
ORIGINAL ARTICLE

A guideline for software architecture selection based on ISO 25010
quality related characteristics

Mariem Haoues1
• Asma Sellami1 • Hanêne Ben-Abdallah1,2

• Laila Cheikhi3

Received: 22 December 2015 / Revised: 16 September 2016

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2016

Abstract As the complexity of software increases, the

choice of the appropriate software architecture becomes a

critical task. This paper provides a guideline for selecting

the appropriate software architecture based on pertinent

ISO 25010 quality characteristics. The guideline was

established through an analytical survey of 113 papers

published from 2010 to 2014. Through this survey, we first

identified a set of commonly used software architectures in

the software engineering literature. Secondly, we applied

the Formal Concept Analysis technique to classify each

one of these architectures according to ISO 25010 quality

characteristics. Finally, we identified the relationships

among ISO 25010 quality characteristics, which in turn

helped us to develop a guideline on how to select the

appropriate software architecture with respect to ISO

25010 quality characteristics. In order to make sure about

the validation of the proposed guideline, a survey with

industrial experts is in progress. Data were collected from

two companies working in the software development field

(ST2i and Telnet).

Keywords Software architecture selection � Quality
characteristics relationships � Formal Concept Analysis �
ISO 25010 quality characteristics

1 Introduction

Due to the increasing complexity and challenging quality

requirements of software systems, Software Architecture

(SA) selection has become a crucial part of the software

development. In fact, many researchers argue that the SA

design phase is considered one of the most critical phases

in the Software Development Life Cycle (SDLC) (Bass

et al. 2012): Because the SA is decided relatively early in

the SDLC, it can have a considerable impact on the quality

of the final product (Bass et al. 2012).

During recent years, many definitions of SA have been

proposed. For example, (Lüders 2003) defines SA as ‘‘the

structural decomposition of software’’. On the other hand,

(Garlan 2003) sees SA as a means to provide ‘‘high-level

abstractions in representing the structure, behaviour, and

key properties of complex software’’. In contrast, the IEEE

defines SA as ‘‘the fundamental organization of a system

embodied in its components, their relationships to each

other and to the environment, and the principles guiding its

design and evolution’’ (ISO/IEC/IEEE 42010 2011); this

IEEE definition is the most adopted definition. Based on

these definitions, it can be observed that the SA is created

through a set of decisions that:

• represent the structure, the behaviour and the global

attributes of a system at a high-level of abstraction

(design phase);

• define all the functional requirements; and

• define the non-functional requirements (quality

attributes).

The choice of the appropriate SA should overcome the

challenges introduced by the three types of software

requirements: According to (COSMIC 2015), software

& Mariem Haoues

mariem_haoues@yahoo.fr

1 Mir@cl Laboratory, University of Sfax, Sfax, Tunisia

2 King Abdulaziz University, Jeddah, Saudi Arabia

3 ENSIAS, Mohammed V-Souissi University, Rabat, Morocco

123

Int J Syst Assur Eng Manag

DOI 10.1007/s13198-016-0546-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0546-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13198-016-0546-8&domain=pdf

requirements can be classified into three categories:

Functional User Requirements (FUR), Non-Functional

Requirements (NFR), and Project Requirements and Con-

straints (PRC). FUR express ‘‘what the software shall do in

terms of tasks and services’’ (COSMIC 2015). NFR include

‘‘any requirement for a hardware/software system or for a

software product, including how it should be developed

and maintained, and how it should perform in operation,

except any functional user requirement for the software’’

(COSMIC 2015). PRC describe ‘‘how a software system

project should be managed and resourced or constraints

that affect its performance’’ (COSMIC 2015).

The above sources of complications on the SA definition

and on the various quality models make software archi-

tects’ role vital in the success of the software project.

Indeed, the choice of the appropriate SA can be beneficial

in reducing the software development cost (Microsoft

2009), while an incorrect choice may increase it; enormous

problems can be induced by an incorrect choice of the SA

like the instability of the software, the inability to support

existing or future business requirements, etc. (Northrop

2003). Due to the important number of software architec-

tures, software architects face a challenge in choosing the

SA appropriate to their needs. In this paper, we propose a

guideline for selecting the appropriate SA that addresses

the ISO 25010 quality characteristics.

Researchers agree that software quality should be

taken into consideration throughout the SDLC phases. In

particular, many studies argue that the SA plays an

important role in achieving the quality of the final pro-

duct (cf. (Losavio et al. 2003; Aleti et al. 2013; Wang

and Yang 2012)). As such, the SA should be selected

with respect to the desired quality characteristics.

Nonetheless, existing works either examine quality

characteristics of the SA itself (e.g., Reliability (Delač

2012), Maintainability (Espinha et al. 2012), etc.), or the

quality characteristics involved in the architecture design

process (Losavio et al. 2003). In this study, we provide

an evaluation of the most used software architectures in

the literature according to a set of quality characteristics

(as identified by (ISO/IEC 25010 2011). This evaluation

was the basis for the elaboration of a guideline on SA

selection with respect to the desired quality

characteristics.

More specifically, we surveyed 113 papers published

from 2010 to 2014 to identify a set of commonly used

architectures in the software engineering literature. We

applied the Formal Concept Analysis technique to classify

these architectures according to ISO 25010 quality char-

acteristics. Finally, we identified the relationships among

ISO 25010 quality characteristics, which in turn helped us

to develop the guideline on how to select the appropriate

software architecture with respect to ISO 25010.

The remainder of this paper is organized as follows:

Sect. 2 presents an overview of the most popular software

quality models and their usage in the agile environment and

introduces the related works including those that tackled

the software architectures research area. Section 3 briefly

presents the Formal Concept Analysis (FCA) technique and

its application in the software engineering literature; it also

describes how we applied FCA in our study. Section 4

presents and discusses the survey results, and provides a

guideline for SA selection. In Sect. 5, we also discuss

several threats to internal, external and construct validity.

Section 6 summarizes the presented work and outlines

some further works.

2 Background

2.1 Software product quality models

In the software engineering literature, different quality

models have been proposed, e.g., McCall’s (McCall et al.

1977), Boehm’s (Boehm 1978), Dromey’s (Dromey 1996),

FURPS (Grady 1992), ISO 9126 (ISO/IEC 9126-1 2001),

and recently ISO 25010 (ISO/IEC 25010 2011). Each

model defines a set of quality attributes. As compared in

(Couto et al. 2011), several attributes are common among

some of these models, e.g., ‘‘Reliability’’; other attributes

are specific to some models, e.g., ‘‘Maintainability’’ is

present in ISO 9126-1 but it is absent in the FURPS model

which alone introduces the ‘‘Supportability’’. In addition,

we note that some attributes are considered as a quality

sub-characteristic in a model and a characteristic in another

model. As an example, ‘‘Security’’ is a sub-characteristic in

ISO 9126-1 while it is a characteristic in ISO 25010. We

noticed also the use of different terminologies for the same

concept (e.g., changeability in Boehm’s and modifiability

in ISO 25010), or by contrast (e.g., stability in ISO 9126-1

and instability in ISO 25010).

In a quest to cover most of the quality characteristics, we

selected, in our analysis, the ISO 25010 model since it is

the recent quality model and it is built based on an inter-

national consensus. Figure 1 presents a product quality

model as described in (ISO/IEC 25010 2011). This quality

model categorizes software product quality attributes into

eight characteristics: functional suitability, performance

efficiency, usability, compatibility, reliability, security,

maintainability and portability. Each characteristic is

composed of a set of related sub-characteristics. For

example, ‘‘Portability’’ includes three sub-characteristics:

adaptability, instability, and replaceability.

In the literature, many studies have examined the factors

that affect software quality (Reliability, Maintainability,

Usability, etc.). As an example, the study in (Zhang and

Int J Syst Assur Eng Manag

123

Pham 2000) focused on the factors affecting the software

reliability. They did an experimentation with 13 companies

to identify factors that have significant impact on the

software reliability. They identified 32 factors involved in

every phase of the software development phases (design,

coding, testing, etc.) such as: Program complexity, Pro-

grammer skills, Testing coverage, etc. They analyzed the

identified factors in order to determine these having a

significant impact on the software reliability. They used

two techniques (the relative weight method and the anal-

ysis of variance technique) to rank the identified factors.

According to this study, the program complexity is the

most important factor influencing on the software relia-

bility. On the other hand, the study proposed by (Ghosh

et al. 2011) focused on the factors affecting the software

maintainability. They consider that the software complex-

ity is the primary factor that affects the two sub-charac-

teristics of maintainability (Testability and Modifiability).

Other factors such as programming language, the trace of

design, etc. may affect the software maintainability.

Moreover, (Dehaghani and Hajrahimi 2013) studied the

factors affecting the cost of software maintenance. They

identified 32 factors such as Complexity Product, DataBase

size, Programming language experience, etc. (Mahrin et al.

2008) focused on the factors affecting the usability of a

software. Their results were based on an investigation from

three sources of information: the literature, data collected

from a survey of practitioners at the 5th Australia SEPG

conference, and an analysis of core elements of software

process meta-models. From the literature, they identified

19 factors such as: Consistency of presentation style, Use

diagrams, tables and narrative effectively, etc. From the

exploratory survey, they identified 25 factors such as: The

use of understandable terminology, Easy to implement, etc.

From the core elements of software process meta-models

they identified four factors such as: Guidance, Work pro-

duct, etc.

2.2 Software product quality models in Agile

environment

Experts consider that an iterative agile approach may

improves the quality of the software projects and reduce

the time and effort development. However, in the literature

it is not comprehensive which characteristics of is

improved by the use of agile processes in developing

software. Thus, (Mnkandla and Dwolatzky 2006) proposed

to evaluate agile methodologies in order to determine

which factors of software quality they improve. They used

the ISO 9126 quality model. Each quality characteris-

tic/sub-characteristic of the ISO 9126 quality model

(Compatibility, Correctness, Ease of use, etc.) is evaluated

in relation to agile techniques that implement the factors.

For example, for the quality sub-characteristic (Ease of

use), agile development ensure that the customer is part of

the team, he gives feedback and asks always for

improvement. Thus, he will likely recommend a system

‘easy to use’. Then, agile development can guarantee the

‘easy to use’ sub-characteristic. (Mnkandla and Dwolatzky

2006) proposed a tool to evaluate quality in agile process.

This tool has been evaluated using the Extreme Program-

ming (XP) and the Lean Development (LD). They men-

tioned that XP ensure the software correctness through the

User stories, the Unit tests, and the Customer feedback.

While, LD ensure the software correctness through the

meet of user requirements. Booth XP and LD ensure the

software maintainability through the iterative development.

In summary, many quality characteristics can be guarantee

by the agile development techniques. However, this study

didn’t evaluate all the ISO 9126 quality model.

2.3 Related works

In the software engineering literature, various software

architectures are used like: Model Driven Architecture-

Software Product
Quality

ISO 25010

Functional
Suitability Reliability Performance

efficiency Compatibility Usability Security Maintainability Portability

- Functional
completeness
- Functional
correctness
- Functional
appropriateness

- Maturity
- Availability
- Fault tolerance
- Recoverability

- Time behaviour
- Resource
utilization
- Capacity

- Co-existence
- Interoperability

- Appropriateness
recognizability
- Learnability
- Operability
- User error
protection
- User interface
aesthetics
- Accessibility

- Confidentiality
- Integrity
- Non-
repudiation
- Accountability
- Authenticity

- Modularity
- Reusability
- Analysability
- Modifiability
- Testability

- Adaptability
- Installability
- Replaceability

Fig. 1 Quality model-ISO/IEC 25010 (2011)

Int J Syst Assur Eng Manag

123

MDA (cf. (Cheng 2010)) Component Based Architecture-

CBA (cf. (Lee et al. 2010)), Service Oriented Architecture-

SOA (cf. (Shanmugasundaram et al. 2012)), Object Ori-

ented Architecture–OOA (cf. (Acheson 2010)), Event

Driven Architecture-EDA (cf. (Tragatschnig and Zdun

2013)), Aspect Oriented Architecture–AOA (cf. (de Oli-

veira et al. 2013)), etc.

Several literature reviews on SA have been published.

For example, (Couto et al. 2011) used FCA to present a

literature survey on software architectures. They used a

collection of 38 scientific papers published between 1992

and 2010, which encompassed different types of publica-

tions (surveys, evaluations, new proposals, etc.). Through

this survey, the authors tried to answer the following four

questions:

• What are the most supported definitions of software

architecture?

• What are the most popular research topics in software

architecture?

• What are the most relevant quality attributes of the

software architecture? and,

• What are the topics that researchers point out as being

more interesting to explore in the future?

This survey showed that there was no clear definition

of the term ‘‘software architecture’’. In addition, it showed

that SA quality was frequently examined in the literature

(cf. (O’Brien et al. 2007), and (Immonen and Niemelä

2008)). It also showed that a number of quality attributes

are widely used in the decisions taken during the SA

design (e.g., maintainability, reusability, usability, per-

formance, and reliability), whereas other quality attributes

like scalability, interoperability and testability are used

only in a few studies (cf. (O’Brien et al. 2007)). This

empirical study managed to identify and classify the

quality attributes regarding the software architectures.

