDUs according to the timestamp.

• IEEE 802.15.4 PHY: The PHY model compo-
nent implements the SDU message handling,
parameter setup, and all specification-related
responsibilities, e.g., modulation, carrier sens-
ing, or packet detection.

• Soapy Source/Sink: The Soapy device ab-
straction allows the transmitter to use different
SDR hardware sources, e.g., HackRF.

Figure 6.2: The IEEE 802.15.4 SDR transceiver model in GNU Radio

108

6.3 Software Radio-in-the-Loop Wireless Transmissions

6.3.1 Data Link Layer Interface Modeling

We have implemented a virtual MAC GNU Radio Companion (GRC) block that provides
a PCAP connection as the interface to the emulation backend. The MAC possesses a
combined data and management SAP to exchange the SDUs with the PHY . According
to the GNU Radio specifics for message passing, the module block gate splits into source
and sink handling request (sduin) and confirmation (sduout) SDUs. Besides the protocol
serializer for SDU ↔ PCAP en- and decapsulation, the PCAP scheduler is the core for
the real-time-aware event scheduling. This block connects via a stream socket to our
forwarder emulation backend and the simulation engine.

6.3.2 Time-Aware Event Scheduling in Streaming Systems

The SDR backend host system, e.g, GNU Radio, is a streaming system by default
whose components continuously process input to output signals. Turning this into a
event-processing system is one of the achievements by our SDR modeling concept and
transceiver implementation. The real-time PCAP event scheduling on SDR runtime level
is needed to transform the input stream into block events and to compensate the packet
jitter between the software radio and the emulation backend first. Since in GNU Radio
a separate thread is running for each processing block within our scheduling block, we
define a microsecond-accurate PCAP scheduler running in an additional separate thread.
This scheduler is responsible for processing PCAP events according to their timestamps
from a custom-defined event queue in real-time. The regular block thread is forced to
receive the PCAP stream at the module input to create block events and to queue them
accordingly in this event queue. Since the PCAP event data already arrives in correct
order due to an error-free stream transmission, no sorting has to be performed.

Stream-based inter-process communication naturally produces latency and jitter at the
link between the simulation system and the SDR execution environment. Running the
two runtime systems, i.e., OMNeT++ for simulation and GNU Radio for radio channel
emulation on one host, the system can scale down each other. Nevertheless, latency and
jitter must remain within fixed limits, so that they can accordingly be compensated for
the hardware transmission. The event processing module does this in its core.

According to the latency and jitter range among the involved evaluation runtime systems,
a sufficient clock time offset 𝜏 needs to be determined. If the whole setup runs on a single
host then the local time 𝑡𝑙𝑜𝑐𝑎𝑙 of the two systems is based on the host systems high
resolution clock. Therefore, we can neglect the clock drifts. On a multiple host system
setup, in contrast, it must be ensured that all host systems are periodically synchronized
within the LAN via the PTP. The initialization of the emulation time is triggered by
the first PCAP event 𝑒 in the event queue. According to the delayed arrival of an event
caused by latency, the aforementioned offset 𝜏 is added to the event time 𝑡𝑒 (line 11 in

109

6 Radio-in-the-Loop Physical Layer Modeling

Algorithm 5: SDR PCAP Scheduler Event Process
(1) Precondition : Init scheduler with fixed time offset 𝜏
(2) Function processEvent(&time t, &event e) ▷ mutex locked
(3) get time with start offset(𝑡)
(4) microseconds offset 𝜃(𝑡𝑒) = 𝑡𝑒 − 𝑡
(5) 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑙𝑜𝑐𝑎𝑙.𝑛𝑜𝑤
(6) while (𝑡𝑙𝑜𝑐𝑎𝑙.𝑛𝑜𝑤() < 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝜃(𝑡𝑒)) do ▷ active wait

end
(7) send message on the output port

return
(8) while (running) do ▷ main loop
(9) fetch first event 𝑒 from event queue

(10) set event time 𝑡𝑒 with fixed time offset 𝜏
(11) get time with start offset(𝑡)
(12) wait until 𝑡𝑒 ▷ sleep in chunks of 100ms
(13) processEvent(𝑡, 𝑒)
(14) delete 𝑒

end

Algorithm 5). We wait until the execution time is almost reached (<200ms) by putting
the scheduler thread into sleep mode first (line 12 in Algorithm 5). Then we calculate the
remaining time, wait in a mutex locked active loop, and send the message to the block’s
output port (processEvent() in Algorithm 5). Due to reusability considerations of these
blocks, the deserialization of the encapsulated SDUs and the associated execution of the
PHY instructions will follow after the event scheduling in the connected blocks. This
real-time-aware PCAP scheduler is available at our GNU Radio module gr-pcap3.

6.3.3 Software-Defined Radio Physical Layer Modeling

Since the prototype of our practical evaluation is based on the IEEE 802.15.4 protocol
standard, the input of standard-conform protocol sequences is ensured by our accurate
simulation model (cp. Subsection 2.3.2 and [97]). Regarding the SDR transceiver (see
Figure 6.3), we have modeled the PHY components and interfaces according to the IEEE
802.15.4 standard with both SAPs to the MAC (PD-SAP and PLME-SAP) and the
interface to the antenna (RF -SAP). Since we have built our prototype on the O-QPSK
2.4GHz PHY currently, the modulation is taken from the IEEE 802.15.4 O-QPSK model
in [161]. The implementation can be found on our repository4. In order to comply to the

3 gr-pcap: https://git.informatik.tu-cottbus.de/boehmse1/gr-pcap/
4 gr-ieee802-15-4: https://git.informatik.tu-cottbus.de/boehmse1/gr-ieee802-15-4/

110

https://git.informatik.tu-cottbus.de/boehmse1/gr-pcap/
https://git.informatik.tu-cottbus.de/boehmse1/gr-ieee802-15-4/

6.3 Software Radio-in-the-Loop Wireless Transmissions

Figure 6.3: PHY model of the SDR transceiver in GNU Radio.

formal protocol standard interface definitions we have modeled individual block gates,
physical layer constants, attributes, and specifications for the data and management
services at the corresponding SAPs. The message handlers at the respective gates are
responsible to process the individual requests. The interface for the exchange of service
primitives are modeled straightforward with respect to the MAC . The RF -SAP, on the
other hand, splits into several gates (see Figure 6.3, not specified in the IEEE 802.15.4
protocol standard), namely:

• the rssi_in to indicate the received signal strength for performing the ED and
CCA according to the specification,

• the txctrl and rxctrl to configure parameters for the RX/TX hardware, and
• the data_out and phy_in to send and receive data via the modulation scheme.

The IEEE 802.15.4 PHY is extended with some parameters according to the RF interface
to the GNU Radio runtime environment and SDR hardware. Furthermore, we keep a
copy of the GNU Radio transceiver bandwidth and sample rate settings. The additional
parameters are needed for the calculation on the RF interface, but do not impact the
protocol procedures. While some parameters depend on the specific modulation scheme
and frequency which is initialized from the corresponding simulation module, several
other parameters depend on the actual settings of the SDR periphery and are set by
calculating and assigning the appropriate values, e.g.,:

• phyCurrentChannel (RF channel for RX & TX),
• phyCenterFrequency (calculated from current channel),
• phyBandwidth (single channel bandwidth),
• phyTransmitPower (transmission power relative to 1mW),
• phyTXgain (calculated from transmission power),
• phyRXgain (receiver sensitivity),
• phySignalStrength (calculated from SNR probing).

111

6 Radio-in-the-Loop Physical Layer Modeling

Energy Detection

For the energy detection on the radio channel, we add a GNU Radio Phase-Shift Keying
(PSK) probe module to the receiver to monitor and retrieve estimations of the signal
strength. Based on the probes, we calculate the energy detection result as a signal
strength value (8-bit unsigned integer according to the standard). We normalize the
range of the measured values with a linear function based on empirical examinations
(ref. Equation 6.1). The signal corresponds to the measured value from the module and
signalStrength to the normalized value. The lower and upper limits are set based on
the given transceiver and the standard specifications (minimum receiver sensitivity: -85
dBm, typical nominal output power: 1-4 dBm). Thus, the normalized signal strength, for
instance, ranges from 0 (-85 dBm) to 255 (1.7 dBm) for our prototype. Based on the
energy detection and a fixed threshold value, the CCA can be performed as specified.

𝑠𝑖𝑔𝑛𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = (2.94 ∗ 𝑠𝑖𝑔𝑛𝑎𝑙) + 250 (6.1)

Equation 6.1: Prototype-specific normalization of the received signal strength

Frequency Bands and Modulation

The implementation of the modulation is taken from [161]. This module adds the
preamble sequence for the packet synchronization and performs the coding and modulation
(transformation from the bit to the symbol domain, 2⃝ in Figure 4.2) according to the
2.4GHz O-QPSK specifications. Additional PHY modulation schemes, algorithms, and
experiments are also available (e.g., the 2.4GHz Direct Sequence Spread Spectrum (DSSS)
PHY [162], 868/915MHz BPSK PHY [163]), but have not been included in our prototype,
yet.

Hardware Interface Abstraction

In order to enable SDR hardware diversity we abstract the interface control from specific
hardware components by using a GNU Radio wrapper for the SoapySDR library5, called
gr-soapy. This simplifies the parameter setup on device-specific interfaces to configure
the bandwidth, the center frequency, and the radio channels. Gain settings of the SDR
hardware (RX and TX gain), however, must be evaluated carefully because appropriate
values highly depend on the device characteristics and directly influence the calculated
RSSI and LQI values. Individual calculations in the message handler module translates
the aforementioned PHY parameters requested by the SDUs into the corresponding
Soapy device configuration parameters.

5 SoapySDR project: https://github.com/pothosware/SoapySDR/

112

https://github.com/pothosware/SoapySDR/

6.4 Evaluation and Discussion

6.4 Evaluation and Discussion

At the end of this chapter, we demonstrate the feasibility and performance of our RIL
modeling strategy and show what results can be achieved when scheduling virtual events
on real hardware. We evaluate our PHY implementation based on parameter studies
and performance evaluation scenarios for radio packet transmissions regarding the IEEE
802.15.4 standard specification documents [9, Sec. 7]. To generate inbound traffic for
the RIL nodes we apply the timed event scheduling on the ESF with either generated,
recorded, or virtual live simulation PCAP events. Furthermore, we used the CC25316

transceiver module with the SmartRF Packet Sniffer software for frame reception. Via
the recording by means of the sniffer, we can validate the correct packet transmission
as well as some physical parameters and functions of the transceiver. We discuss the
application areas applying the two strategies with the Split-Protocol-Stack emulation
approach and conclude with a short overview and comparison.

6.4.1 Feasibility and Performance of the Chip Radio Transceiver

For the basic verification of our chip RIL model prototype, we utilized the single node
WPAN simulation scenario (ref. Section 5.4) and experimented with different, common
wireless transceiver chip hardware (from Texas Instruments and Microchip) as well as the
Contiki and RIOT sensor node operating systems. The results are based on the Contiki
transceiver implementation running on the ATmega128RFA17 target chip hardware.
Figure 6.4 shows the correct radio packet sequence of the basic single node simulation
scenario on the specified radio channel. The correct execution of the radio parameter
setting based on the PHY SDU events is not explained in detail here, as this is almost
exclusively based on the used chip hardware radio driver and functions already included in
Contiki. The correct mapping of most parameters and functions, however, can implicitly
be proven from transmission parameters of a received packet sequence.

Figure 6.4: Received radio packets of the chip RIL solution with SmartRF using Texas
Instruments CC2531 sniffer device hardware.

6 TI CC2531 IEEE 802.15.4 wireless controller: https://www.ti.com/product/CC2531
7 ATmega128RFA1: https://www.microchip.com/ATmega128RFA1

113

https://www.ti.com/product/CC2531
https://www.microchip.com/ATmega128RFA1

6 Radio-in-the-Loop Physical Layer Modeling

RF Packet Transmission Throughput and Accuracy

At first a stress test was conducted to evaluate the maximum over-the-air transmission
rates and the impact of PCAP event scheduling on resource-constrained sensor node
hardware. The maximum data rate is significantly limited by the UART serial interface
settings which can lead to non-tolerable error rates when the step rates (BAUD) are too
high due to the low accuracy of the used oscillator and a possibly unfavorably selected
microcontroller operating frequency. In our setup, error-free transmissions are achieved
by operating the UART at 57600 BAUD which results to effective data rates smaller
than the over-the-air transmission rate of the IEEE 802.15.4 2.4GHz O-QPSK PHY
(250 kbit s−1) for multiple successive packets. However, the speed of the data transmission
is not a major issue, since wireless sensor networks usually do not achieve high packet
rates (typically the packet rate in Beacon-enabled WPANs is below one packet/s per
node). Figure 6.5a depicts the results of the frame processing as deviation from the
theoretical limitation due to the UART settings. We achieve an overall throughput
(independent of the frame size) of nearly 100 % of the theoretical maximum packet rate
at the serial interface. Moreover, the packets are transmitted with a very low variation in
latency (mean standard deviation over all payload sizes 𝜎 = 0.004𝑚𝑠), suggesting that
the PCAP serial input handling routines, the frame type classification and frame buffering
on the embedded radio chip do not introduce a significant performance degradation.

eff. data rate𝜇𝜇 = 4.6kbit/s
(>5 packets/s)

(a) TX packet rate deviation
from theoretical maximum.

𝜇𝜇 = 983.274ms𝜎𝜎 = 2.332ms

(b) Radio packet RX accuracy over a Beacon transmission
period of 60s.

Figure 6.5: Chip RIL packet transmission performance: Beacons are scheduled with (a)
different sizes, BI = 0ms, (b) size of 51 bytes, BI = 983.232ms.

A limiting factor is, however, the sporadic use of the serial connection in the scenario
of Figure 6.5b which is comparatively inaccurate. From the measured values, it is
obvious that the fluctuations around the relatively accurate mean value are too high.
To compensate this, access to the serial interface from the host system side must be in
real-time without device driver-internal sleeps or scheduling-dependent waiting times.

114

6.4 Evaluation and Discussion

6.4.2 Feasibility and Performance of the Software Radio Transceiver

Regarding the Software RIL prototype, we experimented with the open-source hardware
platform HackRF 8 and used well-established device hardware, drivers, and tools for
sending and receiving IEEE 802.15.4 radio packets and standard laptop hardware9 with
GNU Radio for the feasibility evaluation and performance measurements of our SDR
solution.

Parameter Setting and Interface Control

Contrary to the implementation with standard-compliant radio chip hardware, we
performed several feasibility tests and parameter studies by setting the PHY attributes
to control the transceiver interface. To facilitate the automated parameter setting the
inbound PCAP stream is based on generated events (PLME_SET_REQUEST’s) from the
ESF emulation backend. Selected results of the parameter measurements are presented
subsequently.

Figure 6.6: Received radio packets of the software RIL solution with SmartRF using
Texas Instruments CC2531 sniffer device hardware.

phyTransmitPower: The HackRF device hardware transmission gain range is specified
from 0 to 61, whereby a step equals to 1 dB. As the PCAP stream contains alternating
SDUss to set the transmission signal strength (PLME_SET_REQUEST.phyTransmitPower)
and simple IEEE 802.15.4 Beacon packets (PD_DATA_REQUEST), we increased the trans-
mission power by exactly one dB for each individual packet with this setup. We performed
this measurements with several repetitions using a very small distance of 10 cm between
transmitter and receiver, and set the beacon interval to 200ms to speed up the mea-
surements. Figure 6.6 shows the correct radio packet (Beacon) sequence of the single
node scenario on the specified radio channel. Furthermore, as depicted in Figure 6.7,
the transmission power can be adjusted very precisely for wireless transmissions. The
received signal strength was in the range from -67 dBm to -13 dBm, with an average
error in the absolute uncalibrated RSSI accuracy of our receiver device CC2531 (±4 dB).

8 HackRF One SDR peripheral: https://greatscottgadgets.com/hackrf/one/
9 Manjaro Linux (64 bit) with 4 vCPUs (Intel Core i7-5600U @ 2.60 GHz).

115

https://greatscottgadgets.com/hackrf/one/

6 Radio-in-the-Loop Physical Layer Modeling

Figure 6.7: Deviation of the mean received signal strength (RSSI in dBm with SmartRF)
as a function of the software RIL transmission power.

phyCurrentChannel: Based on our scenario, we generated a PCAP stream with a
decreased BI to prove the feasibility of switching the channel for every burst of transmitted
beacons over the whole range of the 2.4 GHz channels of the IEEE 802.15.4 O-QPSK
PHY . Figure 6.8 depicts the channel hop from channel 15 to 16. According to the limited
bandwidth of our HackRF SDR receiver, we can only show the frequency range of 2 out
of 16 channels in a single waterfall plot from the spectrum analyzer.

Figure 6.8: Waterfall plot of the channel hop from 15 (2.425GHz) to 16 (2.43GHz)

Energy Detection and Packet Reception

A complete parameter study is required to determine favorable device parameters for gen-
eral purpose SDR hardware. Exemplarily, we performed several reference measurements
with ordinary indoor channel characteristics in our office to evaluate the packet reception
and parameter setting for the CCA based on the ED signal probing with the specified
normalization scheme. This simultaneously demonstrates the feasibility of receiving radio
packets. We set up a standard-compliant chip hardware (TI CC2420) placed at a distance
of 0.75m from our software radio module to send a burst of 30 IEEE 802.15.4-compliant
radio packets each. The Figure 6.9 shows the dependence of packet reception on the RX
interface gain setting based on the packet rate and signal strength.

116

6.4 Evaluation and Discussion

Interference

R
X
 S
ig
na
l (
dB
)

Figure 6.9: Received signal strength and packet count at the software RIL model as a
function of the receiver sensitivity (RX gain)

In the reception gain range of 60-80 dBm, all packets could be received by our software
radio transceiver under realistic uncontrollable but largely interference-free environmental
conditions. Moreover, a higher reception gain at the antenna has a clearly negative effect
on the packet reception (ref. packet reception rate @ 110 dB in Figure 6.9). We assume
that the receiver is already slightly overdriven due to the activated baseband amplifier.
If the jammer is enabled (Gaussian noise with additional signal intensity around the TX
power) only a few packets are received at all due to the difficult or impossible decoding.
Below 50 dB RX gain no packets could be received by the receiver because the SNR for
this environment is not sufficient. Based on such measurements, the threshold value for
the ED can be determined. Since the RX signal strength level is above the threshold in
the two cases, a CCA triggers a corresponding negative confirmation to forward to the
emulation backend (CCA mode 1 in [9]).

Event-Scheduling Accuracy

The time accuracy of the transmitted radio packets via the SDR hardware decisively
depends on the accuracy of the RIL scheduler. Figure 6.10 shows the histogram plot
of the GRC PCAP scheduling jitter for the same scenario as introduced alongside the
IEEE 802.15.4 emulation model validation in Section 5.4. Beacons in this scenario are
scheduled with a constant overall frame size of 51 Bytes. The normal distribution of
the PCAP scheduling time is exactly around the BI of 983.232 ms according to our
model-based emulation scenario setup, but the standard deviation is 330 us. According
to the compliance to the time intervals between packets (IFS) in cooperative networks,
this jitter value is too high. For example, in IEEE 802.15.4 2.4 GHz O-QPSK PHY [9,
p. 30] (symbol period 16 µs), the standard deviation is approx. 20 symbols, while the
minimum Long Inter Frame Spacing (LIFS) and Short Inter Frame Spacing (SIFS) are
specified to 40 and 12 symbols. This means in the worst case that the LIFS and SIFS
could slightly overlap due to too long or too short waiting periods.

117

6 Radio-in-the-Loop Physical Layer Modeling

Figure 6.10: Histogram of theGRC PCAP scheduling jitter: 𝜇 = 983.232𝑚𝑠, 𝜎 = 0.33𝑚𝑠.
Beacons are scheduled with a size of 51 bytes and a BI of 983.232ms.

The dependence of the frame size is illustrated in Figure 6.11 in which the mean and
the standard deviation values of the scheduling jitter are represented as function of the
Beacon frame size. It can be concluded that no general degradation of the scheduler
accuracy can be derived with increasing packet size. On the contrary, the standard
deviation 𝜎 decreases for smaller and larger frames. Regarding the maximum jitter, it
can be stated that running the RIL scheduler on a general purpose non-real-time host
software system in GNU Radio is not sufficient to meet the accuracy constraints of
cooperative wireless transmissions.

Figure 6.11: Mean value and standard deviation of the scheduling jitter are reported as
a function of the Beacon frame size.

118

6.4 Evaluation and Discussion

RF Packet Transmission Throughput and Accuracy

The maximum throughput is determined by switching of the verification of the PCAP
timestamps in the scheduler routine. Thus, arrived packets with already expired or invalid
timestamps in the input stream are immediately forwarded to the corresponding handling
routines what ensures continuous packet forwarding. The driver implementation of the
HackRF requires to continuously write to the entire device buffer before triggering a data
transfer. Therefore, the maximum throughput can only be achieved if the device buffer
is completely filled with data. Figure 6.12a shows that the hardware is able to guarantee
a constant, sufficiently high data rate when using a large packet buffer exclusively, which
seamlessly contains several data packets. For example, the effective data rate for the radio
packets reaches constant 214.7 kbit s−1 what which corresponds to very high packet rate
of minimum 211 packets/s for IEEE 802.15.4 O-QPSK 2.4GHz PHY (dependent of the
frame size). Furthermore, if the device buffer contains consecutive packets high-precision
transmission intervals are possible without measurable deviations.

eff. data rate𝜇𝜇 = 214.7kbit/s𝜎𝜎 = 0.0ms
(>211 packets/s)

(a) TX data rate maximum
(constant bit rate).

𝜇𝜇 = 983.322ms𝜎𝜎 = 19.195ms

(b) Radio packet RX accuracy over a Beacon transmission
period of 60s.

Figure 6.12: Software RIL packet transmission performance: Beacons are scheduled with
(a) different sizes, BI = 0 us, (b) size of 51 bytes, BI = 983.232 ms.

With activated offset-scheduling and a corresponding realistic Beacon transmission
interval between the packets, this high accuracy cannot be achieved out of the box.
For the scheduled packets to be transmitted directly at all, the device buffer must be
completely filled. We added a padding of the output stream to the SDR devices buffer
size to let a packet immediately been sent to the air but with an additional delay tied to
the serial data interface latency and the internal scheduling of the host operating system,
which is non-real-time in our virtualized emulation backend. Thus, we can figure out the
same effect of fluctuations around the exact mean compared to our evaluation of the
accuracy of the chip RIL. Figure 6.12 shows a very constant deviation from the mean
which indicates a correlation with an unfavorably selected buffer size at the driver.

119

6 Radio-in-the-Loop Physical Layer Modeling

6.4.3 Discussion

With this evaluation, the principal feasibility of our two proposed solutions for a RIL
strategy has been outlined, the respective performance characteristics are identified.
Based on these results, we discuss our approach in the following with respect to the
requirements identified at the beginning of this chapter. Such considerations of the key
requirements have so far been neglected in comparable HIL approaches, such as in [124]
or [146], for transmissions between a general purpose host system simulator and dedicated
external RF hardware.

Reactivity: Immediate event detection is implicitly given with the dedicated use of
the RIL hardware resources whose only task is to detect incoming events. Thus, there
are no other parallel tasks running that could limit reactivity regardless of the solution
strategy. For example, the reactivity using the chip RIL solution is maximal regarding
the capacities of the sensor node hardware. For the SDR approach, this is also true with
respect to the GNU Radio RIL process on the host system. Appropriate measurements
(ref. Figure 6.9) have shown, for example, that all packets of a burst with a maximum
packet rate from standard-compliant hardware were received.

Timeliness: For practical use, the RIL scheduling accuracy is not sufficient when
running on a virtualized non-real-time emulation backend. However, this is not due to
our approach or implementation but to the internal scheduling of the used host operating
system. This has been shown by our measurements independent of the RIL solution, i.e.,
accurate timing can be achieved if the models run at least with a dedicated real-time
kernel on the emulation host system. Furthermore, this does not exclude a virtualized
emulation backend per se, but the achievable scheduling latencies for a concrete real-
time test backend must be evaluated in this context (as in [164], for example). Since
most computing and server resources are virtualized nowadays, real-time capability in
virtualization is a large highly active research field the findings of which are essential to
consider for the practical deployment of the RIL strategies. Thus, a dedicated emulation
host backend at least featuring a real-time core is indispensable for practical use. The
deviation under full utilization of the serial interface shows sufficient accuracy of the RIL
hardware in each case (𝜎 = 0.004ms (chip); 𝜎 = 0.0ms (SDR)).

Concurrency: Since via the offset time compensation approach each RIL node runs
in an independent process, ensuring concurrency is solely driven by an accurate host
system clock. The proposed sub-microsecond synchronization of all components in the
dedicated LAN using PTP is state of the art and we did not evaluate it in the context
of our approach. On the ESF dispatcher backend itself, our approach does not require
time-critical execution of parallel RIL operations, which provides the greatest flexibility
and scalability.

In addition to the discussion of the key requirements, we conclude by highlighting a few
more characteristics in relation to the practical use of the two solution strategies.

120

6.4 Evaluation and Discussion

Concluding Considerations and Solutions Comparison

If the PHY implementation is based on a standard-compliant but fixed radio chip
hardware, layer functions on the proposed domains are not or only partly adjustable
or switchable. Currently available transceiver hardware designs cover only a subset of
the functional specifications of the protocol standards, since often various fundamen-
tally different operation modes, frequency ranges, and modulation methods have been
standardized. A cost- and resource-optimized hardware implementation cannot achieve
this flexibility important in terms of experimentation and evaluation, e.g., for modern
cognitive radio approaches.

An important advantage of using sensor node operating systems is that the firmware can
be translated for different hardware platforms with only tiny adjustments regarding the
serial interface configuration and promiscuous mode activation on the device. Thus, we
can provide a great spectrum of common node hardware for the RIL transceiver which
provides the best representation of the desired characteristics of a specific hardware
platform (e.g., energy consumption, CPU load, RX sensitivity, and many more) compared
to the SDR approach. Our chip implementation for the ATmega128RFA1, for example,
is particularly suitable for the RoSeNet emulation hardware. The transceiver firmware
can even run as a process on standard Linux systems, enabling virtual testbeds and
integration into a pure virtual emulation (cp. simulators and virtual testbeds alongside
sensor node operating systems, introduced in Subsection 2.3.1). This feature allows for
doing tests with multiple attached virtual nodes via so-called Pseudo Terminals (cp.
stream-connection interfaces in Subsection 5.3.3).

The GNU Radio SDR RIL scheduling is applicable to other link layer protocol standards
and transceiver hardware. As common implementations for SDRs focus only on the
modulation of the protocol standard, our approach shows that we can gain full control
of all PHY features and parameters, modeling the SDUs instead of transmitting only
modulated MAC frames. Moreover, further general parameters and different modulation
schemes, as well as PHY specifications according to the latest revisions of our reference
protocol specification IEEE 802.15.4 can be added straight-forward. Compared to
dedicated hardware parameters for chip transceivers, the SDR measurements also show
that in order to determine the optimum hardware parameters on a general purpose
hardware platform for the intended application environment, additional measurements
in special environmental conditions are necessary. This is also required, for example,
to provide a better coverage of the value range of the energy detection. Furthermore,
based on the signal strength measurements of the packet reception (ref. Figure 6.9), it
is obvious how, for example, the influence on the channel quality can be emulated via
various device parameters. Thus, the software RIL solution will eventually enable flexible
experimentation and PHY modeling diversity in network scenarios with regard to the
simulated upper layers of the protocol stack to support the evaluation in cognitive radio
sensor network research and development.

121

6 Radio-in-the-Loop Physical Layer Modeling

Running specific higher layer protocol stack implementations directly in SDR environ-
ments is also possible, but it is often limited and does not provide sufficient experimenta-
tion flexibility (e.g., no variations according to parameter settings, control algorithms,
etc. are possible). For example in [161], the IEEE 802.15.4 MAC is severely limited (e.g.,
no medium access control algorithms) and the network stack is taken from a hardware-
specific lightweight implementation. Nevertheless, host-based Software RIL with GNU
Radio can also be applied for injecting controllable noise and technology interference at
the into the RF network of the analog channel emulation. This offers great capabilities
of studying wireless networks in dense or interference-impacted radio environments.

