
Real-Time Syst (2009) 43: 177–210
DOI 10.1007/s11241-009-9086-5

Enhancing a dependable multiserver operating system
with temporal protection via resource reservations

Antonio Mancina · Dario Faggioli ·
Giuseppe Lipari · Jorrit N. Herder · Ben Gras ·
Andrew S. Tanenbaum

Published online: 5 August 2009
© Springer Science+Business Media, LLC 2009

Abstract Nowadays, microkernel-based systems are getting studied and adopted
with a renewed interest in a wide number of IT scenarios. Their advantages over
classical monolithic solutions mainly concern the dependability domain. By being
capable of dynamically detect and solve non-expected behaviours within its core
components, a microkernel-based OS would eventually run forever with no need to
be restarted. Dependability in this context mainly aims at isolating components from
a spatial point of view: a microkernel-based system may definitely not be adopted in
the context of real-time environments, simply basing on this kind of protection only.

One of the most active real-time research areas concerns adding temporal pro-
tection mechanisms to general purpose operating systems. By making use of such
mechanisms, these systems become suitable for being adopted in the context of time-
sensitive domains. Microkernel-based systems have always been thought of as a kind
of platform not suited to real-time contexts, due to the high latencies introduced by
the message passing technique as the only inter-process communication (IPC) facil-
ity within the system. With computer performances growing at a fairly high rate, this
overhead becomes negligible with respect to the typical real-time processing times.

In the last years, many algorithms belonging to the class of the so-called Resource
Reservations (RRES) have been devised in order to provide the systems with the
needed temporal isolation. By introducing a RRES-aware scheduler in the context of
a microkernel-based system, we may enrich it with the temporal benefits it needs in
order to be deployed within domains with real-time requirements.

In this paper we propose a generic way to implement these mechanisms, depen-
dent for a very small part on the underlying OS mechanisms. In order to show the

A. Mancina (�) · D. Faggioli · G. Lipari
Scuola Superiore Sant’Anna, via Moruzzi 1, 56100, Pisa, Italy
e-mail: a.mancina@sssup.it

J.N. Herder · B. Gras · A.S. Tanenbaum
Vrije Universiteit, De Boelelaan 1081A, 1081 HV, Amsterdam, The Netherlands

mailto:a.mancina@sssup.it

178 Real-Time Syst (2009) 43: 177–210

generality of our RRES framework we implemented it in the context of MINIX 3,
a highly dependable microkernel-based OS with an impressive users base.

Keywords Operating systems · Real-time systems · Resource reservations ·
Micro-kernel · Dependability

1 Introduction

Modern computer users are increasingly concerned about system dependability.
While end-user requirements used to represent a trade-off between performance and
costs, developers nowadays have to meet the demand for hard safety guarantees. This
includes security and privacy, robustness against failures, timeliness of operation,
quality of service, and so on. The dependability axis we explore in this work con-
cerns the temporal domain. One particularly important problem in this domain is how
to prevent applications from using excessive CPU time, thereby disrupting timeliness
of operation and degrading quality of service.

A recent study (Tsafrir et al. 2007) showed that common process scheduling mech-
anisms can be subverted in a practical manner without superuser privileges in order
to monopolize the CPU. This is a threat to not only time-sharing systems, but also
embedded systems such as cell phones, PDAs, etc. The cheating process effectively
gains the maximum priority, performing a denial of service (DoS) attack on other
tasks. It was shown that almost all current operating systems, including MINIX 3
according to our analysis, are affected by this problem.

Furthermore, timeliness of operation is important in many application domains,
including multimedia, VOIP, peer-to-peer services, interactive computer games and
so on. Each of these domains has its own peculiarities, but all of them share an equal
need of a minimum guaranteed service level. A best-effort service based on heuris-
tic algorithms is usually adopted in order to improve the end-user perception of the
overall quality, but this approach fails to provide minimum service guarantees. For
example, in an attempt to keep the highest possible throughput, the performance of
certain critical services may be heavily degraded under high-load conditions, which
may lead to a low quality of service as perceived by the end user.

In order to improve the every-day user experience for such time-sensitive appli-
cations, a real-time operating system (RTOS) adapts the computational resources
granted to each application based on its quality-of-service requirements. To date
much development has focused on adding real-time features to commodity, mono-
lithic, PC operating systems, such as Linux (Abeni and Buttazzo 1998; Kaneko et al.
1996; Rajkumar et al. 1998; Faggioli et al. 2008b).

As a matter of fact, monolithic kernels-based systems are not the best choice as
far as dependability issues are concerned: a bug at kernel level may possibly lead to
a complete system hang.

In contrast, the microkernel approach aims at separating at memory space level
every running component, trying to confine problems in the context of the compo-
nents themselves, eventually restarting the faulty process without jeopardizing the
system as a whole. By acting so, a microkernel-based approach might eventually be
able to run forever.

Real-Time Syst (2009) 43: 177–210 179

By introducing real-time features in the context of such systems, they could grant
temporal protection next to the spatial one to every system component, thus prevent-
ing misbehaving processes from affecting other time-sensitive applications. The most
important class of real-time algorithms, providing temporal protection capabilities is
that of Resource Reservations (RRES).

1.1 Resource reservations

Resource reservations are a class of real-time algorithms that grant Q resource units
every period P (Rajkumar et al. 1998). In principle, the resource can be any system
facility, including CPU, memory, network and storage devices. However, we are in-
terested in CPU reservations, which have proven to be an effective technique to serve
time-sensitive applications on general-purpose operating systems (Abeni and Lipari
2002; Abeni et al. 2005).

Recently, a plethora of different RRES algorithms have been proposed and this led
to several different mechanisms offering very similar performances.

Taking cognizance of this uncontrolled growth, we decided to rework the whole
range of possible algorithms into a uniform logical scheme through the introduction
of a taxonomy, aiming to ease the description and implementation of resource reser-
vation algorithms.