However, it did not use the quality attributes as a com-

parative criteria to capture the SA most appropriate for a

particular set of quality characteristics; such a comparison

can help a software architect understand how their

architecture addresses the quality attributes in comparison

with other architectures. The appropriate SA selection is

one of the most important decisions guiding the quality of

system/software product.

Trying to fulfil the need for comparative results on

software architectures, the Systematic Literature Review

(SLR) recently presented in (Aleti et al. 2013) provided an

analysis and a classification of SA optimization methods.

This review examined 188 researches published from 1992

to 2011 in order to find answers to the owing questions:

• How the current research on software architecture

optimization can be classified?

• What is the current state of software architecture

optimization research with respect to this classification?

and,

• What can be learned from the current research results

that will lead to topics for further investigation?

This SLR reported that most of the SA optimization

methods try to improve SA quality. These methods can be

classified into three categories: (i) improve one quality

attribute (e.g., performance, cost, etc.); (ii) improve more

than one quality attribute (e.g., performance and reliabil-

ity); or (iii) improve independently of any of the quality

attributes. This study presented an interesting SLR of the

SA optimization methods to advance the architecture

optimization research area.

In an attempt to help in selecting the proper SA style for

a given software, (Wang and Yang 2012) conducted a lit-

erature review in order to identify the SA styles that are

commonly used, and how to select the proper SA style.

This literature review proposed an evaluation of the most

used SA styles according to some quality attributes.

However, this evaluation is not based on any quality

model. The selection of the appropriate SA style is pro-

vided using a systematic selection process powered by the

Analytic Hierarchy Process (AHP). AHP is originally a

mathematical decision-making technique proposed by

Saaty in 1980. This technique provides how measuring an

intangible criteria and how to interpret correctly measure-

ments of tangibles (Saaty 2008). AHP has been widely

used in different fields in order to help decision-makers

understanding the problem and taking the best decision.

(Wang and Yang 2012) illustrate their selection process to

show that the Service-Oriented style is the most appropri-

ate for B2B applications since, as argued in their AHP

application, it better guarantees usability, maintainability,

cost, and scalability. However, to be generalized across all

types of software architectures and application domains,

this proposed selection process requires a rich knowledge

base to power the AHP. Such a knowledge base is typically

built manually by experts, which is not a trivial task.

3 Formal concept analysis for software
architecture selection

3.1 FCA fundamentals

In information science, FCA is a mathematical theory used

for data analysis information retrieval, and knowledge

discovery (Couto et al. 2011). FCA uses two concepts: data

tables, and lattices. A data table represents binary relations

between objects and keywords. A lattice is used to repre-

sent a structured view of the concepts under study (Couto

Int J Syst Assur Eng Manag

123

et al. 2011). The view/lattice can be parsed to understand

which keyword is related to which object. (Couto et al.

2011) describe how to use FCA in preparing a literature

review: First, for every research question/objective, a set of

keywords are defined. Secondly, for each object (research

study in this case), we identify the keywords used in order

to determine the relationships among keywords and

objects. Afterwards, a lattice can be drawn using the

‘‘Lattice Miner’’1 tool. An analysis of the lattice provides

an answer of the related question.

3.2 Formal concept analysis in software engineering

Researchers proved that FCA has been widely used in

different research areas, including the software engineering

field for many purpose and during different phases of the

SDLC. (Poelmans et al. 2010) showed that FCA has been

applied in different phases of the SDLC such as software

requirements analysis, implementation, maintenance, etc.

For example, (Hesse and Tilley 2005) used FCA in

requirements analysis phase in order to identify class

candidates in use case descriptions. FCA also has been

used in literature surveys since it can be helpful in classi-

fying and structuring the bibliography. For example,

(Couto et al. 2011) used FCA in order to provide a survey

in the SA research area; (Hesse and Tilley 2005) surveyed

papers that include the term ‘‘Formal Concept Analysis’’ in

their abstract. This study showed that FCA can be applied

in many disciplines such as: software engineering, knowl-

edge discovery, information retrieved, etc.

3.3 FCA application

To achieve the objective of our study (i.e., providing a

guideline for SA selection according to ISO 25010), three

steps can be clearly distinguished: (1) Identify software

architectures the most used in the literature, (2) Classify the

identified architectures with regard to the ISO 25010

quality characteristics, and (3) Analyze the relationships

between ISO 25010 quality characteristics. For the first and

the second steps, we use FCA for papers classification.

First we identify the set of pertinent keywords, which are

classified into primary and secondary keywords. Primary

keywords are those directly related to the corresponding

step. For example, for step 1, we search for software

architectures the most used in the literature, then primary

keyword is ‘‘software architecture’’. Secondary keywords

can be derived from the definition of SA as provided in the

introduction, such as: design, structure, behaviour, etc.

Once keywords are identified, we select from the collected

papers those that include the identified keywords in their

title, abstract, keywords, introduction or conclusion.

Afterwards, we construct the data table where the rows are

the selected papers and the columns are the identified

keywords. Finally, by using the ‘‘Lattice Miner’’ tool, we

can get a lattice that classifies these papers in terms of their

keywords coverage. The next section discusses the FCA

results of our survey.

4 FCA results and discussions

4.1 Step 1: Software architectures most used

in the literature

A set of papers are collected to reach the objective of this

study. These papers are from four databases: IEEE Xplore,

ACM Digital Library, Science Direct and CiteSeer. Papers

should include the hereafter keywords that are deducted

from the definition of ‘‘software architecture’’ as presented

in the introduction.

• Software architecture: definition of the software

architecture,

• Design: software architecture is identified at the design

phase,

• Behaviour: software architecture presents the behaviour

of systems,

• Structure: software architecture presents the structure

of systems, and

• Quality: software architecture relying on non-func-

tional requirements.

We classify the above keywords as (i) Primary keyword:

software architecture; and (ii) Secondary keywords: design,

behaviour, structure, and quality. Then, we classify each

paper according to the keywords it includes: papers that do

not include the primary keyword are excluded even if they

contain secondary keywords. However, papers dealing with

SA types (e.g., MDA, SOA, etc.) are included in our

review. We added the SA type as a keyword to take into

account the practical fact that the type might be imposed in

some projects.

Papers collected in our review are from different types

of publications. For instance:

• Surveys: (Chen et al. 2010) present an analysis and an

evaluation of software architectures that are used

during the last ten years. In addition, (Majidi et al.

2010) provide a comparative analysis between three

kinds of architectures classifications in the literature;

this study proposes some criteria to help in choosing the

appropriate software architecture style in different

applications. Furthermore, (Aleti et al. 2013) proposes

a SLR to analyze and classify software architectures
1 http://sourceforge.net/projects/lattice-miner/.

Int J Syst Assur Eng Manag

123

http://sourceforge.net/projects/lattice-miner/

optimization methods, in order to help researchers to

classify their research approach and to identify new

directions for further works.

• Evaluations: Some studies present an evaluation and a

comparison between software architecture types or

styles (cf. (Majidi et al. 2010)). Other studies proposed

a comparison between SA types. For example, (Li and

Huang 2013) provided an evaluation of SA reliability

based on hypergraph grammar. They proposed a

reliable hypergraph grammar by extending the hyper-

edges with reliable elements from reliability model.

Software architecture is then described by using the

hypergraph grammar. Since, the hypergraph is based on

the reliability model, then the reliability of the corre-

sponding software architecture can be predicted.

• Combination: Some studies propose the combination or

the grouping of two architectures to improve the

software development quality, such as the research

conducted by (Yue et al. 2010). This study proposed the

grouping between CBA and SOA to improve software

reusability.

• Style: Some studies are related to a specific SA type.

These studies examine various related subjects such as:

architecture refinement (cf. (Zhang et al. 2010; Gao

et al. 2010)), quality improvement or evaluation (cf.

(Fan et al. 2012; Delač 2012)), etc.

• New proposal: Some studies propose a new SA that can

be more adapted to their specific needs (cf. (Weini et al.

2012)). They proposed a new software architecture

designed for ultra-large-scale rendering cloud. It

includes five levels: infrastructure layer, rendering

service layer, rendering application layer, service

management and access interface. (Weini et al. 2012)

proposed also the development of a Golden Farm

Cluster Rendering Platform where some experimental

results can be carried out. The proposed platform is

considered as an effective solution for ultra-large-scale

rendering, since it provides a high performance-com-

puting cluster, and it has a high availability, reliability

and scalability.

As showed in Fig. 2, 49.12% of the selected papers used

the primary keyword ‘‘Software Architecture’’. In addition,

we note that:

• 48.25% of the selected papers used the primary

keyword ‘‘Software Architecture’’ with the secondary

keyword ‘‘design’’, because the software architecture is

defined in the design phase;

• 32.46% of the selected papers focused on the quality of

software architecture, they used the primary keyword

‘‘Software Architecture’’ with the secondary keyword

‘‘quality’’; and

• 59.65% used the two secondary keywords ‘‘design’’ and

‘‘quality’’. Then, we note that the quality of design

phase is widely discussed in the literature. In fact, the

design quality will have an effect on the quality of the

final product.

Furthermore, the behavioural and structural aspects of

software architecture have been also studied:

• 40.35% of the selected papers focused on the structural

aspect of software architecture in the design phase; they

used the primary keyword ‘‘Software Architecture’’

with the secondary keywords ‘‘design’’ and ‘‘structure’’.

• 31.58% of the selected papers focused on the

behavioural aspect of the software architecture in the

design phase; they used the primary keyword ‘‘Soft-

ware Architecture’’ with ‘‘design’’ and ‘‘behaviour’’ the

secondary keywords.

After an initial scan of a set of papers selected according

to the primary keyword ‘‘Software Architecture’’, we

restricted ourselves to 113 papers. We found that:

Fig. 2 Concept lattice for

keywords repartition in step 1

Int J Syst Assur Eng Manag

123

• four papers provide a literature survey (Aleti et al.

2013; Chen et al. 2010; Couto et al. 2011; and Majidi

et al. 2010);

• 13 papers studied the combination between two soft-

ware architectures, such as: EDA with SOA (Tra-

gatschnig and Zdun 2013; and Yuan and Watton 2012),

MDA with AOA (Fang et al. 2010; and Linehan and

Clarke 2012), MDA with SOA (Bispo et al. 2010;

Borek et al. 2012; and Yang et al. 2012), SOA with

CBA (Cheaito et al. 2010; Quintero et al. 2010; and

Yue et al. 2010), CBA with AOA (Tizzei et al. 2011),

and CBA with EDA (Klatt et al. 2011). As an example,

(Yue et al. 2010) investigated the improvement of

software development quality with software reuse.

Their approach is based on a component-based SOA

to guide the reusable software development;

• one paper provides a new proposal (Weini et al. 2012).

They proposed a five-level software architecture

designed for ultra-large-scale rendering cloud;

• three papers studied the comparison between software

architecture types (Abdelmoez et al. 2012; Li and

Huang 2013; and Majidi et al. 2010). For example,

(Majidi et al. 2010) focused on the comparison between

OOA and AOA regarding to ‘‘Maintainability’’;

• two papers studied the refinement of an architecture (Li

and Huang 2013; and Zhang et al. 2010); and

• 90 papers are related to specific software architecture

with quality attributes. Where only one study used the

Object Oriented Architecture (Tizzei et al. 2011).

Based on the above analysis, we had to exclude the

following papers to meet the objective of our research:

• papers that do not specify a SA type, or papers that do

not include the primary keyword ‘‘software architec-

ture’’ are excluded;

• papers used a software architecture type cited few times

are also excluded;

• papers that propose new software architecture or a

comparison of two architectures are excluded; and, finally

• papers presenting surveys are also excluded. Hence, we

kept only those papers focusing on the refinement, the

improvement or the evaluation of a specific software

architecture, and papers proposed the combination of

two architectures.

The retained 105 papers for a specific software archi-

tecture types are classified into five groups: SOA, CBA,

MDA, EDA, and AOA. Figure 3 shows that most of the

collected papers focused on: SOA (39%), CBA (27%), and

MDA (17%).

Our close analysis of these 105 papers showed that

different subjects have been studied. Since quality is

widely considered when working with software

architecture, many researches focused on the use of quality

characteristics with their selected architectures. Other

studies proposed the combination of two architectures to

improve a quality characteristic (cf. (Yue et al. 2010)).

MDA and SOA have been used together the most; this is

justified by the fact both concepts are in fact close.