An advantage of the SDR solution is that only IEEE 802.15.4 payload data needs to
be transmitted to the hardware, whereas complete PCAP packets are evaluated on the
hardware with the RIL chip. Investigating in future enhancements of the software RIL
transceiver in GNU Radio, we propose a permanent data transmission on the serial
interface to increase the accuracy based on continuous (interrupt-free) streaming by filling
transmission-free periods with zero data. This requires an exact calculation depending on
the RF modulation and frequency, as well as the data rate and buffer size at the serial
interface and customizing the device driver implementation. However, this approach
could largely decouple the transmission accuracy from the operating system scheduler.

Figure 6.1310 summarizes the two solution approaches based on several discussed proper-
ties in overview. The main benefit of our SDR RIL implementation is the PHY modeling
flexibility, whereas, on the other hand, the ease of use and experimentation (standard
conformity) of the chip hardware is suitable for many application areas. In conclusion,
the two approaches are beneficial for the Split-Protocol-Stack and should be considered
when setting up parallel protocol simulation and radio emulation.

Performance

Flexibility

Configurability

Affordability

Accuracy

Chip Radio-in-the-Loop
Software Radio-in-the-Loop

21/30 points
22/30 points

Figure 6.13: Comparison of the Chip and Software Radio-in-the-Loop Solution10

10 The exact interpretation of the radar plot evaluation is given in Table A.1 in in Appendix A.

122

7 Radio-in-the-Loop Channel Emulation

The main advantage of RIL wireless transmissions is the interfacing with the physical
radio environment to enable emulation on the radio channel through virtually generated
network traffic. Emulating the wireless communication according to a testbed-like,
analog radio evaluation system is certainly an electrical engineering domain, where
a lot of know-how in RF hardware and physics is required. Nevertheless, there are
some important details and considerations in terms of the Split-Protocol-Stack wireless
emulation methodology that belong to the modeling and algorithmic domains.

In the following, we present strategic details of the radio channel modeling for RIL wireless
transmissions. We particularly address the need to consider channel emulation modeling
in high-level network architecture and topology planning. In this context, we contribute
with reference scenario measurements and significant insights of an optimization approach
to solve the algorithmic problem of mapping an abstract wireless network evaluation
scenario to an allocation of hardware resources for a particular radio topology in a NET .
The chapter concludes with a discussion of the fundamental achievements in the context
of capabilities for enhancing RIL hardware channel emulation.

7.1 Radio Channel Emulation Modeling Strategy

The main focus of the analog radio domain for the Split-Protocol-Stack strategy (level 3⃝
in Figure 4.2) considers the environmental scenario modeling. Our first suggestions about
generic solutions for the generation of evaluation scenarios for NETs were discussed based
on our research statement in 2015 [165] in the context of the radio channel emulation
platform RoSeNet. One of the most important unsolved research questions and also the
main motivation behind our investigations have been obvious: How to utilize a cabled
and controllable RF environment for a simulation-driven network evaluation scenario?
The technical challenge is to transform analog radio emulation hardware into a discrete-
event system which features an abstract and time-accurate access control scheme to the
emulation hardware resources. However, the configuration challenge is that the channel
emulation modeling must match the scenario of the network and protocol simulation
system. Thus, each node in the simulation requires an accurate hardware representative
in the analog radio domain. With our emulation modeling strategy, we assume that RIL
transceiver hardware itself is involved in emulating physical and radio channel effects in
the RF environment.

123

7 Radio-in-the-Loop Channel Emulation

7.1.1 Wireless Network Planning

For the topological structure of a wireless network, it is essential to distinguish between
two different terminologies. The radio topology refers to the physical placement and
reachability between wireless nodes on the PHY , whereas the network topology refers to
the logical link connectivity. An intended network topology imposes direct requirements
for the radio topology which must ensure adequate wireless connectivity with appropriate
radio link characteristics. Nodes that are physically reachable via the radio interface do
not necessarily have higher-layer network connectivity, but must still be considered when
planning the radio topology, since their participation in the radio channel according to
their media access has a direct impact on the overall network performance. Of course, any
kind of higher-layer network topology is possible if all nodes are physically connected with
each other. This is usually beyond the scope of resource-constrained wireless multi-hop
networks. In contrast to wired networks, where the network topology is mainly based on
functional, security, and management aspects, the planning of wireless networks is more
focused on the radio characteristics in the operating environment.

Wireless network planning is a generic term and a complete own strategy to determine
the radio topology and configuration parameters for a specific application in a deploy-
ment environment. Regarding this strategy, high-level considerations and performance
parameters with respect to the physical node placement are summarized in a basic con-
ceptual analysis in the following. The Split-Protocol-Stack helps to exactly consider these
properties in physical accuracy when planning a wireless network. The most important
high-level network considerations regarding wireless network planning are summarized
using the following keywords:

• Security considerations beyond node-individual and protocol-specific crypto-
graphic methods are impacted by the radio topology and thus increase the com-
plexity of node placement to a significant degree. For example, accurate node
placement and environmental monitoring can aim at authenticity by creating a
distinct environment in which an attacker generates an unambiguously different
radio fingerprint than trusted nodes. This has positive implications on attack
detection and prevention (cp. [166] for a summary of implications).

• Extensibility of the wireless network is not always a mandatory requirement, but
it becomes an important design aspect, especially in mobile ad hoc networks. This
means, that the addition or spontaneous appearance of new nodes must not lead
to congestion, e.g., of a spatially limited radio environment or cell.

• Administration & Maintenance are operational features that also must be
considered well in terms of the physical access to the device hardware, but in
particular to ease heterogeneous network configuration. Topology maintenance and
topology control are often mentioned regarding different triggering aspects (e.g.,
energy efficiency, lifetime, and reliability).

124

7.1 Radio Channel Emulation Modeling Strategy

In contrast, certain performance parameters regarding PHY radio transmissions must
be determined. Since these parameters often contradict each other during planning (e.g.,
tradeoff between throughput maximization and energy efficiency), ideal characteristics are
to be achieved for the overall network operation. Optimization approaches are increasingly
applied for this purpose. The most important performance parameters for radio topology
planning, for each of which an optimization approach is given as example, are:

• Link Capacity & Throughput are often mentioned in the context of node
placement to maximizing the performance in a bandwidth-limited network [167].
For example, capacity graphs are used to figure out suitable radio topologies, e.g.,
gateway node placements to avoid too much nodes on the same channel.

• Energy Consumption in resource-constrained wireless networks is the overall
most considered optimization target. Maximizing network lifetime by minimizing
the average energy consumption in the entire network (e.g., based on Mixed Integer
Non-Linear Programming (MINLP) in [168], or energy-efficient routing) is beyond
the initial placement but must be considered at this point. Key issues, such as the
equal distribution of nodes, fairness in timesharing the medium access, co-channel
interference, or the utilization of antenna characteristics play a crucial role.

• Reliability & Resilience are to be particularly considered in control processes
with high interference potential and moving objects (e.g., robot arms). Fault-
tolerant radio coverage and connectivity to ensure reliability is achieved not only
by providing backup link capacity using multi-technology and multi-channel but
also by recovery and reconfiguration based on base-station optimization (cp. [169]).

• Timeliness & Latency are becoming increasingly important in time-sensitive
WSNs and wireless real-time networks for control and monitoring applications. The
optimal sink node placement [170] and gateway relocation [171] are, for example,
two objectives for a latency-related optimization regarding wireless network plan-
ning, e.g., to ensure that data reach the sink with a maximum latency of certain
milliseconds.

To apply an optimization method the first step is to find a suitable network and environ-
ment model. This requires a deep understanding of the effects of wireless communications
in general and extensive knowledge of the link layer radio technology used in particular.
For difficult operating environments, e.g., with strong interferences, on-site measure-
ments are inevitable and must be taken into account in the planning. Practices, such
as heat mapping (e.g., using signal strength measurements) and considerations about
materials, walls, windows, shelving, elevators, and stairwells for indoor environments
as well as humidity, vegetation, or slope for outdoor environments must be included
in the evaluation. We carried out such reference measurements (ref. Section 7.2) in a
particular outdoor environment as a basis for further experiments. The wireless network
planning question was: What types of nodes and associated technological characteristics
are required for full radio coverage and what basic network topology is optimal.

125

7 Radio-in-the-Loop Channel Emulation

7.1.2 Radio Topology and Channel Emulation Modeling

The result of wireless network planning are specific network architectures, technologies,
device types, topologies, as well as environmental and radio performance parameters.
These properties must be carefully and accurately mapped to the emulation system.
Therefore, a main focus of this chapter is the conceptual analysis for the configuration
and implementation of a target radio topology on a radio channel emulation system or
the NET . Furthermore, the representation of channel effects within the emulation system
is discussed according to Subsection 2.2.1.

Radio Topology and Large-Scale Fading Emulation

To determine the large-scale fading between individual wireless devices (ref. Equation 2.1)
two-dimensional coordinates of the modeled scenario and the RX/TX gain parameters of
the RF hardware form a basis for the network scenario model. The signal fading between
nodes can be derived from reference measurements or calculated using, for example, a
simplified uniform spread of energy in free space given by a path loss model. Common
models provide idealized results that often do not correspond to the exact physical
behavior (ref. Section 7.2), but which are suitable to approximate a planned topology
in a real test setup. An obvious way of modeling the radio topology is the abstraction
using graphs, comparable to modeling the network topology (ref. Subsection 2.2.5).

A Unit Disk Graph (UDG) (also known as intersection graph of coplanar congruent
disks) is a graph 𝐺 = (𝑉 , 𝐸) whose vertices 𝑉 can be mapped to numerical coordinates
in a cartesian coordinate system in the plane and whose edges 𝐸 are defined by pairs
of coordinates with uniform Euclidean distance from each other. Figure 7.1 shows an
example UDG representation for modeling the radio topology based on physical positions.
Conversely, not any network graph 𝐺 can be mapped as UDG. The problem of recognizing
whether a given graph is a UDG is 𝒩𝒫-hard [172].

1

2

3

4

5

1 23

4

5(c)(b)(a)

1

2

3
4 5 ↔ →

←

Figure 7.1: Example UDG: (a) realization of 𝐺; (b) coplanar congruent disks for 𝐺;
(a) model 𝐺 = (𝑉 , 𝐸). All representations correspond exactly to the same
physical radio topology of a wireless network.

126

7.1 Radio Channel Emulation Modeling Strategy

Taking the context of UDGs for modeling into account plays a significant role, since
not any arbitrary topology (node placement) is possible in terms of radio connectivity
between pairs of nodes. Besides physical node placement, a channel emulation platform
allows to arrange testbed nodes to virtual geographic positions. When considering the
radio topology in a wired analog channel emulation system, variable attenuation within
the signal path can be configured to form a radio topology (cp. selected analog link
emulation approaches in Section 3.3). Comparable to the above mentioned problem, the
challenge of allocating hardware resources on an analog radio NET for emulating the
graph-based radio topology is also 𝒩𝒫-hard, but a solution differs significantly from
finding physical coordinates. We present our analysis and solution approach for this
channel emulation requirement in Section 7.3.

Mobility Emulation

Mobility emulation is primarily based on mobility models of an evaluation scenario, for
which different approaches can used to calculate node positions (ref. Subsection 2.2.5).
Thus, mobility model calculations trigger a variance of RSSI values which directly affect
the physical radio topology and require continuous re-calculations of the configuration
parameters for virtual node positions on the emulation system. For example, the signals
enter the propagation interference range above a certain threshold of signal strength
attenuation depending on the protocol standard (ref. PHY transmitter and receiver
parameters in Table 2.1) and the device hardware. With reference to the UDGs, mobility
eventually causes a transformation of the intersections of the congruent disks that can
eventually eliminate or create vertices in 𝐺. In the configuration’s worst case, this means
that several nodes in the emulation system would suddenly have to be allocated differently
during the emulation runtime. Furthermore, it is not necessarily feasible to change a
node position in the configurable RF signal path of the emulation system at all (cp.
Section 7.3). Our strategy is therefore to enable pseudo-random mobility and mobility
based on the node’s gain parameters and antenna properties, as introduced next.

Antenna Emulation

The characteristics of the antenna affect the attenuation of all other nodes depending
on the physical position in the scenario and increase the mapping complexity of a
node placement on a testbed hardware allocation (intensity of the signal fading as
a function of the direction of transmission). In a first analysis step we focus on the
simplistic model of an isotropic antenna that additionally impacts the transmission and
reception gain of a node, as introduced with Equation 2.4 in Subsection 2.2.1. Since a
wireless transceiver is able to adjust its transmission power and the receiver sensitivity,
the antenna modeling is accounted to the PHY model parameters phyTransmitPower,
phyTXgain, and phyRXgain (ref. Section 6.2 and Section 6.3).

127

7 Radio-in-the-Loop Channel Emulation

Emulating Channel Effects, Interference and Noise

Due to reflection, scattering, or diffraction, the signal propagates along multiple paths
with different attenuations and delays from the source to the destination mainly causing
the temporal dispersion of the signal. Emulating these effects based on analog channel
emulation depends on special RF hardware components in the signal path (e.g., delay
lines, frequency synthesizer, frequency-selective attenuators, filters, and many more), or
ray tracing techniques in simulative digital channel emulation (cp. [173]). On the other
hand, host/node based equalization refers to techniques which mitigate the transmission
effects on the radio channel at the radio device hardware, e.g., multipath channels lead to
interference effects at the receiver (e.g. Inter Symbol Interference (ISI)) that make signal
reception difficult. Since a well-designed equalizer can compensate multipath effects and
restore the expected signal constellation (e.g., based on simulation in MATLAB/Simulink
[174] or SDR in GNU Radio [175]), SDR can also be utilized to create interference in low-
noise environments of analog channel emulation. Figure 7.2 shows example constellation
diagrams of QPSK symbols before (b) and after (c) equalization. Our strategy is to
virtually emulate channel effects based on amplifying or distorting signal components
on the host with TX equalization at the SDR RIL transceivers in GNU Radio (ref.
Section 6.3).

In-Phase
-1 0 1

-1

 0

 1

Q
ua

dr
at

ur
e

(a) Transmitted symbols
In-Phase

-1 0 1

-1

 0

 1

Q
ua

dr
at

ur
e

(b) Received symbols
In-Phase

-1 0 1

-1

 0

 1

Q
ua

dr
at

ur
e

(c) Equalized symbols

Figure 7.2: Example constellation diagram of an adaptive channel equalization based on
QPSK symbols in MATLAB/Simulink, simulation results taken from [174]

Furthermore, also technological interferences and background noise injection are applica-
tion areas of host/node based emulation with SDR transceivers in the Split-Protocol-Stack
approach. GNU Radio application frameworks, for example, offer a wide spectrum of ei-
ther implementations of link layer wireless technologies and signal processing components
to add noise sources. According to Equation 2.5, background noise power 𝜎2 affect the
measurable SNR for the emulated wireless transmissions, which is fully configurable with
virtual components regarding the amplitude and type of noise. Based on this strategic
considerations, the RIL channel emulation is able to model the key features and effects
of real wireless transmissions.

128

7.2 Chicken Creek Reference Measurements

7.2 Chicken Creek Reference Measurements

The artificial catchment Chicken Creek [176] is a small area of a former open-cast
lignite mine in Lusatia, Germany, the name of which derives from a small river (the
Hühnerwasser) which was destroyed during this mining in the 1980s. The research
objective at this site has been to study the initial phase of an ecosystem development
using a model system. Thus, basic monitoring equipment can indicate the health and
properties of the soil (e.g., groundwater gauges, atmospheric deposition samplers, soil
moisture probes, weather stations). In this context, remote sensing can greatly facilitate
the process of data acquisition and evaluation of ecosystem monitoring. We performed
some basic reference measurements in the backslope (1⃝ in Figure 7.3a) to evaluate the
deployment of IEEE 802.15.4 as wireless monitoring technology and equipment.

137

0 100 m

N

0 100 m0 100 m

NN

initial pond surface (2005/06)

surface boundary (from Nov. 2009)
fence
altitude [m a.s.l.] (10/2005)

125.5 m a.s.l.

127

129

131

133

135

backslope
(with sectors

A-D)

A

B

C

D

footslope

pond basin

11

22

33

artificial
spring area

44

surface boundary (until Oct. 2009)

(a) Chicken Creek division in sectors [176] (b) Chicken Creek vegetation condition1

Figure 7.3: Chicken Creek ecosystem monitoring general map

As in Section 7.1, the need for heat-mapping and on-site reference measurements in the
wireless network planing process has already been pointed out. These measurements serve
for a realistic reference scenario and hands-on use case for various issues in the context of
the Split-Protocol-Stack. Central issue was to enable a simple, cost-effective, automated,
wireless acquisition of all digital measurement points in the terrain to a central location,
as well as the provision and visualization of all values on a common platform1. High-
level network considerations are rather less relevant for this monitoring scenario (not
security-critical operation in the field for years without planned extensions).

1 Chicken Creek catchment data portal (aerial photo): https://www.b-tu.de/chicken-creek/apps/
datenportal/

129

https://www.b-tu.de/chicken-creek/apps/datenportal/
https://www.b-tu.de/chicken-creek/apps/datenportal/

7 Radio-in-the-Loop Channel Emulation

7.2.1 Measurement Setup and Node Placement

Reference measurements of signal strengths between pairs of nodes were carried out in
sectors A-D (backslope) (ref. Figure 7.4). The soil pit 𝑆𝐶 was selected as the central
receiving node because of the nearby solar-powered weather station 𝑊1 which provides a
continuous power supply. In our experiments, we used standard sensor node hardware from
Microchip (ATmega128RFA12). We set up transmitter and receiver firmware implemented
based on Contiki to either transmit bursts of radio packets (50 each) or receive IEEE
802.15.4-compliant telegrams and record RSSI values for each packet received. The
positions of the nodes were selected firmly on the basis of important measuring points as
in Figure 7.4 and placed approx. 1.5 m above the ground level in each case. The reception
range of 𝑆𝐶 is highlighted as 100 m, since this specification is often given as a guideline
for the maximum range of IEEE 802.15.4 device hardware in the outdoor environment.
Of course, the actual range depends not only on the environmental conditions but also
on the actual hardware used, the transmitting power, the sensitivity of the receiver, and
the antenna characteristics.

NNN

0 50m

Soil Pit (Sx)

Weather
Station (Wi)

Water Gauge

137

0 100 m

N

0 100 m

N

127

129

131

133

135

backslope
(with sectors

A-D)

A

B

C

D

footslope

pond basin

11

22

33

Figure 7.4: Reference coordinates for the RSSI measurements in the backslope (sectors
A-D). 𝑊1 was set up as receiver for all wireless transmissions.

2 ATmega128RFA1: https://www.microchip.com/ATmega128RFA1

130

https://www.microchip.com/ATmega128RFA1

7.2 Chicken Creek Reference Measurements

7.2.2 Measurement Results and RIL Emulation Relevance

Figure 7.5 shows the measurement results based on the received signal strength at the
fixed receiver (𝑆𝐶) as a function of the transmitter distance compared to the calculated
theoretical values. The performance parameters correspond to the maximum values of
the hardware used (RX sensitivity: -100 dBm, TX power: +3.5 dBm). The theoretical
values are based on a simplified uniform spread of energy in free space (ref. Equation 2.1).

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−90

−80

−70

−60

Distance (m)

R
X

sig
na

l(
dB

)

theoretical
measurement

Figure 7.5: RSSI measurement results

The measurements show an overall reasonable radio coverage but at the same time
strong deviations from the theoretical reference value and violent differences of similarly
distant measurement points (e.g., 58-68 m in Figure 7.5) up to ≈ 20 dB. Furthermore,
strong fluctuations of the received signal strength of one and the same measuring point
in the range of up to 10 dB could be measured. These deviations and fluctuations are
expected to be even more pronounced throughout the year due to leaf cover, humidity,
and solar exposure. From these results follow that planning solely based on model
calculations and coordinates is not a reliable basis, even in outdoor areas due to slope
and vegetation. Nevertheless, there is a significant potential for energy savings with
adaptive signal transmission power and reception sensitivity as well as the use of antennas
with directional characteristics (cp. antenna impact in Subsection 7.1.2). Besides the
conceptual derivation of a network architecture for the monitoring system (cp. [177]),
these measurement results provide reference data for evaluating adaptive and cognitive
radio transmissions based on the RIL channel emulation. This evaluation scenario of
optimizing node energy consumption for RX/TX in terms of reliability and radio coverage
is presented as an example using the Split-Protocol-Stack emulation in Section 8.2.

131

7 Radio-in-the-Loop Channel Emulation

7.3 Hardware Allocation in Network Emulation Testbeds

In low-scale test setups with a problem-specific focus, the system architecture results
from the RF planning of the particular target scenario (e.g., [111] from the analysis in
Section 3.3). Flexible large-scale emulation on the NETs, on the other hand, depends on
appropriately configuring the signal path according to the emulation system architecture.
The approach towards hardware allocation was first introduced in [55] and is built upon
a graph-based model definition including an abstraction of the exemplary RoSeNet (ref.
Section 3.3) hardware resources.

7.3.1 Problem Statement and Model Definition

Network simulators allow one to create arbitrary network topologies. Within the method-
ology of the Split-Protocol-Stack approach, appropriate hardware resources must be
allocated for a given scenario, and RF configuration parameters must be determined.
The basic idea and problem is known as Network Testbed Mapping Problem, which
has often been discussed in the context of the dynamic network configuration for Net-
work Virtualization on wired networks and testbeds ([178–180]). So far, virtual links
and overlay networks require optimization of inter-node bandwidth, latency, or routing
requirements in LAN s. In the field of analog channel emulation testbeds, the problem
differs significantly, as a consideration of the signal strength on the link between nodes
must also be taken into account and traffic on links cannot be effectively routed as by
using packet switching technologies.

By using RoSeNet’s channel emulation architecture for our prototype, we are able to
emulate a large-scale fading of signal transmissions in the RF network which eventually
allows the isolation of individual nodes (ref. RoSeNet hardware architecture in Figure 3.5).
One important constraint is that RoSeNet has both fixed (architectural, non-adjustable)
and variable signal attenuators (adjustable by configuration parameters) in its coaxial
environment. Selecting testbed nodes based on a RF configuration results in a network
with a certain virtual radio topology. The reverse way of deriving a selection of nodes
and a setting of attenuators from a virtual topology (e.g., a UDG of a network scenario)
turns out to particularly be complex, similar to the distance geometry problem (cp. [172],
[181]). At the same time the quintessence and problem is to create radio topologies that
are possible to set up in the simulation and the radio emulation domain because not
any arbitrary attenuation between pairs of nodes can be configured according to the
emulation system constraints. To solve this problem the first step is to specify a suitable
data structure for the scenario and the NET architecture. This is practically presented
and tested in the exemplary realization based on RoSeNet next.

132

7.3 Hardware Allocation in Network Emulation Testbeds

Abstraction of the Radio Topology

The modeling of RF topologies by graphs was introduced with UDGs. Considering the
transmission topology of interconnected nodes, with respect to the exact attenuation
values between pairs of nodes, a UDG expands to include weights on the edges (𝑎𝑒).
We refer to such a graph as an undirected attenuation graph 𝐺. The radio topology of
a test scenario is called scenario graph 𝐺𝑆 = 𝐺 (ref. Table 7.1). The attenuation is
usually specified in 𝑑𝐵 with integer values. The scenario graph in Figure 7.6 serves as
practical example for demonstrating the allocation process. Regarding the Chicken Creek
reference measurements in Subsection 7.2.1, this scenario corresponds approximately to
the arrangement of the nodes 𝑆𝐶 − 𝐶6 − 𝑊1 in Figure 7.4.

𝐺: undirected attenuation graph, 𝐺 = (𝑉 , 𝐸)
set of nodes, 𝑉 = {𝑣 | 𝑣 ∈ 𝑁}
set of weighted edges, 𝐸 ⊆ {(𝑖, 𝑗, 𝑎) | 𝑖, 𝑗 ∈ 𝑉 ; 𝑎 ∈ ℕ}

𝐺𝑆: scenario graph 𝐺𝑆 = 𝐺 = (𝑉 , 𝐸)
𝑎𝑒: attenuation value of the edge 𝑒 ∈ 𝐸(𝐺𝑆), 𝑎𝑒 ∈ ℕ

Table 7.1: Variable definition for the scenario radio topology

1

2

3

.

(c)(b)(a)

1 2
1

2

3
.

3

↔ →
← 64 63

53

Figure 7.6: Example scenario graph: (a) node coordinates of 𝐺𝑆; (b) coplanar congruent
disks for 𝐺𝑆; (a) attenuation graph 𝐺𝑆 = (𝑉 , 𝐸).

Abstraction of the Radio Emulation Hardware

A RIL testbed architecture with coaxial-based radio links can also be represented as
an undirected attenuation graph 𝐺. With RoSeNet, we have a plain tree structure (ref.
Figure 3.5a) in which the root is the central anchor node connected to chains. Each
chain has several modular entities, called panels, which include the actual sensor nodes
(the tree leaves). A single emulation panel in turn can also be described in its internal
structure using this graph abstraction. A special feature is the attenuator module for
which the graph contains different paths depending on the exact attenuation values.

133

7 Radio-in-the-Loop Channel Emulation

→
8

0,211 10
20

2

30

0

11,8
11,8 11,8

11,8

11,8
11,8 11,8

11,8

0

a e bd
Panel Input Output

Sensor Nodes

Attenuator1 2
3

7
6 5

4

6f c
14

11
21

3

31

1

12
12 12

12

12
12 12

12

0

c

a b
1 2 3

7
6 5

4

(a) (b)

Figure 7.7: RF network representation of a single emulation panel with up to eight
sensor nodes (𝑏 corresponds to the input of a neighboring panel, 𝑐 to the RF
signal splitter to all nodes). With the attenuator module, we can select a
single signal attenuation edge between adjacent panels. To further facilitate
this abstraction, architectural-fixed attenuation (𝑑, 𝑒, 𝑓) is included in the
controllable attenuation and rounded to integer values in (b).

As depicted in Figure 7.7, we modeled the graph-based abstraction, the RF dependencies,
and the node types of the target emulation hardware for our allocation scheme. The whole
emulation RF network consists of the connection of several panels in chains according to
the actual arrangement which is referred to 𝐺𝐻. The anchor node corresponds to the root
power splitter (start of each panel chain) in Figure 3.5a. An overview of algorithmically
important variables and parameters of the model definition is given with Table 7.2.

𝑁: a set of hardware node types, {′𝐴𝑇 𝑚𝑒𝑔𝑎128𝑅𝐹𝐴1′, …}
𝐻: a set of panel RF node types, {′𝑎𝑛𝑐ℎ𝑜𝑟′,′ 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟′,′ 𝑖𝑛𝑝𝑢𝑡′}
𝐴: a set of static attenuation values, {1, 3, 11, 21, 31} ⊆ ℕ

𝐺𝐻: undirected hardware graph, 𝐺𝐻 = 𝐺 = (𝑉 , 𝐸)
set of nodes, 𝑉 = {𝑣 | 𝑣 ∈ {𝑁 ∪ 𝐻}}

𝐺𝐴: undirected allocation graph, 𝐺𝐴 ⊆ 𝐺𝐻 = 𝐺 = (𝑉 , 𝐸)
set of nodes, 𝑉 = {𝑣 | 𝑣𝑟 =′ 𝑎𝑛𝑐ℎ𝑜𝑟′, 𝑣𝑙 ∈ 𝑁}

𝐺𝑃: undirected allocation path, 𝐺𝑃 ⊆ 𝐺𝐴
set of nodes, 𝑉 = {𝑣0, … 𝑣𝑘 | 𝑣0, 𝑣𝑘 ∈ 𝑁, 𝑣𝑖 ∈ 𝐻}

𝑃: a set of connected hardware panels, {𝑝 ∈ 𝑉 (𝐺𝐻) | 𝑝 =′ 𝑖𝑛𝑝𝑢𝑡′}
𝑃𝑒: a set of hardware panels in path 𝑒 ∈ 𝐸(𝐺𝑆), 𝑃𝑒 ⊆ 𝑃
𝜖: deviation of attenuation values, {𝜖 ∈ ℝ+ | 𝜖 < 1}
𝑎𝑖: attenuation value of panel 𝑖, 𝑖 ∈ 𝑃, 𝑎𝑖 ∈ 𝐴
𝑥𝑖𝑗: edge usage of panel 𝑖, 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐴, {𝑥𝑖𝑗 ∈ ℕ0 | 𝑥𝑖𝑗 ≤ 1}
𝑎𝑖𝑗: edge attenuation values of panel 𝑖, 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐴, 𝑎𝑖𝑗 ∈ 𝐴

Table 7.2: Variable definition for the panel hardware

134

7.3 Hardware Allocation in Network Emulation Testbeds

7.3.2 Allocation Approach

The allocation objective is defined regarding the aforementioned model-based abstraction.
What is searched for is an attenuation graph 𝐺 that results from the configuration
of the emulation hardware parameters, so that the scenario graph 𝐺𝑆 is a subgraph
of the hardware graph 𝐺𝐻 of the emulation system in a tolerance range with respect
to the edge weights (ref. postcondition (2) in Algorithm 6). The resulting allocation
graph 𝐺𝐴 represents the associated configuration of the involved hardware and enables
automatic allocation. We have developed a multiple stage allocation process to find
an appropriate configuration of the RF signal path on testbed platforms (exemplary
applied to the RoSeNet hardware model 𝐺𝐻). It is based on graph analysis (4) and linear
optimization (7-12) with the allocation procedure given in Algorithm 6.