Finally, we needed to choose an existing microkernel-based system, in order to
prove the features of our proposed taxonomy, under the point of view of both simplic-
ity of implementation and generality of description. We ended up choosing MINIX 3
both for its well-established users base and because of its widely recognized clean
implementation and lightweight system organization which we deemed suitable for
the introduction of these mechanisms.

1.2 MINIX 3

MINIX 3 is a microkernel-based multiserver operating system for uniprocessors that
is designed to be extremely fault-tolerant. All system services run as highly restricted
user-mode processes in order to isolate faults occurring in one component and pre-
vent the damage from spreading, so that the rest of the system can continue to func-
tion normally. In addition, the extension manager can detect certain error conditions,
including failures relating to CPU or MMU exceptions, internal panics or infinite
loops, and restart faulty processes. These features greatly improve the system’s de-
pendability (Herder et al. 2006, 2007).

In addition to dependability, MINIX 3’s highly modular structure makes it a good
candidate as a real-time operating system for embedded platforms. Its code base is
several orders of magnitude smaller than Linux, it is easy to remove unwanted com-
ponents in order to get a minimal configuration, and the simple structure results in a
small memory footprint. Moreover, MINIX 3 already has good response times due to
the following design choices:

– the user-mode operating system servers and drivers have short servicing times and
are fully preemptible by higher-priority processes,

180 Real-Time Syst (2009) 43: 177–210

– the kernel has very short interrupt latencies because its generic interrupt handler
only masks the IRQ line and sends a notification message, whereas the actual in-
terrupt handling is done by a user-mode driver, and

– finally, the kernel has short atomic kernel calls, which results in low stuck-in-kernel
latencies.

However, MINIX 3 did not yet explicitly address other real-time application
requirements. Realizing real-time behavior is not straightforward, since standard
MINIX 3 versions lack important real-time properties, including:

– a way to describe a task’s real-time constraints and schedule it accordingly,
– a temporal profile of each component in the system in order to achieve a complete

system predictability, and
– typical resource access protocols, such as Priority Inheritance (Sha et al. 1990) or

Stack-Based Resource Protocol (Baker 1990), in order to avoid priority inversion
phenomena.

To the best of our knowledge, we are the first to implement resource reservations
in MINIX 3. The new resource reservation framework improves MINIX 3 in three
important ways:

1. RRES brings soft real-time support at least, so that benefits can be gained in many
application domains, like the ones mentioned above. Infrequent deadline misses
are tolerable due to the nature of soft real-time applications; the end user will per-
ceive a missed deadline as a quality-of-service degradation rather than a fatal error.

2. Although our primary focus is soft real-time support, the RRES framework also
provides limited hard real-time support for applications that do not rely on the
standard system servers and drivers, such as sensoring applications using memory-
mapped I/O. The only critical code is the kernel’s generic interrupt handler, which
has a short, strictly bounded execution time.

3. Our work improves dependability by enabling temporally isolated execution in
order to prevent denial of service attacks (Tsafrir et al. 2007). Reliable accounting
is realized by using the TSC cycle counter independent from the programmable
interrupt timer (PIT), as detailed in Sect. 5.4.

1.3 Paper outline

The remainder of the paper is organized as follows. Section 2 briefly surveys related
work. Section 3 introduce the CBS, CBS-HR and IRIS resource reservation algo-
rithms. In Sect. 4 we introduce and describe the global resource reservation frame-
work (GRRF), while Sect. 5 describes how we implemented it. Sections 6 and 7
present a case study and the results of performance measurements on the introduced
latency. Finally, Sect. 8 describes the current framework status and our planned future
work.

2 Related work

We distinguish different operating system structures, since each structure leads to
different real-time properties.

Real-Time Syst (2009) 43: 177–210 181

2.1 Monolithic operating system structure

In spite of significant research efforts, introducing real-time support in monolithic
systems, such as Linux, is still considered an open problem. Real-time scheduling
turned out to be difficult, mainly due to the presence of many other highly unpre-
dictable system activities, such as interrupt handling, paging and process manage-
ment.

Two approaches have been adopted in order to minimize latencies and improve
response times. First, shortening non-preemptible kernel code sections. This changes
local code sections, but keeps the same monolithic kernel structure. As an example,
Red Hat staff has contributed a series of kernel low-latency patches to the Linux com-
munity.1 The patches have proven to be effective and are a substantial step towards a
real-time Linux.

Second, introducing an additional real-time layer between the operating system
and the real hardware in order to actively handle real hardware interrupts and mask
them to the operating system when needed. This results in an hybrid architecture
with a monolithic kernel running on top of a microkernel layer. The most impor-
tant projects are RTAI,2 RT-Linux3 and Xenomai.4 All these projects adopt a similar
approach to the problem: a new interrupt dispatcher is added below the standard ker-
nel which traps the peripheral interrupts and reroutes them to Linux whenever it is
necessary. However, this approach means that real-time tasks cannot directly access
standard Linux services and existing device drivers due to potentially high and unpre-
dictable delays. For this reason, developers often have to (re)write their own real-time
drivers.

2.2 Multiserver operating system structure

Real-time work also has been done in the context of multiserver systems. Here, low
interrupt latencies and good response times are easier to achieve than in a monolithic
system, since all services are already scheduled independently. Below, we discuss
related work in three systems.

Resource reservations and temporal protection have been tested before on Real-
Time Mach (RT-Mach) (Mercer et al. 1993, 1994; Tokuda et al. 1990). RT-Mach en-
forced the concept of resource reservation using a fixed-priority scheme like RM (Liu
and Layland 1973), which cannot achieve full CPU utilization or, at most, a dynamic-
priority one based on old algorithms like TBS (Spuri and Buttazzo 1994). MINIX 3
implements the newer CBS, CBS-HR and IRIS algorithms, which, in contrast to RT-
Mach TBS, are able to correctly cope with aperiodic activities whose Worst-Case Ex-
ecution Time (WCET) is not known a-priori. Furthermore, RT-Mach seems to have
the scheduling policy hard-coded at kernel-level, whereas we promote a minimally
invasive, modular design.

