
Discrete Event Solution of Gas Dynamics within the
DEVS Framework

J. Nutaro, B. P. Zeigler, R. Jammalamadaka, and S. Akerkar

Arizona Center for Integrative Modeling and Simulation
University of Arizona

Tucson, AZ
{nutaro,zeigler,rajani,salila}@ece.arizona.edu

Abstract The DEVS (Discrete Event Systems Specification) formalism has
been applied to continuous and discrete phenomena. The use of discrete events,
rather than time steps, as a basis for simulation has been shown to reduce
computation time by orders of magnitude in many applications. However, the
application of DEVS to partial differential equation (pde) simulation has only
recently been investigated. Here, in an application to a shockwave problem, we

show that the time to solution is significantly reduced when a discrete event
integration scheme is employed compared to a representative conventional
approach. Recent theory suggests that speed advantages are to be expected for
pdes that are characterized by heterogeneity in their time and space behavior.
The implications for use of DEVS as a basis for adaptive control of large scale
distributed simulations are discussed. 

1 Introduction 

The Discrete Event System Specification (DEVS) formalism provides a means of

specifying a mathematical object called a system [7]. Basically, a system has a time
base, inputs, states, and outputs, and functions for determining next states and outputs

given current states and inputs. Discrete event systems represent certain constellations

of such parameters just as continuous systems do. For example, the inputs in discrete

event systems occur at arbitrarily spaced moments, while those in continuous systems

are piecewise continuous functions of time. The insight provided by the DEVS

formalism is in the simple way that it characterizes how discrete event simulation

languages specify discrete event system parameters. Having this abstraction, it is

possible to design new simulation languages with sound semantics that easier are to

understand. The DEVJAVA environment [3,8] is an implementation of the DEVS 

formalism in Java that enables the modeler to specify models directly in its terms. In

this paper, we employ the adevs implementation in C++ [1]. A brief review of the
DEVS concepts and formalism is provided in the Appendix. 

The DEVS formalism has been applied to a number of continuous as well as

discrete phenomena (e.g., see [2], [5]). The use of discrete events, rather than time

steps, as a basis for simulation has been shown to reduce computation time by orders

of magnitude in many applications. However, the application of DEVS to partial

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 319−328, 2003.
 Springer-Verlag Berlin Heidelberg 2003



differential equation (pde) simulation has only recently been investigated. In pdes,

there is an interaction between time and space that is more intimate (through for

example, the Courant condition) than in lumped parameter continuous models. Our

research has been investigating DEVS solutions to relatively simple pdes while at the

same time seeking indicators and supporting theory to predict where significant

advantages may be gained. 

2 Formulation of the DEVS Model

This paper describes a discrete event solution to a one dimensional gas dynamics

problem. The goal is to solve a conservation law with state variable u in one spatial 

dimension x whose form is

ut + [f(u)]x = 0.

A solution can be approximated by dividing the space x  into discrete cells (grid

points) and determining the flux of each state variable across a cell boundary (through

a grid point). The motion of the solution is then computed by integrating over the net

flux through a  cell. To find the flux requires solving the Riemann problem with a

particular solution being dependent on the physics of the model. To set up the discrete

event approach we started with a  conventional discrete time solution to the

conservation law and the associated exact, iterative Riemann solver provided by

Andrei A. Chernousov (source code available from

http://www.geocities.com/andrei_chernousov). As in the latter approach, our discrete

event approach employs Chernousov’s Riemann solver. However, the essential

difference between the two lies in the encompassing integration technique.  Figure 1
shows the structure of the space-discretized form of the conservation law.

This system can be modeled by a coupled DEVS [7] that consists of three basic 

models.  The first basic model computes the integral at each cell. It is based on the

quantized integrator presented in [4], extended to integrate an N dimensional vector

using a volume in N-space as the quantum description. The second basic model

receives the outputs of the neighboring quantized integrators and computes the flux at

a cell boundary using the exact, iterative Riemann solver. The third is a simple adder

that computes the flux across a cell.

ui-1 ui ui+1

φi-½ φi+½

Fig. 1. Spatial discretization of the conservation law.

2
1i

2
1i

u
−+

φ+φ=

320 J. Nutaro et al.



The quantized integrator works by drawing a box around the initial point u(0) 

whose dimensions are D1 × D2 × … DN, where Di is the quantum size for the ith

element of u. Figure 2 depicts such an integrator operating in a two-dimensional state

space. An output is produced only when u(t) reaches a boundary of the box. When

this occurs, a new box is drawn around the point u(t) and the time advance is set to

the time required to reach the boundary of this new box. The time advance is used to

schedule the boundary crossing. A boundary crossing is represented by an internal
event. It is important to note that no computation internal to cell occurs until the

internal event is executed – unless an external event is received. An external event

occurs when the output of a neighboring cell is received. The time advance after an

external event takes into account the updated state as well as the remaining quantum

to be consumed.