Algorithm 6: Node Hardware Allocation Procedure
(1) Precondition : |scenario nodes| ≤ |hardware nodes|
(2) Postcondition : 𝐺𝐴 ⊆ 𝐺𝐻 with tolerance to 𝑎𝑒

(3) generate 𝐺𝑆 and 𝐺𝐻
(4) 𝐼𝜆 = analyze scenario 𝐺𝑆

(5) while (true) do
(6) 𝐺𝐴 = assign nodes from 𝐺𝐻 with 𝐺𝑆 and 𝐼𝜆
(7) Function calculate_attenuation(𝐺𝐴, 𝐺𝑆)
(8) make LP from |𝑉 (𝐺𝑆)| and |𝑉 (𝐺𝐴)|
(9) add LP scenario constraints from 𝐺𝑆

(10) for 𝜖 ∈ 𝑆𝑒𝑡𝜖 do
(11) add LP hardware constraints from 𝐺𝐻 with 𝜖
(12) solve LP
(13) if attenuation found then
(14) allocate graph 𝐺𝐴

return
end

end
return

end

The allocation process includes multiple steps, starting with the generation (3) of the
scenario graph 𝐺𝑆 and the emulation hardware graph 𝐺𝐻 from the currently available
hardware installation. In the second step, several parameters (graph invariants 𝐼𝜆) of the
scenario graph are calculated and processed by an initial node allocator (6)which makes a
decision regarding the panel-node placement 𝐺𝐴. In the third step, it transfers the graph
representation with the allocated nodes and all additional constraints (coming from
the hardware and the RF dependencies) to a Linear Program (LP) which can then be

135

7 Radio-in-the-Loop Channel Emulation

solved using MILP (7). If a solution is calculable the algorithm is terminated, otherwise
the parameters are adjusted (10) (e.g., the deviation from attenuation parameters 𝜖) or
the algorithm must calculate a new panel-node placement 𝐺𝐴. If no solution can be
calculated at all (e.g., due to hardware constraints), the scenario is unsupported and the
initial radio topology must be changed.

Mixed Integer Linear Programming Model

For the second step of the problem analysis, it is assumed for simplicity that a distribution
of panels and nodes is already known but the configuration of the attenuation parameters
is required. To solve this problem we propose an approach based on theMILP optimization
model. The required attenuation parameters in certain interval limits are represented
by a cost function The two attenuation graphs 𝐺𝑆 and 𝐺𝐴 (e.g., the distribution of
panels and selection of nodes) are described by a set of constraints in the form of linear
equations and inequations. The attenuation constraints are listed below for the selected
hardware panels and the scenario.

MILP-Constraint 1: Each panel 𝑖 ∈ 𝑃 can have only one single attenuation value.

∑
𝑗∈𝐴

𝑥𝑖𝑗 = 1 (the sum of the edge usage of panel 𝑖 is equal to 1)

MILP-Constraints 2-3: Each panel 𝑖 ∈ 𝑃 must have an attenuation within limits.

∑
𝑗∈𝐴

(1 − 𝜖)𝑎𝑖𝑗𝑥𝑖𝑗 ≤ 𝑎𝑖 (attenuation lower bound)

∑
𝑗∈𝐴

(1 + 𝜖)𝑎𝑖𝑗𝑥𝑖𝑗 ≤ 𝑎𝑖 (attenuation upper bound)

The MILP-Constraints 2-3 guarantee that the attenuation values 𝑎𝑖𝑗 does not deviate
upwards or downwards by more than the value defined by the deviation 𝜖. Note that
MILP-Constraint 1 causes only a single attenuation value to be summed up.

MILP-Constraint 4: Each edge 𝑒 ∈ 𝐸(𝐺𝑆) must set attenuation values in a path.

∑
𝑖∈𝑃𝑒

𝑎𝑖 = 𝑎𝑒 (panels in path between two nodes)

The MILP-Constraint 4 guarantees that the sum of attenuation values in a set of panels in
a path between two nodes corresponds to the attenuation value for each edge 𝑒 ∈ 𝐸(𝐺𝑆)
(ref. (9) in Algorithm 6). A graphical representation of an allocation path is highlighted
in Figure 7.9a. This means that the number of path constraints for a particular scenario
is given according to the number of edges in the scenario graph 𝑆𝐺.

136

7.3 Hardware Allocation in Network Emulation Testbeds

⎛⎜
⎝

𝑎11 ⋯ 𝑎1𝑖 𝑥111 ⋯ 𝑥1𝑖𝑗 𝑏1
⋮ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑖 𝑥𝑛11 ⋯ 𝑥𝑛𝑖𝑗 𝑏𝑛

⎞⎟
⎠

Figure 7.8: Matrix representation of the MILP allocation model.

The single constraints result in a two-dimensional matrix representation of the MILP
model in Figure 7.8, whereby the total number of rows 𝑛 is linearly related to the number
of panels and edges of the scenario. The notation 𝑏𝑛 corresponds to the right side of
the equations. A MILP solver can then compute whether a solution to a particular
objective function exists for all given constraints. Referring to the variable attenuators,
the minimization of all attenuation values in 𝐺𝐴 was set as the objective function.

MILP-Objective: The sum of attenuation values for all panels 𝑖 ∈ 𝑃 must be minimal.

Minimize: ∑
𝑖∈𝑃

𝑎𝑖

An example solution for the scenario in Figure 7.6 is given with the representation in
Figure 7.9b. The allocation model and the visual graph generation is implemented in
Python (part of the ESF project pcap-forwarder3) and is solved using lpsolve4. From a
complexity-theoretic point of view, this problem is 𝒩𝒫-hard and this type of optimization
problem is difficult to predict in terms of runtime. Initial practical tests showed that the
runtime of the solvers increases dramatically, as the number of scenario nodes and links
increases. The results of our analysis with increasing scenario constraints are presented
and discussed in Section 7.4.

(a) Allocation path 𝐺𝑃 for node 1 and 2 in 𝐺𝑆 (b) Allocation graph 𝐺𝐴 for the scenario 𝐺𝑆

Figure 7.9: Allocation of the scenario represented as attenuation graph 𝐺 from connected
panels. Note that all other nodes of a single panel (ref. Figure 7.7) are removed
from 𝐺𝐻 due to the allocation process.

3 pcap-forwarder : https://git.informatik.tu-cottbus.de/boehmse1/pcap-forwarder/
4 lpsolve55: http://lpsolve.sourceforge.net/5.5/

137

https://git.informatik.tu-cottbus.de/boehmse1/pcap-forwarder/
http://lpsolve.sourceforge.net/5.5/

7 Radio-in-the-Loop Channel Emulation

7.4 Evaluation and Discussion

Our modeling strategy, the reference measurements, and allocation approach show the
relevance especially of signal strength and attenuation value based emulation. Finally,
we discuss the capabilities, enhancements, and limitations of the hardware-based channel
emulation with respect to the Split-Protocol-Stack methodology.

7.4.1 Feasibility of Hardware Allocation

Our prototype implementation of the hardware allocation approach does not serve for a
full operational readiness, but it allow feasibility studies of scenarios with different node
sizes which eventually results in different numbers of overall constraints for the MILP
model. With the stepwise increase of nodes and edges in 𝐺𝑆, our analysis shows the
principal feasibility of allocation using the MILP optimization on attenuation graphs.
Due to the complexity of the model, however, there are constraints that are complex
to solve and extremely increase the algorithmic runtime. Figure 7.10 below shows the
runtime increase based on the iterations of the solver.

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
102

103

104

105

Constraints

It
er
at
io
ns optimal

feasible

Figure 7.10: Number of iterations for solving the allocation model

The corresponding MILP model for the overall RoSeNet panel hardware architecture
𝐺𝐻 incorporates 378 constraints modeled by 756 variables. Initial measurements of the
allocation algorithm show a disproportionate increase in iterations and calculation time
with the number of scenario constraints to get optimal solutions from the MILP solver
(see Figure 7.10 – optimal). Adding only 12 additional scenario constraints (390 overall
constraints), the solver needs 178213 iterations (approx. 20 s) to solve the model5. The
first steps of the allocation process do not require optimal solutions, but only to show
whether a model is feasible or not. To find a feasible solution the solver needs less than
1000 iterations independent of the number of constraints (see Figure 7.10 – feasible).
Thus, while running on an Ubuntu Linux5, the solver is able to calculate a feasible
solution in less than 0.5 s.

5 Ubuntu Linux (64 bit) virtual machine with 7 vCPUs (Intel Xeon X3470 Quad Core @ 2.93 GHz)

138

7.4 Evaluation and Discussion

The developed solution approach currently assumes a static distribution of the nodes and
relates to the subproblem of configuring the attenuation actuators. For the selection of
nodes with respect to 𝐼𝜆, different considerations can be taken into account (e.g., graph
consolidation in [171]). Thus, the next step is to investigate, how this simplification can
be removed. Besides fulfilling the algorithm precondition (ref. (1) in Algorithm 6), further
indications for this are provided by the graph analysis, whereby the following parameters
and dimensions have to be considered for attenuation graphs 𝐺:

• Diameter (shortest path between each pair of vertices),
• Beta Index (ratio between the number of edges and nodes),
• Degree Centrality (number of edges that converge in a node),
• Closeness Centrality (indicates how close a node is to all others), and
• Betweenness Centrality (influence of nodes with a bridging function).

In practice, the allocation problem can have more constraints relaying on node types,
parameters and hardware inaccuracies. Our model provides a suitable basis for extension.
Additional MILP-Constraints and multiple MILP-Objectives can easily be integrated
into the model. Nevertheless, the practical applicability of the analyzed allocation and
determination of attenuation values based on MILP must be considered in the application
context. For example, live recalculation of 𝐺𝐴 in scenarios with random mobility caused
by mobility models of the simulation (ref. Subsection 2.2.5) must be excluded due to
the long algorithmic runtime for optimal solutions. A deterministic pre-calculation, on
the other hand, seems feasible, although at the same time very computational and time-
intensive in advance of the emulation. In addition, the selection of nodes at the beginning
of the allocation as well as a possible failure and recalculation in case of a negative
result also affects the runtime and can readily lead to impossible allocations during
the adaptation caused by node mobility. In our estimation, a mobility consideration
is not practical with the current emulation hardware architecture, with respect to the
extensions of the hardware attenuation discussed below, our model does not lose its
importance at all.

7.4.2 Enhancing the Hardware Attenuation

An analysis of the attenuation accuracy between individual nodes on adjacent panels
according to the step attenuator configuration shows significant deviations of the target
values (ref. Figure 7.11). This is due to the lack of RF shielding of the individual nodes,
which allows signal power leakage out of the connectors. It can also be assumed that
the RF transmission can be affected to a small extent by side effects, such as signal
paths over solid wires on the panels. With respect to the measurements in the outdoor
environment (ref. Section 7.2), these signal strength deviations are still comparatively
small. However, additional shielding of the hardware nodes should be considered.

139

7 Radio-in-the-Loop Channel Emulation

62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94

1
2
3
4
5

RX signal (dBm)

A
tt
en
ua

to
r
st
ep

Figure 7.11: Attenuation measurements

Furthermore, the attenuation actuators at the panel input are not sufficient for a
comprehensive channel emulation. Besides the results of the optimization which permits
no real-time capability for live calculations, the variable attenuation between panels is
generally problematic for node mobility because it is usually or at least for most scenarios
not possible to move only single sensor nodes. An attenuation value change disturbs
multiple nodes in a chain of the hardware graph 𝐺𝐻, but mobility can be approximated
using node-based attenuation, either by adding attenuators for each node slot on the
panel (at node 𝑐 in Figure 7.7) or according to the RIL PHY modeling.

Moving the attenuation to the nodes or even providing a hardware emulation module for
each slot of the panel hardware, so that even the nodes of a single panel in the chain
can be shielded as desired, introduces fundamental changes to the panel-based hardware
design. These extensions also add additional architecture-dependent attenuation to the
system’s RF path and to additional nodes 𝑣 ∈ 𝐻 in 𝐺𝐻. Therefore, the scalability of the
overall system decreases if these unavoidable effects cannot be compensated, e.g., with
signal amplifiers. A discussion of the technical feasibility of this hardware design changes
is beyond the scope of this thesis.

However, enabling node-based attenuation by configuring receiver sensitivity (rxGain)
or/and transmit power (txGain) of individual nodes is suitable if provided by the
particular node hardware. This must be included in the hardware attenuation graph 𝐺𝐻
and the constraints of the MILP model based on the various node types 𝑣 ∈ 𝑁. Thus,
the hardware allocation process gets more fine-grained capabilities of the attenuation
calculation and node mobility can be approximated or randomized, which is a commonly
used approach for evaluation. Since especially the configuration of the receiver sensitivity
(rxGain) is not supported by standard node hardware, the platform enhancement with
SDR RIL modules is a comparatively simple upgrade to achieve. This extends the
emulation capabilities enormously and makes, for example, the node-based equalization
discussed in Subsection 7.1.2 available on the emulation platform while maintaining the
current RF architecture.

140

8 SEmulate Prototype and Use Case Study

SEmulate [54] is an abbreviation of the research project1 and the prototype implemen-
tation of the evaluation concept, that seamlessly couples S imulation and Emulation.
Seamlessly coupled means that the technology of hardware-based radio channel emula-
tion is integrated into the network simulation without significantly changing the basic
principle of running a DES scenario. SEmulate is intended for deployment as Platform as
a Service (PaaS) for research and development projects of evaluating novel architectures
and approaches in WSNs and the IoT .

In order to demonstrate the platform capabilities and the Split-Protocol-Stack emulation
benefits, the analysis results, solution approaches, algorithms and components (the
outcome of this thesis, ref. thesis outline in Figure 1.3, Chapters 4, 5, 6, and 7) must
eventually be integrated into a prototype. Due to the massive dependencies in technologies,
software, computational power, and (RF) hardware, we cannot present an evaluation
system with full operational readiness at this time, but we can provide insights into
the prototype architecture and first small-scale evaluation experiments. Regarding the
reference configuration presented in Section 4.4, we demonstrate an evaluation scenario
within the domain of cross-layer optimization strategies for wireless transmissions.

8.1 SEmulate Overview

The way the different components are coupled follows exactly the basic methodology
and central approach of this thesis as introduced in Section 4.2. How the conceptual
and experimental achievements of the Split-Protocol-Stack approach are integrated in
the prototype can be summarized as follows: The Real-Time-Shift synchronization and
scheduling, presented in Section 5.2, is combined in the PCAP ESF as the core emulation
runtime control module. The PCAP interface abstraction and modeling (Section 5.3)
is implemented as central data communication container among the components. We
have set up the nodes on the emulation hardware with our chip RIL implementation in
Contiki (Section 6.2). The analysis of the wireless network planning (Subsection 7.1.1) is
implemented in the prototype in the visualization and monitoring concept. The allocation
of the SEmulate hardware platform resources, presented in Section 7.3, is implemented
in the scenario generation process.

1 The research project “Entwicklung eines Emulations- und Testsystems für robuste, drahtlose Sensornetze
(SEmulate)” was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi)
through the Central Innovation Programme (ZIM initiative) under Contract No. ZF4119201ED5.

141

8 SEmulate Prototype and Use Case Study

8.1.1 Emulation Prototype Architecture

SEmulate builds on the RoSeNet hardware architecture2 and enables both a pure channel
emulation and the coupling with a protocol simulator. The architecture in Figure 8.1
shows the coupling of the simulation and the emulation domain with the PCAP stream
forwarder (ESF) in structure and methodology according to our basic definitions of RIL
in Section 4.1. We now give a basic (but non-exhaustive) overview about the emulation
frontend and backend realization.

RoSeNet

Forwarder (ESF)

OMNeT++

PCAP

Figure 8.1: SEmulate Prototype RIL Architecture

The SEmulate frontend-design implements a multiple-client architecture for use in
administration, pure channel emulation, and Split-Protocol-Stack parallel simulation
and emulation. In the simulation domain, we have set up OMNeT++ with our Pseudo-
Real-Time scheduler and the customized models and interfaces for IEEE 802.15.4. All
simulation scenario-related radio network and protocol modeling is based on OMNeT++/
INET. The MAC layer and the higher layers of the protocol stack are simulated, while the
PHY and channel emulation domain is provided by the SEmulate control and RoSeNet
hardware subsystem. The node positions for modeling the radio topology (ref. realization
of a UDG in Section 6.1) and radio parameters are defined in the simulation GUI and
translated into a representation for the emulation domain.

The emulation backend integrates a command and control module for interacting
with the hardware components and for processing data to the chip RIL nodes. An
overview of important control commands is given in the appendix Table C.1, where
cmdSendTransparentData is used to transfer all RIL-related PCAP data to the nodes.
We currently use nodes with ATmega128RFA1 radios3 with our chip RIL implementa-
tion in Contiki, but the platform2 can also be equipped with other node hardware and
firmware. Furthermore, the interfacing to the simulation domain and the intermediate
event scheduling are realized with the PCAP-based forwarder ESF . This component
controls the time-accurate forwarding of events between the simulation and the RIL nodes
while running a Split-Protocol-Stack emulation. The backend also provides a data base
for all representation, configuration, and visualization for the pure emulation frontend.

2 RoSeNet channel emulation and test platform for low-power wireless technologies, presented in Section 3.3.
3 ATmega128RFA1: https://www.microchip.com/ATmega128RFA1

142

https://www.microchip.com/ATmega128RFA1

8.1 SEmulate Overview

8.1.2 Creating, Building, and Running Emulations

The scenario and parameter setup of a Split-Protocol-Stack emulation is inspired by the
typical OMNeT++ guidelines for the creation of simulation scenarios. Thus, the definition
of the network topology including scenario, nodes, and protocol parameters are created
based on .ned and .ini files in OMNeT++. They are included in the configuration at
the SEmulate backend. The emulation domain also requires further hardware and RF
configuration parameters as well as guidelines for the pure channel emulation. High-level
specifications for the configuration of emulation scenarios address the following conceptual
summary.

Static (manual), automatically assisted scenario configuration:

• Node selection (node type, node count, identifiers),
• Node configuration (node platform, firmware, device parameters), and
• Physical links (radio topology).

Static (automatic) scenario configuration:

• Allocation (RF network configuration, attenuation, transceiver parameters),
• Node parameters (operating voltage, serial interface, digital/analog IO),
• Analysis functionality (packet sniffer, logging, energy/IO monitoring), and
• Firmware upload.

Dynamic scenario configuration (manually for pure emulation mode, simulation-driven
for the Split-Protocol-Stack approach):

• Physical links (network join/leave, node mobility), and
• Node parameter (serial data, digital/analog IOs).

Channel emulation and node-based configuration are classified into static and dynamic.
The static scenario configuration mainly refers to the manual specifications of the
radio network and hardware, including the hardware initialization and parameter setup.
The dynamic configuration changes parameters at runtime (ref. hardware configuration
commands in Table C.1, e.g., setting the attenuation values, switching on/off the power
supply, or simulating IOs on the node input pins). As argued above, some configuration
aspects are determined automatically, others must be created using suitable methods. We
have made experimental investigations of the implementation for web-based configuration
and visualization dashboards (ref. the prototype scenario configuration Graphical User
Interface (GUI) in Figure C.2) for the pure emulation client independent of the RIL
connection to the simulation. For monitoring, SEmulate enables connections to standard
tools such as Wireshark and state-of-the-art data visualization techniques (e.g. for
continuous monitoring of energy consumption).

143

8 SEmulate Prototype and Use Case Study

Generation of the Emulation Configuration

The automated scenario generation and configuration of the Split-Protocol-Stack RIL
emulation is essential for the practical usability of the approach. Our modeling using
attenuation graphs provides a common basis for the hardware and scenario definitions
and is tightly embedded in the backend of the prototype. Automatic resource allocation is
one of the central algorithmic components of the model-based evaluation using SEmulate.
In contrast, the creation of scenarios is based on the frameworks and file formats of
the used simulation system. Whereas in OMNeT++ the simulation program is executed
using the parameters from the configuration files, in the SEmulate backend exactly these
configuration files are retrieved to generate the respective hardware dependencies for the
channel emulation.

Figure 8.2 shows, how file parsers, scripts, and configuration files are used to generate a
Split-Protocol-Stack parallel simulation and emulation scenario. The so-called NEDParser
translation script extracts the relevant definitions and parameters from an OMNeT++
scenario and generates a new file format (scenario.json). The resource allocation script
NodeAllocator eventually generates a hardware-dependent scenario by using the RF
network configuration (network.json) and the deployed node types (nodes.json) of
the emulation platform by means of the attenuation graph representation (ref. the main
procedure calls of the allocation script in Listing C.13). Once an emulation scenario has
been built, it can be executed with the configuration input parameters for the emula-
tion domain (network.json, scenario.json) and the simulation domain (omnetpp.ini,
*.ned). The emulation process then initializes the hardware and waits for PCAP packets
from the simulation program. This setup and implementation seamlessly extends the
process of building and running a simulation in OMNeT++ (ref. Figure B.1). An excerpt
from a scenario (scenario.json) generated from OMNeT++ and allocated to the emu-
lation hardware is shown in Listing C.12. Additionall, an excerpt from the initial RF
network configuration is shown in Listing C.11.

NEDParser
(.py script)

Running
Backend RIL

Running
OMNeT++

NodeAllocator
(.py script) network.json

*.ned files nodes.json

omnetpp.ini scenario.json

Simulation
Program Result FilesPCAP

Stream

scenario.json Emulation
Program

Figure 8.2: Overview of building and running an emulation with SEmulate

144

8.2 Case Study Scenario: Cross-Layer Optimization

8.2 Case Study Scenario: Cross-Layer Optimization

In contrast to modeling communications using reference designs (e.g., the OSI model in
Figure 1.1a), protocols and architectures can be optimized by violating layered commu-
nication based on performance, management, or security constraints. This results in new
interfaces, redefinitions of layer boundaries, or a common coordination of parameters
among the layers [150]. However, implementing true node firmware for experimenting with
cross-layer concepts is incredibly cumbersome. Network and protocol simulation are con-
sidered the state-of-the-art analysis and evaluation approach for cross-layer optimization
due to its high flexibility in linking various modules and functions.

In this highly relevant research area, also a number of IEEE 802.15.4-based optimization
approaches are reflected only in the purely simulative evaluation. Besides MAC -based
optimization originating from higher protocol layers (e.g., IEEE 802.15.4 Adaptive
Access Parameter Tuning in [182], or efficient PAN coordinator selection in [183] - both
evaluated in pure ns-2/ns-3), a number of approaches that require high accuracy and
close interaction of the PHY should also be mentioned. The Transmission-Power Control
(TPC) approach in [184], evaluated in pure ns-2/ns-3, is based on location information
tables of mobile networks. It defines new service primitives for passing node range
information to the PHY . In contrast, Receiver-Sensitivity Control (RSC) in [185] is
proposed to increase the energy efficiency of receiver-dominated nodes in IoT networks,
evaluated based on pure virtual simulation in OMNeT++.

8.2.1 Motivation and Objective

As mentioned above, optimization of performance parameters for transmitter and receiver
is one of the main goals in cross-layer optimization regarding the PHY in WSNs and
the IoT (e.g., increasing the energy efficiency with Transmission-Power Control (TPC)
and Receiver-Sensitivity Control (RSC)). The Split-Protocol-Stack emulation can be
used to incorporate accurate real-world CSI for energy-efficient and reliable PHY
transmissions in network simulations. Accordingly, we create here a use case and reference
evaluation scenario that serves as an example of a pure wireless configuration according to
Subsection 4.4.2a / 4.4.3. It practically illustrates the contribution of parallel simulation
and channel emulation for the evaluation of new approaches considering physical channel
accuracy while maintaining protocol modeling flexibility. With this case study scenario,
we demonstrate a receiver-dominated optimization based on the gain settings according
to the radio packets signal strength measurement. In particular, it demonstrates the
feasibility in a holistic Split-Protocol-Stack evaluation including SDR RIL transceivers.
The overall goal of adjusting the receiver gain based on the LQI and ED using SDR
is similar to a feedback control and aims at minimizing the energy consumption of a
receiver.

145

8 SEmulate Prototype and Use Case Study

Whereas the ED is the most important part of the channel selection algorithm, the
LQI indicates the reliability of a used wireless link. It is often a decision criterion for
whether a partial channel or route is selected for transmission (ref. packet detection in
Subsection 2.2.2). For IEEE 802.15.4 transceiver hardware, it is not specified, how to
use the LQI value, but it shall be performed for each received radio packet. Mostly it is
implemented using a SNR estimation and is represented as an integer ranging from 0 to
255 (lowest to highest quality). The result of the ED is also given in this range of values
and represents the normalized received signal power (RSSI).

The variations of the RSSI in the reference measurements with deviations of several
𝑑𝐵 highlight the fact that environmental properties are hardly constant in outdoor
applications (signal differences are 20 𝑑𝐵 for a worst-case in Section 7.2). An efficient
node placement with static configuration of the transmit power based on the signal
strength measurements is therefore hardly feasible and wastes energy/battery capacity.
Not least in the practical measurement studies, the potential for optimization became
clear, as all packets are reliably received in a broader signal strength range. For example,
with a bandwidth of approx. 20 𝑑𝐵 difference in reception gain, all packets can be received
without exception (ref. RX gain range 60 to 80 𝑑𝐵 in Figure 6.9). The differences in
the received signal strengths of the reference measurements also indicate highly reliable
transmissions in the range of approx. 20 𝑑𝐵 (ref. RX signal range −65 to −85 𝑑𝐵 in
Figure 7.5).

8.2.2 Modeling and Definition

The abstract optimization goal for this scenario is to permanently keep the LQI for
a communication link at 255 (maximum value) while minimizing the sensitivity at
the receiver (RX gain). In existing IEEE 802.15.4 chip implementations, the receiver
sensitivity cannot be adjusted at all or at least not uniformly according to a common
guideline. Moreover, the standard does not define any SDU and PHY parameters for
setting the RX gain but only minimum values (ref. Table 2.1). In the context of the
RIL PHY , introduced in Chapter 6, the modeling diversity of SDR transceivers is
applied here. In a realistic channel emulation scenario, long-term measurements based
on real transmissions can thus be evaluated without the need to develop real transceiver
implementations for specific node hardware. An higher layer module in terms of an
optimization algorithm in the simulation can be used to control this adjustments, but
it requires access to the PHY and channel information. With only a few extensions, a
simple information exchange across layer boundaries is enabled for parameterization
of the RIL PHY transceiver hardware according to the Split-Protocol-Stack. Next, we
explain these extensions to the simulation model.