1Ingo Molnar’s RT Tree. http://www.kernel.org/pub/linux/kernel/projects/rt/.
2RTAI home page. https://www.rtai.org/.
3RTLinux home page. http://www.rtlinux.org.
4XENOMAI home page. http://www.xenomai.org.

http://www.kernel.org/pub/linux/kernel/projects/rt/
https://www.rtai.org/
http://www.rtlinux.org
http://www.xenomai.org

182 Real-Time Syst (2009) 43: 177–210

Real-time support in L4 (Liedtke 1996) is based on the statistical approaches
Quality-Assuring Scheduling (QAS) (Hamann et al. 2006) and Quality-Rate-
Monotonic Scheduling (QRMS) (Hamann et al. 2007). By extracting task properties,
the system can guarantee that the deadlines of the mandatory part are met, while
deadline misses in the optional part are tolerated. However, in order to enforce the
mandatory-optional splitting principle, DROPS’ real-time applications require mod-
ifications at source code level, whereas our framework can directly serve any exist-
ing applications in a real-time fashion. Furthermore, QAS and QRMS can provide
guarantees for only periodic tasks, whereas CBS, CBS-HR and IRIS also support
aperiodic tasks with real-time requirements. We also believe that our implementation
can be simpler, since no complexity is introduced at admission and reservation level,
whereas QAS performs these tasks using the distribution of execution times.

Finally, two projects based on earlier versions of MINIX should be mentioned.
First, Minix4RT (Pessolani 2006) aims to mimic the low-latency RT-Linux architec-
ture in MINIX 2. Second, RT-Minix (Rogina and Wainer 1999, 2001) consists of a
set of system calls added to MINIX 2 in order to explicitly invoke real-time services
provided by the kernel level. The former project has been made obsolete by MINIX 3,
since its generic interrupt handler achieves low interrupt latencies in a much simpler
way. Furthermore, these approaches are too invasive with respect to the base system
and cannot be easily ported to MINIX 3. Our work provides the first-ever implemen-
tation of resource reservations and temporal protection based on CBS, CBS-HR and
IRIS in the context of MINIX 3.

3 Resource reservations

Resource reservations are a powerful concept providing temporal protection for time-
sensitive applications. The underlying idea is to reserve a fraction of the CPU in
order to ensure isolated execution. Resource reservations are typically used to run
both periodic and aperiodic tasks, since they allow the scheduler to enforce classical
Earliest Deadline First (EDF) (Liu and Layland 1973) scheduling decisions, even
in presence of misbehaving tasks that execute longer than expected or unexpectedly
introduced tasks that impose a temporary increase on the global utilization.

Before we continue, we briefly introduce EDF, which is the most widely adopted
uniprocessor real-time scheduling algorithms in the dynamic priorities field. The EDF
algorithm states: “for each time t, the task with the earliest absolute deadline is exe-
cuted.” Despite a higher computational complexity than Rate Monotonic (RM) (Liu
and Layland 1973), which is the industrial standard for the fixed priorities field, EDF
can always achieve full CPU utilization without any deadline misses, which is an im-
portant goal in our work (RM can reach a full utilization only through an accurate
and specific choice of tasks’ periods).

3.1 Achieving temporal protection

Temporal protection refers to the scheduler’s ability to prevent one task from affecting
the execution of other tasks by executing longer than expected due to, for example,

Real-Time Syst (2009) 43: 177–210 183

Fig. 1 Produced schedule with
misbehaving task T2. The tasks’
computation times and deadlines
are shown at the left

Fig. 2 Same schedule with
temporal protection. The VRES’
timeline is shown below the
task’s timeline

a programming bug. Traditional real-time operating systems do not protect against
such schedule overruns, as depicted in Fig. 1. Here, the overrunning task T2 that
is scheduled according to the EDF algorithm causes the other tasks to violate their
deadlines in a so-called domino effect.

In contrast, the use of resource reservations provides temporally isolated execution
environments in which all tasks can complete within their deadlines despite of the
overrun of the faulty task. The mechanism that enforces the reservation is referred
to as a Virtual Resource (VRES) R that grants a CPU budget Q for each period
P . An overrunning task can request additional CPU budget from its VRES, but this
causes its deadline to be postponed by one period—so that other tasks with an earlier
deadline are scheduled first. Figure 2 shows how this happens three times for task T2.
In the end, T2 misses a deadline, but T1 and T3 run unaffected. We describe such an
environment as compartmentalized from the scheduling point of view.

3.2 Resource reservation algorithms

In this section we are going to focus on some algorithms in particular, since the most
of them share many common features and it would not make any sense to threat
them separately. In contrast, we try to point out the differences among three sample
algorithms which, in our opinion, well represent the variety of different reactions to
typical RRES events.

We chose to describe in detail the CBS (Abeni and Buttazzo 1998), for its out-
standing innovation in the RRES domain, being the first to be able to serve aperiodical
requests with no a-priori knowledge about their WCET. Then, we chose its most di-
rect derivative, CBS-HR, because of its sharp difference when serving cpu-intensive

184 Real-Time Syst (2009) 43: 177–210

processes. We, finally, picked up IRIS (Marzario et al. 2004), for its reclaiming capa-
bilities, that make it different from the other two.

Other algorithms have been implemented in the context of this work, such as
GRUB (Lipari and Baruah 2000) and CASH (Caccamo et al. 2000), but we chose
not to include them in this description because we did not think they would have add
any specific value to the presented results.