4.2 Step 2: Classification of Popular SA Relying

on the ISO 25010 Quality Characteristics

In this step, papers that do not include the use of a specific

software architecture type with a quality attribute were

excluded, such as papers studying the refinement of soft-

ware architectures. We limited ourselves on the 103

remaining papers. An initial scan of these papers showed

that some studies focus on the ISO 25010 quality charac-

teristics (e.g. maintainability, reliability, etc.). Other stud-

ies use quality attributes that appear to be not supported by

ISO 25010 quality model because of the ambiguity in using

terminologies. In fact, some researchers used quality

attributes that are represented by one of the ISO 25010

quality characteristics or sub-characteristics or through

more than one ISO 25010 quality characteristic or sub-

characteristic. For example, the term ‘‘Changeability’’ is

frequently used to reflect the concept of the ISO 25010 sub-

characteristic ‘‘Modifiability’’. Also, the term ‘‘Scalability’’

refers to the ‘‘Adaptability’’ sub-characteristic related to

the ISO 25010 quality characteristic ‘‘Portability’’. In our

study, we provide a classification of the 103 papers with

regard to the ISO 25010 characteristics in order to identify

which characteristic is mostly used with which software

architecture. The detailed classification of the used 103

papers regarding the software architecture type and the ISO

25010 quality characteristics is provided in Table 5 (see

Appendix 1). Moreover, from Tables 6, 7, 8, 9, 10, 11, 12,

13 we provide the classification of the used 103 papers on

the basis of the software architecture type and ISO 25010

quality sub-characteristics (see Appendix 2). Finally,

Table 14 presents the interest of the selected papers on

other quality attributes un-supported directly by ISO 25010

quality model such as scalability, flexibility, etc. (see

Appendix 2).

39%

17%

27%

9%
8%

SOA MDA CBA EDA AOA

Fig. 3 The used software architectures-Summary of the quantitative

results

Int J Syst Assur Eng Manag

123

For this purpose, we identified the following keywords:

• ISO 25010 quality characteristics; and

• ISO 25010 quality sub-characteristics.

The above keywords are then classified into (i) Primary

keywords: ISO 25010 quality characteristics; and (ii)

Secondary keywords: ISO 25010 quality sub-characteris-

tics. A scan of the selected papers showed that some studies

limited on one quality characteristic, As an example,

(Ahmed and Wu 2013) focused on the ‘‘Reliability’’ for

SOA. However, many researchers covered more than one

characteristic, such as ‘‘Maintainability’’ and ‘‘Compati-

bility’’ for MDA as provided by (Espinha et al. 2012). And,

other researchers focused on sub-characteristics, such as

‘‘Accessibility’’ as provided by (Hebiri et al. 2010).

The objective of step 2 is to classify the selected papers

according to ISO 25010 quality characteristics for each

software architecture identified in step 1 (see Appendix 2).

These classifications showed that most of the selected

papers focused on ‘‘Performance Efficiency’’ and ‘‘Main-

tainability’’, while other characteristics are rarely studied

such as ‘‘Usability’’ and ‘‘Functional Suitability’’. As an

example, we present a classification of the selected papers

using ISO 25010 quality characteristics with SOA. The

lattice in Fig. 4 presents the relationships between ISO

25010 quality characteristics and SOA.

From Fig. 4, we note that:

• ‘‘Performance Efficiency’’ of SOA (43.21%);

• ‘‘Security’’ of SOA (37.04%);

• ‘‘Portability’’ of SOA (7.41%); and

• ‘‘Performance Efficiency’’ and ‘‘Maintainability’’ are

used together (4.94%).

Looking across these percentages, we find that most

research using SOA focused mostly on the following

quality characteristics: ‘‘Performance Efficiency’’, and

‘‘Security’’. Indeed, a quality characteristic, which is

widely used with a specific architecture, does not mean that

it is an advantage. In fact, ‘‘Security’’ is used with SOA by

37.04%. Although ‘‘Security’’ is a major concern for SOA,

it represents one of the most problems in SOA environ-

ment. It makes a negative impact on the other ISO 25010

quality characteristics and sub-characteristics (such as,

performance efficiency, interoperability and modifiability).

It is worth noting that, during this step of our study, dif-

ferent terminologies are used to represent the same concept

(e.g., changeability and modifiability), or by contrast (e.g.,

stability and instability). At the end of this step, we

excluded the papers that did not include one of the primary

keywords (i.e. one of the ISO 25010 quality characteris-

tics), which left us with 75 papers.

Table 1 presents a comparison between the identified

software architectures (step 1) in terms of their coverage of

the ISO 25010 sub-characteristics. In Table 1, ‘‘?’’ in the

box indicates the presence of the related sub-characteristic

in the corresponding software architecture; ‘‘-’’ indicates

the absence of the related sub-characteristic in the corre-

sponding software architecture; or the presence of the

corresponding sub-characteristic may lead to a problem,

e.g., a bad impact on another sub-characteristic or an effort

is required to ensure it. And, ‘‘0’’ indicates that the sub-

Fig. 4 Concept lattice for SOA

with ISO 25010 quality

characteristics

Int J Syst Assur Eng Manag

123

characteristic is not taken into consideration. In the fol-

lowing sub-sections, we present an analysis of the results

provided in Table 1.

Quality sub-characteristics addressed by SOA: The SOA

quality has been widely investigated in the literature. For

example: a ‘‘?’’ for ‘‘Interoperability’’ and ‘‘Reusability’’

means that these two sub-characteristics are positively

impacted with SOA. (O’Brien et al. 2005) mentioned that

SOA ‘‘provides important advantages like interoperability,

reusability and flexibility’’. A ‘‘-’’ for ‘‘Testability’’ because

testing in SOA is ‘‘a challenging task due to the high dyna-

mism, the low coupling of services’’ (Hebiri et al. 2010).

(Espinha et al. 2012) mentioned that ‘‘testability can be

negatively impacted when using a SOA due to the com-

plexity of the testing services that are distributed across a

network’’. In fact, several studies focused on the improve-

ment of ‘‘Testability’’ in SOA environment, such as the study

proposed by (Hebiri et al. 2010); they proposed to improve

Web service testability by developing Web services with

built-in structural testing capabilities.

Quality sub-characteristics addressed by MDA: The use of

MDA can improve the ‘‘Portability’’ since it offers a sep-

aration between the business model and implementation

technique. A ‘‘?’’ is attributed for ‘‘Adaptability’’, because

many researchers considered that the use of MDA improve

the ‘‘Adaptability’’ and reduce the development costs and

Table 1 Comparison between

software architectures in terms

of ISO 25010 sub-

characteristics

ISO 25010 characteristics ISO 25010 sub-characteristics SOA MDA CBA EDA AOA

Functional Suitability Functional Completeness 0 0 1 0 0

Functional Correctness 1 0 1 0 1

Functional appropriateness 0 0 0 0 0

Reliability Maturity 2 0 0 – 0

Availability 0 1 1 2 1

Fault Tolerance 2 1 1 1 1

Recoverability 0 0 1 0 1

Usability Appropriateness

Recognizability

1 0 0 0 0

User interface aesthetics 2 1 0 0 0

Operability 0 1 0 0 0

User error protection 2 0 0 0 0

Learnability 2 0 0 0 0

Accessibility 1 1 0 1 0

Compatibility Coexistence 1 1 0 0 0

Interoperability 1 1 1 1 1

Performance efficiency Time Behaviour 2 0 1 1 0

Resource Utilization 1 1 0 1 1

Capacity 2 2 2 1 1

Portability Adaptability 1 1 1 1 1

Instability 2 2 2 0 1

Replaceability 1 1 1 0 0

Security Confidentiality 2 2 0 2 0

Integrity 2 1 1 2 0

Non-repudiation 0 2 0 0 0

Accountability 0 0 0 0 0

Authenticity 2 2 0 0 0

Maintainability Modularity 1 1 1 1 1

Reusability 1 1 1 1 2

Analyzability 1 0 1 0 0

Modifiability 1 1 1 2 1

Testability 2 0 2 0 0

Int J Syst Assur Eng Manag

123

effort (c.f. (Eler et al. 2010; and Linehan and Clarke

2012)). On the other hand, most of the studies focus on

‘‘Maintainability’’ use the sub-characteristic ‘‘Reusability’’.

A ‘‘?’’ is attributed to ‘‘Reusability’’. Indeed, MDA is

‘‘favorable for improving software model reusability and

system maintainability’’ (O’Brien et al. 2005).

Quality sub-characteristics addressed by CBA: Table 1

illustrates that researchers argue that the use of CBA sup-

ports ‘‘Reusability’’, ‘‘Modifiability’’ and ‘‘Adaptability’’.

As an example, a ‘‘?’’ is attributed to ‘‘Analyzability’’ and

‘‘Functional correctness’’ because many researchers men-

tioned that structuring code into components has a good

benefit on ‘‘Analyzability’’ and ‘‘Functional correctness’’

(c.f. (Magableh and AlBeiruti 2012)). On the other hand, a

‘‘0’’ is attributed to most of the sub-characteristics of

‘‘Security’’ indicates that CBA does not take into consid-

eration these sub-characteristics.

Quality sub-characteristics addressed by EDA: As pro-

vided in Table 1, a ‘‘?’’ for ‘‘Modularity’’ and ‘‘Adapt-

ability’’ indicates that using EDA aims at ‘‘improving the

modularity and flexibility of automation software with

satisfactory control performance’’ (Zhang et al. 2010). On

the other hand, a ‘‘-’’ is attributed to ‘‘Availability’’,

‘‘Confidentiality’’ and ‘‘Integrity’’ because researchers

considered that working with EDA may produce problems

that affect the ‘‘Availability’’ and many security aspects,

such as ‘‘Confidentiality’’ and data ‘‘Integrity’’ (Zhang

et al. 2010).

Quality sub-characteristics addressed by AOA: Several

researchers used AOA, since it can ‘‘improve the modu-

larity of the project’’ (Wang et al. 2010). For that reason, a

‘‘?’’ is attributed to ‘‘Modularity’’. Therefore, a ‘‘?’’ for

‘‘Functional Correctness’’, because using AOA is ‘‘an

effective way of improving the reliability and correctness

of complex system’’ (de Oliveira and Soares 2012). In

addition, a ‘‘?’’ is attributed for ‘‘Capacity’’ because many

researches mentioned that using ‘‘aspect-oriented software

development improve the system evolution capacity’’,

since ‘‘the system evolution can be realized at run-time’’

(Fan et al. 2012).

4.3 Step 3: Relationships among quality

characteristics

Identifying the relationships among quality characteristics

is an important subject that has been widely discussed in

the literature. In fact, understanding the relationships

between quality characteristics is important to sustain a

sufficient level of system/software quality and its devel-

opment process. In this section, we identify the relation-

ships among ISO 25010 quality characteristics. For this

purpose, we examined a set of studies that investigated

these relationships. Many studies provide the relationships

by using the experience-based approach (Al-Daajeh et al.

2012). While, other studies identified the relationships

between quality characteristics by combining different

views, such as academic, industry, and literature. In this

paper, our analysis is based on surveying a set of research

papers. We are not limited on the collected papers from

Step 1, but we used other papers focused on analyzing the

relationships between quality attributes such as the study

conducted by (Delač 2012).

(Delač 2012) focused on the ISO 9126 quality attributes

relationships for Web-based application. Among six qual-

ity characteristics of ISO 9126, they identified 15 rela-

tionships. These relationships can be either ‘‘Positive’’,

‘‘Negative’’, or ‘‘Independent’’. In our case, we focused on

eight quality characteristics derived from ISO 25010.

Evidently some quality characteristics relationships are

common with (Delač 2012), since ISO 9126 and ISO

25010 has six common quality characteristics. The main

difference between ISO 9126 and ISO 25010 is given by

Table 2 ISO 25010 quality characteristics relationships

Functional

suitability

Performance

efficiency

Usability Compatibility Reliability Security Maintainability Portability

Functional

suitability

? - ? 0 ? - ? 0

Performance

efficiency

0 ? - - 0 - - -

Usability ? ± ? 0 ? 0 ± 0

Compatibility 0 0 0 ? 0 - ± ?

Reliability ? 0 ? 0 ? 0 ? 0

Security 0 - - - ? ? 0 0

Maintainability ? - 0 ? ± ± ? ?

Portability 0 - 0 ? 0 0 ? ?

Int J Syst Assur Eng Manag

123

the addition of ‘‘Security’’ and ‘‘Compatibility’’ charac-

teristics. Actually, ‘‘Security’’ in ISO 25010 is a charac-

teristic and a sub-characteristic in ISO 9126. Thus, we

identified 28 relationships. As provided in Table 2, there

are four types of relationships:

• A positive relationship ‘‘?’’, i.e. a good value of one

quality characteristic result in a good value of the other.

As an example, a ‘‘?’’ between ‘‘Security’’ and

‘‘Reliability’’ means that ‘‘Security’’ has a positive

impact on the ‘‘Reliability’’.

• A negative relationship ‘‘-’’, i.e. a good value of one

quality characteristic result in a bad value of the other.

As an example a ‘‘-’’ between ‘‘Security’’ and ‘‘Perfor-

mance Efficiency’’, because ‘‘Security mechanisms

often have a negative impact on performance’’

(O’Brien et al. 2005).

• ‘‘±’’, i.e. a good value on a quality sub-characteristic

and a bad value on another quality sub-characteristic

for the same quality characteristic. As an example: a

‘‘±’’ between ‘‘Security’’ and ‘‘Maintainability’’

because ‘‘Security mechanisms often have a negative

impact on modifiability’’ (O’Brien et al. 2005).

• Independent relationship ‘‘0’’, i.e. a number of quality

characteristics that does not affect each other. As an

example, a ‘‘0’’ between ‘‘Usability’’ and ‘‘Security’’

indicates that there is no relationship between these two

quality characteristics.