The discrete event model for this integrator can be formally described with the

DEVS formalism as follows: 

The state variables for the DEVS model are

q , the current value of the state variables,

ql, the value of the state variables at the last boundary crossing,

q , the first derivatives of the elements of q, 

σ, the time until the next boundary is crossed.

The model is parameterized by the size of the state vector, denoted by N, and the

vector D whose elements are the dimensions of the box.  The input and output for the

integrator are vectors of length N.  Before describing the dynamics of the integrator,

we need the function T(x,y,z,d) that computes the time to the next internal event in

any one of the state dimensions. It is defined by: 

T(x,y,z,d) = ∞ if z = 0

T(x,y,z,d) = (d – |x – y|) / |z| if z ≠ 0. 

When x = y = 0, the situation prevailing after a just completed internal event, T

returns the predicted time to reach the next box limit using derivative z.  Following an

external event, the arguments x and y represent the updated current state and the last

Fig. 2. A quantized integrator with rectangular quantum regions.

321Discrete Event Solution of Gas Dynamics within the DEVS Framework



boundary crossing, respectively. Thus, d – |x – y| is the quantum remaining to be
consumed, and T returns the predicted time to consume this remaining quantity.

We also define a function Γ(x,y,z,d) which returns the smallest time to the next 

event over all state dimensions. Γ(x,y,z,d) = min { T(xi , yi, zi, di ) } where x, y, z, 
and d are vectors with N elements and the index i ranges over N. With these 

definitions we have:

The time advance function is given by

ta(q, ql, q , σ) = σ. 

The state transition function is described by

δint(q, ql, q , σ) = (q + σq , q + σq , q , Γ(0,0, q ,D)),

δext((q, ql, q , σ),e,x) = (q +e q , ql, x, Γ(q +e q ,ql,x,D)), and 

δcon((q, ql, q , σ), x) = (q +σq , q +σq , x, Γ(0,0,x,D)).

Finally, the output function is given by

λ(q, ql, q , σ) = q + σq . 

The boundary flux model has two state variables qleft and qright that are the 

estimates of the state variables in the left and right cells, relative to the boundary.  

When the boundary flux model receives an input, it updates these values, computes

the flux across the boundary, and then immediately outputs the new flux. The

summers operate similarly by remembering two values (in this case the left and right 

fluxes) and responding to input by updating the two state variables and outputting the

sum.

Figure 3 depicts the coupled model that realizes the discrete event approximation

based on the spatial discretization shown in Figure 1. The symbol ‡denotes the

quantized integrator, ƒis the summer, and φ is the Riemann boundary flux solver.

Fig. 3. A DEVS coupled model that approximates the conservation law.

322 J. Nutaro et al.

. 

. . . . . 

. . . 

. . . 

. . 



3 Implementation and Experimentation

The discrete event model and corresponding discrete time model were implemented in

C++ and executed on a desktop computer with a 500 MHz AMD processor and 198M

RAM running the Linux operating system. The discrete time model uses explicit

Euler to integrate through time (see [4] for a comparison of explicit Euler and the first

order explicit quantized integrator). As indicated, the same iterative Riemann solver

was used for both implementations.

An initial value problem was solved using both techniques with identical

discretizations in space and a fixed quantum size for the discrete event problem. The
step size for the discrete time problem was taken to be the smallest value of the time

advance function computed as a result of an internal or confluent event. This gives

similar error bounds for both solution techniques. Figure 4 shows the initial

conditions for the test problem. 

Fig. 4.  Initial conditions for the test problem.

The simulation was run for 0.2 units of time. The solution generated by both
techniques for a discretization in space using 1000 cells is shown in figure 5.

The allocation of computational effort for the discrete time and discrete event 

solution for the same 1000 cell run is shown in figure 6. It can be seen that the

discrete event solution dynamically focuses computational effort on the highly active 

323Discrete Event Solution of Gas Dynamics within the DEVS Framework



portions of the solution as the shockwave moves outward (left figure). When all

computations are accumulated, each active cell receives similar attention but this

number is orders of magnitude less than it receives in the discrete time approach

(right figure). Note that at the edges are cells to which activity has not propagated and

which have therefore not been updated at all.

Fig. 5. Solution to the gas dynamics problem at t = 0.2.

Fig. 6. The number of state changes computed by the DEVS simulator during the time
interval [0.18,0.2] (left) and [0.0,0.2] (right).