3.2.1 CBS

The Constant Bandwidth Server (CBS) (Abeni and Buttazzo 1998) is a resource
reservations algorithm with dynamic priorities that uses the EDF algorithm at the
lowest level. CBS can achieve full CPU utilization and solves many classic real-time
scheduling problems, such as managing unpredictable instances of aperiodic tasks.
We briefly recall the algorithm here:

1. each virtual resource (VRES) is assigned a maximum budget Q, a period P , a
current budget c and a current deadline d ;

2. a virtual resource is active if its task is active, inactive otherwise; initially, all
virtual resources are inactive, and c = 0 and d = 0;

3. when a task is activated:

– if d ≤ t or c > (d − t)
Q
P

, then c = Q and d = t + P ,
– else, the current scheduling parameters are used

4. at each time t , the active virtual resource with the earliest current deadline d is
chosen, and its task gets executed;

5. as long as T runs, the budget c of the virtual resource decreases at a rate δc = −δt ;
6. whenever the virtual resource budget is exhausted (c = 0), it is immediately

recharged (c = Q) and its deadline is postponed (d = d + P); as a consequence,
rule 4 is applied and another virtual resource might be scheduled.

Since the CBS algorithm is based on EDF, and the virtual resources can be approx-
imated as sporadic tasks with a worst-case execution time Q and minimum interar-
rival time P , it is possible to allocate 100% of the processor bandwidth. In addition,
the CBS postponing scheme provides temporal protection against overrunning tasks.
CBS rule 6 ensures that the priority of a misbehaving task is decreased by postponing
the deadline of its virtual resource. The task is kept in the ready queue, but cannot
execute if other tasks with an earlier deadline exist, as shown in Fig. 2.

3.2.2 CBS-HR and IRIS

Due to its simple reclamation scheme, the CBS algorithm suffers from a problem
called deadline aging (Marzario et al. 2004). If a CPU-bound, non-real-time task T1
(e.g. a compilation with gcc) is the only active task in the system, CBS’ deadline-
postponement rule is continuously triggered for R1. Under the assumption that T1
was granted only a fraction of the CPU, its deadline will be somewhere in the far
future after consuming several budgets Q. If another task T2 (e.g. bunzip2) starts
executing, it will have the highest EDF priority for a long time, during which T1
cannot execute. Hence, the end user will perceive T1 as a non-responsive task.

Real-Time Syst (2009) 43: 177–210 185

Fig. 3 IRIS solves the deadline aging problem by having VRESes wait until the next deadline before
replenishing their budget. The replenishment can be instantaneous due to time warping

The problem of deadline aging has been addressed by CBS-HR through a concept
known as hard-reservation mode. If the virtual resource’s budget is exhausted, replen-
ishment only happens at the beginning of the next period. This ensures that the virtual
resource’s deadline is not repeatedly postponed and stays synchronized with respect
to task execution. However, CPU cycles may be wasted while recharging, which led
to the notion of time warping in IRIS (Marzario et al. 2004). CBS-HR extends the
standard CBS policy with rule 7, whereas IRIS extends CBS-HR with rule 8:

7. when budget c is exhausted, the task is suspended and the virtual resource moved
to the recharging state until the current deadline d , when the budget is replenished
to c = Q and the deadline postponed to d = d + P ;

8. if all virtual resources are in recharging state at time t and no virtual resource
is currently active, they can be all recharged and their deadlines updated to d =
t + P .

These enhancements result in a more responsive system and a better reclamation
policy, respectively. As an example, Fig. 3 shows how IRIS prevents deadline aging
for the above scenario of two aperiodic, CPU-bound tasks.

4 Generic resource reservation framework

By now, it should be clear that the real-time system designer has many alternatives
which he may choose among when selecting what types of VRESes should be set up
to serve the real-time taskset. This complexity is seldom an insurmountable obstacle,
since many different algorithms may successfully perform even though with very dif-
ferent tasksets. The main differences between equally suited algorithms to the active
context reside in the amount of possible resource wasting, in the typical evaluation
parameters like the mean tardiness (which directly affects the perceived quality as by
the end user) and in the implementation complexity of the chosen algorithm.

186 Real-Time Syst (2009) 43: 177–210

In order to greatly simplify the latter point and the design of new RRES algo-
rithms, we conceived a new framework for resource reservation algorithms. In the
authors’ opinion, this framework greatly improves the abstraction capabilities as far
as design, conception and implementation of RRES algorithms are concerned, since
it exports a common interface to the system designer and algorithm developer.

In this sense we are speaking more of a taxonomy than a real programming frame-
work, meaning that we are giving a generic way to describe different algorithms in
the same domain.

4.1 State diagram

We decided to base the framework upon the minimum number of VRES states we
deem capable to describe every possible algorithm, by computing the necessary math-
ematical and logical operations.

By making use of its properties, the system designer is able to describe every
possible running condition, regardless of the way the actual algorithms enforce it.

As an example, consider the way in which different algorithms put their reclaiming
properties in action: some of them let CPU idle time be assigned to currently running
VRESes, some others borrow unused budget from currently inactive VRESes. We
would aim at using just our diagram with its states, events and transitions to describe
this particular phase, confining the conditions to start reclaiming at a lower level,
along with the specific implementation which enforces this reclaiming.

The state diagram of Fig. 4 expresses all the possible states of a VRES. Besides
explaining each of them, we will analyze the set of events and consequent transitions
towards the considered state.

Fig. 4 Generic framework state diagram

Real-Time Syst (2009) 43: 177–210 187

– IDLE, to describe every existing VRES currently not backlogged, that is which has
no ready process to serve (every VRES just created goes into this state);

– ACTIVE, to describe the condition of a VRES not at the highest priority in the
system, with a ready-to-run process in it;

– RUNNING, to describe a VRES currently serving its task, thus decreasing its bud-
get, unless an end condition occurs;

– RECHARGING, to describe a backlogged VRES with no budget, waiting for a
budget recharging event to occur in order to start serving its task over;

– AHEAD, which is used in case a VRES is not currently backlogged but has con-
sumed more budget than its “fluid” equivalent (the sources of this budget are of
very different nature, as we will see). It is useful to describe several atypical condi-
tions, like budget reclaiming, stealing and other temporary non-standard activities.