In Table 1, we noted that SOA does not support ‘‘Per-

formance Efficiency’’ quality characteristic. On the other

hand, this architecture offers the ‘‘Maintainability’’. For

instance, Table 2 illustrates that ‘‘Performance Efficiency’’

and ‘‘Maintainability’’ have a negative relationship, since

the addition or the modification of a Functional User

Requirement may have a negative effect on the ‘‘Perfor-

mance Efficiency’’. For this reason, only 4.94% studying

SOA used ‘‘Maintainability’’ and ‘‘Performance Effi-

ciency’’ together. Moreover, ‘‘Maintainability’’ and

‘‘Reliability’’ have a positive relationship. Thus, (Lo-

ganathan and Gandhi 2015) proposed to minimize the cost

of ‘‘Maintainability’’ based on a set of ‘‘Reliability’’

constraint.

4.4 Guideline for Selecting the Suitable SA Based

on ISO 25010 Quality Characteristics

Based on the analysis of Table 1 and Table 2, we propose a

guideline as provided in Table 3 to select the appropriate

software architecture on the basis of the ISO 25010 quality

characteristics. The general phases of the guideline are

provided as follow:

1. Identify the required quality characteristics according

to the Non-Functional Requirements.

2. Verify the relationships between the required quality

characteristics as we provided in Table 2.

3. Select the appropriate software architecture as pro-

vided in Table 3 according to the desired quality

characteristics.

Identifying the required quality characteristics: The cus-

tomer/user specifies the quality characteristics about the

delivered software product. One or more quality charac-

teristics can be identified. The selection of the SA related to

one quality characteristic is the simplest. In fact, software

architect can select the first choice from Table 3. As an

example if the software architect is looking for ‘‘Main-

tainability’’ quality characteristic, he may select firstly

MDA architecture. Secondly he may choose between SOA

and CBA architectures. Finally, software architect can

choose between EDA and AOA architectures.

Quality characteristics relationships: In the case where

customer/user is looking for more than one quality char-

acteristics, software architect should take into considera-

tion the relationships between the required characteristics.

According to the customer/user needs, software architect

must decide which software architecture to prioritize and

which one to forsake. The selection of the quality charac-

teristics should ensure that the selected software architec-

ture is appropriate and it contributes to the customer/user

needs. As an example, the relationship between ‘‘Main-

tainability’’ and ‘‘Performance efficiency’’ quality charac-

teristics is a negative relationship. Then, the software

architect should choose which characteristic to prioritize. If

he selects ‘‘Maintainability’’ then he can use MDA as the

Table 3 SA selection guideline
Functional suitability Performance efficiency Usability Compatibility

1st choice CBA EDA MDA SOA|MDA

2nd choice SOA|AOA AOA EDA CBA|EDA|AOA

3rd choice MDA|EDA MDA|CBA CBA|AOA

Reliability Security Maintainability Portability

1st choice CBA|AOA CBA MDA AOA

2nd choice MDA AOA SOA|CBA EDA

3rd choice EDA EDA EDA|AOA SOA|MDA|CBA

Int J Syst Assur Eng Manag

123

first choice, then SOA or CBA, and finally EDA or AOA.

Whereas, if the software architect selects to prioritize

‘‘Performance efficiency’’ then he can use EDA as the first

choice, then AOA as the second choice, then MDA or

CBA, and finally SOA.

SA selection: In this step, software architect can choose the

appropriate software architecture according to their needs

in terms of quality characteristics and by referring to

Table 3. Here, we provide three choice-levels of granu-

larity for software architecture (first, second, and third

choice).

5 Threats to validity

In this section, we discuss threats to validity of the herein

presented study. These include: internal, external, and

construct validity threats.

Internal validity: is related to the limited number of papers,

the selected list of keywords and the limitations of the

employed databases. To decrease the risk of the incom-

pleteness of this research, we were not limited only on the

identified keywords, but we included some papers that do

not include explicitly primary keywords. As an example,

for the first step, the primary keyword was ‘‘Software

Architecture’’. Whereas, some papers use one specified

software architecture type were included in this research

even if they do not include the primary keyword ‘‘Software

Architecture’’. In addition, in order to omit the limitations

implied by employing a particular database, we used the

most relevant databases (IEEE Xplore, ACM Digital

Library, Science Direct and CiteSeer). Moreover, collected

papers are from different conferences, workshops and

journal and include different domains such as quality

characteristics, software architecture evaluation, etc.

Another important issue is the use of quality characteristics

as provided by ISO 25010 quality model. In fact, we noted

also the use of different terminologies to represent the same

ISO 25010 quality characteristic or sub-characteristic.

Indeed, this can lead to high level of ambiguity in the

domain of software architecture quality. Thus, we propose

to substitute the appropriate ISO 25010 quality model

terms. As an example, some researchers used the term

‘‘Changeability’’ to reflect the meaning of the ISO 25010

sub-characteristic ‘‘Modifiability’’. Moreover, researches

tend to define their quality attributes individually rather

than rely on a standard. To overcome this problem, we try

to provide a classification of the selected papers based on

ISO 25010 quality characteristics, sub-characteristics, and

also the quality attributes most used which seem not

supported by ISO 25010 quality model. However, the

results of this study remain the same even if the researchers

used different terminologies. Consequently, where appli-

cable, this guideline will greatly help to avoid many of the

ambiguities found so often in software architecture fields.

External validity: is concerned with the possibility to

generalize the results of the study. Due to the limited

number of papers for this study, results might be difficult to

generalize. However, the provided guideline was estab-

lished through an analytical survey of 113 scientific papers.

Selected papers are not only from academic view but also

from industrial experiences. In addition, and in order to

make sure about the validation of the proposed guideline, a

survey with industrial experts is in progress. We collected

data from two companies working in the software devel-

opment field (ST2i and Telnet). Each company provides,

for a set of software projects, the required ISO 25010

quality characteristics and the used software architecture in

each project (see Table 4). After data collection, we

determine the extent to which the proposed guideline is

appropriate; we compare the used architecture (in the

company) and the determined architecture (from the

guideline). Until now, we noted that software architecture

the most used in the industry is SOA (as it is identified in

the literature). And the most required quality characteris-

tics are ‘‘Security’’ and ‘‘Reliability’’ while the less used

quality characteristic is ‘‘Portability’’. This investigation

delivers notably encouraging results. However, providing

Table 4 Examples of the survey’s results

Project

1

Project

2

Project

3

Project

4

The used SA

SOA X X X X

CBA

MDA

AOA

EDA

ISO 25010 quality characteristics

Functional suitability B B B B

Performance

efficiency

C C C C

Usability C E C E

Compatibility D E E E

Reliability D D C D

Security C C C B

Maintainability B B B B

Portability E E E E

A very good B rather good C average D poor E very low

Int J Syst Assur Eng Manag

123

more detailed data from other companies will be needed

regarding the guideline validity.

Construct validity: is related to the relation between theory

and observation. In fact, the selected papers for this study

were collected by our self. Moreover, we do not judge the

papers’ pertinence. However, we used multiple source and

different domains. Thus, we thought that the quality of the

selected papers can improve the results of this study.

Another issue is related to the problem of the quality of

search engines which may influence the completeness of

the pertinent papers selected for this study. In fact, since

our selection is based on a set of primary keyword, we

possibly missed some other studies where their authors

used other terms to represent a quality characteristic.

6 Conclusion

Software quality characteristics should be taken into con-

sideration during all the SDLC phases to guarantee the

quality of the final product. Selecting the suitable software

architecture that satisfy the Non-Functional Requirements

as specified by the customers/users is a challenge task,

because of the various software architectures proposed in

the literature. In this paper, we proposed a guideline for

software architecture selection based on ISO 25010 quality

characteristics. For this purpose, we followed three steps.

In the first step, we identified architectures the most used in

the literature. We presented the results of a literature

review using a Formal Concept Analysis of 113 papers

collected from four databases (IEEE Xplore, ACM Digital

Library, Science Direct and CiteSeer). The investigation of

these papers allows us to determine which software

architecture used the most in the software engineering lit-

erature. In the second step, we proposed a classification of

the identified software architecture according to the ISO

25010 quality characteristics. In the third step, we analyzed

the relationships between the different ISO 25010 quality

characteristics.

As a result, we identified in this research study five

architectures: SOA, CBA, MDA, EDA, and AOA. Among

these popular architectures, we found that SOA was the

most popular. Then, we classified these architectures

according to the ISO 25010 quality characteristics. We

highlighted which quality characteristic is used the most by

each software architecture. Furthermore, we focused on the

relationships between the quality characteristics supported

by ISO 25010. Finally, we proposed a guideline to help

software architects in choosing the appropriate architecture

according to their needs in terms of the ISO 25010 quality

characteristics following the three identified steps.

Based on this study, we suggest that further research

should be undertaken to select the appropriate architecture

that supports requirements changes in terms of ISO 25010

quality characteristics. In an environment where the

requirements are likely to change, we suggest to analyze

how some of the ISO 25010 quality characteristics support

the extensibility of user requirements. The limit of this

study is that it takes into account only two quality char-

acteristics. A possible extension can be proposed to include

more than two quality characteristics.

Acknowledgements We would like to record our thanks to the

companies: Telnet in Sfax-Tunisia and ST2i in Tunis-Tunisia, for

their participation in the investigation and for sharing their perspec-

tives and experiences.

Appendix 1

Table 5 presents the classification of the selected papers for

this study in respect to the software architecture type and

the ISO 25010 quality characteristics.

Int J Syst Assur Eng Manag

123

T
a

b
le

5
IS
O

2
5
0
1
0
Q
u
al
it
y
ch
ar
ac
te
ri
st
ic
s
fo
r
S
A

ty
p
e-
S
u
m
m
ar
y
o
f
q
u
an
ti
ta
ti
v
e
re
su
lt
s

S
A

Q
te

F
u
n
ct
io
n
al

su
it
ab
il
it
y

P
er
fo
rm

an
ce

ef
fi
ci
en
cy

U
sa
b
il
it
y

C
o
m
p
at
ib
il
it
y

R
el
ia
b
il
it
y

S
ec
u
ri
ty

M
ai
n
ta
in
ab
il
it
y

P
o
rt
ab
il
it
y

M
D
A

(L
in
eh
an

an
d
C
la
rk
e

2
0
1
2
)

(M
at
k
o
v
ić

an
d
F
er
ta
lj

2
0
1
2
),
(B
o
cc
ia
re
ll
i

an
d
D
’A

m
b
ro
g
io

2
0
1
4
),
(H

o
is
l
et

al
.

2
0
1
4
),
(R
en

2
0
1
1
),

(M
ag
ab
le
h
an
d

A
lB
ei
ru
ti
2
0
1
2
)

(L
in
eh
an

an
d
C
la
rk
e

2
0
1
2
),
(H

o
is
l
et

al
.

2
0
1
4
),
(B
o
cc
ia
re
ll
i

an
d
D
’A

m
b
ro
g
io

2
0
1
4
),
(R
en

2
0
1
1
),

(G
u
i
an
d
L
u
o
2
0
1
2
)

(F
an
g
et

al
.
2
0
1
0
),

(B
o
re
k
et

al
.
2
0
1
2
),

(H
o
is
l
et

al
.
2
0
1
4
),

(R
en

2
0
1
1
),

(M
ag
ab
le
h
an
d

A
lB
ei
ru
ti
2
0
1
2
),

(K
an
g
an
d
L
ia
n
g

2
0
1
3
),
(M

at
k
o
v
ić

an
d
F
er
ta
lj
2
0
1
2
)

(C
h
en
g
2
0
1
0
),
(F
an
g

et
al
.
2
0
1
0
),
(Y

u
an

an
d
W
at
to
n
2
0
1
2
),

(L
in
eh
an

an
d
C
la
rk
e

2
0
1
2
),
(M

ag
ab
le
h

an
d
A
lB
ei
ru
ti
2
0
1
2
),

(H
ai
T
ao

an
d
W
ei

2
0
1
0
)

(L
in
eh
an

an
d
C
la
rk
e

2
0
1
2
),
(B
is
p
o
et

al
.

2
0
1
0
),
(T
ie
li
n
et

al
.

2
0
1
0
)

S
O
A

(S
h
an
m
u
g
as
u
n
d
ar
am

et
al
.
2
0
1
2
),
(Y

u
e

et
al
.
2
0
1
0
),
(D

el
ač

2
0
1
2
),
(L
ee

an
d

K
im

2
0
1
0
),
(J
eh
an

et
al
.
2
0
1
3
),
(P
o
te
n
a

2
0
1
3
),
(R
aa
fa
t
an
d

C
ec
el
ja

2
0
1
1
),
(E
le
r

et
al
.
2
0
1
0
),
(Z
h
en
g

an
d
L
y
u
2
0
1
0
),

(D
w
o
rn
ik
o
w
sk
i

et
al
.
2
0
1
1
),
(W

ar
is

et
al
.
2
0
1
3
),

(M
ez
g
h
an
i
an
d
B
en

H
al
im

a
2
0
1
2
),

(B
ab
am

ir
an
d

A
ra
b
fa
rd

2
0
1
2
),

(M
as
so
u
d
an
d

D
u
m
k
e
2
0
1
2
),
(E
L

Y
am

an
y
et

al
.