146

8.2 Case Study Scenario: Cross-Layer Optimization

PHY Information Database and Parameters

IEEE 802.15.4 [9, Sec. 6.4, pp. 45f] defines PHY constants which are hardware dependent
(cannot be changed during operation) and Personal Area Network Information Base
(PIB) attributes which are partially read-only parameters. As depicted in Figure 8.3,
the PIB is provided in the simulation as a distributed database (simulation module)
for all layers in this simplified cross-layer scenario. Therefore, new interfaces must be
introduced in the involved protocol layers for communicating with this module (ref.
2⃝ in Figure 8.3b). To enable a higher layer to perform adjustments of the RX gain

(a) The IEEE 802.15.4 OMNeT++ link
layer module with external PHY PIB

2.4 GHz

802.15.4 MAC
external PHY

Network
Transport
Application
Simulated Stack

LLC
virtual MAC
802.15.4 PHY

Stream IPC

Emulated Stack

Split-Protocol-Stack Node

PI
B

b

a
1

2

3

(b) Cross-layer PIB interaction from a higher layer
of the protocol stack

Figure 8.3: IEEE 802.15.4 cross-layer communication based on an external PIB

based on the current LQI and ED values additional parameters must be introduced.
The additional hardware parameters are provided by extending the PIB defined in the
standard with additional information. They are transmitted via the original protocol
primitives (PLME-SET.request’s and PLME-GET.request’s). Furthermore, the resulting
external PIB cross-layer database is updated according to parameter-individual requests
or for all attributes simultaneously according to a new protocol primitive PLME-GET-PHY-
PIB. The manipulation of the database on the RIL hardware is restricted to the external
PHY simulation module (ref. communication a⃝ between 2⃝ and 1⃝ in Figure 8.3b), but
higher layers can have access to the information and request to perform an attribute
change (b⃝). For the exemplary receiver-dominated cross-layer approach, the following
additional PIB attributes are defined (ref. PHY parameters in Subsection 6.3.3).

• phyLQI (link quality, generated from packet reception),
• phyEDvalue (channel energy, generated from signal strength),
• phyRXgain (sensitivity, according to the gain amplifier setup).

147

8 SEmulate Prototype and Use Case Study

8.2.3 Results and Evaluation

The application layer module (3⃝ in Figure 8.3b) is called trafficgen (adaptation of
a standard OMNeT++ module for traffic generation). It implements a simple feedback
control process (ref. Listing C.6) according to the scenario definition and objective4. The
scenario is started in a configuration in which radio packets are received with maximum
channel quality (𝑝ℎ𝑦𝐿𝑄𝐼 = 255). A feedback follows after each received packet via
a gradual decrease of the receiver’s sensitivity by adjusting the corresponding SDR
hardware parameters as long as the channel quality does not change. Once the LQI
deviates downward, the sensitivity is increased again to compensate this deviation.

Using the prototype implementation in SEmulate, two measurement series with different
radio channel settings were carried out as representative examples. A connection to the
RoSeNet channel emulation could not be realized in this scenario, since the corresponding
hardware interface connection for the SDR RIL concept are not implemented in the
prototype. As consequence, uncontrollable real conditions arise for an indoor radio
channel, which are also suitable for this case study and demonstration. In the first
experimental setup, the transmitter and receiver were placed at a distance of 1m from
each other and an initial RX gain of 90 dBm was configured to avoid noise due to the
analyzed overload with too high receiver sensitivity in Figure 6.9.

(a) LQI -based RX gain adaption
(initialized with 90 𝑑𝐵)

(b) LQI - and ED-based RX gain adaption (initialized
with 110 𝑑𝐵, LQI below maximum)

Figure 8.4: RX gain optimization from LQI and ED as a function of the simulation
time4

The result in Figure 8.4a illustrates the potential of this type of receiver-dominated
optimization. It shows the gradual reduction in gain at the receiver for each radio packet
received over the simulated time. The RX gain at the antenna of the receiver can be
reduced significantly (in the range of up to 30 𝑑𝐵) without degrading the channel quality

4 The experimental measurement series were recorded in a supervised master’s thesis [186].

148

8.2 Case Study Scenario: Cross-Layer Optimization

and thus the fault tolerance for wireless data communication. Beyond a threshold of
59 𝑑𝐵, the channel quality LQI is no longer maximum under these conditions and is
set back up one level by the feedback loop. Since the maximum value is again reached
for the next radio packet, this process is now repeated continuously (depending on the
conditions on the radio channel). Thus, this experimental setup demonstrates how to
control a real-world wireless transmission based on an abstract algorithm within the
network simulation.

The goal of the second experimental setup was to consider the largest possible link budget
for the optimization. For this purpose, transmitter and receiver nodes were placed very
close to each other (a few cm) and the measurement series were initially parameterized
with a very high sensitivity of 110 𝑑𝐵 gain at the receiver. Because of the high noise
when dealing with high signal levels, the feedback algorithm additionally needs the
signal energy ED to decide about reducing or increasing the RX gain (LQI below the
maximum at high signal energy still leads to a reduction of RX gain). Thus, for each
packet reception the LQI and ED values are evaluated for this exemplary demonstration.
According to the results in Figure 8.4b, the link quality in this setup is maximum within a
link budget of 45 𝑑𝐵 (100 𝑑𝐵 to 55 𝑑𝐵) which allows for significant energy consumption
optimization on the receiver. The implementation of the event handling in the OMNeT++
module trafficgen is presented in the appendix in Listing C.6.

8.2.4 Discussion and Further Enhancements

The achieved results demonstrate the feasibility of the approach for modeling a cross-
layer optimization strategy with the Split-Protocol-Stack emulation. For practical use,
it shows the possibility to ensure reliable transmissions while reducing the gain in
reception at the same time. In the same way, the transmitter can be parameterized to
reduce the transmission energy in a control loop based on the evaluation of the received
acknowledgments or to emulate the own node mobility. A corresponding attribute for
the hardware configuration of the transmission power (phyTXgain) is also part of our
extensions for the external PIB. Of course beyond this simple scenario, other criteria and
parameters can be included in the optimization. Cross-layer consideration of parameters
from several protocol layers is also conceivable, so that an intelligent algorithm considers
both simulatively generated parameters and real hardware attributes from different
node and network properties. Furthermore, if the RIL hardware modules are actually
integrated and executed on the channel emulation platform the energy consumption of
the nodes can be recorded simultaneously.

Some theoretical considerations or concrete extensions of the scenario may cover different
state-of-the-art research areas. Regarding security vulnerabilities, the radio packet param-
eters can be evaluated in detail. If a packet is received with an untrustworthy, strongly
deviating radio fingerprint (e.g., signal strength), an intelligent algorithm can trigger an

149

8 SEmulate Prototype and Use Case Study

alarm or interrupt the communication. Regarding dense radio conditions, the transceiver
can switch the configuration. If a source of interference generates strong ambient noise
or technology interference within the channel emulation (see interference Figure 6.9),
a transmitter algorithm can switch the transmission power or the actual channel and
try to achieve error-free communication. Regarding adaptive wireless transmissions, the
transceiver can monitor the channel activity. Artificial intelligence strategies evaluate
several hardware parameters and CSI for a period of time to decide which physical
parameters should be configured for a transmission. Modeling using the Split-Protocol-
Stack RIL concept is perfectly suited for this kind of parameter studies from real-world
measurements in the simulation. Existing intelligent or ML algorithms can easily be
integrated in OMNeT++ in a higher programming language (e.g., C++ or Python).

150

9 Conclusion

In this thesis, we proposed a novel approach for parallel simulation and emulation,
called Split-Protocol-Stack Wireless Network Emulation with RIL. The incorporation of
real radio hardware and physically accurately emulated radio channels into simulative
studies has been a largely untouched area of research so far. Since the basic techniques
partially involve diametrically opposed methodological concepts, the resulting research
questions are quite challenging. For this purpose, theoretical concepts have been developed,
prototypically implemented, and evaluated by means of concrete analyses, measurements,
and scenarios to demonstrate the feasibility and benefits of a flexible, model-driven
environment regarding accurate MAC , PHY and channel modeling.

9.1 Achievements and Contributions

Link layer and radio channel modeling has been analyzed and discussed for simulation and
emulation. From the discussed limitations of systems and approaches, the need for hybrid
co-simulation and HIL has been derived. We have identified key requirements, current
research questions, and problems which ultimately led into the conceptual architecture
of our approach. With the Split-Protocol-Stack, we have proposed a methodology that
seamlessly combines protocol simulation and hardware-based radio link emulation. Based
on a detailed analysis of HIL and co-simulation techniques, we have conceptually compared
our approach with state-of-the-art approaches. Furthermore, we have summarized the
capabilities in the context of prototyping and evaluation, based on application domains,
use cases, and reference configuration scenarios. In Chapter 4, key challenges and
components of the Split-Protocol-Stack have been identified and analyzed, resulting in the
following main issues: synchronization and event scheduling, radio transceiver interfacing
and abstraction, and scenario configuration and resource allocation.

The Real-Time-Shift simulation in Chapter 5 introduces a conservative synchronization
scheme which enables a pseudo-real-time event scheduling. We have contributed by
extending the basic real-time DES concept with predetermined pause times for a certain
scenario and system configuration. The ESF was introduced to enable the time-accurate
event execution on real radio transceiver hardware from the protocol simulation. We have
demonstrated that the scheduling accuracy does not significantly depend on the scenario
configuration and resulting event stream. Furthermore, we provide the pseudo-real-time
event scheduling approach with implementations for OMNeT++ and the ESF .

151

9 Conclusion

RIL was introduced as the basic methodology, combining radio channel emulation
with a HIL simulation concept in Chapter 6. We have contributed with two different
implemenations of a RIL PHY transceiver on state-of-the-art radio hardware according
to the IEEE 802.15.4 reference protocol specification. RIL was realized as key abstraction
component and interface to the radio channel which ensures that the commands initiated
by the simulated MAC are executed accurately both in terms of radio parameters and
timing. We have exemplarily demonstrated the PHY modeling for RIL simulations on
transceiver chip and SDR hardware, have proved its feasibility, and have discussed the
applicability of the two solutions. In particular, the SDR RIL enables accurate radio
fingerprinting for future wireless network prototyping and evaluation.

In this thesis, relevant strategic details for scenario modeling and configuration have been
summarized under the term wireless network planning in the context of RIL channel
emulation in Chapter 7. According to the resource allocation of arbitrary scenarios, we
have illustrated the complexity of node placement and pointed to limitations in the
development of hardware-based emulation testbeds. We have demonstrated that an MILP
optimization approach can solve the testbed configuration sub-problem in principle, but
it is not sufficiently practical in this context on our exemplary emulation platform due to
long run times. Based on our evaluation and discussion, we highlighted, however, which
strategic enhancements for a NET and RIL modeling can mitigate this problem and
what research questions arise from it.

The prototype SEmulate in Chapter 8 was initiated to develop a framework that imple-
ments relevant components, allowing for fundamental evaluation of the Split-Protocol-
Stack approach. We have contributed with a respective model implementation for accurate
IEEE 802.15.4 RIL transmissions. With a feasibility study according to a specified sce-
nario from the IEEE 802.15.4 specification, we have demonstrated the accuracy of our
RIL-based simulation modeling. Moreover, the exemplary optimization strategy in our
case study has experimentally shown, how the Split-Protocol-Stack approach using SDR
RIL transceiver hardware enables the evaluation of a precise PHY -dependent research
question. We have proven that the simulation is able to reliably perform radio hardware
configurations and thus responds to varying conditions during real radio transmissions.

9.2 Outlook

The Split-Protocol-Stack evaluation strategy is applicable to other protocols or systems
and harmonizes the modeling process, since layers, interfaces and protocol messages
are accurately modeled according to the standard specifications. They can be extended
as needed for specific modeling purposes. Thus, the evaluation methodology enables
cooperation and creates synergies in an interdisciplinary field of expertise. Future work
will follow up on the key findings and prototypes from this thesis and incorporate them
into existing workflows to provide evaluation tools for upcoming research trends.

152

9.2 Outlook

Future Work

In addition to the contributions we have accomplished, there are further challenges to
extend our basic concept and to be able to provide a powerful platform beyond the
prototype implementation. Finally, we outline additional issues, practical challenges, and
promising enhancements that have emerged throughout this thesis.

As demonstrated by our analyses in Chapter 7, the current architecture of the RoSeNet
RF path does not provide the optimal conditions for an accurate representation of
any scenario. Enhancing the hardware attenuation by including small-step controls
between panels or even node-specific components on panels can significantly reduce the
runtime of the optimization scheme by eliminating several constraints of the graph-based
optimization model with a precise configuration option of the attenuators. These different
approaches need to be further investigated, prototyped, and analyzed from the point of
view of RF -technical feasibility, modeling benefits (radio topology, mobility), and impact
on hardware allocation.

Moreover, accurate emulation of the node movement via signal fading on the current
RoSeNet RF network must be excluded due to the issue that panel attenuator adjustments
affect the attenuation on the entire chain. As demonstrated in the evaluation in Section 6.4
and with the cross-layer scenario in Section 8.2, RIL PHY modeling provides a well-
suited prerequisite for node-individual, transmitter- and receiver-enabled fading emulation.
However, this capability must be implemented tightly coupled to the hardware allocation.
Position changes in the simulation model (mobility modeling) must be mapped to
respective protocol services that change in the gain settings for sending and receiving on
individual nodes. These are neither specified protocol message sequences nor protocol
stack-related operations. In order not to corrupt simulation results configuration and
time dependencies must be analyzed and specified according to an emulation run.

Implementing the Real-Time-Shift event stream processing (Section 5.2) on the RoSeNet
panel hardware would be one of the most important further implementation steps. Since
the RIL real-time stream processing in our prototype is currently implemented for
a standard host system, accurate scheduling for the nodes on the channel emulation
platform cannot be applied in practice up to now. Because the emulation controller
on each panel is implemented on a market leading real-time operating system and is
connected via a deterministic LAN to the emulation backend, the PTP is applicable
for host synchronization. Furthermore, it should be investigated how SDR module
integration and the full execution of GNU Radio can be implemented on the RoSeNet
channel emulation hardware. In this context, minimizing the scheduling jitter of the
event execution when using general-purpose SDR devices should be an important goal
to reliably achieve maximum accuracy on the RIL hardware. We suggest to modify the
static buffering of frames and provide GNU Radio with Real-Time-Shift scheduling at
the hardware interface driver accordingly.

153

9 Conclusion

The presented Real-Time-Shift simulation introduced in Section 5.2 can theoretically be
accelerated for a pure Split-Protocol-Stack node scenario. Because virtual events (e.g.,
higher-layer protocol messages) do not need to be scheduled in real-time, emulation
runtime can be saved. This results in hybrid time scheduling, where purely virtual events
run with virtual scheduling and external events cause a switch from virtual to real-
time scheduling. Because the time compensation for processing emulated and external
events on all involved components relies on the GVT and pre-defined time constants
(𝜏𝐿 introduced by the RSV), the GVT need to be additionally synchronized with the
ESF before the emulated event is to be processed. How this proposal can be realized
without compromising the accuracy of real-time scheduling remains to be investigated.
By using the PCAP-based event exchange, for example, additional synchronization events
can be integrated without changing the general event stream concept. However, this
enhancement of running an accelerated Real-Time-Shift simulation can significantly speed
up pure Split-Protocol-Stack emulation depending on the configuration in the application
scenario (e.g., the MAC BI , protocol timeouts, or the time-controlled query of sensor
values).

The full interaction with non-RIL wireless devices in a Split-Protocol-Stack evaluation
setup requires pausing the nodes. Freezing a whole hardware circuit can theoretically
achieved by stopping the internal oscillators or pausing the software routines by debugger
interfaces (e.g., JTAG), but needs physical access to several hardware pins. This is
possible on an NET , but leads to huge additional implementation efforts on the emulation
hardware and backend. However, freezing the transceiver chip hardware during an active
TX or RX operation causes proper wireless transmissions to fail. Interrupts can trigger
an active wait within the program execution of the transceiver, but affect the regular
program flow. Therefore, methods for synchronously pausing all attached real nodes need
to be further investigated and analyzed.

According to the framework modeling philosophy (e.g., OMNeT++/INET modules,
ns-2/ns-3 model library, or GNU Radio blocks), the Split-Protocol-Stack emulation
capabilities can be provided for various standards, protocols, or further wireless link layer
technologies for which there is often already support for the used environments (e.g.,
LoRaWAN in GNU Radio and OMNeT++, cp. FLoRa in Section 2.3). For our purpose,
it is planned to add further general parameters and different modulation schemes to the
SDR hardware and PHY specifications according to the latest revisions of our reference
protocol specification IEEE 802.15.4. Because due to the general abstraction in modeling
for a certain specific purpose or application, a communication protocol or technology is
often not represented with sufficient accuracy according to its specification and particular
models cannot be reused for other purposes. Returning to the link layer technologies
mentioned in Chapter 1, protocol messages and sequences are predominantly defined in
their specifications. Thus, an important objective would be to specify several accuracy
modeling guidelines for future research (discussed with the Independent Verification and
Validation (IV&V) within the limitations of pure simulations in Section 2.4).

154

9.2 Outlook

Research Trends

The battery life of wireless devices is certainly reduced by RF pollution, as the nodes have
to transmit above the noise level which in turn creates additional interferences. If more
interference occurs more bandwidth is required for information transmission because the
specified data rate cannot be achieved on the channel. As digital transformation continues,
area and hot-spot radio coverage is rapidly increasing through multiple technologies and
is difficult to model for radio network planning. The current and upcoming IoT and
Smart City concepts with countless surrounding wireless devices will make this situation
much worse. RF pollution and interference are neither easy to determine nor predict,
and even more difficult to model.

The purely simulative modeling of RF interference and pollution causes an incredible
effort and therefore remains abstract or a theoretical consideration. However, taking
these effects into account will become increasingly important in the prototyping and
performance evaluation of modern techniques and optimization methods due to the
expanding penetration of wireless technologies in the future. In our simplified case
study optimization approach, we have already been able to demonstrate, how a realistic
evaluation of intelligent approaches can be achieved using the Split-Protocol-Stack. Future
research activities in wireless communication modeling will inevitably depend on the
simulation of algorithmic flows with real-world accuracy or emulation capabilities.

Cross-layer optimization and Cognitive Radio Sensor Networks (CRSNs) have been a
continuously growing, red-hot research focus for more than a decade now. In Section 8.2,
cross-layer approaches to minimize energy consumption have already been presented
with Transmission-Power Control (TPC) in [184] or Receiver-Sensitivity Control (RSC)
in [185]. Current activities on CRSNs address, for example, research issues of RF
energy harvesting for spectrum-efficient networking in the IoT [187] jointly consider
radio transceiver design and network data transmissions. Concrete evaluation results
are determined pure simulatively in each case. PHY - and channel-accurate model-based
evaluation and prototyping of such approaches remains largely unclear.

Deep Learning for Future Wireless Communications is an emerging interdisciplinary
paradigm which will revolutionize wireless networking by means of artificial intelligence.
Recent studies, surveys, and approaches (e.g., [154, 156, 188]) show how Deep Learning on
the physical layer and radio channel can stimulate transmission algorithms or transceiver
design for coexistence of multiple radio access technologies or optimal transmission
links for ultra-low latency constraints in dense networks. Specific solutions concern, for
example, the channel coding in [189] or the modulation classification based on Neural
Networks in [154]. Therefore, radio fingerprinting and spectrum analysis for feature
engineering in Neural Networks are key elements. We consider our SDR RIL methodology
for acquiring features of the radio channel to enable prototyping for reconfigurable PHYs
using software building blocks an important step in this direction.

155

A Analysis and Discussion Details

Within the scope of this thesis, an analytical discussion and comparison of selected
approaches and systems is provided. To summarize the results of this analysis, a visual
representation and overview is given in the analytical part using radar plots. Note
that the evaluation scale does not represent defined quantities, but a linear level of
characteristics or performance from very poor (center of the radar plot) to excellent.
Points are awarded based on actual system parameters and after comparing or ranking
the approaches against each other. Subsequently, the details of this comparative analysis
of systems and approaches are given in addition to the respective visualization.

A.1 Analysis of Radio-in-the-Loop Solutions

Chip Radio-in-the-Loop Software Radio-in-the-Loop

Performance (3) sufficient for most scenarios (5) beyond most specifications
Flexibility (4) replaceable HW, node operat-

ing system config
(5) configurable HW parameters

and transceiver SW
Configurability (3) PHY attributes/parameters

according to the platform
(5) all PHY attributes and pa-

rameters
Affordability (5) low cost transceivers possible (3) usually expensive
Accuracy (6) testbed-like high accuracy (4) mid-high (not adapted to at-

tributes in specification)

Performance - (1) insufficient, (2) bad, (3) sufficient, (4) good, (5) very good, (6) unlimited
Flexibility - (1) no, (2) replace SW, (3) SW conf, (4) replace HW, (5) HW/SW conf, (6) adjust HW
Configurability - (1) no, (2) PHY attributes, (3) PHY params, (4) switch PHY, (5) adjust PHY, (6) all
Affordability - (1) cost-blasting, (2) very expensive, (3) expensive, (4) affordable, (5) low, (6) very low

Accuracy - (1) unusable, (2) low-mid, (3) mid, (4) mid-high, (5) high, (6) testbed-like

Table A.1: Analysis of Radio-in-the-Loop solutions, according to Figure 6.13

157

A Analysis and Discussion Details

A.2 Analysis of Radio Link Emulation Systems

Ju
ng

et
al

.[
11

1]
Lu

dw
ig

et
al

.[
11

5]
B

es
ha

y
et

al
.[

11
2]

B
eu

ra
n

et
al

.[
11

3]
El

sn
er

et
al

.[
11

4]

Sc
al

ab
ili

ty
(1

)
ex

ac
t

se
tu

p
w

ith
4

no
de

s
(5

)
10

00
no

de
s

(4
)

po
te

nt
ia

lly
hu

nd
re

ds
(6

)
la

rg
e-

sc
al

e
(b

ey
on

d
10

00
)

(1
)

ex
ac

t
se

tu
p

w
ith

4
no

de
s

M
ob

ili
ty

(4
)

at
te

nu
at

io
n-

ba
se

d
(4

)
at

te
nu

at
io

n-
ba

se
d

(5
)

m
ob

ili
ty

pa
tt

er
ns

(5
)

m
ob

ili
ty

pa
tt

er
ns

(3
)

po
te

nt
ia

lly
,n

ot
de

fin
ed

M
od

ul
ar

ity
(2

)
in

di
vi

du
al

te
st

be
d

(5
)

m
od

ul
ar

H
W

in
st

al
la

tio
n,

fr
am

ew
or

k

(5
)

H
W

fr
am

ew
or

k
(6

)
te

st
be

d
fr

am
e-

w
or

k
(5

)
H

W
/S

W
fr

am
ew

or
k

C
on

fig
ur

ab
ili

ty
(1

)
m

an
ua

ls
et

up
(5

)
em

ul
at

io
n

co
n-

tr
ol

ba
ck

en
d

(4
)

SW
w

ith
co

n-
tr

ol
G

U
I

(5
)

te
st

be
d

co
nt

ro
l

ba
ck

en
d

(4
)

SW
w

ith
co

n-
tr

ol
G

U
I

Tr
ac

ea
bi

lit
y

(1
)

no
au

to
m

at
ed

tr
ac

in
g

(5
)

fu
ll

ha
rd

w
ar

e
an

d
R

F
m

on
i-

to
rin

g

(4
)

st
at

us
m

on
ito

r-
in

g
(4

)
te

st
be

d
no

de
m

on
ito

rin
g

(4
)

SW
no

de
m

on
-

ito
rin

g

A
cc

ur
ac

y
(6

)
re

al
de

vi
ce

s,
ex

ac
t

se
tu

p
(5

)
re

al
de

vi
ce

s,
em

ul
at

ed
R

F
(4

)
re

al
de

vi
ce

s,
ch

an
ne

ls
im

(2
)

m
od

el
-b

as
ed

,
ab

st
ra

ct
ed

(4
)

pr
op

ag
at

io
n

sim
ul

at
io

n
Is

ol
at

io
n

(5
)

co
ax

co
nn

ec
te

d
an

d
sh

ie
ld

ed
(4

)
co

ax
co

nn
ec

te
d

(4
)

co
ax

co
nn

ec
te

d
(5

)
di

st
ur

be
d

on
te

st
be

d
LA

N
(6

)
fu

ll
vi

rt
ua

l

Pr
op

er
tie

s
sc

al
e

-
(1

)
fix

ed
/n

o/
lo

w,
(2

)
lo

w-
m

id
,(

3)
m

id
,(

4)
m

id
-h

ig
h,

(5
)

hi
gh

,(
6)

ve
ry

hi
gh

/f
ul

l/
ar

bi
tr

ar
y

Table A.2: Analysis of radio link emulation systems, according to Figure 3.3

158

A.3 Analysis of HIL and Co-Simulation Approaches

A.3 Analysis of HIL and Co-Simulation Approaches

Zh
an

g
et

al
.[

14
2]

W
ei

ng
är

tn
er

et
al

.[
14

0]
U

nt
er

sc
hü

tz
et

al
.[

14
1]

W
eh

ne
r

et
al

.[
14

3]

Sc
al

ab
ili

ty
(4

)
hu

nd
re

ds
of

no
de

s,
bu

t
tim

e
in

cr
ea

se
s

w
he

n
us

in
g

co
-s

im
no

de
s

(6
)

th
eo

re
tic

al
ly

un
lim

-
ite

d
(e

xp
er

im
en

ts
w

ith
15

,0
00

)

(4
)

ap
pr

ox
.1

00
no

de
s

(2
)

lim
ite

d
to

th
e

ga
te

-
w

ay
sc

en
ar

io

M
ob

ili
ty

(3
)

no
t

sp
ec

ifi
ed

,p
ot

en
-

tia
lly

w
ith

T
O

SS
IM

ch
an

ne
lm

od
el

(5
)

no
t

sp
ec

ifi
ed

,p
ot

en
-

tia
lly

pu
re

vi
rt

ua
li

n
ns

-2
/n

s-
3

(5
)

si
m

ul
at

io
n

m
od

el
-

ba
se

d
vi

rt
ua

l
m

ob
ili

ty

(2
)

m
an

ua
l,

fie
ld

te
st

C
on

fig
ur

ab
ili

ty
(3

)
on

ly
T

in
yO

S,
re

al
co

de
/n

o
m

od
el

ba
se

d
ad

ju
st

m
en

ts

(4
)

m
od

ul
ar

fo
r

lin
k

la
ye

r,
sp

ec
ifi

c
fo

r
ho

st
pr

ot
oc

ol
st

ac
k

(4
)

on
ly

fo
r

C
om

et
O

S
im

pl
em

en
ta

tio
ns

(3
)

pr
op

re
ita

ry
fix

ed
,

ge
ne

ri
c

si
m

ul
at

io
n

in
te

rf
ac

es
Tr

ac
ea

bi
lit

y
(5

)
sim

la
tio

n/
em

ul
at

io
n

ev
en

ts
,

no
t

fo
r

hi
gh

er
la

ye
rs

(4
)

sim
ul

at
io

n
ev

en
ts

fo
r

M
AC

/P
H

Y
/c

ha
nn

el
,

st
ac

k/
pa

ck
et

tr
ac

e,
no

t
fo

r
hi

gh
er

la
ye

rs

(4
)

si
m

ul
at

io
n

ev
en

ts
,

no
t

fo
r

re
al

no
de

s
(2

)
sim

ul
at

io
n

ev
en

ts
fo

r
co

m
m

un
ic

at
io

n
lin

k,
no

t
fo

r
re

al
no

de
s

A
cc

ur
ac

y
(5

)
re

al
co

de
,

tr
an

sc
ei

ve
r

ch
ip

&
ch

an
ne

lm
od

el

(4
)

re
al

pr
ot

oc
ol

s,
m

od
el

ba
se

d
ch

an
-

ne
l

(5
)

re
al

co
de

(3
)

re
al

ha
rd

w
ar

e
an

d
co

de
,

no
ch

an
ne

l
m

od
el

Sc
al

ab
ili

ty
-

(1
)

no
,(

2)
fe

w
no

de
s,

(3
)

do
ze

ns
,(

4)
hu

nd
re

ds
,(

5)
th

ou
sa

nd
s,

(6
)

un
lim

ite
d

M
ob

ili
ty

-
(1

)
no

,(
2)

vi
rt

ua
le

as
y,

(3
)

vi
rt

ua
le

nh
an

ce
d,

(4
)

vi
rt

ua
lc

om
pl

ex
,(

5)
hw

ea
sy

,(
6)

hw
en

ha
nc

ed
C

on
fig

ur
ab

ili
ty

-
(1

)
no

,(
2)

si
m

u
pa

ra
m

,(
3)

si
m

u
m

od
el

s,
(4

)
em

u
pa

ra
m

,(
5)

em
u

m
od

el
s,

(6
)

m
od

el
in

de
pe

nd
en

t
Tr

ac
ea

bi
lit

y
-

(1
)

no
,(

2)
si

m
u

sp
ec

ifi
c,

(3
)

si
m

u
m

od
el

,(
4)

si
m

u
in

si
gh

t,
(5

)
em

u
pa

ck
et

tr
ac

e,
(6

)
si

m
u

&
em

u
st

ac
k

A
cc

ur
ac

y
-

(1
)

lo
w,

(2
)

lo
w-

m
id

,(
3)

m
id

,(
4)

m
id

-h
ig

h,
(5

)
hi

gh
,(

6)
te

st
be

d-
lik

e

Table A.3: Analysis of HIL and co-simulation approaches, according to Figure 4.3

159

A Analysis and Discussion Details

M
itt

ag
et

al
.[

52
]