To further refining our framework description, it is necessary to speak of events
and transitions: events determine an action which ends up triggering a transition be-
tween an old state and a new one.

A list of possible events follows:

onTaskBirth at the end of the creation phase of a new task in the system;
onTaskReady when the new task is ready to run (it has backlogged jobs) and the

corresponding VRES has been created;
onBudgetExhausted when the current task instance (or job) consumes all the

budget reserved for the current VRES period;
onBudgetRecharged in case VRESes do not get an immediate recharge of their

budgets, this happens when the budget is completely recharged;
onTaskBlock when the current job experiences a block due to shared resources

or explicit signals;
onTaskUnblock when, after having been blocked, a job restarts for the blocking

condition does not hold any more;
onTaskDeath when an application completes its execution or for an abnormal

terminating condition (a signal or an exception).

Depending on the events and on the current VRES state, one of the following
transitions may take place:

idle2active occurs on onTaskBirth events;
active2running occurs on onTaskReady events;
running2active occurs when a higher priority task preempts a lower priority one;
running2ahead occurs on onTaskBlock events;
running2recharging occurs on onBudgetExhausted events;
gen2idle depending on the current VRES state, it occurs when a VRES is not back-

logged (it has no ready jobs);
recharging2active occurs on onBudgetRecharged events;
ahead2idle occurs when the current VRES parameters expire, meaning that it is non-

sense to save them for a later use (we will see what it means later on);
ahead2active occurs when a new task instance arrives while the VRES is in the ahead

state and the current parameters may be somewhat maintained or updated;

Finally, there are globally shared operations which must be taken into account in
every algorithm, along with specific steps not considered here:

188 Real-Time Syst (2009) 43: 177–210

InitParams() used to assign the correct values to the VRES parameters during the
creation phase;

UpdateParams() used to compute the new VRES parameters following important
algorithms events;

ComputeParams() as above, but with the additional computation of a test in order
to decide whether UpdateParams() has to be invoked or current parameters may be
exploited;

Idle() used when the VRES is not backlogged any more, that is no more jobs are
ready to start;

SetIdle() is used when the current job instance stops, following a special blocking
condition like a busy shared resource, an explicit blocking signal or a voluntary
sleep;

SetBWExt() used when the current job gets preempted by an higher priority job to
save the current parameters after an execution time frame;

SetRecharging() used in case a specific event must be waited for (whether this event
is actually of recharging or more general type is left to the specific algorithm imple-
mentation);

Recharged(), invoked when the time specified through the SetRecharging() interface
has been reached.

We will see, from time to time, how these operations are carried out in the context
of the specific algorithms implementations.

4.1.1 Mappings in GRRF

In this section we are going to analyze the way in which the algorithms described in
Sect. 3.2, get mapped on the state diagram just analyzed.

GRRF: CBS Here the mapping is quite simple:

– the IDLE state maps directly on the CBS IDLE state;
– the ACTIVE state maps directly on the CBS ACTIVE state;
– the RECHARGING state is not used;
– the RUNNING state maps directly on the CBS RUNNING state;
– the AHEAD state is used when a task instance ends and its virtual resource has still

some budget. In particular, let q be the current residual budget and U the VRES
utilization, if (

q
U

≤ d − t), then the VRES is put and stays in the AHEAD state
until (

q
U

= d − t), time at which the VRES goes into the IDLE one. As long as it
stays in the AHEAD state, if a new task instance is ready to run, it can directly go
to the ACTIVE state.

In Fig. 5 the state diagram equivalent for the CBS case is depicted. Being the con-
cept of budget recharging of no utility, the RECHARGING state has been removed
and a circular arrow starts from and ends onto the RUNNING state, through a simple
updateparameters() operation.

Let us consider the example of Fig. 6 and explicitly analyze the distinct phases the
framework passes through.

Real-Time Syst (2009) 43: 177–210 189

Fig. 5 The state diagram for the CBS algorithm

Fig. 6 A sample CBS schedule to show the GRRF in action

At time t = 0, three new task are born, so that three onTaskBirth events are fired
up. The framework behaves invoking the corresponding generic part of this event
handler which, among other activities, takes care of setting up the initial parameters
(InitParameters()). It also invokes the corresponding idle2active () which, in this
case, is translated into the cbsactive () function call.

At time t = 2, τA blocks (or, equivalently, its current instance completes). Thus,
the framework invokes the onTaskBlock() handler which takes care of moving it to
the AHEAD state (through the running2ahead()) and selecting the new VRES to be
put in execution.

An analogous reasoning may be carried on at time t = 3, when τA wakes up (a new
task instance is ready to run). The framework ends up calling the ahead2active ()
followed by a active2running () which makes τA’s VRES start.

190 Real-Time Syst (2009) 43: 177–210

At time t = 9, a BUDGET_EXHAUSTED event occurs (the task is possibly mis-
behaving and asking for further execution), so that the onBudgetExhausted han-
dler gets called. It is immediately translated into the corresponding cbs equivalent,
cbsBudgetExhausted(), which works recharging immediately the VRES budget and
postponing the current deadline (at time t = 16), according to the algorithm rules. As
a matter of fact, this implies a priority drop and prevents the task from delaying other
tasks execution.

GRRF: IRIS In the IRIS mapping the IDLE, ACTIVE, RUNNING and AHEAD
states have exactly the same meaning as in the CBS. The RECHARGING state is
directly mapped on the IRIS RECHARGING state.

An important feature of IRIS is the Time Warping rule taking place every time
there are VRESes in the RECHARGING and IDLE state only (see Sect. 3.2.2).

To model this behavior, it is sufficient to issue a check every time a RUNNING →
RECHARGING state transition occurs. If the state-changing VRES is the last in the
RUNNING state and no other one is in the ACTIVE queue, then this rule is triggered
and every parameter is updated accordingly.