2
0
1
0
),
(T
ri
ll
es

et
al
.

2
0
1
3
),
(M

at
k
o
v
ić

an
d
F
er
ta
lj
2
0
1
2
),

(C
h
en

an
d
T
an
g

2
0
1
3
),
(O

zk
ay
a

et
al
.
2
0
1
0
),
(Y

u
e

an
d
T
ao

2
0
1
2
),

(H
o
is
l
et

al
.
2
0
1
4
),

(T
ra
g
at
sc
h
n
ig

an
d

Z
d
u
n
2
0
1
3
)

(S
h
an
m
u
g
as
u
n
d
ar
am

et
al
.
2
0
1
2
),
(W

ar
is

et
al
.
2
0
1
3
),
(R
aa
fa
t

an
d
C
ec
el
ja

2
0
1
1
),

(M
as
so
u
d
an
d

D
u
m
k
e
2
0
1
2
),

(W
h
it
e
et

al
.
2
0
1
2
),

(C
h
ea
it
o
et

al
.

2
0
1
0
)

(M
as
so
u
d
an
d

D
u
m
k
e
2
0
1
2
),

(E
L
Y
am

an
y

et
al
.
2
0
1
0
),

(E
sp
in
h
a
et

al
.

2
0
1
2
),
(C
h
en

an
d
T
an
g

2
0
1
3
),
(J
eh
an

et
al
.
2
0
1
3
),

(O
zk
ay
a
et

al
.

2
0
1
0
)

(D
el
ač

2
0
1
2
),

(A
h
m
ed

an
d
W
u

2
0
1
3
),

(D
w
o
rn
ik
o
w
sk
i

et
al
.
2
0
1
1
),
(Z
h
en
g

an
d
L
y
u
2
0
1
0
),

(P
o
te
n
a
2
0
1
3
),

(W
ar
is
et

al
.
2
0
1
3
),

(A
l
H
el
al

an
d

G
am

b
le

2
0
1
4
),

(Z
h
o
u
et

al
.
2
0
1
0
),

(C
h
en

an
d
T
an
g

2
0
1
3
),
(H

u
et

al
.

2
0
1
1
),
(Y

an
g
et

al
.

2
0
1
3
),
(R
af
ea

an
d

M
ah
d
ia
n
b
2
0
1
1
),

(H
o
is
l
et

al
.
2
0
1
4
)

(Y
u
e
an
d
T
ao

2
0
1
2
),

(H
u
et

al
.
2
0
1
1
),

(G
eo
rg
ie
v
a
an
d

G
o
ra
n
o
v
a
2
0
1
1
),

(E
L
Y
am

an
y
et

al
.

2
0
1
0
),
(W

ar
is
et

al
.

2
0
1
3
),
(M

as
so
u
d

an
d
D
u
m
k
e
2
0
1
2
),

(Z
h
o
u
et

al
.
2
0
1
0
),

(M
at
k
o
v
ić

an
d

F
er
ta
lj
2
0
1
2
),
(F
el
h
i

an
d
A
k
ai
ch
i
2
0
1
3
),

(M
ir
ce
a
2
0
1
1
),

(R
af
ea

an
d

M
ah
d
ia
n
b
2
0
1
1
),

(O
zk
ay
a
et

al
.

2
0
1
0
),
(H

o
is
l
et

al
.

2
0
1
4
),
(B
o
re
k
et

al
.

2
0
1
2
),
(Y

u
an

an
d

W
at
to
n
2
0
1
2
),

(T
ri
n
u
g
ro
h
o
et

al
.

2
0
1
3
),
(C
h
ea
it
o

et
al
.
2
0
1
0
)

(F
an

et
al
.
2
0
1
2
),

(W
h
it
e
et

al
.
2
0
1
2
),

(E
sp
in
h
a
et

al
.
2
0
1
2
),

(W
ar
is

et
al
.
2
0
1
3
),

(Z
h
o
u
et

al
.
2
0
1
0
),

(S
h
an
m
u
g
as
u
n
d
ar
am

et
al
.
2
0
1
2
),
(S
n
ee
d

et
al
.
2
0
1
3
),
(H

u
et
al
.

2
0
1
1
),
(O

zk
ay
a
et

al
.

2
0
1
0
),
(Y

u
an

an
d

W
at
to
n
2
0
1
2
),
(Y

u
e

et
al
.
2
0
1
0
),
(L
i
et

al
.

2
0
1
3
),
(T
ra
g
at
sc
h
n
ig

an
d
Z
d
u
n
2
0
1
3
)

(Z
h
en
g
an
d
L
y
u
2
0
1
0
),

(S
h
an
m
u
g
as
u
n
d
ar
am

et
al
.
2
0
1
2
),
(M

ir
ce
a

2
0
1
1
),
(B
is
p
o
et

al
.

2
0
1
0
)

Int J Syst Assur Eng Manag

123

T
a

b
le

5
co
n
ti
n
u
ed

S
A

Q
te

F
u
n
ct
io
n
al

su
it
ab
il
it
y

P
er
fo
rm

an
ce

ef
fi
ci
en
cy

U
sa
b
il
it
y

C
o
m
p
at
ib
il
it
y

R
el
ia
b
il
it
y

S
ec
u
ri
ty

M
ai
n
ta
in
ab
il
it
y

P
o
rt
ab
il
it
y

E
D
A

(P
an
g
et

al
.
2
0
1
4
),

(H
am

m
am

i
et

al
.

2
0
1
2
),
(T
ra
n
et

al
.

2
0
1
1
),
(Z
ap
p
ia

et
al
.

2
0
1
2
),
(N

g
u
y
en

an
d

T
h
o
ai

2
0
1
2
),
(K

la
tt

et
al
.
2
0
1
1
),

(T
ra
g
at
sc
h
n
ig

an
d

Z
d
u
n
2
0
1
3
),
(L
i

et
al
.
2
0
1
3
)

(P
an
g
et

al
.

2
0
1
4
)

(H
am

m
am

i
et

al
.

2
0
1
2
;
K
la
tt
et

al
.

2
0
1
1
),
(L
i
et

al
.

2
0
1
3
)

(H
am

m
am

i
et

al
.

2
0
1
2
),
(Y

u
an

an
d

W
at
to
n
2
0
1
2
),

(T
ri
n
u
g
ro
h
o
et

al
.

2
0
1
3
),
(K

la
tt
et

al
.

2
0
1
1
),
(Z
ap
p
ia

et
al
.

2
0
1
2
)

(Z
ap
p
ia

et
al
.
2
0
1
2
),

(K
la
tt
et

al
.
2
0
1
1
),

(T
ra
g
at
sc
h
n
ig

an
d

Z
d
u
n
2
0
1
3
),
(L
i
et

al
.

2
0
1
3
)

(Z
ap
p
ia

et
al
.
2
0
1
2
)

A
O
A

(L
in
eh
an

an
d
C
la
rk
e

2
0
1
2
)

(W
an
g
et

al
.
2
0
1
0
),

(d
e
O
li
v
ei
ra

an
d

S
o
ar
es

2
0
1
2
),
(W

en

et
al
.
2
0
1
3
),

(M
ag
ab
le
h
an
d

A
lB
ei
ru
ti
2
0
1
2
)

(d
e
O
li
v
ei
ra

an
d

S
o
ar
es

2
0
1
2
)

(K
la
tt
et

al
.
2
0
1
1
;

L
in
eh
an

an
d
C
la
rk
e

2
0
1
2
),
(d
e
O
li
v
ei
ra

an
d
S
o
ar
es

2
0
1
2
),

(W
en

et
al
.
2
0
1
3
)

(d
e
O
li
v
ei
ra

an
d

S
o
ar
es

2
0
1
2
;
F
an
g

et
al
.
2
0
1
0
),

(M
ag
ab
le
h
an
d

A
lB
ei
ru
ti
2
0
1
2
),

(W
an
g
et

al
.
2
0
1
0
),

(M
o
le
si
n
i
et

al
.

2
0
1
0
)

(d
e
O
li
v
ei
ra

et
al
.

2
0
1
3
),
(F
an
g
et

al
.

2
0
1
0
),
(L
in
eh
an

an
d

C
la
rk
e
2
0
1
2
),
(W

an
g

et
al
.
2
0
1
0
),
(d
e

O
li
v
ei
ra

an
d
S
o
ar
es

2
0
1
2
;
T
iz
ze
i
et

al
.

2
0
1
1
),
(M

ag
ab
le
h

an
d
A
lB
ei
ru
ti
2
0
1
2
),

(A
b
d
el
m
o
ez

et
al
.

2
0
1
2
)

(L
in
eh
an

an
d
C
la
rk
e

2
0
1
2
)

C
B
A

(F
u
en
te
s-

F
er
n
án
d
ez

et
al
.
2
0
1
2
)

(Y
u
e
et

al
.
2
0
1
0
),

(K
la
tt
et

al
.
2
0
1
1
),

(K
o
u
n
ev

et
al
.

2
0
1
3
),
(M

ag
ab
le
h

an
d
A
lB
ei
ru
ti
2
0
1
2
),

(B
u
re
s
et

al
.
2
0
1
1
),

(S
m
it
h
an
d
L
la
d
o

2
0
1
1
)

(C
h
ea
it
o
et

al
.
2
0
1
0
)

(B
ra
d
a
2
0
1
1
),

(S
n
aj
b
er
k
et

al
.

2
0
1
3
)

(Y
u
e
et

al
.
2
0
1
0
),

(K
la
tt
et

al
.
2
0
1
1
),

(T
y
ag
ia

an
d

S
h
ar
m
ab

2
0
1
4
),

(B
ro
sc
h
et

al
.
2
0
1
0
),

(D
o
rm

o
y
et

al
.

2
0
1
2
),
(P
h
am

an
d

D
ef
ag
o
2
0
1
3
)

(K
la
tt
et

al
.
2
0
1
1
),

(M
ag
ab
le
h
an
d

A
lB
ei
ru
ti
2
0
1
2
),

(C
h
ea
it
o
et

al
.

2
0
1
0
),
(D

u
et

al
.

2
0
1
3
)

(Y
u
e
et

al
.
2
0
1
0
),

(K
la
tt
et

al
.
2
0
1
1
),

(T
iz
ze
i
et

al
.
2
0
1
1
),

(M
ag
ab
le
h
an
d

A
lB
ei
ru
ti
2
0
1
2
)

Int J Syst Assur Eng Manag

123

Appendix 2

Table 6 identifies the usability of the sub-characteristics of

‘‘Functional suitability’’ which is being the most rarely

used quality characteristic.

Table 7 presents the classification of the sub-character-

istics of the quality characteristic ‘‘performance effi-

ciency’’. ‘‘Capacity’’ is the widely used sub-characteristic,

whereas ‘‘time behaviour’’ is the rarely used sub-

characteristic.

Table 8 provides a classification of sub-characteristics

of the quality characteristic ‘‘Usability’’. Most of the sub-

characteristics of ‘‘Usability’’ are rarely used in the. ‘‘Ac-

cessibility’’ is the most used sub-characteristic.

Table 9 identifies the usefulness of the sub-characteris-

tics of the ‘‘Compatibility’’ quality characteristic. ‘‘Inter-

operability’’ is one of the important advantages of SOA.

This is why most researches focused on ‘‘Interoperability’’

used by SOA.

As presented in Table 10, the sub-characteristics of

‘‘Reliability’’ have been widely used in the literature

especially for SOA, and ‘‘Availability’’ is the most used

sub-characteristic. In addition, many researchers mentioned

that ‘‘SOA introduces more challenges to achieve: data

Table 6 Functional Suitability sub-characteristics for SA type-Summary of the quantitative results

Functional Suitability SOA MDA CBA EDA AOA

Functional completeness

Functional correctness Matković and Fertalj (2012),

Delač (2012), Jehan et al. (2013)

Matković and Fertalj

(2012)

Bures et al. (2011),

Oster (2013)

Wen et al. (2013)

Functional appropriateness

Table 7 Performance Efficiency sub-characteristics for SA type-Summary of the quantitative results

Performance

efficiency

SOA MDA CBA EDA AOA

Time behaviour Sirer et al.

(2011)

Resource

utilization

Kang et al. (2011) Nguyen and

Thoai

(2012)

Capacity (Mezghani and Ben Halima 2012), Quintero

et al. (2010), Lee and Kim 2010), Hu et al.

(2011), Zhou et al. (2010), Yang et al.

(2013)

Quintero et al. (2010),

Linehan and Clarke

(2012), Klatt et al. (2011),

Qazi et al. (2013)

(Mezghani

and Ben

Halima

2012)

Klatt et al.

(2011),

(Hammami

et al. 2012)

Linehan and

Clarke

(2012),

(Wang et al.

2010)

Table 8 Usability sub-characteristics for SA type-Summary of the quantitative results

Usability SOA MDA CBA EDA AOA

Appropriateness

Recognizability

User interface

aesthetics

Akiki et al. (2015)

Operability Chen and Tang (2013), Matković and Fertalj (2012) Matković and Fertalj

(2012)

User error protection

Learnability

Accessibility Babamir and Arabfard (2012), Trilles et al. 2013), Mircea (2011),

Rafea and Mahdianb (2011), Salva and Rabhi (2010), Alferez and

Pelechano (2011), Delač (2012)

(Hebiri et al. 2010),

Laabidi and Jemni

(2010)

Pordel

et al.