O
be

rm
ai

er
et

al
.[

14
5]

D
in

g
et

al
.[

12
4]

Sp
lit

-P
ro

to
co

l-S
ta

ck

Sc
al

ab
ili

ty
(4

)
hu

nd
re

ds
of

no
de

s
(1

)
sin

gl
e

ga
te

w
ay

no
de

(2
)

no
t

m
ea

su
re

d
(lo

w
sc

al
e

te
st

s
w

ith
3

no
de

s)

(5
)

10
00

,
e.

g.
,

ac
co

rd
-

in
g

to
Ro

Se
N

et
ha

rd
-

w
ar

e
M

ob
ili

ty
(2

)
no

t
sp

ec
ifi

ed
,p

ot
en

-
tia

lly
ba

se
d

on
th

e
ch

an
ne

lm
od

el

(3
)

m
ob

ili
ty

m
od

el
fo

r
sim

,n
o

fo
r

re
al

(5
)

an
al

og
bu

t
on

ly
at

-
te

nu
at

io
n

ba
se

d
(5

)
at

te
nu

at
io

n-
ba

se
d,

si
m

ul
at

io
n-

dr
iv

en

C
on

fig
ur

ab
ili

ty
(4

)
m

od
ul

ar
bu

ts
pe

ci
fic

(3
)

sp
ec

ifi
c

in
te

rm
s

of
si

m
ul

at
io

n
m

od
el

s
an

d
re

al
co

m
m

un
ic

a-
tio

n

(3
)

m
od

ul
ar

bu
ts

pe
ci

fic
to

ra
di

o
lin

k,
un

-
kn

ow
n

fo
r

pr
ot

oc
ol

s

(5
)

m
od

ul
ar

em
ul

at
io

n
co

nt
ro

l,
si

m
ul

at
io

n
m

od
el

s

Tr
ac

ea
bi

lit
y

(5
)

si
m

ul
at

io
n

ev
en

ts
,

P
H

Y
/c

ha
nn

el
pe

rf
or

m
an

ce
pa

ra
m

-
et

er
s

(4
)

sim
ul

at
io

n
ev

en
ts

(3
)

sp
ec

ifi
c

pe
rf

or
m

an
ce

pa
ra

m
et

er
s

(6
)

si
m

ul
at

io
n

ev
en

ts
,

no
de

ha
rd

wa
re

,
an

d
R

F
ch

an
ne

l

A
cc

ur
ac

y
(5

)
P

H
Y

m
od

ul
at

io
n

sim
ul

at
io

n
(5

)
at

te
nu

at
io

n-
ba

se
d

em
ul

at
ed

ra
di

o
lin

k,
hi

gh
er

-la
ye

r
pr

ot
oc

ol
sim

ul
at

io
n

(4
)

ra
di

o
in

te
rf

ac
e

an
d

ch
an

ne
l,

no
hi

gh
er

-
la

ye
r

pr
ot

oc
ol

si
m

u-
la

tio
n

(5
)

at
te

nu
at

io
n-

ba
se

d
em

ul
at

ed
ra

di
o

lin
k,

hi
gh

er
-la

ye
r

pr
ot

oc
ol

si
m

ul
at

io
n

Sc
al

ab
ili

ty
-

(1
)

no
,(

2)
fe

w
no

de
s,

(3
)

do
ze

ns
,(

4)
hu

nd
re

ds
,(

5)
th

ou
sa

nd
s,

(6
)

un
lim

ite
d

M
ob

ili
ty

-
(1

)
no

,(
2)

vi
rt

ua
le

as
y,

(3
)

vi
rt

ua
le

nh
an

ce
d,

(4
)

vi
rt

ua
lc

om
pl

ex
,(

5)
hw

ea
sy

,(
6)

hw
en

ha
nc

ed
C

on
fig

ur
ab

ili
ty

-
(1

)
no

,(
2)

si
m

u
pa

ra
m

,(
3)

si
m

u
m

od
el

s,
(4

)
em

u
pa

ra
m

,(
5)

em
u

m
od

el
s,

(6
)

m
od

el
in

de
pe

nd
en

t
Tr

ac
ea

bi
lit

y
-

(1
)

no
,(

2)
si

m
u

sp
ec

ifi
c,

(3
)

si
m

u
m

od
el

,(
4)

si
m

u
in

si
gh

t,
(5

)
em

u
pa

ck
et

tr
ac

e,
(6

)
si

m
u

&
em

u
st

ac
k

A
cc

ur
ac

y
-

(1
)

lo
w,

(2
)

lo
w-

m
id

,(
3)

m
id

,(
4)

m
id

-h
ig

h,
(5

)
hi

gh
,(

6)
te

st
be

d-
lik

e

Table A.4: Analysis of HIL and co-simulation approaches, according to Figure 4.4

160

B OMNeT++/INET Overview

OMNeT++ [48] (Objective Modular Network Testbed in C++) is basically a generic
simulation framework for research and development of complex distributed systems
with a rapidly growing scientific community and a long period of active development.
Many extensions, frameworks, and simulation models became available, most of them
open-source, particularly for communication network areas, e.g., internet protocols,
wireless networks, WSNs, mobile ad-hoc and mesh networks, or vehicular networks. On
of the largest model framework in this context is INET, which provides communication
protocols, network devices, algorithmic models, and data structures.

The C++ DES kernel provides support and gives a structure to model simulation com-
ponents following the event scheduling approach. It permits to parametrize models, add
and control random numbers, collect statistical results, support graphics and animations
GUI , and much more. Unlike many other network simulators with often fixed software,
OMNeT++ features a generic component architecture that allows the model builder to
decide how network nodes, interfaces, protocols, and applications are aligned to form an
overall simulation model component. This also allows components to be used as libraries
or framework for different scenarios.

B.1 Simulation Architecture and Components

The component model of OMNeT++ (cp. [48, Sec. 1.3]) consists of four key components:
simple and compound modules, parameters, and connections. A dynamic simulation model
consists of active C++ modules that communicate with each other by passing messages.
In network simulation, simple modules are, for example, traffic sources/sinks, protocol
entities, routing tables, or parameter control algorithms, while compound modules are
assembled from simple modules, e.g., host nodes or network routers (ref. Figure 2.7a
in Subsection 2.3.2). Modules can have parameters, initialized with default values, to
provide configuration data for a unique simulation run. This parameters that may also
be random to pass stochastic input to modules can be defined for all modules in one
single configuration file (omnetpp.ini) for reproducible simulation runs.

Messages are exchanged between modules over their connections, and they may contain
arbitrary data in addition to predefined attributes such as timestamps. A small and
compact message definition language (*.msg) is used to define custom message types
that can consider, for instance, header parameters or any payload data like PDUs in

161

B OMNeT++/INET Overview

communication protocols. The modules are equipped with gates for message input and
output to enable a connection to another module. Because of the hierarchical structuring,
messages typically travel through a chain of connections, where properties, such as
propagation delay, data rate, and bit error rate can be assigned each. To specify the
modules and their connections in a topology of the entire simulation network, OMNeT++
uses a separate network description language (*.ned).

B.2 Creating, Building, and Running Simulations

For the modeling of wireless communication systems, for example, the INET framework
provides a multitude of simulation models for upper layer protocols and of models for
nodes, devices, applications, and many more (cp. [48, Ch. 2] for a detailed overview of
the framework ecosystem). When creating a simulation, the user has to edit the network
definition that models the topology of the network and to parametrize the simulation
with configuration parameters. For example, also the scheduler class can be defined in
the simulation configuration file, which is fundamental different when running real-time
DES (ref. Section 2.1.3). In [48, Fig. 2.2, p. 60] there is an example of how components
of a communication system, especially the protocols and applications, are connected to
each other.

The software for OMNeT++ simulations is compiled and built using a Makefile which
lists the dependencies between all files (e.g., modules and message definitions), and
instructions about simulation libraries to include in the simulation program. Once a
simulation has been built, it can be executed by taking the configuration parameters
(omnetpp.ini) and network definitions (*.ned) for setting up the simulation run (cp. [48,
Ch. 1] for further reading). A detailed overview about the module development of and the
process of assembling and and running simulations, as well as the OMNeT++ ecosystem
can be found in [48]. In Figure B.1 a basic overview of building and running a simulation
in OMNeT++ is shown.

*.msg files

*.ned filesC++ module
sources

omnetpp.iniopp_msgc
(msg compiler) *_m.cc/h files

Simulation
Program Result FilesSimulation Kernel and

User Interface Libraries Compiling and Linking Running

Figure B.1: Overview of building and running a simulation in OMNeT++

162

C Implementation and Configuration Details

Subsequently, selected implementation and configuration details are highlighted according
to major components of the SEmulate prototype and the evaluation levels of the Split-
Protocol-Stack using short excerpts. The complete source code of the software components,
as well as configuration files, measurement results, and automation scripts are provided
with the repositories as specified.

C.1 OMNeT++

/** init buffer from pcap block message event */
EPB *epb = check_and_cast<EPB *>(msg);
Buffer b(pcapBlock, epb->getDataArraySize());

/** deserialize sdu header and encapsulated pdu */
psdu *sdu = check_and_cast<psdu *>((IEEE802154Serializer().deserializeSDU(b)));
mpdu *pdu = check_and_cast<mpdu *>((IEEE802154Serializer().deserialize(b)));
sdu->encapsulate(pdu);

/** get corresponding node's virtual phy submodule and send to it */
cModule *mod = simulation.getModule(interfaceTable[epb->getInterface()]);
cModule *phy = mod->getSubmodule("NIC")->getSubmodule("PHY");
sendDirect(sdu, phy, "inFromExt");

Listing C.1: Exemplary deserialization of a PD DataIndication from an incoming external
EPB in OMNeT++

85 void IEEE802154ExtPhy::handleMessage(cMessage *msg)
86 {
87 if (msg->arrivedOn("PLME_SAP")) { // --> Message arrived from MAC over PLME
88 switch (mappedUpperLayerMsgTypes[msg->getName()]) // --> Management Requests
89 {
90 case SETTRXSTATE: {
91 // instruct external PHY to set the TRX state
92 sendDirect(msg, simulation.getModule(extInterfaceID), "inDirect");
93 break;
94 }

Listing C.2: External PHY event handling - excerpt from IEEE802154ExtPhy.cc

163

C Implementation and Configuration Details

The following listings C.3 and C.4 depict details of our Real-Time-Shift enhancements,
introducing new core event types pause and resume.

340 if (msg->getKind()==msgKindPauseEvent) {
341 // let all modules wait for delay timeval
342 delayScheduledMessages(SimTime(delayEventsMs, SIMTIME_MS));
343 paused = true;
344 } else if (msg->getKind()==msgKindResumeEvent) {
345 // shift the simulation time back and reset the events
346 sim->setSimTime(sim->getSimTime()-SimTime(delayEventsMs, SIMTIME_MS));
347 // reset the event delay
348 resetDelayedMessages();
349 paused = false;
350 }

Listing C.3: Real-Time-Shift synchronization event scheduling - excerpt from
*getNextEvent() in RealTimeShiftScheduler.cc

94 void RealTimeShiftScheduler::delayScheduledMessages(simtime_t time)
95 {
96 // add time offset for all events except pause/resume and remember in

delayMessages
97 for (cMessageHeap::Iterator it(sim->msgQueue); !it.end(); it++) {
98 cMessage *msg = it();
99 if(msg->getKind()!=msgKindPauseEvent && msg->getKind()!=msgKindResumeEvent) {

100 if (msg->getArrivalTime() < sim->getSimTime() + time) {
101 // remember arrival time
102 msg->setTimestamp(msg->getArrivalTime());
103 msg->setArrival(msg->getArrivalModule(), msg->getArrivalGateId(), msg->

getArrivalTime() + time);
104 delayMessages.insert({msg->getId(), msg});
105 }
106 }
107 }
108 }
109

110 void RealTimeShiftScheduler::resetDelayedMessages()
111 {
112 for (auto it=delayMessages.begin(); it != delayMessages.end(); ++it) {
113 cMessage *msg = it->second;
114 msg->setArrival(msg->getArrivalModule(), msg->getArrivalGateId(), msg->

getTimestamp());
115 }
116 delayMessages.clear();
117 }

Listing C.4: Real-Time-Shift scheduler event shift procedures - excerpt from
RealTimeShiftScheduler.cc

164

C.1 OMNeT++

C.1.1 Scenario Configuration

As an example reference scenario for the feasibility studies, we choose the PAN start
based on an active channel scan [9, pp. 217ff]. Furthermore, various configuration and
scenario examples are provided with the IEEE 802.15.4 model implementation [96]1.

[General]

scheduler-class = "RealTimeShiftScheduler"

.IEEE802154Nodes[].Network.stdLLC.PANId = 7
.IEEE802154Nodes[].NIC.MAC.IEEE802154Mac.defChann = 25
.IEEE802154Nodes[].NIC.MAC.IEEE802154Mac.isFFD = true
.IEEE802154Nodes[].NIC.PHY.CCAMode = 1
.IEEE802154Nodes[].NIC.PHY.transmitPower = 1
.IEEE802154Nodes[].NIC.PHY.currentChannel = 25 # 2475 MHz
.IEEE802154Nodes[].mobilityType = "StationaryMobility" # no mobility model

network = ieee802154.simulations.net

###--------- Scenario: Single FFD starting a WPAN ---------###
One single and static IEEE 802.15.4 Host
Single host is starting on the communication channel,
searches for other nodes and starts a WPAN
Scenario to test out correct WPAN starting procedure
CAP transmission for beacon-enabled PAN
Beacon Order = 6 -> Beacon Interval 61440 Symbols = 983.04ms
Superframe Order = 6 -> Superframe Duration 61440 Symbols = 983.04ms
Duty Cycle = 100.00 %
###---###
[Config StartWPAN-1Node_Starting_WPAN]

sim-time-limit = 10s # enough time to run through the startup process
*.numHosts=1

*.IEEE802154Nodes[0].application.protocol = 1
*.IEEE802154Nodes[0].application.sendInterval = 1s
*.IEEE802154Nodes[0].mobility.initialX = 200m
*.IEEE802154Nodes[0].mobility.initialY = 200m
*.IEEE802154Nodes[0].mobility.initialZ = 0m

Listing C.5: OMNeT++ scenario config - excerpt from omnetpp.ini/scenarios.ini

1 IEEE802154: https://git.informatik.tu-cottbus.de/boehmse1/IEEE802154INET-Standalone

165

https://git.informatik.tu-cottbus.de/boehmse1/IEEE802154INET-Standalone

C Implementation and Configuration Details

C.1.2 Cross-layer Optimization Scenario

138 void trafficgen::handleMessage(cMessage *msg)
139 {
140 if (mappedMsgTypes[msg->getName()]==GETCONFPPIB) {
141

142 GetPPIBConfirm *conf=check_and_cast<GetPPIBConfirm*>(msg);
143 lqi=conf->getPIBLQI();
144 rxGain=conf->getPIBrxgain();
145 ED=conf->getPIBsignalstrength();
146

147 lqihist.collect(lqi);
148 lqivec.record(lqi);
149 EDhist.collect(ED);
150 EDvec.record(ED);
151 rxgainhist.collect(rxGain);
152 rxgainvec.record(rxGain);
153

154 if(conf->getPIBLQI()==255) {
155 std::cout<<"RX gain = "<< rxGain<<std::endl;
156 SetRequest* PhyPIBSet=new SetRequest("PLME-SET.request");
157 PhyPIBSet->setPIBattr(rxgain);
158

159 if(rxGain<=51) PhyPIBSet->setValue(rxGain-1);
160 else if(rxGain<=65) PhyPIBSet->setValue(rxGain-2);
161 else if(rxGain<=115) PhyPIBSet->setValue(rxGain-5);
162

163 sendDirect(PhyPIBSet,simulation.getModule(ppibID), "inDirect");
164

165 }
166 if(lqi<255){
167 SetRequest* PhyPIBSet=new SetRequest("PLME-SET.request");
168 PhyPIBSet->setPIBattr(rxgain);
169

170 if(ED<252){
171 if(rxGain<=51) PhyPIBSet->setValue(rxGain+1);
172 else if(rxGain<=65) PhyPIBSet->setValue(rxGain+2);
173 else if(rxGain<=115) PhyPIBSet->setValue(rxGain+5);
174 } else {
175 if(rxGain<=51) PhyPIBSet->setValue(rxGain-1);
176 else if(rxGain<=65) PhyPIBSet->setValue(rxGain-2);
177 else if(rxGain<=115) PhyPIBSet->setValue(rxGain-5);
178 }
179

180 sendDirect(PhyPIBSet,simulation.getModule(ppibID), "inDirect");
181 }

Listing C.6: Cross-layer optimization event handling - excerpt from trafficgen.cc

166

C.2 SEmulate Backend

C.2 SEmulate Backend

C.2.1 Radio-in-the-Loop Event Stream Forwarder

In contrast to the scheduler in OMNeT++, the ESF scheduling processes the emulated
events to the corresponding real-world radio hardware, according to the shifted high
resolution timestamp.

398 void TimedTerminalForwarder::getNextEvent() {
399 std::chrono::time_point<std::chrono::high_resolution_clock> ts_now;
400

401 while (this->run) {
402 if (sim_start) {
403 // dequeue element
404 auto next = this->queue.dequeue();
405

406 if ((next.type != EVENT_SHIFT) && (next.type != EVENT_EMULATED)) {
407 throw std::runtime_error("Invalid Event Type in FES: " + std::string(

eventTypeToString(next.type)));
408 }
409

410 // get simulation time
411 ts_now = clock.simTime();
412

413 logEventProcessing(ts_now, &next, EVENT_LOG_DEQUEUE);
414

415 // wait until time arrives
416 if (next.time > ts_now) {
417 if (waitUntil(next.time)){
418 // mutex locked time accurate event processing
419 processEvent(ts_now, &next, true);
420 logEventProcessing(ts_now, &next, EVENT_LOG_PROCESS);
421 }
422 else
423 Logger::moduleLog(dmodule, "ERROR: waitUntil.");
424 } else {
425 processEvent(ts_now, &next, true);
426 logEventProcessing(ts_now, &next, EVENT_LOG_PROCESS);
427 Logger::moduleLog(dmodule, "WARNING: time is behind execution!");
428 }
429

430 delete[](next.pcap_data);
431 }
432 }
433 }

Listing C.7: Event Stream Forwarder scheduler thread main routine - excerpt from
TimedTerminalForwarder.cpp

167

C Implementation and Configuration Details

C.2.2 Radio-in-the-Loop Transceiver Implementation

252 PROCESS_THREAD(transceiver_init, ev, data)
253 {
254 static pcapng_enhanced_packet_block_s packet;
255 static PHY_msg msg;
256 static uint8_t packetCounter = 0;
257

258 PROCESS_BEGIN();
259

260 /* init module */
261 initialize();
262

263 /* wait for packet input */
264 while (1) {
265 packetCounter++;
266 memset(&packet, 0, sizeof(packet));
267 memset(&msg, 0, sizeof(msg));
268 PROCESS_WAIT_EVENT_UNTIL(ev == pcapng_event_epb);
269 pcapng_line_read_epb((uint8_t *)data, &packet);
270 /* deserialize and handle encapsulated message */
271 deserialize_msg((uint8_t *)data + sizeof(pcapng_block_header_s) + sizeof(

pcapng_enhanced_packet_block_s), &msg);
272 handleMessage(&msg);
273 }
274

275 PROCESS_END();
276 }

Listing C.8: Nodes transceiver process in Contiki - excerpt from transceiver.c

#define NETSTACK_CONF_NETWORK nullnet_driver
#define NETSTACK_CONF_MAC nullmac_driver
#define NETSTACK_CONF_RDC transceiver_rdc_driver
#define NETSTACK_CONF_RADIO rf230_driver
#define CHANNEL_802_15_4 26

#define RF230_MAX_TX_POWER 15
#define RF230_MIN_RX_POWER 30
#define RF230_MAX_ED_THRESHOLD 15
#define RF230_CONF_AUTOACK 0
#define RF230_CONF_RX_BUFFERS 3

Listing C.9: Netstack and driver configuration in Contiki - excerpt from contiki-conf.h

168

C.2 SEmulate Backend

296 void *transceiver_main_thread(void *data)
297 {
298 static pcapng_enhanced_packet_block_s epb;
299 static PHY_msg phy_msg;
300 static uint8_t packetCounter = 0;
301

302 while (1) {
303 msg_t msg;
304 uart_event_msg_t *block_event;
305

306 /** wait for packet input */
307 msg_receive(&msg);
308 block_event = (uart_event_msg_t *)msg.content.ptr;
309 packetCounter++;
310

311 switch (block_event->type) {
312 case PCAPNG_BLOCK_TYPE_EPB:
313 memset(&epb, 0, sizeof(epb));
314 memset(&phy_msg, 0, sizeof(phy_msg));
315 uart_pcap_read_epb(block_event->data, &epb);
316 /* deserialize and handle encapsulated message */
317 deserialize_msg(block_event->data + sizeof(pcapng_block_header_s) +

sizeof(pcapng_enhanced_packet_block_s), &phy_msg);
318 handleMessage(&phy_msg);
319 break;
320 }
321 }
322

323 return NULL;
324 }
325

326 int main(void)
327 {
328 puts("IEEE 802.15.4 Serial PHY Transceiver.");
329

330 /** create transceiver main thread */
331 transceiver_pid = thread_create(transceiver_thread_stack, sizeof(

transceiver_thread_stack), THREAD_PRIORITY_MAIN - 2, THREAD_CREATE_SLEEPING,
transceiver_main_thread, NULL, "transceiver");

332

333 /** initialize uart pcap interface */
334 interface_init();
335

336 /** start main thread */
337 thread_wakeup(transceiver_pid);
338

339 return 0;
340 }

Listing C.10: Nodes transceiver process in RIOT - excerpt from main.c

169

C Implementation and Configuration Details

C.2.3 Prototype Configuration

{
"panels": [
{
"name": "Pnl-5",
"IPAddress": "192.168.0.245",
"MACId": "11.22.33.44.55.66",
"id": 500,
"chainNumber": 0,
"chainPos": 0,
"nodes": [
{
"name": "Node-0",
"id": 501,
"slot": 0,
"type": "RCB128RFA1"

},
{
"name": "Node-1",
"id": 502,
"slot": 1,
"type": "RCB128RFA1"

},
{
"name": "Node-2",
"id": 503,
"slot": 2,
"type": "RCB128RFA1"

},
{
"name": "Node-3",
"id": 504,
"slot": 3,
"type": "RCB128RFA1"

Listing (C.11) SEmulate RF network - excerpt
from network.json

{
"radio": {
"protocol": "802154",
"hfband": 2400,
"channel": 24

},
"devices": {
"panels": [
{
"id": 500,
"attenuation": 1.0

},
{
"id": 600,
"attenuation": 11.0

},
{
"id": 700,
"attenuation": 1.0

}
],
"nodes": [
{
"id": 501,
"type": "RCB128RFA1",
"range": 50,
"y": 48.5,
"x": 21,
"serial": {
"baud": "57600",
"parameter": "8N1"

},
"firmware": "transceiver.hex",

Listing (C.12) SEmulate scenario allocation -
excerpt from scenario.json

from AttenuationGraph import NetworkAttenuationGraph, ScenarioAttenuationGraph,
ScenarioAllocationGraph

scenario = ScenarioAttenuationGraph('scenario.json')
network = NetworkAttenuationGraph('network.json', 'nodes.json')
allocation = ScenarioAllocationGraph(network, scenario)

Listing C.13: Exemplary main Python script for generating the allocation based on
scenario and RF network configuration files - allocateNodes.py

170

C.2 SEmulate Backend

Description

cmdSetVcc Sets the supply voltage for the radio nodes of a panel.
cmdSetPowerState Switches radio nodes on or off (node individually or

simultaneously for all nodes).
cmdGetDutCurrent Provides the actual current consumption of a radio

node (energy monitoring).
cmdSetAttenuation Sets the insertion loss of the panel into the chain

(steps: 1, 3, 11, 21, and 31 dB).
cmdSetGpioConfig Configures the available General Purpose Input Out-

puts (GPIOs) per node slot.
cmdSetGpio Switches the GPIO states between LOW or HIGH,

e.g., for emulating external sensors.
cmdSetSerialParameter Configures the serial interface parameters between

the panel and the radio module.
cmdSendTransparentData Sends arbitrary binary data to one or more radio

nodes (emulation of radio data transmissions, RIL
communication).

Table C.1: Selected emulation hardware commands and descriptions

Figure C.2: Prototype of a Web-based radio emulation scenario configuration in SEmulate

171

D Technologies, Protocols, and Standards

“The nice thing about standards is that you have so many to choose from.
Furthermore, if you do not like any of them, you can just wait for next year’s
model.”

Andrew S. Tanenbaum

BAUD

BAUD is the defacto standard unit of measurement of symbol or modulation rate
to determine the communication speed over a data channel. It is defined as the
number of symbol changes per second or pulses per second. If there are only two
symbols (0 and 1), then BAUD and bit s−1 are equivalent.

Bluetooth LE

Bluetooth Low Energy (LE), BLE is a proprietary low-power radio technology for
the IoT . It operates in the 2.4GHz ISM band based on Frequency Shift Keying
(FSK) modulation using a Time Division Multiple Access (TDMA) frequency
hopping MAC . The Bluetooth stack defines the OSI layers 1-2 and higher layer
host components. The full specification including the link layer is defined by the
Bluetooth SIG.

DECT ULE

DECT ULE is an international open standard for low-power wireless home automa-
tion. It operates around the 1.9GHz based on FSK modulation using Frequency
Division Multiple Access (FDMA) and TDMA MAC . The protocol architecture
defines the OSI layers 1-3. The link layer technology and protocol architecture is
standardized in ETSI TS 102 939 [14].

EnOcean

EnOcean is a proprietary ultra-low-power wireless technology featuring a self-
sufficient power supply with energy harvesting for wireless home and building
automation. It operates in the license-free sub-GHz ISM band based on ASK
and FSK modulation. The protocol architecture defines the OSI layers 1-3 and
equipment profiles on the higher layers. The link layer technology and protocol
architecture is standardized in ISO/IEC 14543-3-10 [8].

173

D Technologies, Protocols, and Standards

GNU Radio

GNU Radio is an open-source framework for development of SDR systems on
general-purpose host systems. This streaming system provides a graphical devel-
opment environment with a variety of blocks interconnected in flow graphs for
complex signal processing, and interfaces to state-of-the-art wireless hardware.

IEEE 802.15.4

IEEE 802.15.4 is an open short range link layer protocol standard that has in
particular shaped WSNs and the IoT from the very beginning. The protocol
architecture defines the OSI layers 1-2. The spread of related technologies and
communication protocols of this pre-dominant technology is exemplary given with
the explanations for Figure 1.2. The full link layer specification for LR-WPAN is
standardized by the IEEE (e.g., in [9]).

ISA100.11a

ISA100.11a designates a WSN technology and protocol stack for time-synchronized
mesh architectures in industrial wireless automation. It operates in the 2.4GHz
ISM band and defines MAC extensions using IEEE 802.15.4. On the higher layers,
6LoWPAN and UDP are defined. The protocol architecture is standardized in
ANSI/ISA-100.11a-2011 [10].

LoRaWAN

LoRaWAN is a system architecture and communication procedure for the MAC
sublayer in LPWANs. LoRaWAN is used upon the LoRa (long range or low radiation)
PHY Chirp Spread Spectrum (CSS) modulation from Semtech Corporation and
thus defines the OSI layers 1-2. The technical characteristics are specified in ETSI
TR 103 526 [15].

MATLAB/Simulink

MATLAB/Simulink is a proprietary block diagram environment for modeling
and simulation dynamic real-world system behavior. It is often mentioned for
wireless devices design, prototype development, and simulating signal processing
applications, such as SDR.