5 Design and implementation

This section describes how we implemented the key components at kernel and user
level in MINIX 3 along with the specific implementation of the three algorithms pre-
viously described in the context of the GRRF.

Three important design guidelines for the implementation of the framework were:

1. pluggable real-time support next to best effort;
2. minimizing the amount of intrusive kernel code;
3. maximizing the policy-mechanism separation.

First, we did not want to break the standard MINIX 3 distribution for reasons of
acceptance and backward compatibility. Therefore, we designed the framework as an
optional component that can be started at run-time to enhance the system with real-
time support when needed. Second, a general dependability strategy in MINIX 3 is to
move as much code as possible out of the kernel into user space. Since kernel-mode
code runs with all privileges of the machine it must be fully trusted, whereas user-
mode bugs may be confined to the process in which they occurred. Third, separating
the scheduling policies from mechanisms leads to a flexible, easily adaptable system.
Fortunately, these guidelines go hand in hand, as discussed below.

5.1 High-level design overview

Based on the above design criteria we decided to introduce a separate user-space
component, called the RRES manager or RRES for short, which is logically located
at the MINIX 3 server level. RRES can be started through the MINIX 3 extension
manager at run-time like all other extensions (Herder et al. 2007). The basic idea then
is to let the kernel execute user-space scheduling requests for real-time applications

Real-Time Syst (2009) 43: 177–210 191

Fig. 7 High-level architecture over the resource reservation framework. Messages exchanged between the
RRES helper utilities, RRES manager and kernel are shown

on behalf of RRES. In particular, the kernel’s built-in best-effort scheduling policies
should be temporarily suspended, so that the real-time task is not affected by the
heuristics of the standard scheduler. In other words, the scheduling policy is enforced
in user-space, but the kernel provides mechanisms for starting and stopping a task and
for accounting its execution. Logically, this leads to an enhancements of the standard
MINIX 3 scheduler to cope with RRES extensions.

The algorithm used is dynamically chosen at run-time. Although being possible to
let different VRESes serve their task using different algorithms at the same time, this
is not actually a viable solution, since the theoretical analysis to make this possible is
still in progress.

In addition to the RRES manager, three helper utilities were created in order to
manage real-time applications. First, rres_create can be used to start a new real-
time application by passing the binary’s name its period P and budget Q. Second,
rres_change can be used to change the scheduling parameters at run-time. Third, the
rres_destroy utility can be used to stop a running real-time task. Figure 7 gives a
high-level overview of the RRES framework.

5.2 Implementation of the RRES manager

The RRES manager has the same code structure as other MINIX 3 servers. After
the initialization of its data structures, RRES starts a never-ending loop in which it
accepts new requests, processes them and sends back an answer.

5.2.1 RRES data structures

The main RRES data structure has five scheduling queues for the virtual resources
that are uniquely associated with the real-time tasks. The queues are ordered by in-
creasing current VRES deadline, so that RRES can quickly decide which task to
schedule based on the underlying EDF policy.

192 Real-Time Syst (2009) 43: 177–210

– The ACTIVE queue keeps track of ready-to-run VRESes. The first VRES on this
queue is the currently scheduled one, that is, the associated task is the running
process in the system.

– The RECHARGING queue comprises all the VRESes which exhausted their bud-
get and need it to be replenished. This queue is only used for CBS-HR and IRIS.
With plain CBS it is always empty since hard-reservation mode is not used. Con-
ceptually, all VRESes in this queue are recharging, but RRES only sets a single
alarm for the first recharging event.

– The BLOCKED queue contains the VRESes that blocked during their execution,
for example, because they have to wait for some event to happen.

– The AHEAD queue is used for special events handling within the specific RRES
algorithm implemented (like budget reclaiming or donating).

– Finally, the INACTIVE queue which contains just created or about to die VRESes.

5.2.2 RRES interactions

As shown in Fig. 7, the RRES manager has several interactions with both the RRES
help utilities and the kernel tasks. The exact messages that are exchanged are shown
in Fig. 8. First, the RRES helper utilities can request RRES to CREATE, CHANGE
or DESTROY virtual resources. In order to prevent random tasks from changing their
scheduling policy only the system administrator is allowed to send RRES requests.
RRES verifies this by asking the MINIX 3 process manager for the requester’s user
ID.

Second, although RRES is responsible for the scheduling policy, it relies on ker-
nel mechanisms to perform the actual RRES scheduling. In particular, the following
messages are exchanged with the kernel’s system task:

– CALIBRATE_TSC: used at RRES initialization time to determine the number of
CPU cycles per microsecond; the kernel programs the timer to a known frequency,
reads the TSC cycle counter start value, waits 1000 timer ticks, and reads the TSC
end value.

– START_RT_TASK: tell that a process now is a real-time task and needs to be
treated in a special manner.

– STOP_RT_TASK: inform the kernel that a real-time task has been destroyed so
that special events related to this task are no longer forwarded to RRES.

– START_SCHEDULE: tell the kernel to start scheduling a real-time task using the
RRES scheduler rather than the standard scheduler.

Fig. 8 Messages exchanged
within the RRES framework

Real-Time Syst (2009) 43: 177–210 193

– STOP_SCHEDULE: issued whenever RRES needs to stop the currently scheduled
real-time task.

– START_RECHARGE: if a VRES becomes the head of the RECHARGING queue,
RRES schedules an alarm to be notified when the recharging time is reached.

– STOP_RECHARGE: used to handle a time warping event in IRIS and if the
scheduling parameters of a currently recharging task are changed.

– GET_MESSAGES: whenever the kernel’s mechanisms encounter a special event,
as shown in Fig. 8, the RRES manager is notified with an RRES_EVENT message;
the RRES manager then makes a callback to find out which event triggered the
notification.

While this modularity brings many benefits with respect to flexibility, the mes-
sage passing interactions between RRES and the kernel introduces a small latency.
Experiments on a prototype implementation have shown, however, that the incurred
context-switching overhead is not at all prohibitive, as discussed in Sect. 7.