(2011)

Hammami

et al.

(2012)

Int J Syst Assur Eng Manag

123

Table 9 Compatibility sub-characteristics for SA type-Summary of the quantitative results

Compatibility SOA MDA CBA EDA AOA

Interoperability (Trilles et al. 2013), (Yuan and Watton

2012), (Felhi and Akaichi 2013), (Yue

and Tao 2012), (White et al. 2012),

(Espinha et al. 2012), (Boukhedouma

et al. 2013), (Matković and Fertalj

2012), (Jehan et al. 2013), (Chen and

Tang 2013), (Mircea 2011), (Yang

et al. 2013), (Raafat and Cecelja 2011),

(EL Yamany et al. 2010), (Ozkaya

et al. 2010), (Bispo et al. 2010),

(Georgieva and Goranova 2011),

(Massoud and Dumke 2012), (Waris

et al. 2013)

(Matković and

Fertalj 2012),

(Yang et al.

2013), (Bispo

et al. 2010)

(Smith and Llado

2011), (Labejof

et al. 2012),

(Jurado et al.

2012)

(Hammami et al. 2012),

(Pang et al. 2014),

(Zappia et al. 2012),

(Yuan and Watton

2012)

(de

Oliveira

and

Soares

2012)

Coexistence

Table 10 Reliability sub-characteristics for SA type-Summary of the quantitative results

Reliability SOA MDA CBA EDA AOA

Maturity (Trinugroho et al. 2013), (Mircea

2011), (Massoud and Dumke 2012),

(Welke et al. 2011), (Espinha et al.

2012), (Waris et al. 2013),

(Shanmugasundaram et al. 2012)

(Trinugroho et al.

2013)

Availability (Rafea and Mahdianb 2011),

(Mezghani and Ben Halima 2012),

(Delač 2012), (Mircea 2011),

(Matković and Fertalj 2012), (Lee

and Kim 2010), (Hu et al. 2011),

(Zhou et al. 2010), (Yang et al.

2013), (Chen and Tang 2013),

(Babamir and Arabfard 2012),

(Raafat and Cecelja 2011), (Espinha

et al. 2012), (Waris et al. 2013),

(Potena 2013), (Shanmugasundaram

et al. 2012), (Eler et al. 2010),

(Zheng and Lyu 2010),

(Dwornikowski et al. 2011), (Al

Helal and Gamble 2014), (EL

Yamany et al. 2010), (Pordel et al.

2011), (Sun et al. 2011)

(Magableh and

AlBeiruti

2012),

(Matković

and Fertalj

2012),

(Laabidi and

Jemni 2010)

(Magableh and AlBeiruti

2012), (Mezghani and Ben

Halima 2012), (Dormoy

et al. 2012), (Leger et al.

2010)

(Hammami et al.

2012), (Pang et al.

2014), (Zappia

et al. 2012), (Li

et al. 2013)

(Wang et al.

2010),

(Magableh

and

AlBeiruti

2012)

Fault

tolerance

(Delač 2012), (Rafea and Mahdianb

2011), (Babamir and Arabfard

2012), (Hu et al. 2011),

(Dwornikowski et al. 2011), (Al

Helal and Gamble 2014)

(Gui and Luo

2012)

(Pham and Defago 2013),

(Wu et al. 2012), (Wolf

et al. 2011), (Staroswiecki

2010)

(Li et al. 2013)

Recoverability (Staroswiecki 2010)

Int J Syst Assur Eng Manag

123

availability and reliability’’. This is especially the case for

the availability of complex services in environment where

concurrent requests should be satisfied.

Table 11 presents the interest of the selected papers in

the ‘‘Portability’’ sub-characteristics. Most of the selected

papers focused on the ‘‘Adaptability’’ sub-characteristic

used by SOA.

Table 12 presents the classification of the selected

papers based on the ‘‘Security’’ sub-characteristic which, as

expected, has been widely used with SOA because ‘‘Se-

curity’’ is a critical problem in SOA. Researchers proposed

the use of ‘‘application-independent protocols to develop a

secure SOA’’ (e.g. Transport Layer Security ‘‘TLS’’ or

Web service security protocols). These protocols can

guarantee two sub-characteristics: ‘‘Confidentiality’’ and

‘‘Integrity’’.

As shown in Table 13, the sub-characteristics for

‘‘Maintainability’’ have been widely discussed in the lit-

erature in comparison with other sub-characteristics. In

addition, most of the SOA-based papers focused on

Reusability and Testability. In fact, Reusability is a main

advantage of SOA due to the independence between the

various services, which makes the modification or the

replacement of a service by another an easy task. However,

testing SOA applications is a challenging task due to the

high dynamism, the low coupling and the low testability of

services in isolation. This in fact prompted some approa-

ches to investigate how to improve SOA testability.

Table 14 presents the interest of the selected papers on

other quality attributes un-supported by ISO 25010 such as

scalability, flexibility, etc.

Table 11 Portability sub-characteristics for SA type-Summary of the quantitative results

Portability SOA MDA CBA EDA AOA

Instability (Jehan et al. 2013), (Massoud and Dumke

2012), (Ozkaya et al. 2010)

(Tizzei et al.

2011)

(Molesini et al. 2010),

(Tizzei et al. 2011)

Adaptability (Yuan and Watton 2012), (Cheaito et al.

2010), (Mircea 2011), (Quintero et al.

2010), (Yang et al. 2013), (Felhi and

Akaichi 2013), (Shanmugasundaram

et al. 2012), (Felhi and Akaichi 2013)

(Magableh and

AlBeiruti 2012),

(Quintero et al.

2010), (Yang et al.

2013)

(Magableh and

AlBeiruti

2012),

(Cheaito et al.

2010)

(Yuan

and

Watton

2012)

(de Oliveira and Soares

2012), (Wang et al.

2010), (Magableh and

AlBeiruti 2012)

Replaceability (Al Helal and Gamble 2014)

Table 12 Security sub-characteristics for SA type-Summary of the quantitative results

Security SOA MDA CBA EDA AOA

Confidentiality (Borek et al. 2012), (Hu et al. 2011), (Georgieva and

Goranova 2011), (Matković and Fertalj 2012), (Mircea

2011), (Yang et al. 2013), (Yue and Tao 2012),

(Shanmugasundaram et al. 2012), (Hoisl et al. 2014),

(Boukhedouma et al. 2013)

(Borek et al. 2012), (Matković and

Fertalj 2012), (Hoisl et al. 2014)

(Hammami

et al.

2012)

Integrity (Mircea 2011), (Ozkaya et al. 2010), (Georgieva and

Goranova 2011), (Waris et al. 2013), (Borek et al.

2012), (Hu et al. 2011), (Massoud and Dumke 2012),

(Yue and Tao 2012), (Matković and Fertalj 2012),

(Yang et al. 2013), (Babamir and Arabfard 2012), (Hoisl

et al. 2014)

(Borek et al. 2012), (Matković and

Fertalj 2012), (Hoisl et al. 2014),

(Wang et al. 2013)

(Hammami

et al.

2012)

Non-

repudiation

(Borek et al. 2012), (Hu et al. 2011) (Borek et al. 2012)

Accountability

Authenticity (Borek et al. 2012), (Georgieva and Goranova 2011), (Hu

et al. 2011), (Matković and Fertalj 2012), (Felhi and

Akaichi 2013), (Yue and Tao 2012), (EL Yamany et al.

2010), (Felhi and Akaichi 2013), (Georgieva and

Goranova 2011), (Yue and Tao 2012)

(Borek et al. 2012), (Matković and

Fertalj 2012)

Int J Syst Assur Eng Manag

123

Table 13 Maintainability sub-characteristics for SA type-Summary of the quantitative results

Maintainability SOA MDA CBA EDA AOA

Modularity (Yang et al. 2013), (Yuan and

Watton 2012), (Yue et al.

2010), (Zhou et al. 2010),

(Mircea 2011),

(Shanmugasundaram et al.

2012), (Dwornikowski et al.

2011)

(Yang et al.

2013), (Linehan

and Clarke

2012),

(Magableh and

AlBeiruti 2012)

(Tizzei et al. 2011),

(Magableh and

AlBeiruti 2012),

(Lee et al. 2010),

(Yue et al. 2010)

(Pang et al.

2014),

(Zappia et al.

2012), (Yuan

and Watton

2012)

(de Oliveira and Soares 2012),

(Tizzei et al. 2011),

(Linehan and Clarke 2012),

(Magableh and AlBeiruti

2012), (Molesini et al. 2010)

Reusability (Mircea 2011),

(Shanmugasundaram et al.

2012), (Waris et al. 2013),

(Yue et al. 2010), (Trilles

et al. 2013), (Tragatschnig

and Zdun 2013), (Quintero

et al. 2010), (Jehan et al.

2013), (Zhou et al. 2010),

(Chen and Tang 2013),

(Raafat and Cecelja 2011),

(Ozkaya et al. 2010), (Bispo

et al. 2010), (EL Yamany

et al. 2010)

(Linehan and

Clarke 2012),

(Quintero et al.

2010), (Bispo

et al. 2010)

(Tizzei et al. 2011),

(Lee et al. 2010),

(Yue et al. 2010),

(Snajberk et al.

2013)

(Pang et al.

2014),

(Tragatschnig

and Zdun

2013),

(Minguez

et al. 2011)

(de Oliveira and Soares 2012),

(Tizzei et al. 2011),

(Linehan and Clarke 2012),

(Molesini et al. 2010),

(Wang et al. 2010)

Analyzability (Bures et al. 2011)

Modifiability (Babamir and Arabfard 2012),

(Massoud and Dumke 2012),

(Ozkaya et al. 2010),

(Shanmugasundaram et al.

2012)

(Magableh and

AlBeiruti 2012)

(Magableh and

AlBeiruti 2012)

(de Oliveira and Soares 2012),

(Magableh and AlBeiruti

2012), (Molesini et al. 2010)

Testability (Delač 2012), (Pordel et al.

2011), (Sun et al. 2011), (Eler

et al. 2010)

(Shanmugasundaram et al.

2012), (Waris et al. 2013)

Table 14 Quality attributes (uncovered by ISO/IEC 25010) for SA type-Summary of the quantitative results

SOA MDA CBA EDA AOA

Scalability (Yue et al. 2010),

(Matković and Fertalj

2012), (Jehan et al.

2013), (Lee and Kim

2010), (Hu et al. 2011),

(Zhou et al. 2010), (Chen

and Tang 2013), (Yang

et al. 2013), (Felhi and

Akaichi 2013), (Ozkaya

et al. 2010), (Yue and

Tao 2012), (Waris et al.

2013), (Dwornikowski

et al. 2011), (Felhi and

Akaichi 2013), (Yue and

Tao 2012), (Fan et al.

2012), (Ozkaya et al.

2010), (Wang et al.

2013), (Klatt et al. 2011;

Kounev et al. 2013)

(Linehan and Clarke

2012), (Magableh

and AlBeiruti

2012), (Matković

and Fertalj 2012),

(Yang et al. 2013)

(Magableh and AlBeiruti

2012), (Klatt et al.

2011), (Yue et al.

2010), (Abdellatif

2012), (Wallis et al.

2010)

(Nguyen and Thoai 2012),

(Klatt et al. 2011),

(Hammami et al. 2012),

(Pang et al. 2014),

(Zappia et al. 2012), (Li

et al. 2013), (Tran et al.

2011)

(Linehan and

Clarke 2012),

(Magableh

and AlBeiruti

2012), (Wang

et al. 2010)

Int J Syst Assur Eng Manag

123

References

Abdellatif T (2012) Building reliable security systems: the case of an

e-voting system. In: The international conference on information

technology and e-Services, IEEE, Sousse Tunisia

Abdelmoez W, Khater H, El-shoafy N (2012) Comparing maintain-

ability evolution of object-oriented and aspect-oriented software

product lines. In: The 8th international conference on informatics

and systems, IEEE, Cairo Egypt

Acheson P (2010) Methodology for object-oriented system architec-

ture development. In: The 4th annual IEEE systems conference,

IEEE, San Diego CA

Ahmed W, Wu YW (2013) Reliability prediction model for SOA

using Hidden Markov Model. In: The 8th China grid annual

conference, IEEE, Changchun

Akiki PA, Bandara AK, Yu Y (2015) Adaptive model-driven user

interface development systems. ACM Comput Surv J 47(1):9

Al Helal H, Gamble R (2014) Introducing replaceability into web

service composition, IEEE Trans Serv Comput

Al-Daajeh SH, Al-Qutaish RE, Al-Qirem F (2012) A tactic-based

framework to evaluate the relationships between the software

product quality attributes, Int J Softw Eng 5(1)5–26

Aleti A, Buhnova B, Grunske L, Koziolek A, Meedeniya I (2013)

Software architecture optimization methods: a systematic liter-

ature review. IEEE Trans Softw Eng 39:658–683

Alferez GH, Pelechano V (2011) Systematic reuse of web services

through software product line engineering. In: The 9th European

conference on web services, IEEE, Lugano

Babamir SM, Arabfard M (2012) Improving service accessibility in

service-oriented HIS. J Med Syst 36:4021–4030

Bass L, Clements P, Kazman R (2012) Software architecture in

practice. Addison-Wesley Professional, Salt Lake

Biggs G, Ando N, Kotoku T (2010) Native robot software framework

inter-operation. In: The 2nd international conference on simu-

lation, modeling, and programming for autonomous robots,

Darmstadt Germany, Springer, Berlin Heidelberg

Bispo CP, Maciel RSP, David JMN, Ribeiro Í, Conceição R (2010)

Applying a model-driven process for a collaborative service-

oriented architecture. In: The 14th international conference on

computer supported cooperative work in design, IEEE, Shanghai

China

Bocciarelli P, D’Ambrogio A (2014) A Model-driven method for

enacting the design-time QoS analysis of business processes.