MIOTY

MIOTY is a LPWAN radio technology standard for the IoT . It operates in the
license-free sub-GHz ISM band based on Ultra-Narrow Band (UNB) Minimum
Shift Keying (MSK) modulation and enables robust transmissions using Telegram
Splitting Multiple Access (TSMA). The MIOTY stack defined the OSI layers 1-2.
The link layer technology and protocol architecture is standardized in ETSI TS
103 357 [16].

174

NB-IoT

Narrowband Internet of Things (NB-IoT) is a LPWAN radio technology standard
for the IoT , developed by the 3rd Generation Partnership Project (3GPP) for
cellular devices and services. NB-IoT operates in multiple licensed frequency
bands based on QPSK and BPSK modulation using FDMA MAC . The protocol
architecture defines the OSI layers 1-3. The specification is part of the ETSI/3GPP
Release 13 [17].

ns-2/ns-3

ns-3 [190] (network simulator version 3) is a C++ and Python based DES system for
computer network simulation, primarily used in communication network research
and teaching. It is the successor simulation framework of ns-2 (with the latest
release version 2.35 in 2011), that is no longer in active development. ns-3 is often
mentioned to be more accurate, because the software architecture is close to Linux
with internal device driver and application interfaces. When looking at embedded,
low-power wireless devices, this advantage has lost much of its practical relevance.

OMNeT

OMNeT++ [48] (Objective Modular Network Testbed in C++) is a generic sim-
ulation framework for research and development of complex distributed systems
with a rapidly growing scientific community and a long period of active devel-
opment. Many extensions, frameworks, and simulation models became available,
most of them open-source, particularly for communication network areas, e.g.,
internet protocols, wireless networks, WSNs, mobile ad-hoc and mesh networks, or
vehicular networks. On of the largest model framework is INET, which provides
communication protocols, network devices, algorithmic models, and data structures.

PCAP

PCAP [158] is the defacto standard for network packet capturing (on the NIC),
processing and visualization. It serves as an API for capturing network traffic. The
operation system specific libraries provide also filtering engines for open-source
and commercial network analysis tools, e.g., Wireshark [191].

RoSeNet

RoSeNet [115] is an abbreviation for a research project with the focus on devel-
opment of methods and procedures for building robust and functionally reliable
wireless sensor-actuator networks. In this thesis context, RoSeNet refers to the
hardware test platform and NET with hardware-based channel emulation capa-
bilities for low-power wireless technologies. It features the analysis of large-scale
WSNs with a size of up to 1000 radio modules.

175

D Technologies, Protocols, and Standards

SEmulate

SEmulate [54] is an abbreviation for a prototype implementation of the novel
evaluation concept, introduced by this thesis, that seamlessly couples protocol
S imulation and radio channel Emulation. Seamlessly coupled here means that
the technology of hardware-based radio channel emulation is integrated into the
network simulation without significantly changing the basic principle of running a
DES scenario. The way the different systems are coupled follows exactly this basic
principle.

Sigfox

Sigfox is a proprietary low-power radio technology for the IoT regarding LPWANs.
It operates in the license-free sub-GHz ISM band based on Ultra-Narrow Band
(UNB) PSK and FSK modulation using a random channel access MAC . The
protocol architecture defines the OSI layers 1-4. The full specification comes from
the SIGFOX S.A..

SmartRF

SmartRF is a proprietary sniffer software from Texas Instruments for wireless
packet capture (on own radio chip hardware) and fundamental analysis (similar to
Wireshark) for Bluetooth LE , IEEE 802.15.4, and ZigBee

Thread

Thread designates a WSN technology and protocol stack for the IoT . It is based
on the IEEE 802.15.4 PHY and MAC and defines the OSI layers 1-4. Thread
integrates the IETF protocols for LLNs, e.g., 6LoWPAN and IPv6, among others.
The protocol architecture is standardized by the Thread Group.

Wi-SUN

Wireless Smart Utility Network (Wi-SUN) is a wireless communication standard
for connectivity of resource constrained devices in smart-grids. The communication
technology is based on the IEEE 802.15.4g PHY and the IEEE 802.15.4e MAC .
The protocol architecture defines the OSI layers 1-4. On the NWK custom profiles
are specified, which focus on the IETF protocols for LLNs, e.g., 6LoWPAN and
RPL, among others. The protocol architecture is standardized by the Wi-SUN
Alliance.

WIA-PA

Wireless Networks for Industrial Automation Process Automation (WIA-PA) is a
protocol architecture for industrial wireless automation. It operates in the 2.4GHz
ISM band and used the IEEE 802.15.4 PHY and MAC with standard Beaconing.
The protocol architecture is standardized in IEC 62601 [11].

176

WirelessHART

WirelessHART designates aWSN technology and protocol stack for time-synchronized
mesh architectures in industrial wireless automation. It operates in the 2.4GHz
ISM band using a TDMA MAC with IEEE 802.15.4. The protocol architecture is
standardized in IEC 62591 [12].

Wireshark

Wireshark [191] is the defacto standard PCAP-based packet sniffer and analyzer
software. It provides analyzing packet headers and payload data for common
protocols covering the whole internet protocol suite and countless proprietary
protocols and technologies. It is easy to extend the analysis for any arbitrary
protocol specification with custom packet dissectors.

Z-Wave

Z-Wave is a proprietary low-power and low-rate wireless technology for wireless
home and building automation. It operates the license-free sub-GHz ISM band
based on a FSK modulation transmitting short control messages within the network.
The protocol architecture defines the OSI layers 1-2 and higher layers (Transfer,
Routing, Application). The link layer technology is standardized in ITU-T G.9959
[13].

ZigBee

ZigBee designates a WSN technology and protocol stack for the IoT and wireless
home automation. It is based on the IEEE 802.15.4 PHY and MAC and defines the
whole communication stack. With the IP extensions (ZigBee IP) it integrates the
IETF protocols for LLNs, e.g., 6LoWPAN and RPL, among others. The protocol
architecture is standardized by the ZigBee Alliance.

177

E Acronyms

3GPP 3rd Generation Partnership Project.
6LoWPAN IPv6 over Low-power s.
6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e.
6top over the mode of 802.15.4e Operation Sublayer.
AD Analog-to-Digital.
ANSI American National Standards Institute.
API Application Programming Interface.
APL Application Layer.
APS Application Support Sub-Layer.
ARQ Automatic Repeat Request.
ASK Amplitude Shift Keying.
BER Bit-Error Rate.
BI Beacon Interval.
BLE Bluetooth Low Energy.
BNC Bayonet Neill–Concelman.
BO Beacon Order.
BPSK Binary Phase-Shift Keying.
CCA Clear Channel Assessment.
CoAP Constrained Application Protocol.
CPU Central Processing Unit.
CR Cognitive Radio.
CRC Cyclic Redundancy Check.
CRSN Cognitive Radio Sensor Network.
CSI Channel State Information.
CSMA-CA Carrier Sense Multiple Access Collision Avoidance.
CTI Cross-Technology Interference.
CTS Continuous Time Simulation.
CTW Conservative Time Window.
DA Digital-to-Analog.
DECT Digital Enhanced Cordless Telecommunications.
DES Discrete Event Simulation.
DLC Data Link Control.
DLL Data Link Layer.
DSME Deterministic and Synchronous Multi-channel Exten-

sion.

179

E Acronyms

DSP Digital Signal Processor.
DSSS Direct Sequence Spread Spectrum.
DUT Device Under Test.
DVR Distance Vector Routing.
ED Energy Detection.
EPB Enhanced Packet Block.
ESF Event Stream Forwarder.
ETSI European Telecommunications Standards Institute.
FDMA Frequency Division Multiple Access.
FEC Forward Error Correction.
FEL Future Event List.
FES Future Event Set.
FIFO First In First Out.
FPGA Field Programmable Gate Array.
FSK Frequency Shift Keying.
GPIO General Purpose Input Output.
GRC GNU Radio Companion.
GTS Guaranteed Time Slot.
GUI Graphical User Interface.
GVT Global Virtual Time.
HAL Hardware Abstraction Layer.
HIL Hardware-in-the-Loop.
ICI Inter-Channel Interference.
IDB Interface Description Block.
IEC International Electrotechnical Commission.
IEEE Institute of Electrical and Electronics Engineers.
IETF Internet Engineering Task Force.
IFS Inter Frame Spacing.
IO Input/Output.
IoT Internet of Things.
IP Internet Protocol.
IPC Inter Process Communication.
IPv6 Internet Protocol version 6.
ISA International Society of Automation.
ISI Inter Symbol Interference.
ISM Industrial, Scientific and Medical.
ISO International Organization for Standardization.
ITU-T International Telecommunication Union - Telecom-

munication Standardization Sector.
JTAG Joint Test Action Group.
L2CAP Logical Link Control and Adaptation Protocol.
LAN Local Area Network.

180

LIFS Long Inter Frame Spacing.
LLC Logical Link Control.
LLN Low-power and Lossy Network.
LoRaWAN Long Range Wide Area Network.
LoS Line-of-Sight.
LP Linear Program.
LPC Local Procedure Call.
LPWAN Low Power Wide Area Network.
LQI Link Quality Indicator.
LR-WPAN Low Rate Wireless Personal Area Network.
MAC Medium Access Control.
MILP Mixed Integer Linear Programming.
MIMO Multiple Input Multiple Output.
MINLP Mixed Integer Non-Linear Programming.
ML Machine Learning.
MPDU Medium Access Control Protocol Data Unit.
MSK Minimum Shift Keying.
NB-IoT Narrowband Internet of Things.
NET Network Emulation Testbed.
NIC Network Interface Controller.
NSC Network Simulation Cradle.
NTP Network Time Protocol.
NWK Network Control Layer.
OFDM Orthogonal Frequency Division Multiplex.
OSI Open Systems Interconnection.
PaaS Platform as a Service.
PAN Personal Area Network.
PCAP Packet Capture.
PD Physical Layer Data Service.
PDES Parallel Discrete Event Simulation.
PDU Protocol Data Unit.
PER Packet Error Rate.
PHY Physical Layer.
PIB Personal Area Network Information Base.
PLME Physical Layer Management Entity.
PPDU Physical Layer Protocol Data Unit.
PSDU Physical Layer Service Data Unit.
PSK Phase-Shift Keying.
PTP Precision Time Protocol.
QoS Quality of Service.
QPSK Quadrature Phase-Shift Keying.
REST Representational State Transfer.

181

E Acronyms

RF Radio Frequency.
RFC Request for Comments.
RIL Radio-in-the-Loop.
RPC Remote Procedure Call.
RPL Routing Protocol for Low-power and Lossy Networks.
RSSI Received Signal Strength Indicator.
RSV Real-time-Shift Vector.
RTT Round Trip Time.
RX Receiving.
SAP Service Access Point.
SDR Software-Defined Radio.
SDU Service Data Unit.
SHB Section Header Block.
SIFS Short Inter Frame Spacing.
SIG Special Interest Group.
SNR Signal-to-Noise-Ratio.
SoC System-on-Chip.
TCP Transmission Control Protocol.
TDMA Time Division Multiple Access.
TR Technical Report.
TS Technical Specification.
TSCH Time Slotted Channel Hopping.
TSMA Telegram Splitting Multiple Access.
TX Transmitting.
UART Universal Asynchronous Receiver and Transmitter.
UDG Unit Disk Graph.
UDP User Datagram Protocol.
UDS Unix Domain Socket.
ULE Ultra Low Energy.
VANET Vehicular Ad Hoc Network.
VM Virtual Machine.
VTB Virtual Testbed.
WAN Wide Area Network.
Wi-SUN Wireless Smart Utility Network.
WLAN Wireless Local Area Network.
WPAN Wireless Personal Area Network.
WSN Wireless Sensor Network.

182

Bibliography

[1] R. Beuran: Introduction to Network Emulation. 1st ed. Pan Stanford Publishing,
Nov. 2012. 426 pp. isbn: 978-9814310918.

[2] A. Nikoukar, S. Raza, A. Poole, M. Gunes, and B. Dezfouli: “Low-Power Wireless
for the Internet of Things: Standards and Applications”. In: IEEE Access 6 (2018),
pp. 67893–67926. doi: 10.1109/access.2018.2879189.

[3] S. Kharb and A. Singhrova: “Review of Industrial Standards for Wireless Sensor
Networks”. In: Next-Generation Networks. Ed. by D. K. Lobiyal, V. Mansotra, and
U. Singh. Singapore: Springer Singapore, 2018, pp. 77–87. isbn: 978-981-10-6005-2.

[4] H. Sharma and S. Sharma: “A Review of Sensor Networks: Technologies and
Applications”. In: 2014 Recent Advances in Engineering and Computational
Sciences (RAECS). 2014, pp. 1–4. doi: 10.1109/RAECS.2014.6799579.

[5] A. Ikpehai et al.: “Low-Power Wide Area Network Technologies for Internet-of-
Things: A Comparative Review”. In: IEEE Internet of Things Journal 6.2 (2019),
pp. 2225–2240. doi: 10.1109/JIOT.2018.2883728.

[6] M. Ahmad, A. Ishtiaq, M. A. Habib, and S. H. Ahmed: “A Review of Internet
of Things (IoT) Connectivity Techniques”. In: Recent Trends and Advances in
Wireless and IoT-enabled Networks. Springer International Publishing, 2019,
pp. 25–36. doi: 10.1007/978-3-319-99966-1_3.

[7] N. Poursafar, M. E. E. Alahi, and S. Mukhopadhyay: “Long-Range Wireless
Technologies for IoT Applications: A Review”. In: 2017 Eleventh International
Conference on Sensing Technology (ICST). IEEE, Dec. 2017. doi: 10.1109/
icsenst.2017.8304507.

[8] ISO Central Secretary: Information technology — Home electronic systems (HES)
architecture — Part 3-10: Wireless short-packet (WSP) protocol optimized for
energy harvesting — Architecture and lower layer protocols. en. Standard ISO/IEC
14543-3-10. Geneva, CH: International Organization for Standardization, 2020.
url: https://www.iso.org/standard/80934.html.

[9] IEEE Standards Association: Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs). IEEE Standards Document - Revision of IEEE Std. 802.15.4™-
2006. The Institute of Electrical and Electronics Engineers, Inc., Sept. 2006.
320 pp. doi: 10.1109/IEEESTD.2006.232110.

183

https://doi.org/10.1109/access.2018.2879189
https://doi.org/10.1109/RAECS.2014.6799579
https://doi.org/10.1109/JIOT.2018.2883728
https://doi.org/10.1007/978-3-319-99966-1_3
https://doi.org/10.1109/icsenst.2017.8304507
https://doi.org/10.1109/icsenst.2017.8304507
https://www.iso.org/standard/80934.html
https://doi.org/10.1109/IEEESTD.2006.232110

Bibliography

[10] ISA: ANSI/ISA-100.11a-2011 Wireless systems for industrial automation: Process
control and related applications. Standard. International Society of Automation,
2011. url: https://www.isa.org/products/ansi-isa-100-11a-2011-
wireless-systems-for-industr.

[11] IEC: Industrial networks - Wireless communication network and communication
profiles - WIA-PA. en. International Standard IEC 62601:2015. Geneva, CH:
International Electrotechnical Commission, 2015. url: https://www.vde-verlag.
de/iec-normen/222404/iec-62601-2015.html.

[12] IEC: Industrial networks - Wireless communication network and communication
profiles - WirelessHART. en. International Standard IEC 62591:2016. Geneva,
CH: International Electrotechnical Commission, 2016. url: https://www.vde-
verlag.de/iec-normen/222660/iec-62591-2016.html.

[13] ITU-T: Short range narrow-band digital radiocommunication transceivers – PHY,
MAC, SAR and LLC layer specifications. Recommendation ITU-T G.9959. Inter-
national Telecommunication Union, 2015. url: https://www.itu.int/rec/T-
REC-G.9959-201501-I.

[14] ETSI: Digital Enhanced Cordless Telecommunications (DECT); Ultra Low En-
ergy (ULE); Machine to Machine Communications; Part 1: Home Automa-
tion Network (phase 1). en. Technical Specification (TS) ETSI TS 102 939-1.
V1.1.1. European Telecommunications Standards Institute, 2015. url: https:
//www.etsi.org/deliver/etsi_ts/102900_102999/10293902/01.01.01_60/
ts_10293902v010101p.pdf.

[15] ETSI: System Reference document (SRdoc);Technical characteristics for Low
Power Wide Area NetworksChirp Spread Spectrum (LPWAN-CSS) operating in
the UHF spectrum below 1 GHz. en. Technical Report (TR) ETSI TS 103 526.
V1.1.1. European Telecommunications Standards Institute, 2018. url: https:
//www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/
tr_103526v010101p.pdf.

[16] ETSI: Short Range Devices; Low Throughput Networks (LTN); Protocols for radio
interface A. en. Technical Specification (TS) ETSI TS 103 357. V1.1.1. European
Telecommunications Standards Institute, 2018. url: https://www.etsi.org/
deliver/etsi_ts/103300_103399/103357/01.01.01_60/ts_103357v010101p.
pdf.

[17] ETSI: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol specification. Technical Specification (TS) 36.141. Version
13.6.0 Release 13. European Telecommunications Standards Institute, 2017. url:
https://www.etsi.org/deliver/etsi_ts/136100_136199/136141/13.06.
00_60/ts_136141v130600p.pdf.

[18] X. Zhang: “Reconfigurable Medium Access Control Protocols for Wireless Net-
works”. PhD thesis. Aachen, Germany: RWTH Aachen University, 2014.

184

https://www.isa.org/products/ansi-isa-100-11a-2011-wireless-systems-for-industr
https://www.isa.org/products/ansi-isa-100-11a-2011-wireless-systems-for-industr
https://www.vde-verlag.de/iec-normen/222404/iec-62601-2015.html
https://www.vde-verlag.de/iec-normen/222404/iec-62601-2015.html
https://www.vde-verlag.de/iec-normen/222660/iec-62591-2016.html
https://www.vde-verlag.de/iec-normen/222660/iec-62591-2016.html
https://www.itu.int/rec/T-REC-G.9959-201501-I
https://www.itu.int/rec/T-REC-G.9959-201501-I
https://www.etsi.org/deliver/etsi_ts/102900_102999/10293902/01.01.01_60/ts_10293902v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102900_102999/10293902/01.01.01_60/ts_10293902v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102900_102999/10293902/01.01.01_60/ts_10293902v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103300_103399/103357/01.01.01_60/ts_103357v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103300_103399/103357/01.01.01_60/ts_103357v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103300_103399/103357/01.01.01_60/ts_103357v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/136100_136199/136141/13.06.00_60/ts_136141v130600p.pdf
https://www.etsi.org/deliver/etsi_ts/136100_136199/136141/13.06.00_60/ts_136141v130600p.pdf

[19] P. De Mil et al.: “snapMac: A generic MAC/PHY architecture enabling flexible
MAC design”. In: Ad Hoc Networks 17 (June 2014), pp. 37–59. issn: 1570-8705.
doi: 10.1016/j.adhoc.2014.01.004.

[20] A. B. Ozgur, O. Karli, and O. Ergul: “Cognitive Radio Sensor Networks”. In:
Network, IEEE 23.4 (2009), pp. 34–40. doi: 10.1109/mnet.2009.5191144.

[21] T. Esemann and H. Hellbrück: “Integrated Low-Power SDR enabling Cognitive
IEEE 802.15.4 Sensor Nodes”. In: Proceedings of the 8th Karlsruhe Workshop on
Software Radios. 2014.

[22] G. Joshi, S. Nam, and S. Kim: “Cognitive Radio Wireless Sensor Networks:
Applications, Challenges and Research Trends”. In: Sensors 13.9 (Aug. 2013),
pp. 11196–11228. doi: 10.3390/s130911196.

[23] A. G. Ramonet and T. Noguchi: “IEEE 802.15.4 Now and Then: Evolution of
the LR-WPAN Standard”. In: Proceedings of the 22nd International Conference
on Advanced Communication Technology (ICACT). IEEE, Feb. 2020. doi: 10.
23919/icact48636.2020.9061514.

[24] IEEE Standards Association: IEEE Standard for Local and Metropolitan Area
Networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
Amendment 1: MAC Sublayer. IEEE Std 802.15.4e-2012 - Amendment to IEEE
Std 802.15.4™-2011. The Institute of Electrical and Electronics Engineers, Inc.,
Apr. 2012. 225 pp. doi: 10.1109/IEEESTD.2012.6185525.

[25] IEEE Standards Association: IEEE Standard for Local and Metropolitan Area
Networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs).
IEEE Std 802.15.4-2011 - Revision of IEEE Std. 802.15.4™-2006. The Institute
of Electrical and Electronics Engineers, Inc., Sept. 2011. 314 pp. doi: 10.1109/
IEEESTD.2011.6012487.

[26] IEEE Standards Association: IEEE Standard for Local and Metropolitan Area
Networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless,
Smart Metering Utility Networks. IEEE Std 802.15.4g-2012 - Amendment to IEEE
Std 802.15.4™-2011. The Institute of Electrical and Electronics Engineers, Inc.,
Apr. 2012. 252 pp. doi: 10.1109/IEEESTD.2012.6190698.

[27] S. Petersen and S. Carlsen: “WirelessHART Versus ISA100.11a: The Format War
Hits the Factory Floor”. In: IEEE Industrial Electronics Magazine 5.4 (Dec. 2011),
pp. 23–34. doi: 10.1109/mie.2011.943023.

[28] W. Liang et al.: “Survey and Experiments of WIA-PA Specification of Industrial
Wireless Network”. In: Wireless Communications and Mobile Computing 11.8
(May 2010), pp. 1197–1212. doi: 10.1002/wcm.976.

[29] R. K. Ghosh: “Low Power Communication Protocols: ZigBee, 6LoWPAN and
ZigBee IP”. In: Wireless Networking and Mobile Data Management. Springer
Singapore, 2017, pp. 147–177. doi: 10.1007/978-981-10-3941-6_6.

185

https://doi.org/10.1016/j.adhoc.2014.01.004
https://doi.org/10.1109/mnet.2009.5191144
https://doi.org/10.3390/s130911196
https://doi.org/10.23919/icact48636.2020.9061514
https://doi.org/10.23919/icact48636.2020.9061514
https://doi.org/10.1109/IEEESTD.2012.6185525
https://doi.org/10.1109/IEEESTD.2011.6012487
https://doi.org/10.1109/IEEESTD.2011.6012487
https://doi.org/10.1109/IEEESTD.2012.6190698
https://doi.org/10.1109/mie.2011.943023
https://doi.org/10.1002/wcm.976
https://doi.org/10.1007/978-981-10-3941-6_6

Bibliography

[30] G. Montenegro, J. Huii, D. Culler, and N. Kushalnagar: Transmission of IPv6
Packets over IEEE 802.15.4 Networks. 4944. Sept. 2007. 30 pp. doi: 10.17487/
RFC4944.

[31] Q. Wang, X. Vilajosana, and T. Watteyne: 6TiSCH Operation Sublayer (6top)
Protocol (6P). 8480. Nov. 2018. 50 pp. doi: 10.17487/RFC8480.

[32] Z. Shelby, K. Hartke, and C. Bormann: The Constrained Application Protocol
(CoAP). 7252. June 2014. 112 pp. doi: 10.17487/RFC7252.

[33] X. Vilajosana, K. Pister, and T. Watteyne: Minimal IPv6 over the TSCH Mode
of IEEE 802.15.4e (6TiSCH) Configuration. 8180. May 2017. 28 pp. doi: 10.
17487/RFC8180.

[34] J. Nieminen et al.: IPv6 over BLUETOOTH(R) Low Energy. 7668. Oct. 2015.
21 pp. doi: 10.17487/RFC7668.

[35] P. B. Mariager, J. T. Petersen, Z. Shelby, M. van de Logt, and D. Barthel:
Transmission of IPv6 Packets over Digital Enhanced Cordless Telecommunications
(DECT) Ultra Low Energy (ULE). 8105. May 2017. 22 pp. doi: 10.17487/
RFC8105.

[36] M. Imran, A. M. Said, and H. Hasbullah: “A Survey of Simulators, Emulators and
Testbeds for Wireless Sensor Networks”. In: Proceedings of the 4th International
Symposium in Information Technology (ITSim). IEEE, 2010. doi: 10.1109/
ITSIM.2010.5561571.

[37] G. Z. Papadopoulos, K. Kritsis, A. Gallais, P. Chatzimisios, and T. Noel: “Per-
formance Evaluation Methods in Ad Hoc and Wireless Sensor Networks: A
Literature Study”. In: IEEE Communications Magazine 54.1 (2016), pp. 122–128.
doi: 10.1109/mcom.2016.7378437.

[38] K. Wehrle, M. Günes, and J. Gross: Modeling and Tools for Network Simulation.
Springer Science & Business Media, 2010. doi: 10.1007/978-3-642-12331-3.

[39] J. Burbank, W. Kasch, and J. Ward: An Introduction to Network Modeling and
Simulation for the Practical Engineer. 1st ed. ComSoc Guides to Communications
Technologies. John Wiley & Sons, Oct. 2011. 216 pp. isbn: 978-0-470-46726-8.
doi: 10.1002/9781118063651.

[40] G. Coulson et al.: “Flexible Experimentation in Wireless Sensor Networks”. In:
Communications of the ACM 55.1 (Jan. 2012), pp. 82–90. issn: 0001-0782. doi:
10.1145/2063176.2063198.

[41] A. K. Dwivedi and O. P. Vyas: “An Exploratory Study of Experimental Tools for
Wireless Sensor Networks”. In: Wireless Sensor Network 3.7 (2011), pp. 215–240.
doi: 10.4236/wsn.2011.37025.

[42] K. Kritsis, G. Z. Papadopoulos, A. Gallais, P. Chatzimisios, and F. Theoleyre: “A
Tutorial on Performance Evaluation and Validation Methodology for Low-Power
and Lossy Networks”. In: IEEE Communications Surveys & Tutorials 20.3 (2018),
pp. 1799–1825. doi: 10.1109/comst.2018.2820810.

186

https://doi.org/10.17487/RFC4944
https://doi.org/10.17487/RFC4944
https://doi.org/10.17487/RFC8480
https://doi.org/10.17487/RFC7252
https://doi.org/10.17487/RFC8180
https://doi.org/10.17487/RFC8180
https://doi.org/10.17487/RFC7668
https://doi.org/10.17487/RFC8105
https://doi.org/10.17487/RFC8105
https://doi.org/10.1109/ITSIM.2010.5561571
https://doi.org/10.1109/ITSIM.2010.5561571
https://doi.org/10.1109/mcom.2016.7378437
https://doi.org/10.1007/978-3-642-12331-3
https://doi.org/10.1002/9781118063651
https://doi.org/10.1145/2063176.2063198
https://doi.org/10.4236/wsn.2011.37025
https://doi.org/10.1109/comst.2018.2820810

[43] M. N. Jambli, H. Lenando, K. Zen, S. M. Suhaili, and A. Tully: “Simulation Tools
for Mobile Ad-hoc Sensor Networks: A State-of-the-Art Survey”. In: 2012 Interna-
tional Conference on Advanced Computer Science Applications and Technologies
(ACSAT) (Nov. 2012). doi: 10.1109/acsat.2012.84.

[44] G. Chelius and J.-M. Gorce: “Impact of the Physical Layer Modeling on the
Accuracy and Scalability of Wireless Network Simulation”. In: SIMULATION:
Transactions of The Society for Modeling and Simulation International 85 (Aug.
2009). doi: 10.1177/0037549709106633.

[45] S. T.R. and M. P. Sebastian: “A Classification of the Debugging Techniques of
Wireless Sensor Networks”. In: Proceedings of the International Conference on
Advances in Computing and Communications. IEEE, Aug. 2012. isbn: 978-0-7695-
4723-7. doi: 10.1109/icacc.2012.12.

[46] W. Du, F. Mieyeville, D. Navarro, I. O’Connor, and L. Carrel: “Modeling and Sim-
ulation of Networked Low-Power Embedded Systems: A Taxonomy”. In: EURASIP
Journal on Wireless Communications and Networking 2014.1 (2014), pp. 1–12.
doi: 10.1186/1687-1499-2014-106.

[47] S. Lohier, A. Rachedi, E. Livolant, and I. Salhi: “Wireless Sensor Network simula-
tors relevance compared to a real IEEE 802.15.4 Testbed”. In: 2011 7th Interna-
tional Wireless Communications and Mobile Computing Conference. IEEE, July
2011. doi: 10.1109/iwcmc.2011.5982734.