5.2.3 The rres_server structure

In order to provide the framework with the maximum degree of flexibility, the GRRF
takes advantage of a group of function pointers, living inside the C structure describ-
ing a VRES:

i n t (∗ i n a c t i v e 2 a c t i v e) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ a c t i v e 2 r u n n i n g) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ r u n n i n g 2 a c t i v e) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ r u n n i n g 2 a h e a d) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ r u n n i n g 2 r e c h a r g i n g) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ g e n 2 i n a c t i v e) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ r e c h a r g i n g 2 a c t i v e) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ a h e a d 2 i n a c t i v e) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ a h e a d 2 a c t i v e) (s t r u c t r r e s _ s e r v e r ∗) ;
i n t (∗ a d m i s s i o n _ t e s t) (s t r u c t r r e s _ s e r v e r ∗ , i n t) ;

Each of these functions is called whenever a state change event occurs and rep-
resents a hook function every algorithm must implement in order to take the actions
corresponding to a particular event. As an example, let us analyze the way the CBS-
HR algorithm initializes these hooks.

s−>a l g o _ t y p e = CBSHR;
s−>a h e a d 2 a c t i v e = c b s h r _ s t a r t _ j o b ;

As it is immediately clear, we are filling the structure fields with functions related
to the Hard Reservation mode of the CBS. Finally, let us give a look at one of these
hooks implementations.

194 Real-Time Syst (2009) 43: 177–210

PRIVATE i n t c b s h r _ s t a r t _ j o b (s t r u c t r r e s _ s e r v e r ∗ s)
{

/∗ . . . ∗ /
i f (c b s _ t e s t (s) == RRES_NB)
{

/∗ New p a r a m e t e r s must be g e n e r a t e d ∗ /
s−>tsc_C = mul64u (u s e c _ v a l u e , s−>Q) ;
s−>tsc_D = add64 (r r e s _ c u r r _ t i m e ,

mul64u (u s e c _ v a l u e , s−>P)) ;
}
/∗ The o l d ones may be used ∗ /
/∗ . . . ∗ /

}

We are reactivating a job after it reached a stop condition. In this case we have
to compute the result of the CBS test in cbs_test () and, depending on its result,
enqueue it in the ACTIVE queue with different parameters. Similar code paths may
be identified in all the other important algorithm conditions.

From the RRES server point of view, there is the code for events management:

case RRES_BUDGET_EXHAUSTED:
r e s u l t = onBudge tExhaus t ed (r r e s_new) ;
break ;

case RRES_BUDGET_RECHARGED:
r e s u l t = onBudge tRecharged (r r e s _ n e w) ;
break ;

case RRES_JOB_START :
r e s u l t = o n J o b S t a r t (r r e s _ n e w) ;
break ;

case RRES_JOB_END :
r e s u l t = onJobEnd (r r e s _ n e w) ;
break ;

Here, whenever the kernel sends an event message to the RRES server, RRES
parses the message and invokes the corresponding function. Job start and end func-
tions represent the condition of unblocking and blocking of a process, respectively
(since in a real operating system we have only a few examples of tasks with a real
periodic nature).

Lastly, here is a code example for managing one of the previous events:

PUBLIC i n t o n J o b S t a r t (s t r u c t r r e s _ s e r v e r ∗ s)
{

/∗ . . . ∗ /
re turn s−>a h e a d 2 a c t i v e (s) ;

}

Real-Time Syst (2009) 43: 177–210 195

This is the place where we invoke the specialized version of the transition function.
According to the server nature, the correct function implementation gets invoked.

Similar mechanisms may be exploited to implement the whole variety of possible
actions within the context of RRES algorithms. When a reclaiming property must be
enforced, the RECHARGING queue and event insertion within it is the way to go.

5.3 Kernel and scheduler modifications

Scheduling in the standard MINIX 3 kernel is done on best-effort basis using a
multilevel-feedback-queue scheduler (MLFQ) (Torrey et al. 2007). Processes with
the same priority reside in the same queue and are scheduled round-robin. When a
process is scheduled, its quantum is decreased every clock tick until it reaches zero
and the scheduler gets to run again. To prevent starvation of low-priority processes,
a process’ priority is degraded whenever it consumes a full quantum. Since CPU-
bound processes are penalized more often, interactive applications have good re-
sponse times. Periodically, all process priorities are increased if not at their initial
value.

As mentioned above, the kernel should bypass the standard scheduler for real-
time tasks managed by RRES. Therefore, the MINIX 3 kernel and scheduler were
changed in two ways. First, we added rres_f flag to the process structure in order
to tell whether a task should be scheduled in the context of MLFQ or RRES. This
flag is set when RRES sends a START_RT_TASK request to the kernel. Second, the
scheduler data structure was extended with two new scheduling queues at the highest
priorities, as shown in Fig. 9.

– RRES_PRIO: the highest priority in the system is now used for the RRES man-
ager, so that it can always immediately react to the various kinds of events, such
as budget exhaustion and budget recharged events. Depending on the kind of event
RRES may schedule another real-time task. When RRES has processed the event,
it returns to its main loop and blocks waiting for the next event—allowing a real-
time task to run.

Fig. 9 RRES-enhanced MINIX 3 scheduling queue data structure. Two new queues at the two highest
priority levels were added for the RRES manager and the current real-time task

196 Real-Time Syst (2009) 43: 177–210

– RT_PRIO: the second highest priority is reserved for the real-time tasks served by
the RRES manager. At most a single task can be active at any given time. When
there is a task to schedule, it runs uninterrupted until either its budget is exhausted
or some other RRES event makes a higher-priority task ready to run. In the latter
case, preemption occurs and RRES requests the kernel to schedule the higher-
priority task.