324 J. Nutaro et al.



   Table 1 shows the parameters used for each choice of discretization in space and the 

resulting time to solution. It can be seen that the speed advantage of the DEVS

solution, relative to the discrete time solution, increases as the number of cells grows

from 200 to 1600. At 1600 cells, the speedup appears to level off at a value of about

34. The combination of focused computational effort and significantly reduced

number of computations per cell has produced more than an order of magnitude

improvement in the time to solution.

Table 1. Solution parameters and speedup for DEVS and discrete time (DTSS) techniques.

Cells Quantum size

(U1,U2,U3)

Time step DEVS soln. time

(seconds) 

DTSS soln. time

(seconds) 

Relative

speedup of

DEVS

200 (0.1,1.0,1000.0) 1.87E-005 2.23 19.01 8.52 

1000 " 3.74E-006 13.37 380.76 28.5 

1600 " 2.34E-006 26.95 941.73 34.9 

2000 " 1.87E-006 41.19 1429.42 34.7 

4000 " 9.35E-007 165.73 5482 32.8 

6000 " 6.23E-007 339.55 10534.5 31.0 

8000 ' 4.67E-007 622.94 21585 34.7 

4 Conclusions

We are developin hg a t eory that suggests that the potential s d dvpee a antages with
DEVS are to be expected for d p es that are characterized b hy eterogeneity in their time

and space behavior In such cases as exem lified bp y the exam lp e discussed above,. ,

discrete events are a natural wa fy to ocus attention on the tio por ns of the solution that

are exhibitin hi h ig g activ t ly evels at the moment In fact theory suggests a way to. ,

characterize the activity of solutions over time and s ipace nde ndpe entl fy o the

solution techni h ht b d   Thique t at mig e e lomp ye s activity measure h, w en divided by a .

quantum size di of bou i bpre cts the number ndary crossings (computat ons) re iqu red y ,

the DEVS simulator for the accura fcy af orded by that quantum size Where.

si ificgn ant heterogeneit fy o activity exists the number of discrete event co atiomput ns,

b b ifmay e orders of d lmagnitu e ower than that re iqu red y a un orm allocation of

co atiomput nal resources across both space and time To realize these potential gains. ,

the choice of data structures used to im l  thp ement e discrete event simulation en ig ne is
of critical importance   A ke fy eature of the discrete event simulator is the use of data.

structures whose relevant operations have a time com lp exity of at most O(log N)2 ,

where N is the total number of models currently in the simuation (e.g cells and., 

Riemann boundar fly ux solvers in the above exam lp e).

The work re DEported here and research in progress suggests that VS can offer, ,

si lgnificant fper ormance advantages for simu ation of continuous hp enomena 

325Discrete Event Solution of Gas Dynamics within the DEVS Framework



Acknowledgement.
This research has been supported in part by NSF Grant No. DMI-0122227, “Discrete

Event System Specification (DEVS) as a  Formal Modeling and Simulation

Framework for Scaleable Enterprise Design" and in part by the Scientific Discovery

through Advanced Computing (SciDAC) program of the DOE, grant number DE-

FC02-01ER41184.

References

1. Adevs software http://www.ece.arizona.edu/~nutaro, 
2. J. Am hi A. Tróc “Models of Comeg no coli G. Wainer plex Ph ical Sys ystems, , . 

usin Cell-DEVS” Pr of th iug oceedings e Annual Simulation Sympos m, Seattle,, 
Washington, 2001.

3. DEVSJAVA software http://www.acims.arizona.edu, 
4. Kofman E. “Quantization Based Simulation of Differential Al braic ge Equation, . 

Systems”, Technical Report LSD0203 LSD, Universidad Nacional de Rosario, ,
2002.

5. Alexandre Mu Eric Innozy centi Antoine Aiello Jean-Francois Santucci and, , , , 
Gabriel Wainer “Cell-DEVS Quantization Techniques in a  Fire Spreading. 
Application” Winter Simulation Conference San Di Californiego, a, 2002., , 

6. Zeigler B.P. (2002). “The brain-machine disanalo sitedgy revi ”, BioSystem l.s,ÿVo, , 
64, pp. 127-140.

7. Zeigler B.P. T.G Ki Thm, et al eo of Modelin Nery g and Simulation. w York, , . . ,
NY, Academic Press, 2000.

8. Zeigler B.P. H.S. Sarjoughian “Introduction to DEVS Modeli Si iong and mulat n, , . 
with JAVA: A Si lified Amp pproach to HLA-Co limp ant Distributed Simulations”,
http://www.acims.arizona.edu 2001., 

Appendix: A Brief Review of DEVS Concepts

The structure of a  model may be expressed in a  mathematical language called a
formalism.  The formalism defines how to generate new values for variables and the
times the new values should take effect. The discrete event formalism focuses on the
changes of variable values and generates time segments that are piecewise constant.
Thus an event is a change in a variable value that occurs instantaneously. An
important aspect of the DEVS formalism is that the time intervals between event
occurrences are variable (in contrast to discrete time where the time step is generally a 
constant number).