[48] A. Virdis and M. Kirsche, eds.: Recent Advances in Network Simulation. Springer
International Publishing, 2019. doi: 10.1007/978-3-030-12842-5.

[49] V. Srivastava and M. Motani: “Cross-Layer Design and Optimization in Wireless
Networks”. In: Cognitive Networks: Towards Self-Aware Networks. Ed. by Q.
Mahmoud. John Wiley & Sons, Ltd., July 2007. Chap. 6, pp. 121–146. isbn:
978-0-470-06196-1. doi: 10.1002/9780470515143.ch6.

[50] S. N. Khan, M. A. Kalil, and A. Mitschele-Thiel: “crSimulator: A Discrete
Simulation Model for Cognitive Radio Ad Hoc Networks in OMNeT++”. In:
Proceedings of the 6th Joint IFIP Wireless and Mobile Networking Conference
(WMNC). IEEE. 2013, pp. 1–7. doi: 10.1109/WMNC.2013.6549029.

[51] R. Massin, C. Lamy-Bergot, C. J. L. Martret, and R. Fracchia: “OMNeT++-
Based Cross-Layer Simulator for Content Transmission over Wireless Ad Hoc
Networks”. In: EURASIP Journal on Wireless Communications and Networking
2010.1 (Jan. 2010). doi: 10.1155/2010/502549.

[52] J. Mittag, S. Papanastasiou, H. Hartenstein, and E. G. Ström: “Enabling Accurate
Cross-Layer PHY/MAC/NET Simulation Studies of Vehicular Communication
Networks”. In: Proceedings of the IEEE 99.7 (2011), pp. 1311–1326. doi: 10.1109/
jproc.2010.2103291.

187

https://doi.org/10.1109/acsat.2012.84
https://doi.org/10.1177/0037549709106633
https://doi.org/10.1109/icacc.2012.12
https://doi.org/10.1186/1687-1499-2014-106
https://doi.org/10.1109/iwcmc.2011.5982734
https://doi.org/10.1007/978-3-030-12842-5
https://doi.org/10.1002/9780470515143.ch6
https://doi.org/10.1109/WMNC.2013.6549029
https://doi.org/10.1155/2010/502549
https://doi.org/10.1109/jproc.2010.2103291
https://doi.org/10.1109/jproc.2010.2103291

Bibliography

[53] A.-S. Tonneau, N. Mitton, and J. Vandaele: “A Survey on (mobile) Wireless
Sensor Network Experimentation Testbeds”. In: Proceedings of the 2014 IEEE
International Conference on Distributed Computing in Sensor Systems. IEEE,
May 2014. doi: 10.1109/dcoss.2014.41.

[54] S. Böhm and H. König: “SEmulate: Seamless Network Protocol Simulation and
Radio Channel Emulation for Wireless Sensor Networks”. In: Proceedings of the
15th Annual Conference on Wireless On-demand Network Systems and Services
(WONS). IEEE, 2019, p. 8. isbn: 978-3-903176-13-3. doi: 10.23919/WONS.2019.
8795495.

[55] S. Böhm and M. Kirsche: “Unifying Radio-in-the-Loop Channel Emulation and
Network Protocol Simulation to Improve Wireless Sensor Network Evaluation”. In:
Simulation Science. Ed. by M. Baum et al. Springer International Publishing, 2018,
pp. 219–238. isbn: 978-3-319-96271-9. doi: 10.1007/978-3-319-96271-9_14.

[56] S. Böhm and H. König: “Split-Protocol-Stack Wireless Network Emulation: En-
abling PHY Modeling Diversity with Software-Radio-in-the-Loop”. In: Proceedings
of the 17th ACM Symposium on QoS and Security for Wireless and Mobile Net-
works (Q2SWinet ’21). ACM Press, 2021, p. 8. isbn: 978-1-4503-9080-4/21/11.
doi: 10.1145/3479242.3487319.

[57] S. Böhm and H. König: “Real-Time-Shift: Pseudo-Real-Time Event Scheduling for
the Split-Protocol-Stack Radio-in-the-Loop Emulation”. In: Proceedings of the 25th
International Conference on Modeling Analysis and Simulation of Wireless and
Mobile Systems (MSWiM). ACM, Oct. 2022. doi: 10.1145/3551659.3559057.

[58] S. Böhm and M. Kirsche: “Looking into Hardware-in-the-Loop Coupling of OM-
NeT++ and RoSeNet”. In: Proceedings of the 2nd International OMNeT++
Community Summit (OMNeT 2015). Zurich, Switzerland, 2016. url: http :
//arxiv.org/abs/1509.03558.

[59] D. Kotz et al.: “Experimental Evaluation of Wireless Simulation Assumptions”.
In: Proceedings of the 7th ACM International Symposium on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM). ACM Press, 2004.
doi: 10.1145/1023663.1023679.

[60] J. Banks, J. S. C. II, B. L. Nelson, and D. M. Nicol: Discrete-Event System
Simulation, 5th Edition. 5th ed. Pearson Education, 2010. isbn: 978-1-292-02437-
0.

[61] A. M. Law: Simulation Modeling & Analysis. 5th ed. New York, NY, USA:
McGraw-Hill, 2015.

[62] F. J. Suárez, P. Nuño, J. C. Granda, and D. F. García: “Computer Networks
Performance Modeling and Simulation”. In: Modeling and Simulation of Computer
Networks and Systems. Ed. by M. S. Obaidat, P. Nicopolitidis, and F. Zarai.
Boston: Morgan Kaufmann, 2015. Chap. 7, pp. 187–223. isbn: 978-0-12-800887-4.
doi: 10.1016/B978-0-12-800887-4.00007-9.

188

https://doi.org/10.1109/dcoss.2014.41
https://doi.org/10.23919/WONS.2019.8795495
https://doi.org/10.23919/WONS.2019.8795495
https://doi.org/10.1007/978-3-319-96271-9_14
https://doi.org/10.1145/3479242.3487319
https://doi.org/10.1145/3551659.3559057
http://arxiv.org/abs/1509.03558
http://arxiv.org/abs/1509.03558
https://doi.org/10.1145/1023663.1023679
https://doi.org/10.1016/B978-0-12-800887-4.00007-9

[63] K. Kuladinithi et al.: “Teaching Modelling and Analysis of Communication
Networks using OMNeT++ Simulator”. In: Proceedings of the 5th International
OMNeT++ Community Summit. Ed. by A. F\”orster, A. Udugama, A. Virdis,
and G. Nardini. Vol. 56. EPiC Series in Computing. EasyChair, 2018, pp. 111–123.
doi: 10.29007/xtt6.

[64] R. M. Fujimoto, K. S. Perumalla, and G. F. Riley: Network Simulation. 1st ed.
Morgan & Claypool Publishers, 2007. 66 pp. isbn: 978-1598291100.

[65] D. Mahrenholz and S. Ivanov: “Real-time Network Emulation with ns-2”. In:
Proceedings of the 8th International Symposium on Distributed Simulation and
Real-Time Applications. IEEE. 2004, pp. 29–36. doi: 10.1109/DS-RT.2004.34.

[66] M. Tüxen, I. Rüngeler, and E. P. Rathgeb: “Interface Connecting the INET Sim-
ulation Framework with the Real World”. In: Proceedings of the 1st International
Conference on Simulation Tools and Techniques (SIMUTools). Marseille, France:
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2008, 40:1–40:6. doi: 10.1145/1416222.1416267.

[67] J. Bélanger, P. Venne, and J.-N. Paquin: The What, Where, and Why of Real-Time
Simulation. Jan. 2010.

[68] A. Goldsmith: Wireless communications. Cambridge university press, 2005.
[69] J. Pavon and S. Chio: “Link Adaptation Strategy for IEEE 802.11 WLAN via

Received Signal Strength Measurement”. In: IEEE International Conference on
Communications ICC. IEEE, Feb. 2003. doi: 10.1109/icc.2003.1204534.

[70] E. Municio et al.: “Simulating 6TiSCH Networks”. In: Transactions on Emerging
Telecommunications Technologies 30 (Sept. 2018). doi: 10.1002/ett.3494.

[71] S.-H. Yang: Wireless Sensor Networks Principles, Design and Applications. Signals
and Communication Technology. Springer London, 2014. doi: 10.1007/978-1-
4471-5505-8.

[72] M. Kirsche and J. Hartwig: “A 6LoWPANModel for OMNeT++: Poster Abstract”.
In: Proceedings of the 6th International ICST Conference on Simulation Tools
and Techniques. SimuTools ’13. Cannes, France: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2013, pp. 330–
333. isbn: 9781450324649. doi: 10.4108/icst.simutools.2013.251710.

[73] A. Rayes and S. Salam: “IoT Protocol Stack: A Layered View”. In: Internet
of Things From Hype to Reality. Springer International Publishing, Oct. 2016,
pp. 93–138. doi: 10.1007/978-3-319-44860-2_5.

[74] H. M. A. Fahmy: Wireless Sensor Networks: Concepts, Applications, Experimen-
tation and Analysis. Springer, 2016.

[75] S. C. Mukhopadhyay and N. Suryadevara: Internet of Things: Challenges and
Opportunities. Springer, 2014. doi: 10.1007/978-3-319-04223-7.

189

https://doi.org/10.29007/xtt6
https://doi.org/10.1109/DS-RT.2004.34
https://doi.org/10.1145/1416222.1416267
https://doi.org/10.1109/icc.2003.1204534
https://doi.org/10.1002/ett.3494
https://doi.org/10.1007/978-1-4471-5505-8
https://doi.org/10.1007/978-1-4471-5505-8
https://doi.org/10.4108/icst.simutools.2013.251710
https://doi.org/10.1007/978-3-319-44860-2_5
https://doi.org/10.1007/978-3-319-04223-7

Bibliography

[76] K. P. Naik and U. R. Joshi: “Performance Analysis of Constrained Application
Protocol using Cooja Simulator in Contiki OS”. In: 2017 International Conference
on Intelligent Computing, Instrumentation and Control Technologies (ICICICT).
IEEE, July 2017. doi: 10.1109/icicict1.2017.8342622.

[77] A. Yaqoob, M. A. Ashraf, F. Ferooz, A. H. Butt, and Y. D. Khan: “WSN Operating
Systems for Internet of Things(IoT): A Survey”. In: 2019 International Conference
on Innovative Computing (ICIC). IEEE, Nov. 2019. doi: 10.1109/icic48496.
2019.8966731.

[78] P. Levis, N. Lee, M. Welsh, and D. Culler: “TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications”. In: Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems (SenSys). ACM. New York,
NY, USA: ACM Press, 2003, pp. 126–137. doi: 10.1145/958491.958506.

[79] P. Levis et al.: “TinyOS: An Operating System for Sensor Networks”. In: Ambient
Intelligence. Ed. by W. Weber, J. M. Rabaey, and E. Aarts. Springer Berlin
Heidelberg, pp. 115–148. doi: 10.1007/3-540-27139-2_7.

[80] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt: “Cross-Level Sensor
Network Simulation with COOJA.” In: Proceedings of the 31th Annual IEEE
International Conference on Local Computer Networks (LCN). Tampa, FL, USA:
IEEE Computer Society, 2006, pp. 641–648. doi: 10.1109/LCN.2006.322172.

[81] A. Dunkels, B. Gronvall, and T. Voigt: “Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors”. In: Proceedings of the 29th Annual
IEEE International Conference on Local Computer Networks (LCN). Washington,
DC, USA: IEEE Computer Society, 2004, pp. 455–462. doi: 10.1109/LCN.2004.
38.

[82] R. de Paz Alberola and D. Pesch: “AvroraZ: Extending Avrora with an IEEE
802.15.4 Compliant Radio Chip Model”. In: Proceedings of the 3nd ACM Workshop
on Performance Monitoring and Measurement of Heterogeneous Wireless and
Wired Networks. PM2HW2N ’08. Vancouver, British Columbia, Canada: Asso-
ciation for Computing Machinery, 2008, pp. 43–50. isbn: 9781605582399. doi:
10.1145/1454630.1454637.

[83] M. F. Oleg Hahm: The DES Testbed virtualization framework. Sept. 1, 2021. url:
https://github.com/des-testbed/desvirt.

[84] E. Baccelli et al.: “RIOT: An Open Source Operating System for Low-End
Embedded Devices in the IoT”. In: IEEE Internet of Things Journal 5.6 (Dec.
2018), pp. 4428–4440. doi: 10.1109/jiot.2018.2815038.

[85] H. Sundani, H. Li, V. K. Devabhaktuni, M. Alam, and P. Bhattacharya: “Wireless
Sensor Network Simulators A Survey and Comparisons”. In: International Journal
Of Computer Networks (IJCN) 2 (2011).

190

https://doi.org/10.1109/icicict1.2017.8342622
https://doi.org/10.1109/icic48496.2019.8966731
https://doi.org/10.1109/icic48496.2019.8966731
https://doi.org/10.1145/958491.958506
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1109/LCN.2006.322172
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1145/1454630.1454637
https://github.com/des-testbed/desvirt
https://doi.org/10.1109/jiot.2018.2815038

[86] E. Egea-Lopez, J. Vales-Alonso, A. S. Martinez-Sala, P. Pavon-Marino, and J.
Garcı́a-Haro: “Simulation Tools for Wireless Sensor Networks”. In: Proceedings
of the International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS). Society for Modeling and Simulation
International, SCS, 2005, p. 24.

[87] E. Weingartner, H. vom Lehn, and K. Wehrle: “A Performance Comparison of
Recent Network Simulators”. In: Proceedings of the 2009 IEEE International
Conference on Communications. IEEE, June 2009. doi: 10.1109/icc.2009.
5198657.

[88] T. A. R. V, E. Gamess, and D. Thornton: “A Survey of Wireless Network Simula-
tion and/or Emulation Software for use in Higher Education”. In: Proceedings of
the 2021 ACM Southeast Conference. ACM, Apr. 2021. doi: 10.1145/3409334.
3452066.

[89] G. Chengetanai and G. B. O’Reilly: “Survey on Simulation Tools for Wireless
Mobile Ad Hoc Networks”. In: Proceedings of the 2015 IEEE International Con-
ference on Electrical, Computer and Communication Technologies (ICECCT).
IEEE, Mar. 2015. doi: 10.1109/icecct.2015.7226167.

[90] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E. Rothenberg:
“Mininet-WiFi: Emulating Software-Defined Wireless Networks”. In: Proceedings of
the 11th International Conference on Network and Service Management (CNSM).
IEEE, Nov. 2015. doi: 10.1109/cnsm.2015.7367387.

[91] OpenSim Ltd.: OMNeT++ Discrete Event Simulator. 2021. url: https://www.
omnetpp.org/ (visited on 05/21/2021).

[92] nsnam: ns-3 Network Simulator. 2021. url: https://www.nsnam.org/ (visited
on 05/21/2021).

[93] S. Unterschütz, A. Weigel, and V. Turau: “Cross-Platform Protocol Development
Based on OMNeT++”. In: Proceedings of the 5th International ICST Conference
on Simulation Tools and Techniques (SIMUTools). ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering). 2012, pp. 278–
282. doi: 10.4108/icst.simutools.2012.247711.

[94] M. Slabicki, G. Premsankar, and M. D. Francesco: “Adaptive Configuration of
Lora Networks for Dense IoT Deployments”. In: NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium. IEEE, Apr. 2018. doi: 10.
1109/noms.2018.8406255.

[95] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso: “Do LoRa Low-Power Wide-
Area Networks Scale?” In: Proceedings of the 19th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM).
ACM, Nov. 2016. doi: 10.1145/2988287.2989163.

191

https://doi.org/10.1109/icc.2009.5198657
https://doi.org/10.1109/icc.2009.5198657
https://doi.org/10.1145/3409334.3452066
https://doi.org/10.1145/3409334.3452066
https://doi.org/10.1109/icecct.2015.7226167
https://doi.org/10.1109/cnsm.2015.7367387
https://www.omnetpp.org/
https://www.omnetpp.org/
https://www.nsnam.org/
https://doi.org/10.4108/icst.simutools.2012.247711
https://doi.org/10.1109/noms.2018.8406255
https://doi.org/10.1109/noms.2018.8406255
https://doi.org/10.1145/2988287.2989163

Bibliography

[96] M. Kirsche and M. Schnurbusch: “A New IEEE 802.15.4 Simulation Model
for OMNeT++ / INET”. In: Proceedings of the 1st International OMNeT++
Community Summit (OMNeT). Sept. 2014. url: http://arxiv.org/abs/1409.
1177.

[97] M. Kirsche: “Selected System Models - IEEE 802.15.4”. In: Modeling and Tools
for Network Simulation. Ed. by K. Wehrle, M. Guenes, and J. Gross. Springer,
Mar. 2010. Chap. 12.3, pp. 276–303. doi: 10.1007/978-3-642-12331-3.

[98] S. Khan et al.: “Reliability of Network Simulators and Simulation Based Research”.
In: Proceedings of the 24th IEEE Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC). IEEE, Sept. 2013. doi:
10.1109/pimrc.2013.6666127.

[99] Y. M. Amin and A. T. Abdel-Hamid: “A Simulation Model of IEEE 802.15.4 GTS
Mechanism and GTS Attacks in OMNeT++ / MiXiM + NETA”. In: Computer
and Information Science 11.1 (Jan. 2018), p. 78. doi: 10.5539/cis.v11n1p78.

[100] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario, and J. Garcia-
Haro: “Simulation Scalability Issues in Wireless Sensor Networks”. In: IEEE
Communications Magazine 44.7 (Sept. 2006), pp. 64–73. doi: 10.1109/mcom.
2006.1668384.

[101] R. Fujimoto: “Parallel and Distributed Simulation”. In: Proceedings of the 2015
Winter Simulation Conference (WSC). 2015, pp. 45–59. doi: 10.1109/WSC.2015.
7408152.

[102] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens: “An Experimental Study
of Cross-Technology Interference in In-Vehicle Wireless Sensor Networks”. In:
Proceedings of the 19th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems. ACM, Nov. 2016. doi: 10.1145/
2988287.2989141.

[103] A. Iyer, C. Rosenberg, and A. Karnik: “What is the right model for wireless
channel interference?” In: Proceedings of the 3rd international conference on
Quality of service in heterogeneous wired/wireless networks - QShine ’06. ACM
Press, 2006. doi: 10.1145/1185373.1185376.

[104] U. Noreen, A. Bounceur, and L. Clavier: “Modeling Interference for Wireless
Sensor Network Simulators”. In: Proceedings of the International Conference
on Future Networks and Distributed Systems. ACM, July 2017. doi: 10.1145/
3102304.3102347.

[105] M. Kropff, T. Krop, M. Hollick, P. S. Mogre, and R. Steinmetz: “A Survey on Real
World and Emulation Testbeds for Mobile Ad Hoc Networks”. In: Proceedings of
the 2nd International Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities (TRIDENTCOM). IEEE. 2006,
6–pp. doi: 10.1109/tridnt.2006.1649182.

192

http://arxiv.org/abs/1409.1177
http://arxiv.org/abs/1409.1177
https://doi.org/10.1007/978-3-642-12331-3
https://doi.org/10.1109/pimrc.2013.6666127
https://doi.org/10.5539/cis.v11n1p78
https://doi.org/10.1109/mcom.2006.1668384
https://doi.org/10.1109/mcom.2006.1668384
https://doi.org/10.1109/WSC.2015.7408152
https://doi.org/10.1109/WSC.2015.7408152
https://doi.org/10.1145/2988287.2989141
https://doi.org/10.1145/2988287.2989141
https://doi.org/10.1145/1185373.1185376
https://doi.org/10.1145/3102304.3102347
https://doi.org/10.1145/3102304.3102347
https://doi.org/10.1109/tridnt.2006.1649182

[106] H. Hellbrück et al.: “Using and Operating Wireless Sensor Network Testbeds
with WISEBED”. In: Proceedings of the 10th IFIP Annual Mediterranean Ad
Hoc Networking Workshop. IEEE. IEEE Press, June 2011, pp. 171–178. doi:
10.1109/Med-Hoc-Net.2011.5970485.

[107] G. Judd: “Using Physical Layer Emulation to Understand and Improve Wireless
Networks”. PhD thesis. Intel, 2006.

[108] P. Karimi, S. Mukherjee, J. Kolodziejski, I. Seskar, and D. Raychaudhuri: “Mea-
surement Based Mobility Emulation Platform for Next Generation Wireless
Networks”. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS). 2018, pp. 330–335. doi: 10.1109/
INFCOMW.2018.8407025.

[109] S. Koslowski, M. Braun, J. Elsner, and F. K. Jondral: “Wireless Networks In-the-
Loop: Emulating an RF front-end in GNU Radio”. In: SDR Forum 2010 European
Reconfigurable Radio Technologies Workshop, Mainz, June 25, 2010. 2010.

[110] E. Grayver: Implementing Software Defined Radio. Ed. by E. Grayver. Springer,
2013. doi: 10.1007/978-1-4419-9332-8.

[111] J. W. Jung and M. A. Ingram: “An RF Channel Emulator-Based Testbed for
Cooperative Transmission Using Wireless Sensor Devices”. In: Proceedings of the
Second International Conference on New Technologies, Mobility and Security
(NTMS). 2008. doi: 10.1109/NTMS.2008.ECP.22.

[112] J. D. Beshay et al.: “Wireless Networking Testbed and Emulator (WiNeTestEr)”.
In: Computer Communications 73 (2016), pp. 99–107. doi: 10.1145/2641798.
2641809.

[113] R. Beuran, J. Nakata, Y. Tan, and Y. Shinoda: “Emulation Testbed for IEEE
802.15.4 Networked Systems”. In: IEICE Transactions on Communications E95-
B.9 (Sept. 2012), pp. 2892–2905.

[114] J. Elsner, M. Braun, S. Nagel, K. Nagaraj, and F. K. Jondral: “Wireless Networks
in-the-Loop: Software Radio as the Enabler”. In: Proceedings of the Software
Defined Radio Forum Technical Conference. 2009.

[115] M. Ludwig et al.: Verbundprojekt: Entwicklung von Methoden und Verfahren
für den Aufbau von robusten und funktionssicheren drahtlosen Sensor-Aktor-
Netzwerken. Tech. rep. dresden elektronik Ingenieurtechnik GmbH, Fraunhofer-
Institut für Integrierte Schaltungen, Dresden, Germany, June 2012.

[116] K. C. Borries, G. Judd, D. D. Stancil, and P. Steenkiste: “FPGA-Based Channel
Simulator for a Wireless Network Emulator”. In: Proceedings of the 69th Vehicular
Technology Conference (VTC). IEEE, 2009. doi: 10.1109/VETECS.2009.5073565.

[117] H. Wu, S. Member, Q. Luo, P. Zheng, and L. M. Ni: “VMNet: Realistic Emula-
tion of Wireless Sensor Networks”. In: Parallel and Distributed Systems, IEEE
Transactions on 18.2 (2007), pp. 277–288. doi: 10.1109/tpds.2007.33.

193

https://doi.org/10.1109/Med-Hoc-Net.2011.5970485
https://doi.org/10.1109/INFCOMW.2018.8407025
https://doi.org/10.1109/INFCOMW.2018.8407025
https://doi.org/10.1007/978-1-4419-9332-8
https://doi.org/10.1109/NTMS.2008.ECP.22
https://doi.org/10.1145/2641798.2641809
https://doi.org/10.1145/2641798.2641809
https://doi.org/10.1109/VETECS.2009.5073565
https://doi.org/10.1109/tpds.2007.33

Bibliography

[118] J. Flynn, H. Tewari, and D. O’Mahony: “JEmu: A Real-Time Emulation System for
Mobile Ad-Hoc Networks”. In: Proceedings of the First Joint IEI/IEE Symposium
on Telecommunications Systems Research. Network Telecommunications Research
Group (NTRG). IEEE, 2001.

[119] H. Onishi, F. Mlinarsky, F. Watanabe, and C. Velasquez: “Wireless Technology
Assessment with Radio Channel Emulator”. In: Proceedings of the 20th ITS World
Congress. ITS America. Nashville, Tennessee, USA, Apr. 2013.

[120] J. Matai, P. Meng, L. Wu, B. Weals, and R. Kastner: “Designing a Hardware
in the Loop Wireless Digital Channel Emulator for Software Defined Radio”. In:
Proceedings of the International Conference on Field-Programmable Technology
(FPT). IEEE. 2012, pp. 206–214. doi: 10.1109/fpt.2012.6412135.

[121] D. Comer, R. H. Karandikar, A. Rastegarnia, F. Rouzbeh, and P. C. Sruthi:
“WIST: Wi-SUN FAN Protocol Emulation Testbed”. In: Proceedings of the Wireless
Communications and Networking Conference (WCNC). IEEE, Mar. 2017. doi:
10.1109/wcnc.2017.7925815.

[122] N. Nasreddine, J. L. Boizard, C. Escriba, and J. Y. Fourniols: “Wireless Sen-
sors Networks Emulator Implemented on a FPGA”. In: Proceedings of the 9th
International Conference on Field-Programmable Technology (FPT). IEEE, 2010,
pp. 279–282. doi: 10.1109/FPT.2010.5681484.

[123] F. V. Gallego, J. Alonso-Zarate, C. Verikoukis, and L. Alonso: “A Survey on
Prototyping Platforms for the Development and Experimental Evaluation of
Medium Access Control Protocols”. In: IEEE Wireless Communications 19.1 (Feb.
2012), pp. 74–81. doi: 10.1109/mwc.2012.6155879.

[124] L. Ding et al.: “High Fidelity Wireless Network Evaluation for Heterogeneous
Cognitive Radio and Networks”. In: Proceedings of the SPIE Defense, Security,
and Sensing Conference. May 2012. doi: 10.1117/12.919273.

[125] O. Karfich, F. Bartols, T. Steinbach, F. Korf, and T. C. Schmidt: “Poster Ab-
stract: A Hardware/Software Platform for Real-time Ethernet Cluster Simulation
in OMNeT++”. In: Proceedings of the 6th International Workshop on OM-
NeT++ (OMNeT++). ICST. Cannes, Frankreich, Mar. 2013. doi: 10.4108/
ICST.SIMUTOOLS.2013.251698.

[126] C. Sommer, R. German, and F. Dressler: “Bidirectionally Coupled Network and
Road Traffic Simulation for Improved IVC Analysis”. In: IEEE Transactions on
Mobile Computing 10.1 (Jan. 2011), pp. 3–15. doi: 10.1109/TMC.2010.133.

[127] T. Baumgartner et al.: “Demo Abstract: Bridging the Gap between Simulated
Sensor Nodes and the Real World.” In: Proceedings of the 4th International
Workshop on Real-World Wireless Sensor Networks (REALWSN). Springer. 2010,
pp. 174–177.

194

https://doi.org/10.1109/fpt.2012.6412135
https://doi.org/10.1109/wcnc.2017.7925815
https://doi.org/10.1109/FPT.2010.5681484
https://doi.org/10.1109/mwc.2012.6155879
https://doi.org/10.1117/12.919273
https://doi.org/10.4108/ICST.SIMUTOOLS.2013.251698
https://doi.org/10.4108/ICST.SIMUTOOLS.2013.251698
https://doi.org/10.1109/TMC.2010.133

[128] J. Kölsch, C. Heinz, S. Schumb, and C. Grimm: “Hardware-in-the-loop Simulation
for Internet of Things Scenarios”. In: Proceedings of the 2018 Workshop on Modeling
and Simulation of Cyber-Physical Energy Systems (MSCPES). 2018, pp. 1–6. doi:
10.1109/MSCPES.2018.8405399.

[129] S. Jafer, Q. Liu, and G. Wainer: “Synchronization Methods in Parallel and
Distributed Discrete-Event Simulation”. In: Simulation Modelling Practice and
Theory 30 (Jan. 2013), pp. 54–73. doi: 10.1016/j.simpat.2012.08.003.

[130] S. Böhm: “IEEE 802.15.4 Sensornetz-Emulation am Praxisbeispiel RoSeNet”.
MA thesis. Brandenburgische Technische Universität Cottbus-Senftenberg, 2014.

[131] A. Sobeih et al.: “J-Sim: A Simulation and Emulation Environment for Wireless
Sensor Networks”. In: IEEE Wireless Communications magazine 13 (2005), p. 2006.