Softw Syst Model J 13:573–598

Boehm BW (1978) Characteristics of software quality

Borek M, Moebius N, Stenzel K, Reif W (2012) Model-driven

development of secure service applications. In: The 35th

software engineering workshop, IEEE, Greece

Boukhedouma S, Oussalah M, Alimazighi Z, Tamzalit D (2013)

Adaptation patterns for service based inter-organizational

Table 14 continued

SOA MDA CBA EDA AOA

Flexibility (Rafea and Mahdianb

2011), (Waris et al.

2013), (Massoud and

Dumke 2012),

(Dwornikowski et al.

2011), (Tragatschnig and

Zdun 2013), (Mircea

2011), (Yue et al. 2010),

(Mezghani and Ben

Halima 2012), (Cheaito

et al. 2010), (Quintero

et al. 2010), (Delač

2012), (Jehan et al.

2013), (Zhou et al. 2010),

(Yang et al. 2013),

(White et al. 2012),

(Ozkaya et al. 2010),

(Fan et al. 2012),

(Ozkaya et al. 2010),

(Borek et al. 2012), (Raafat

and Cecelja 2011), (Felhi

and Akaichi 2013),

(Bispo et al. 2010), (Felhi

and Akaichi 2013),

(Boukhedouma et al.

2013)

(Borek et al. 2012),

(Quintero et al.

2010), (Bispo et al.

2010), (Ren 2011),

(Quintero et al.

2010)

(Klatt et al. 2011), (Yue

et al. 2010), (Mezghani

and Ben Halima 2012),

(Cheaito et al. 2010),

(Biggs et al. 2010), (He

et al. 2010)

(Klatt et al. 2011), (Pang

et al. 2014),

(Tragatschnig and Zdun

2013)

(de Oliveira

and Soares

2012),

(Molesini

et al. 2010)

Changeability (Tragatschnig and Zdun

2013)

(Tragatschnig and Zdun

2013)

Robustness (Jehan et al. 2013) (Li et al. 2013)

Manageability (Zhou et al. 2010)

Int J Syst Assur Eng Manag

123

workflows. In: The 7th international conference on research

challenges in information science, IEEE, Paris

Brada P (2011) Enhanced type-based component compatibility using

deployment context information. Electron Notes Theor Comput

Sci J 279:17–31

Brosch F, Koziolek H, Buhnova B, Reussner R (2010) Parameterized

reliability prediction for component-based software architec-

tures. In: The 6th international conference on the quality of

software architectures, Prague Czech Republic, Springer, Berlin

Heidelberg

Bures T, Jezek, Pavel, Malohlava M, Poch T, Sery O (2011)

Strengthening component architectures by modeling fine-grained

entities. In: The 37th EUROMICRO conference on software

engineering and advanced applications, IEEE, Oulu

Cheaito M, Laborde R, Barrère F, Benzekri A (2010) A deployment

framework for self-contained policies. In: The international

conference on network and service management, IEEE, Niagara

Falls ON

Chen J, Tang T (2013) Research on distributed simulation framework

of train control system based on SOA. In: The international

conference on intelligent rail transportation, IEEE, Beijing

Chen Y, Li X, Yi L, Liu D (2010) A ten-year survey of software

architecture. In: The international conference on software

engineering and service sciences, IEEE, Beijing

Cheng F (2010) MDA Implementation based on patterns and action

semantics. In: The 3rd international conference on information

and computing, IEEE, Wuxi Jiang Su

COSMIC (2015) Guideline on Non-Functional and project require-

ments: How to consider non-functional and project requirements

in software project performance measurement, benchmarking

and estimating

Couto L, Oliveira JeN, Ferreira M, Bouwers E (2011) Preparing for a

literature survey of software architecture using formal concept

analysis. In: The 5th international workshop on software quality

and maintainability, Oldenburg Germany

de Oliveira KS, Soares MS (2012) A systematic review on aspects in

software architecture design. In: The 31st international confer-

ence of the Chilean computer science society, IEEE, Valparaiso

de Oliveira KS, Franca JMS, Soares MS (2013) Extensions of SysML

for modeling an aspect oriented software architecture with

multiple views. In: The 3rd international conference on infor-

mation technology: new Generations, IEEE, Las Vegas NV

Dehaghani SMH, Hajrahimi N (2013) Which factors affect software

projects maintenance cost more? Acta Informatica Medica

21(1):63–66

Delač G (2012) Reliability modeling for SOA systems. In: The 35th

international convention MIPRO, IEEEE, Opatija, pp 847–852

Dormoy J, Kouchnarenko O, Lanoix A (2012) Using temporal logic

for dynamic reconfigurations of components. In: The 7th

international conference on formal aspects of component soft-

ware, Guimarães Portugal. Springer, Berlin Heidelberg

Dromey RG (1996) Cornering the Chimera [software quality]. IEEE

Softw 13:33–43

Du C, Li X, Shi H, Hu J, Feng R, Feng Z (2013) Architecture security

evaluation method based on security of the components. In: The

20th Asia-Pacific software engineering conference, IEEE,

Bangkok

Dwornikowski D, Kobusińska A, Kobusiński J (2011) Failure

detection in a RESTful way. In: The 9th international conference

on parallel processing and applied mathematics, Torun Poland.

Springer, Berlin Heidelberg

Eler MM, Delamaro ME, Maldonado JC, Masiero PC (2010) Built-In

structural testing of web services. In: The Brazilian symposium

on software engineering, IEEE, Salvador Bahia

Espinha T, Chen C, Zaidman A, Gross H-G (2012) Maintenance

research in SOA-towards a standard case study. In: The 16th

European conference on software maintenance and reengineer-

ing, IEEE, Szeged. pp 391–396

Fan Y-H, Wu J-O, Wang S-F (2012) Software synthesis of

middleware for heterogeneous embedded systems. In: The 2nd

international conference on consumer electronics, communica-

tions and networks, IEEE, Yichang

Fang Yq, Wang Gd, Ge Jw, Jun X (2010) A model weaver for

dynamic evolution base on MDA aspect-oriented software

architecture. In: The 3rd international conference on advanced

computer theory and engineering, IEEE, Chengdu

Felhi F, Akaichi J (2013) Pervasive e-healthcare system based on

selfadaptability of SOA to the context. In: The 3rd international

conference on information technology and e-Services, IEEE,

Sousse Tunisia

Fuentes-Fernández R, Pavón J, Garijo F (2012) A model-driven

process for the modernization of component-based systems. Sci

Comput Program J 77:247–269

Gao B, Ban X, Lv Q, Li X (2010) A component-based method for

software architecture refinement. In: The international confer-

ence on intelligent control and information processing, IEEE,

Dalian

Garlan D (2003) Formal modeling and analysis of software architec-

ture: Components, connectors, and events. In: The 3rd interna-

tional school on formal methods for the design of computer,

communication and software systems: software architectures,

Bertinoro Italy. Springer, Berlin Heidelberg, pp 1–24

Georgieva J, Goranova M (2011) Security as a service model in SOA.

In: The 11th international conference on applied informatics and

communications, Florence Italy

Ghosh S, Kumar S, Rana A (2011) Comparative study of the factors

that affect maintainability. Int J Comput Sci Eng 3(12):37–63

Grady RB (1992) Practical software metrics for project management

and process improvement. Prentice-Hall, Englewood Cliffs

Gui S, Luo L (2012) Reliability analysis of task model in real-time

fault-tolerant systems. In: The 12th international conference on

computer and information technology, IEEE, Chengdu

HaiTao W, Wei C (2010) Research on modeling and model

converting approaches based on MDA. In: The 2nd world

congress on software engineering, IEEE, Wuhan

Hammami A, Simoni N, Salman R (2012) Ubiquity and QoS for

cloud security. In: The 41st international conference on parallel

processing workshops, IEEE, Pittsburgh PA

He R, Lacoste M, Leneutre J (2010) Virtual security kernel: a

component-based OS architecture for self-protection. In: The

international conference on computer and information technol-

ogy, IEEE, Bradford United Kingdom

Hebiri H, Laabidi M, Jemni M (2010) User centered model to provide

accessible e-Learning systems. In: The 10th international

conference on advanced learning technologies, Sousse Tunisia

Hesse W, Tilley T (2005) Formal concept analysis used for software

analysis and modelling. In: The formal concept analysis,

foundations and applications. Springer, Berlin Heidelberg

Hoisl B, Sobernig S, Strembeck M (2014) Modeling and enforcing

secure object flows in process-driven SOAs: an integrated

model-driven approach. Softw Syst Model 13:513–548

Hu J, Khalil I, Han S, Mahmood A (2011) Seamless integration of

dependability and security concepts in SOA: a feedback control

system based framework and taxonomy. J Netw Comput Appl

34:1150–1159

Immonen A, Niemelä E (2008) Survey of reliability and availability

prediction methods from the viewpoint of software architecture.

Softw Syst Model 7:49–65

ISO/IEC 25010 (2011) Systems and software engineering: Systems

and software Quality Requirements and Evaluation (SQuaRE)—

System and software quality models. International Organization

for Standardization, Geneva

Int J Syst Assur Eng Manag

123

ISO/IEC 9126-1 (2001) Software product evaluation-quality charac-

teristics and guidelines for their use. International Organization

for Standardization, Geneva

ISO/IEC/IEEE 42010 (2011) Systems and software engineering:

Architecture description

Jehan S, Pill I, Wotawa F (2013) SOA grey box testing: A constraint-

based approach. In: The 6th international conference on software

testing, verification and validation workshops, IEEE

Jurado F, Redondo MA, Ortega M (2012) Blackboard architecture to

integrate components and agents in heterogeneous distributed

eLearning systems: an application for learning to program. J Syst

Softw 85:1621–1636

Kang W, Liang Y (2013) A Security ontology with MDA for software

development. In: The international conference on cyber-enabled

distributed computing and knowledge discovery, IEEE, Beijing

Kang W, Kapitanova K, Son SH (2011) Semantics-aware communi-

cation in sensor network applications. In: The international

conference on service-oriented computing and applications,

IEEE, Irvine CA

Klatt B, Rathfelder C, Kounev S (2011) Integration of event-based

communication in the palladio software quality prediction

framework. In: The Joint ACM SIGSOFT conference—QoSA

and ACM SIGSOFT Symposium—ISARCS on Quality of

Software Architectures—QoSA and Architecting Critical Sys-

tems—ISARCS, ACM, Boulder, Colorado, USA

Kounev S, Rathfelder C, Klatt B (2013) Modeling of event-based

communication in component-based architectures: state-of-the-

art and future directions. Electron Notes Theor Comput Sci J

295:3–9

Laabidi M, Jemni M (2010) Personalizing accessibility to e-Learning

environments. In: The 10th international conference on advanced

learning technologies, IEEE, Sousse, Tunisia

Labejof J, Leger A, Merle P, Seinturier L, Vincent H R-MOM (2012)

A component-based framework for interoperable and adaptive

asynchronous middleware systems. In: The 16th international

enterprise distributed object computing conference workshops,

IEEE, Beijing

Lee JY, Kim SD (2010) Software approaches to assuring high

scalability in cloud computing. In: The 7th international

conference on e-business engineering, IEEE, Shanghai

Lee T-Y, Seo H-R, Lee B-H, Shin D-R (2010) A software component

model and middleware architecture for intelligent mobile robot.

In: The 2nd international conference on computer and automa-

tion engineering, Singapore

Leger M, Ledoux T, Coupaye T (2010) Reliable dynamic reconfig-

urations in a reflective component model. In: The 13th interna-

tional conference on component-based software engineering,

Prague Czech Republic. Springer-Verlag

Li X, Huang L (2013) Evaluation of software architectures reliability

based on hypergraph grammar. In: The 37th annual computer

software and applications conference, IEEE, Kyoto

Li C, Zhao C, Yan H, Zhang J (2013) Event-driven fault tolerance for

building nonstop active message programs. In: The 10th

international conference on high performance computing and

communications and the international conference on embedded

and ubiquitous computing, IEEE, Zhangjiajie

Linehan E, Clarke S (2012) An aspect-oriented, model-driven

approach to functional hardware verification, J Syst Architect

Loganathan MK, Gandhi OP (2015) Maintenance cost minimization

of manufacturing systems using PSO under reliability constraint.