To s ipecify modular d screte event models re iqu res that we ado iffpt a d erent view

than that fostered by traditional simulation languages. As with modular specification

326 J. Nutaro et al.

characterized by spatiotemporal heterogeneity. Since the DEVS hierarchical, modular

framework accommodates coupled models containing both discrete and continuous

components, it offers a scalable, efficient framework for very large scale distributed

simulation. An important avenue to explore is the incorporation of spatial dis-

aggregation techniques (such as adaptive mesh refinement) within the variable

structure capabilities of DEVS modeling and simulation.



in general, we must view a model as possessing input and output ports through which

all interaction with the environment is mediated. In the discrete event case, events

determine the values appearing on such ports. More specifically, when external

events, arising outside the model, are received on its input ports, the model

description must determine how it responds to them. Also, internal events, arising

within the model, change its state, as well as manifesting themselves as events on the

output ports, which in turn are to be transmitted to other model components.

A basic model contains the following information:

• the set of input ports through which external events are received,
• the set of output ports through which external events are sent,
• the set of state variables and parameters: two state variables are usually present,

“phase” and “sigma” (in the absence of external events the system stays in the
current “phase” for the time given by “sigma”), 

• the time advance function which controls the timing of internal transitions – when
the “sigma” state variable is present, this function just returns the value of “sigma”, 

• the internal transition function which specifies to which next state the system will
transit after the time given by the time advance function has elapsed, 

• the external transition function which specifies how the system changes state when
an input is received – the effect is to place the system in a new “phase” and
“sigma” thus scheduling it for a next internal transition; the next state is computed
on the basis of the present state, the input port and value of the external event, and
the time that has elapsed in the current state,

• the confluent transition function which is applied when an input is received at the
same time that an internal transition is to occur, and

• the output function which generates an external output just before an internal
transition takes place.

A Discrete Event System Specification (DEVS) is a structure

M = <X,S,Y,δint,δext,δcon,λ, ta> 
where 

X is the set of input values. 

S is a set of states. 

Y is the set of output values.

δint: S → S is the internal transition function.

δext: Q × Xb → S is the external transition function, where

Q ∈ {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total  state set,
e is the time elapsed since last transition,

Xb denotes the collection of bags over X (sets in which some

elements may occur more than once).

δcon: S × Xb → S is the confluent transition function.

λ: S → Yb is the output function.

ta: S → R
+
0,∞ is the time advance function.

327Discrete Event Solution of Gas Dynamics within the DEVS Framework



The inter tiopreta n of these elements is illustrated in figure 7 At an time hy t e.

system is in some state, s If no external event occurs the s m will yste sta iy n state s for.

time that ta(s) could be a real number and it can also take on the values 0

and ∞ In the first case  the sta iy n state s is so short that no external events can. ,
intervene – we sa hy t at s is a transitory state In the second case the s ill ystem w stay. ,

in s forever unless an external event interrupts its slumber. We say that s is a passive
state in this case. When the resting time expires, i.e., when the elapsed time, e = ta ),

the system outputs the value, 

(s

λ(s), and changes to state δ (s) Note that output isint .
only possible just before internal transitions.

ta(s). Notice 

S

λ

δext δint

ta

Xb Yb

R

input to function

result of function

trigger function

Legend

δ
con

Make a

transition

(external)

Make a 

transition

(internal)

Handle 

input

Send an 
output

Hold for

some

time

Fig. 7. Interpretation of the DEVS structure.

If an external event x ∈ Xb occurs before this expiration time, i.e., when the system

is in total state (s, e) with e ≤ ta(s), the system changes to state δext(s,e,x). Thus the
internal transition function dictates the system’s new state when no events have
occurred since the last transition. While the external transition function dictates the

system’s new state when an external event occurs – this state is determined by the 

input, x, the current state, s, and how long the system has been in this state, e, when

the external event occurred. In both cases, the system is then is some new state s′
with some new resting time, ta(s′) and the same story continues. 

 Note that an external event x ∈Xb is a bag of elements of X. This means that one or
more elements can appear on input ports at the same time. This capability is needed

since DEVS allows many components to generate output and send these to input ports

all at the same instant of time. 

Basic models may be coupled to form a coupled model. A coupled model tells how

to couple (connect) several component models together to form a new model. This

latter model can itself be employed as a component in a larger coupled model, thus

giving rise to hierarchical construction.

328 J. Nutaro et al.

. 

. 


	1 Introduction
	2 Formulation of the DEVS Model
	3 Implementation and Experimentation
	4 Conclusions
	References
	Appendix: A Brief Review of DEVS Concepts