[132] D. S. Buse et al.: “Bridging Worlds: Integrating Hardware-in-the-Loop Testing
with Large-Scale VANET Simulation”. In: 2018 14th Annual Conference on
Wireless On-demand Network Systems and Services (WONS). IEEE, Feb. 2018.
doi: 10.23919/wons.2018.8311659.

[133] Z. Y. Song et al.: “Hy-Sim: Model Based Hybrid Simulation Framework for
WSN Application Development”. In: Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques (SIMUTools). ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering).
2010, p. 87. doi: 10.4108/icst.simutools2010.8662.

[134] M. M. R. Mozumdar, L. Lavagno, L. Vanzago, and A. L. Sangiovanni-Vincentelli:
“HILAC: A Framework for Hardware in the loop Simulation and Multi-Platform
Automatic Code Generation of WSN Applications”. In: Proceedings of the 9th
International Symposium on Industrial Embedded Systems (SIES). IEEE. 2010,
pp. 88–97. doi: 10.1109/sies.2010.5551370.

[135] I.-G. Lee, S.-B. Lee, and S.-C. Park: “Effective Co-Verification of IEEE 802.11a
MAC/PHY Combining Emulation and Simulation Technology”. In: Proceedings
of the 38th Annual Simulation Symposium (ANSS). IEEE, 2005. doi: 10.1109/
anss.2005.19.

[136] M. Jung and A. Hergenröder: “OMNeTA: A Hybrid Simulator for a Realistic
Evaluation of Heterogeneous Networks”. In: Proceedings of the 11th ACM Sym-
posium on QoS and Security for Wireless and Mobile Networks. Q2SWinet ’15.
Cancun, Mexico: Association for Computing Machinery, 2015, pp. 75–82. isbn:
9781450337571. doi: 10.1145/2815317.2815331.

[137] A. Kato, M. Takai, and S. Ishihara: “WiNE-Tap: Wireless LAN Emulator with
Wireless Network TAP Devices”. In: Ad Hoc Networks 123 (Dec. 2021), p. 102690.
doi: 10.1016/j.adhoc.2021.102690.

[138] T. Staub, R. Gantenbein, and T. Braun: “VirtualMesh: An Emulation Framework
for Wireless Mesh and Ad Hoc Networks in OMNeT++”. In: Simulation (2010).
doi: 10.1177/0037549710373909.

195

https://doi.org/10.1109/MSCPES.2018.8405399
https://doi.org/10.1016/j.simpat.2012.08.003
https://doi.org/10.23919/wons.2018.8311659
https://doi.org/10.4108/icst.simutools2010.8662
https://doi.org/10.1109/sies.2010.5551370
https://doi.org/10.1109/anss.2005.19
https://doi.org/10.1109/anss.2005.19
https://doi.org/10.1145/2815317.2815331
https://doi.org/10.1016/j.adhoc.2021.102690
https://doi.org/10.1177/0037549710373909

Bibliography

[139] L. Riliskis and E. Osipov: “Symphony: Simulation, emulation, and virtualization
framework for accurate wsn experimentation”. In: Proceedings of the 4th Inter-
national Workshop on Software Engineering for Sensor Network Applications
(SESENA). IEEE. 2013, pp. 1–6. doi: 10.1109/sesena.2013.6612257.

[140] E. Weingärtner, H. vom Lehn, and K. Wehrle: “Device Driver-enabled Wireless
Network Emulation”. In: Proceedings of the 4th International Conference on
Simulation Tools and Techniques (SimuTools). Barcelona, Spanien: ICST, Mar.
2011. doi: 10.4108/icst.simutools.2011.245543.

[141] S. Unterschütz and V. Turau: “A Hybrid Testbed for a Seamless Combination of
Wireless Sensor Networks and OMNeT++ Simulations”. In: 11. GI/ITG KuVS
Fachgespräch Sensornetzwerke. GI/ITG. Darmstadt, Deutschland, Sept. 2012,
pp. 52–55.

[142] J. Zhang et al.: “A Software-Hardware Emulator for Sensor Networks”. In: Proceed-
ings of the 8th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON). IEEE. Salt Lake City, UT,
USA: IEEE Press, Apr. 2011, pp. 440–448. doi: 10.1109/SAHCN.2011.5984928.

[143] P. Wehner and D. Göhringer: “Internet of Things Simulation using OMNeT++
and Hardware in the Loop”. In: Components and Services for IoT Platforms.
Springer, 2017, pp. 77–87. doi: 10.1007/978-3-319-42304-3_4.

[144] E. Weingärtner, F. Schmidt, H. vom Lehn, T. Heer, and K. Wehrle: “SliceTime:
A Platform for Scalable and Accurate Network Emulation”. In: Proceedings of
the 8th USENIX Symposium on Networked Systems Design and Implementation
(NSDI). Boston, MA, USA: USENIX Association, Mar. 2011.

[145] C. Obermaier, R. Riebl, and C. Facchi: “Fully Reactive Hardware-in-the-Loop
Simulation for VANET Devices”. In: Proceedings of the 21st International Con-
ference on Intelligent Transportation Systems (ITSC). IEEE, Nov. 2018. doi:
10.1109/itsc.2018.8569663.

[146] F. Klingler, G. S. Pannu, C. Sommer, and F. Dressler: “Poster: Connecting
Simulation and Real World: IEEE 802.11p in the Loop”. In: Proceedings of the
23rd Annual International Conference on Mobile Computing and Networking
(MobiCom). ACM, Oct. 2017. doi: 10.1145/3117811.3131265.

[147] Y. Wen, W. Zhang, R. Wolski, and N. Chohan: “Simulation-based Augmented
Reality for Sensor Network Development”. In: Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems (SenSys). ACM. 2007, pp. 275–
288. doi: 10.1145/1322263.1322290.

[148] V. Venkataramanan, P. Wang, A. Srivastava, A. Hahn, and M. Govindarasu:
“Interfacing Techniques in Testbed for Cyber-Physical Security Analysis of the
Electric Power Grid”. In: Proceedings of the Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems (MSCPES). IEEE, Apr. 2017. doi: 10.1109/
mscpes.2017.8064543.

196

https://doi.org/10.1109/sesena.2013.6612257
https://doi.org/10.4108/icst.simutools.2011.245543
https://doi.org/10.1109/SAHCN.2011.5984928
https://doi.org/10.1007/978-3-319-42304-3_4
https://doi.org/10.1109/itsc.2018.8569663
https://doi.org/10.1145/3117811.3131265
https://doi.org/10.1145/1322263.1322290
https://doi.org/10.1109/mscpes.2017.8064543
https://doi.org/10.1109/mscpes.2017.8064543

[149] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle: “Synchronized Network
Emulation: Matching Prototypes with Complex Simulations”. In: ACM SIG-
METRICS Performance Evaluation Review 36.2 (Aug. 2008), pp. 58–63. doi:
10.1145/1453175.1453185.

[150] S. Pandit and G. Singh: “Framework for Cross-Layer Optimization in Cognitive
Radio Network”. In: Spectrum Sharing in Cognitive Radio Networks. Springer
International Publishing, 2017, pp. 225–251. doi: 10.1007/978-3-319-53147-
2_10.

[151] C. K. Wu et al.: “Critical Internet of Things: An Interworking Solution to Improve
Service Reliability”. In: IEEE Communications Magazine 58.1 (Jan. 2020), pp. 74–
79. doi: 10.1109/mcom.001.1900526.

[152] P. Sethi and S. R. Sarangi: “Internet of Things: Architectures, Protocols, and
Applications”. In: Journal of Electrical and Computer Engineering 2017 (2017),
pp. 1–25. doi: 10.1155/2017/9324035.

[153] H. A. Khattak, M. A. Shah, S. Khan, I. Ali, and M. Imran: “Perception layer
security in Internet of Things”. In: Future Generation Computer Systems 100
(Nov. 2019), pp. 144–164. doi: 10.1016/j.future.2019.04.038.

[154] T. O’Shea and J. Hoydis: “An Introduction to Deep Learning for the Physical
Layer”. In: IEEE Transactions on Cognitive Communications and Networking 3.4
(Dec. 2017), pp. 563–575. doi: 10.1109/tccn.2017.2758370.

[155] C. Jiang et al.: “Machine Learning Paradigms for Next-Generation Wireless
Networks”. In: IEEE Wireless Communications 24.2 (Apr. 2017), pp. 98–105. doi:
10.1109/mwc.2016.1500356wc.

[156] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang: “Deep Learning in Physical Layer
Communications”. In: IEEE Wireless Communications 26.2 (Apr. 2019), pp. 93–99.
doi: 10.1109/mwc.2019.1800601.

[157] S. S. Wagh, A. More, and P. R. Kharote: “Performance Evaluation of IEEE
802.15.4 Protocol Under Coexistence of WiFi 802.11b”. In: Procedia Computer
Science 57 (2015), pp. 745–751. doi: 10.1016/j.procs.2015.07.467.

[158] M. Tüxen et al.: PCAP Next Generation (pcapng) Capture File Format. Internet-
Draft draft-tuexen-opsawg-pcapng-04. Work in Progress. Internet Engineering
Task Force, Oct. 2021. 57 pp. url: https://datatracker.ietf.org/doc/html/
draft-tuexen-opsawg-pcapng-04.

[159] F. Javed, M. K. Afzal, M. Sharif, and B.-S. Kim: “Internet of Things (IoT) Oper-
ating Systems Support, Networking Technologies, Applications, and Challenges:
A Comparative Review”. In: IEEE Communications Surveys & Tutorials 20.3
(2018), pp. 2062–2100. doi: 10.1109/comst.2018.2817685.

[160] IEEE Standards Association: IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems. IEEE Std 1588. The
Institute of Electrical and Electronics Engineers, Inc., 2020. doi: 10.1109/
IEEESTD.2020.9120376.

197

https://doi.org/10.1145/1453175.1453185
https://doi.org/10.1007/978-3-319-53147-2_10
https://doi.org/10.1007/978-3-319-53147-2_10
https://doi.org/10.1109/mcom.001.1900526
https://doi.org/10.1155/2017/9324035
https://doi.org/10.1016/j.future.2019.04.038
https://doi.org/10.1109/tccn.2017.2758370
https://doi.org/10.1109/mwc.2016.1500356wc
https://doi.org/10.1109/mwc.2019.1800601
https://doi.org/10.1016/j.procs.2015.07.467
https://datatracker.ietf.org/doc/html/draft-tuexen-opsawg-pcapng-04
https://datatracker.ietf.org/doc/html/draft-tuexen-opsawg-pcapng-04
https://doi.org/10.1109/comst.2018.2817685
https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1109/IEEESTD.2020.9120376

Bibliography

[161] B. Bloessl, C. Leitner, F. Dressler, and C. Sommer: “A GNU Radio-based IEEE
802.15.4 Testbed”. In: 12. GI/ITG KuVS Fachgespräch Sensornetzwerke. Ed. by
J. Nolte. GI/ITG. BTU Cottbus, Institut für Informatik, Sept. 2013, pp. 37–40.

[162] F. Wunsch, K. Maier, H. Jäkel, and F. K. Jondral: “Implementation and Per-
formance Evaluation of IEEE 802.15.4 LECIM DSSS PHY at 2.4 GHz”. In:
Proceedings of the 7th GNU Radio Conference, San Diego, CA, September 11-15,
2017. 2017, p. 6.

[163] R. Zitouni, S. Ataman, M. Mathian, and L. George: “IEEE 802.15.4 Transceiver
for the 868/915 MHz Band using Software Defined Radio”. In: Proceedings of
SDR’12-WInnComm-Europe, 27-29 June 2012 (Apr. 30, 2013). arXiv: 1304.8028
[cs.NI].

[164] L. Abeni and D. Faggioli: “Using Xen and KVM as Real-Time Hypervisors”. In:
Journal of Systems Architecture 106 (June 2020), p. 101709. doi: 10.1016/j.
sysarc.2020.101709.

[165] S. Böhm: “Hybrid IEEE 802.15.4 Network Emulation”. In: Proceedings of the
2015 Networked Systems (NetSys) PhD Forum. Poster Abstract. Mar. 2015. doi:
10.1109/NetSys34399.2015.

[166] K. B. Rasmussen and S. Capkun: “Implications of Radio Fingerprinting on the
Security of Sensor Networks”. In: 2007 Third International Conference on Security
and Privacy in Communications Networks and the Workshops - SecureComm
2007. IEEE, 2007. doi: 10.1109/seccom.2007.4550352.

[167] Y. Wu et al.: “Network Planning in Wireless Ad Hoc Networks: A Cross-Layer
Approach”. In: IEEE Journal on Selected Areas in Communications 23.1 (Jan.
2005), pp. 136–150. doi: 10.1109/jsac.2004.837362.

[168] B. Ousat and M. Ghaderi: “LoRa Network Planning: Gateway Placement and
Device Configuration”. In: Proceedings of the 2019 IEEE International Congress on
Internet of Things (ICIOT). IEEE, July 2019. doi: 10.1109/iciot.2019.00017.

[169] S. Ivanov and E. Nett: “Achieving Fault-Tolerant Network Topology in Wireless
Mesh Networks”. In: Wireless Mesh Networks - Efficient Link Scheduling, Channel
Assignment and Network Planning Strategies. InTech, Aug. 2012. doi: 10.5772/
50173.

[170] E. H. Houssein et al.: “Optimal Sink Node Placement in Large Scale Wireless
Sensor Networks Based on Harris’ Hawk Optimization Algorithm”. In: IEEE
Access 8 (2020), pp. 19381–19397. doi: 10.1109/access.2020.2968981.

[171] K. Akkaya and M. Younis: “Relocation of Gateway for Wnhanced Timeliness in
Wireless Sensor Networks”. In: Proceedings of the IEEE International Conference
on Performance, Computing, and Communications, 2004. IEEE. doi: 10.1109/
pccc.2004.1395064.

[172] H. Breu and D. G. Kirkpatrick: “Unit disk graph recognition is NP-hard”. In:
Computational Geometry 9.1-2 (Jan. 1998), pp. 3–24. doi: 10.1016/s0925-
7721(97)00014-x.

198

https://arxiv.org/abs/1304.8028
https://arxiv.org/abs/1304.8028
https://doi.org/10.1016/j.sysarc.2020.101709
https://doi.org/10.1016/j.sysarc.2020.101709
https://doi.org/10.1109/NetSys34399.2015
https://doi.org/10.1109/seccom.2007.4550352
https://doi.org/10.1109/jsac.2004.837362
https://doi.org/10.1109/iciot.2019.00017
https://doi.org/10.5772/50173
https://doi.org/10.5772/50173
https://doi.org/10.1109/access.2020.2968981
https://doi.org/10.1109/pccc.2004.1395064
https://doi.org/10.1109/pccc.2004.1395064
https://doi.org/10.1016/s0925-7721(97)00014-x
https://doi.org/10.1016/s0925-7721(97)00014-x

[173] G. Judd and P. Steenkiste: “Using Emulation to Understand and Improve Wireless
Networks and Applications”. In: Proceedings of the 2nd Symposium on Networked
Systems Design & Implementation (NSDI). Berkeley, CA, USA: USENIX Associa-
tion, 2005, pp. 203–216. url: http://dl.acm.org/citation.cfm?id=1251203.
1251218.

[174] X. E. Li: Channel Identification and Equalization in Digital Communications.
Binghamton University, State University of New York, June 2022. url: http:
//www.ws.binghamton.edu/li/tutor/channel.html.

[175] J. Morman: “Channel Equalization using GNU Radio”. In: Proceedings of the 2020
Free and Open source Software Developers’ European Meeting (FOSDEM). 2020.
url: https://archive.fosdem.org/2020/schedule/event/fsr_hannel_
equalization_using_gnu_radio/attachments/slides/3907/export/events/
attachments/fsr_hannel_equalization_using_gnu_radio/slides/3907/
equalizers_fosdem_2020.pdf.

[176] M. Elmer, W. Schaaf, D. Biemelt, W. Gerwin, and R. F. Hüttl: The artificial
catchment ’Chicken Creek’ - initial ecosystem development 2005-2010. Tech. rep.
3. Forschungszentrum Landschaftsentwicklung und Bergbaulandschaften (FZLB),
2012.

[177] S. Mehner: “Hühnerwasser goes smart! Ein Konzept für ein nachhaltiges Umwelt-
monitoringsystem”. MA thesis. Brandenburgische Technische Universität Cottbus-
Senftenberg, 2015.

[178] D. G. Andersen: “Theoretical approaches to node assignment”. In: Computer
Science Department (2002), p. 86.

[179] R. Ricci, C. Alfeld, and J. Lepreau: “A Solver for the Network Testbed Mapping
Problem”. In: ACM SIGCOMM Computer Communication Review 33.2 (Apr.
2003), pp. 65–81. doi: 10.1145/956981.956988.

[180] R. McGeer, D. G. Andersen, and S. Schwab: “The Network Testbed Mapping
Problem”. In: Lecture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering. Springer Berlin Heidelberg, 2011,
pp. 383–398. doi: 10.1007/978-3-642-17851-1_30.

[181] G. D. da Fonseca, V. G. P. de Sá, R. C. S. Machado, and C. M. H. de Figueiredo:
“On the Recognition of Unit Disk Graphs and the Distance Geometry Problem
with Ranges”. In: Discrete Applied Mathematics 197 (2015), pp. 3–19.

[182] M. D. Francesco, G. Anastasi, M. Conti, S. K. Das, and V. Neri: “Reliability and
Energy-Efficiency in IEEE 802.15.4/ZigBee Sensor Networks: An Adaptive and
Cross-Layer Approach”. In: IEEE Journal on Selected Areas in Communications
29.8 (Sept. 2011), pp. 1508–1524. doi: 10.1109/jsac.2011.110902.

[183] F. Cuomo, A. Abbagnale, and E. Cipollone: “Cross-Layer Network Formation for
Energy-Efficient IEEE 802.15.4/ZigBee Wireless Sensor Networks”. In: Ad Hoc
Networks 11.2 (Mar. 2013), pp. 672–686. doi: 10.1016/j.adhoc.2011.11.006.

199

http://dl.acm.org/citation.cfm?id=1251203.1251218
http://dl.acm.org/citation.cfm?id=1251203.1251218
http://www.ws.binghamton.edu/li/tutor/channel.html
http://www.ws.binghamton.edu/li/tutor/channel.html
https://archive.fosdem.org/2020/schedule/event/fsr_hannel_equalization_using_gnu_radio/attachments/slides/3907/export/events/attachments/fsr_hannel_equalization_using_gnu_radio/slides/3907/equalizers_fosdem_2020.pdf
https://archive.fosdem.org/2020/schedule/event/fsr_hannel_equalization_using_gnu_radio/attachments/slides/3907/export/events/attachments/fsr_hannel_equalization_using_gnu_radio/slides/3907/equalizers_fosdem_2020.pdf
https://archive.fosdem.org/2020/schedule/event/fsr_hannel_equalization_using_gnu_radio/attachments/slides/3907/export/events/attachments/fsr_hannel_equalization_using_gnu_radio/slides/3907/equalizers_fosdem_2020.pdf
https://archive.fosdem.org/2020/schedule/event/fsr_hannel_equalization_using_gnu_radio/attachments/slides/3907/export/events/attachments/fsr_hannel_equalization_using_gnu_radio/slides/3907/equalizers_fosdem_2020.pdf
https://doi.org/10.1145/956981.956988
https://doi.org/10.1007/978-3-642-17851-1_30
https://doi.org/10.1109/jsac.2011.110902
https://doi.org/10.1016/j.adhoc.2011.11.006

Bibliography

[184] M. Al-Jemeli and F. A. Hussin: “An Energy Efficient Cross-Layer Network
Operation Model for IEEE 802.15.4-Based Mobile Wireless Sensor Networks”. In:
IEEE Sensors Journal 15.2 (Feb. 2015), pp. 684–692. doi: 10.1109/jsen.2014.
2352041.

[185] P. Detterer, M. Nabi, H. Jiao, and T. Basten: “Receiver-Sensitivity Control for
Energy-Efficient IoT Networks”. In: IEEE Communications Letters 25.4 (Apr.
2021), pp. 1383–1386. doi: 10.1109/lcomm.2020.3041935.

[186] G. Glodni: “Cross-Layer WSN Simulation mittels Software-Defined-Radio (SDR)”.
MA thesis. Brandenburgische Technische Universität Cottbus-Senftenberg, 2019.

[187] J. Ren et al.: “RF Energy Harvesting and Transfer in Cognitive Radio Sensor
Networks: Opportunities and Challenges”. In: IEEE Communications Magazine
56.1 (Jan. 2018), pp. 104–110. doi: 10.1109/mcom.2018.1700519.

[188] R.-F. Liao et al.: “Deep-Learning-based Physical Layer Authentication for Indus-
trial Wireless Sensor Networks”. In: sensors 19.11 (2019), p. 2440.

[189] H. Kim, S. Oh, and P. Viswanath: “Physical Layer Communication via Deep
Learning”. In: IEEE Journal on Selected Areas in Information Theory 1.1 (May
2020), pp. 5–18. doi: 10.1109/jsait.2020.2991562.

[190] G. F. Riley and T. R. Henderson: “The ns-3 Network Simulator”. In: Modeling
and Tools for Network Simulation. Ed. by K. Wehrle, M. Guenes, and J. Gross.
Springer, Mar. 2010. Chap. 2, pp. 15–34. doi: 10.1007/978-3-642-12331-3_2.

[191] U. Lamping, R. Sharpe, and E. Warnicke: Wireshark Users Guide. Oct. 2021.
url: http://www.wireshark.org/docs/wsug_html_chunked/.

Availability of online materials and web links were last checked in April 2022.

200

https://doi.org/10.1109/jsen.2014.2352041
https://doi.org/10.1109/jsen.2014.2352041
https://doi.org/10.1109/lcomm.2020.3041935
https://doi.org/10.1109/mcom.2018.1700519
https://doi.org/10.1109/jsait.2020.2991562
https://doi.org/10.1007/978-3-642-12331-3_2
http://www.wireshark.org/docs/wsug_html_chunked/

	Doctoral Thesis – Sebastian Boehm
	Abstract
	Kurzfassung
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Contributions Overview
	1.3 Thesis Structure

	2 Wireless Network Simulation
	2.1 Simulation-based Network Evaluation
	2.1.1 Terminology and Classification of Simulation Modeling
	2.1.2 Network Simulation Methodology
	2.1.3 Discrete Event Simulation

	2.2 Modeling for Wireless Network Simulation
	2.2.1 Radio Channel Modeling
	2.2.2 Physical Layer Modeling
	2.2.3 Data Link Layer Modeling
	2.2.4 Higher Layer Modeling
	2.2.5 Network Topology and Mobility Modeling

	2.3 Selected Simulation Systems and Models
	2.3.1 Discrete-Event Simulators in the Wild
	2.3.2 Link Layer Simulation Models and Systems

	2.4 Limitations of pure Simulations
	2.4.1 Validation and Credibility
	2.4.2 Performance and Scalability
	2.4.3 Cross-Protocol Stack and Interference

	3 Wireless Network Emulation
	3.1 Emulation Methodology and Classification
	3.1.1 Methodical Delimitation
	3.1.2 Classification

	3.2 Radio Link Emulation Requirements and Strategies
	3.2.1 Emulator Requirements
	3.2.2 Emulating Network Conditions
	3.2.3 Emulating the Network Interfaces

	3.3 Selected Radio Link Emulation Approaches
	3.4 Limitations of Radio Link Emulation
	3.4.1 Cross-Layer and Cognitive Radio
	3.4.2 Real-Time Scalability and Mobility

	4 Parallel Simulation and Emulation
	4.1 Methodology and Requirements
	4.1.1 Terminology and Methodical Delimitation
	4.1.2 Coupling Problems and Requirements

	4.2 Split-Protocol-Stack Wireless Network Emulation
	4.2.1 Pseudo-Real-Time Network Simulation
	4.2.2 Radio-in-the-Loop Wireless Transmissions
	4.2.3 Radio-in-the-Loop Analog Radio Channel Emulation

	4.3 Analysis of HIL and Co-Simulation Approaches
	4.3.1 Real Protocol Implementations in Simulated Networks
	4.3.2 Simulated Protocols on Real or Emulated Networks
	4.3.3 Analysis Summary and Concluding Discussion

	4.4 Benefits, Use Cases and Scenarios
	4.4.1 Approach Benefits Overview
	4.4.2 Application Domains and Use Cases
	4.4.3 Split-Protocol-Stack Reference Configuration Scenarios

	5 Real-Time-Shift Discrete Event Simulation & Synchronization
	5.1 Real-Time Synchronization Problem Statement
	5.1.1 Real-Time Hardware-in-the-Loop Simulation
	5.1.2 Real-Time Synchronizing Simulation and Emulation

	5.2 Real-Time-Shift Network Simulation
	5.2.1 Event Transmission Latency and Jitter Compensation
	5.2.2 Pseudo-Real-Time Event Scheduling
	5.2.3 Real-Time Event Stream Processing
	5.2.4 Determination of the Time Constants

	5.3 Simulator Interfacing and Concept Implementation
	5.3.1 Interface Modeling and Abstraction
	5.3.2 Simulation Model Enhancements and External Interfacing
	5.3.3 Radio-in-the-Loop Event Stream Forwarder

	5.4 Evaluation and Discussion
	5.4.1 Emulation Scenario Model Validation and Verification
	5.4.2 Event-Stream Forwarder Performance and Accuracy
	5.4.3 Discussion of the Evaluation Results

	6 Radio-in-the-Loop Physical Layer Modeling
	6.1 Radio-in-the-Loop Modeling Strategy
	6.1.1 Interfacing and Scheduling Virtual Events on Real Hardware
	6.1.2 Physical Layer Modeling

	6.2 Chip Radio-in-the-Loop Wireless Transmissions
	6.2.1 Message Event Handling at the Node Interface
	6.2.2 Radio-in-the-Loop Real-Time Scheduling
	6.2.3 Handling and Dispatching Protocol Primitives

	6.3 Software Radio-in-the-Loop Wireless Transmissions
	6.3.1 Data Link Layer Interface Modeling
	6.3.2 Time-Aware Event Scheduling in Streaming Systems
	6.3.3 Software-Defined Radio Physical Layer Modeling

	6.4 Evaluation and Discussion
	6.4.1 Feasibility and Performance of the Chip Radio Transceiver
	6.4.2 Feasibility and Performance of the Software Radio Transceiver
	6.4.3 Discussion

	7 Radio-in-the-Loop Channel Emulation
	7.1 Radio Channel Emulation Modeling Strategy
	7.1.1 Wireless Network Planning
	7.1.2 Radio Topology and Channel Emulation Modeling

	7.2 Chicken Creek Reference Measurements
	7.2.1 Measurement Setup and Node Placement
	7.2.2 Measurement Results and RIL Emulation Relevance

	7.3 Hardware Allocation in Network Emulation Testbeds
	7.3.1 Problem Statement and Model Definition
	7.3.2 Allocation Approach

	7.4 Evaluation and Discussion
	7.4.1 Feasibility of Hardware Allocation
	7.4.2 Enhancing the Hardware Attenuation

	8 SEmulate Prototype and Use Case Study
	8.1 SEmulate Overview
	8.1.1 Emulation Prototype Architecture
	8.1.2 Creating, Building, and Running Emulations

	8.2 Case Study Scenario: Cross-Layer Optimization
	8.2.1 Motivation and Objective
	8.2.2 Modeling and Definition
	8.2.3 Results and Evaluation
	8.2.4 Discussion and Further Enhancements

	9 Conclusion
	9.1 Achievements and Contributions
	9.2 Outlook

	A Analysis and Discussion Details
	A.1 Analysis of Radio-in-the-Loop Solutions
	A.2 Analysis of Radio Link Emulation Systems
	A.3 Analysis of HIL and Co-Simulation Approaches

	B OMNeT++/INET Overview
	B.1 Simulation Architecture and Components
	B.2 Creating, Building, and Running Simulations

	C Implementation and Configuration Details
	C.1 OMNeT++
	C.1.1 Scenario Configuration
	C.1.2 Cross-layer Optimization Scenario

	C.2 SEmulate Backend
	C.2.1 Radio-in-the-Loop Event Stream Forwarder
	C.2.2 Radio-in-the-Loop Transceiver Implementation
	C.2.3 Prototype Configuration

	D Technologies, Protocols, and Standards
	E Acronyms
	Bibliography