Int J Syst Assur Eng Manag 7:47–61

Losavio F, Chirinos L, Lévy N, Ramdane-Cherif A (2003) Quality

characteristics for software architecture. J Object Technol

2:133–150

Lüders F (2003) Use of component-based software architectures in

industrial control systems. Mälardalen University, Västerås

Magableh B, AlBeiruti N (2012) Detecting the onset of dementia

using context-oriented architecture. In: The international con-

ference on next generation mobile applications, services and

technologies, Paris France

Mahrin M, Carrington D, Strooper P (2008) Investigating factors

affecting the usability of software process descriptions, interna-

tional conference on software process, ICSP, Leipzig, Germany

Majidi E, Alemi M, Rashidi H (2010) Software architecture: a survey

and classification. In: The 2nd international conference on

communication software and networks, IEEE, Singapore

Massoud A, Dumke R (2012) Efficient reference architecture for

integrated legacy applications based-SOA. In: The joint confer-

ence of the 22nd international workshop on software measure-

ment and the 7th international conference on software process

and product measurement, IEEE, Assisi

Matković J, Fertalj K (2012) Models for the development of web

service orchestrations. In: The 35th international convention,

IEEE, MIPRO Opatija

McCall JA, Richards PK, Walters GF (1977) Factors in software

quality. US Rome Air Development Center Reports, US

Department of Commerce

Mezghani E, Ben Halima R (2012) DRF4SOA: A dynamic recon-

figurable framework for designing autonomic application based

on SOA. In: The 21st international workshop on enabling

technologies: infrastructure for collaborative enterprises, IEEE,

Toulouse

Microsoft (2009) Microsoft application architecture guide (patterns

and practices). Microsoft Press

Minguez J, Zor S, Reimann P (2011) Event-driven business process

management in engineer-to-order supply chains. In: The 15th

international conference on computer supported cooperative

work in design, IEEE, Lausanne

Mircea M (2011) SOA adoption in higher education: a practical guide

to service- oriented virtual learning environment procedia: social

and behavioral sciences. World Confer Learn Teach Admin

31:218–223

Mnkandla E, Dwolatzky B (2006) Defining agile software quality

assurance, international conference on software engineering
advances, pp. 36–36

Molesini A, Garcia A, Chavez CVFG, Batista TV (2010) Stability

assessment of aspect-oriented software architectures: a quanti-

tative study. J Syst Softw 83:711–722

Nguyen D, Thoai N (2012) EBC: Application-level migration on

multi-site cloud. In: The international conference on systems and

informatics, IEEE, Yantai

Northrop L (2003) The importance of software architecture. Software

Engineering Institute Carnegie Mellon University, Pittsburgh

O’Brien L, Bass L, Merson P (2005) Quality attributes and service-

oriented architectures. Carnegie Mellon University, Pittsburgh

O’Brien L, Merson P, Bass L (2007) Quality attributes for service-

oriented architectures. In: The international workshop on systems

development in SOA environments, IEEE, Minneapolis, MN

Oster ZJ (2013) Reasoning with qualitative preferences to develop

optimal component-based systems. In: The international confer-

ence on software engineering, IEEE, San Francisco CA USA

Ozkaya I, Diaz-Pace A, Gurfinkel A, Chaki S (2010) Using

architecturally significant requirements for guiding system

evolution. In: The 14th European conference on software

maintenance and reengineering, IEEE, Madrid

Pang C, Yan J, Vyatkin V (2014) Time-complemented event-driven

architecture for distributed automation systems transactions on

systems, man, and cybernetics: Systems 45: 1165–1177

Pham T-T, Defago X (2013) Reliability prediction for component-

based software systems with architectural-level fault tolerance

mechanisms. In: The 8th international conference on availability,

reliability and security, IEEE, Regensburg

Int J Syst Assur Eng Manag

123

Poelmans J, Dedene G, Snoeck M, Viaene S (2010) Using formal

concept analysis for verification of process-data matrices in

conceptual domain models, Software engineering

Pordel M, Khalilzad NM, Yekeh F, Asplund L (2011) A component

based architecture to improve testability,targeted FPGA-based

vision systems. In: The 3rd international conference on com-

munication software and networks, IEEE, Xi’an

Potena P (2013) Optimization of adaptation plans for a service-

oriented architecture with cost, reliability, availability and

performance tradeoff. J Syst Softw 86:624–648

Qazi A, Shamim A, Bano H (2013) Model driven architecture with

encapsulated quality check and enhancement feature. In: The 3rd

international conference on innovative computing technology,

IEEE, London

Quintero R, Zepeda L, Vega L (2010) Model driven software

development of applications based on web services, Int J Web

Grid Serv

Raafat T, Cecelja F (2011) An ontological approach to inter-operation

of mobile services. In: The 4th IFIP international conference on

new technologies, mobility and security, IEEE, Paris

Rafea V, Mahdianb F (2011) Style-based modeling and verification of

fault tolerance service oriented architectures Procedia Computer

Science. World Conf Inf Technol 3:972–976

Ren Y (2011) A dynamic comprehensive web service for content

management. In: The 3rd international conference on commu-

nication software and networks, IEEE, Xi’an

Saaty TL (2008) Decision making with the analytic hierarchy process.

Int J Serv Sci 1:83–98

Salva S, Rabhi I (2010) A preliminary study on BPEL process

testability. In: The 3rd international conference on software

testing, verification, and validation workshops, IEEE, Paris

Shanmugasundaram G, Prasanna Venkatesan V, Punitha Devi C

(2012) Research opportunities in service reusability of service

oriented architecture. In: The international conference on

emerging trends in science, engineering and technology, IEEE,

Tiruchirappalli, Tamilnadu India

Sirer EG, de Bruijn W, Reynolds P, Shieh A, Walsh K, Williams D,

Schneider FB (2011)Logical attestation: an authorization archi-

tecture for trustworthy computing. In: The 23rd ACM sympo-

sium on operating systems principles, ACM, Cascais Portugal

Smith CU, Llado CM (2011) Model interoperability for performance

engineering: survey of milestones and evolution. In: perfor-

mance evaluation of computer and communication systems.

milestones and future challenges, Vienna Austria. Springer,

Berlin Heidelberg

Snajberk J, Holy L, Brada P (2013) Visualization of Component-

based applications structure using AIVA. In: The 17th European

conference on software maintenance and reengineering, IEEE,

Genova

Sneed HM, Verhoef C, Sneed SH (2013) Reusing existing object-

oriented code as web services in a SOA. In: The 7th international

symposium on the maintenance and evolution of service-oriented

and cloud-based systems, IEEE, Eindhoven

Staroswiecki M (2010) On reconfiguration-based fault tolerance. In:

The 18th Mediterranean conference on control and automation

Marrakech, IEEE

Sun C-A, Wang G, Mu B, Liu H, Wang Z, Chen TY (2011)

Metamorphic testing for web services: framework and a case

study. In: The international conference on web services, IEEE,

Washington DC

Tielin Q, Yafen L, Pu W (2010) A model transformation platform

design based on model driven architecture. In: The International

Conference on Intelligent Computation Technology and

Automation, IEEE, Changsha

Tizzei LP, Dias M, Rubira CMF, Garcia A, Lee J (2011) Components

meet aspects: assessing design stability of a software product

line. Inf Softw Technol J 53:121–136

Tragatschnig S, Zdun U (2013) Enterprise integration using event

actor based event transformations. In: The 28th annual ACM

symposium on applied computing, ACM Coimbra Portugal

Tran N-L, Skhiri S, Zimanyi E (2011) EQS: an elastic and scalable

message queue for the cloud. In: The 3rd international confer-

ence on cloud computing technology and science, IEEE, Athens

Trilles S, Juan P, Dı́az L, Aragó P, Huerta J (2013) Integration of

environmental models in spatial data infrastructures: a use case

in wildfire risk prediction. IEEE J Select Top Appl Earth Observ

Remote Sens 6:128–138

Trinugroho YBD, Gerdes M, Amjad MMM, Reichert F, Fensli R

(2013) A REST-based publish/subscribe platform to support

things-to-services communications. In: The 19th Asia-Pacific

conference on communications, IEEE, Denpasar

Tyagia K, Sharmab A (2014) An adaptive neuro fuzzy model for

estimating the reliability of component-based software systems.

Appl Comput Inf 10:38–51

Wallis M, Henskens F, Hannaford M (2010) Expanding the Cloud: A

component-based architecture to application deployment on the

Internet. In: The 10th IEEE/ACM international conference on

cluster, cloud and grid computing, IEEE, Melbourne, Australia

Wang Q, Yang Z (2012) A method of selecting appropriate software

architecture styles: quality Attributes and analytic hierarchy

process. University of Gothenburg, Chalmers University of

Technology, Göteborg

Wang B, Wei Z, Jinfang S (2010) Holographic view language

hvl4dcam for aspectual middleware platform. In: The 2nd

international conference on computer engineering and technol-

ogy, Chengdu, China 16–18 April 2010. IEEE

Wang S, Wainer G, Goldstein R, Khan A (2013) Solutions for

scalability in building information modeling and simulation-

based design. In: the symposium on simulation for architecture

and urban design, San Diego California

Waris M, Khan SA, Fakhar MZ (2013) Factors Effecting service

oriented architecture implementation. In: The science and

information conference, IEEE, London

Weini Z, Yongquan L, Pengdong G, Chu Q, Quan Q (2012) A new

software architecture for ultra-large-scale rendering cloud. In:

The 11th international symposium on distributed computing and

applications to business, engineering and science, IEEE, Guilin

Welke R, Hirschheim R, Schwarz A (2011) Service-oriented archi-

tecture maturity computer 44:61–67

Wen X, Yu H, Zheng H (2013) Aspect-oriented design method for

embedded systems based on timed statecharts China

Communications

White L, Wilde N, Reichherzer T, Baskin A, Hartmann B, Manea M

(2012) Understanding interoperable systems: challenges for the

maintenance of SOA applications. In: The 45th Hawaii interna-

tional conference on system science, IEEE, Maui HI

Wolf F, Balasubramanian J, Tambe S, Gokhale A, Schmidt DC

(2011) Supporting component-based failover units in middle-

ware for distributed real-time and embedded systems. J Syst

Arch: EUROMICRO J 57:597–613

Wu Y, Huang G, Song H, Zhang Y (2012) Model driven configuration

of fault tolerance solutions for component-based software

system. In: The 15th international conference on model driven

engineering languages and systems, Innsbruck Austria. Springer,

Berlin Heidelberg

Yamany HFEL, Capretz MAM, Allison DS (2010) Intelligent security

and access control framework for service-oriented architecture.

Inf Softw Technol J 52:220–236

Int J Syst Assur Eng Manag

123

Yang D, Liu M, Wang S (2012) Object-oriented methodology meets

MDA software paradigm. In: The 3rd international conference

on software engineering and service science, IEEE, Beijing

Yang Z-X, Ning H-Y, Sun J-Q, Yang J-B (2013) Service portfolio

optimization algorithm based on value model and graph theory

in SOA. In: The 4th international conference on software

engineering and service science, IEEE, Beijing

Yuan ED, Watton M (2012) An event-driven service oriented

architecture for space command and control decision making.

In: The Aerospace Conference, IEEE, Big Sky MT

Yue H, Tao X (2012) Web services security problem in service-

oriented architecture. In: International conference on applied

physics and industrial engineering

Yue D, Li CC, Liu WJ, Feng WX (2010) Based on SOA architecture

and component software reuse architecture research. In: The 2nd

international conference on information management and engi-

neering, IEEE, Chengdu

Zappia I, Paganelli F, Parlanti D (2012) A lightweight and extensible

complex event processing system for sense and respond

applications, Expert Systems with Applications

Zhang X, Pham H, (2000) An analysis of factors affecting software

reliability. In: Journal of Systems and Software, 43–56

Zhang J, Ban X, Lv Q, Chen J, Wu D (2010) A component-based

method for software architecture refinement. In: The 29th

Chinese control conference, IEEE, Beijing

Zheng Z, Lyu MR (2010) Collaborative Reliability prediction of

service-oriented systems. In: The 32nd international conference

on software engineering, IEEE, Cape Town

Zhou N, Zhang L-J, Chee Y-M, Chen L (2010) Legacy asset analysis

and integration in model-driven SOA solution. In: International

Conference on Services Computing, IEEE, Miami FL

Int J Syst Assur Eng Manag

123

	A guideline for software architecture selection based on ISO 25010 quality related characteristics
	Abstract
	Introduction
	Background
	Software product quality models
	Software product quality models in Agile environment
	Related works

	Formal concept analysis for software architecture selection
	FCA fundamentals
	Formal concept analysis in software engineering
	FCA application

	FCA results and discussions
	Step 1: Software architectures most used in the literature
	Step 2: Classification of Popular SA Relying on the ISO 25010 Quality Characteristics
	Step 3: Relationships among quality characteristics
	Guideline for Selecting the Suitable SA Based on ISO 25010 Quality Characteristics

	Threats to validity
	Conclusion
	Acknowledgements
	Appendix 1
	Appendix 2
	References