Third, we identified the points which needed change in order to modify the de-
fault scheduler behavior. In particular, if a real-time task needs to be scheduled, that
is, if a process’ rres_f flag is set, the scheduler simply picks the queue with priority
level RT_PRIO rather than its MLFQ priority. Also, a task running in the RT_PRIO
queue is not affected by the heuristics of the normal MLFQ algorithm, such as de-
creasing the process priority of long-running processes and periodic balancing of the
scheduling queues.

Finally, we changed the scheduler to cope with blocking and unblocking events.
Whenever a real-time task blocks the kernel sends an event notification to RRES, so
that it can schedule another task. Blocking can occur, for example, during synchro-
nous service requests or while waiting for an I/O completion interrupt. We decided
to consider a task’s blocking and unblocking events as job completion and activation
times (as in Abeni’s work, Abeni and Lipari 2002) respectively in order to be able
to provide the classic real-time properties previously described. The blocked task’s
VRES is put on RRES’ BLOCKED queue. When the kernel notifies RRES that the
task is unblocked, RRES moves the corresponding VRES to the ACTIVE queue and
may schedule it depending on its current priority.

5.4 CPU time accounting

In order to serve real-time tasks the RRES framework requires a reliable source of
high-precision timing. Our implementation is based on the x86’s TSC cycle counter,
but depending on the system architecture, other timing sources may also be avail-
able. The TSC cycle counter is convenient because it is accessible to both the user-
space RRES manager and the kernel’s scheduling code. However, since the TSC cy-
cle counter is read-only and cannot interrupt when a task’s budget is exhausted or
needs to be replenished, an interrupt-based programmable timer is also needed. For
this, we decided to modify the standard MINIX 3 system timer, which is based on
the i8259 Programmable Interval Timer (PIT). Another option would have been to
use the CMOS ‘Real-Time Clock’, but it is already in use for the MINIX 3 profiling
code (Meurs 2006) and having two sources of timer interrupts would have compli-
cated the kernel’s code.

5.4.1 Working of RRES accounting

Although the PIT ticks come at a lower frequency than the TSC cycle counter, the
RRES framework can do its work as follows. During initialization RRES calibrates
the TSC cycle counter using the CALIBRATE_TSC in order to determine the number
of cycles per microsecond. Budget exhaustion and budget replenishment events are
expressed in CPU cycles rather than PIT ticks in order to prevent rounding errors in

Real-Time Syst (2009) 43: 177–210 197

the calculation. This number is reported to the kernel on START_SCHEDULE and
START_RECHARGE, respectively, which stores the count in a global variable and
compares it to the current cycle counter value on each PIT tick. If the current cycle
counter value exceeds the exhaustion or recharging time, the kernel deschedules the
task (in the former case only) and sends an RRES_EVENT notification to the user-
space RRES manager.

One important decision was at which frequency the TSC counter should be read,
that is, the PIT interrupt frequency—since a higher frequency leads to a lower worst-
case accounting error. The maximum usable frequency is limited, however, since each
PIT interrupt requires reprogramming the timer. After some experimentation we de-
cided to use a PIT frequency of 4000 Hz, which limits RRES accounting error to at
most 250 µs. Moreover, task overruns are taken into account by the RRES manager
by reading the TSC cycle counter after the RRES_EVENT notification, comparing it
with the original deadline, and reducing the task’s CPU budget in its next execution
frame.

Although RRES accounting works at 4000 Hz, we used a frequency of 500 Hz for
the system’s normal tick facility. This distinction takes place in the clock task’s inter-
rupt handler, which scales the hardware PIT frequency into lower-frequency system-
wide ticks, that is, only 1 in every 8 interrupts is transformed into a system tick.

5.4.2 Eliminating CPU monopolization

An important benefit of our design is that denial of service (DoS) attacks that monop-
olize the CPU (Tsafrir et al. 2007) are structurally eliminated. By basing accounting
on the actual number of CPU cycles used, independent of the PIT ticks, a task can
no longer cause another task to be billed by suspending execution just before a PIT
tick occurs. In contrast, whenever a task served by RRES stops execution, the RRES
manager is informed and the current TSC cycle counter is read to decrease its remain-
ing budget with the number of CPU cycles consumed. Processes that use MINIX 3’s
standard scheduling facilities are still vulnerable, but real-time tasks and, in fact, any
application with stringent timing requirements can use the new RRES framework for
temporal protection.

5.5 Abstracting from MINIX 3

Up to now, we spoke about a general taxonomy, meaning that by making use of it the
implementation procedure of many rres algorithms gets noticeably simplified. We
have just shown the implementation of some of the most employed algorithms within
real systems. A question naturally arises: to what extent can this work be extended to
other operating systems contexts?

At first glance the underlying scheduling system issue might seem to confine this
experience to the specific implementation we just described. Actually, the GRRF
makes just a few assumptions about what stands underneath: every algorithm mecha-
nism resides at user-space level, thus resulting completely independent of the peculiar
operating system which it is employed within.

In particular, the adaptation of the OS-dependent parts is comprised of a few mod-
ifications:

198 Real-Time Syst (2009) 43: 177–210

– let the RRES manager be the highest priority component in the system;
– base the scheduling time accounting on the TSC (this is valid for x86 architectures

only) in order to have a timeline shared with the user-space level;
– provide a context-specific implementation of the different messages that the RRES

manager may address to the kernel;
– provide a notification mechanism for the RRES manager to know about its former

requests.

This description completely left out of consideration the specific nature of the
operating system. When we speak of messages, in facts, we do not necessarily refer
to the IPC mechanisms typically employed in the context of microkernel operating
systems: these messages might equally be implemented by means of ordinary system
calls and/or synchronous signals (if any).

6 RRES case study

To better clarify how the framework works, we now discuss an example that shows
the interactions of the RRES framework, configured to use CBS with hard-reservation
mode (CBS-HR). We analyze the sequence of events for two real-time tasks, T1 and
T2, producing the schedule shown in Fig. 10. Initially, the administrator starts the
tasks using the rres_create utility. The command entered is

$ rres_create <budget> <period> <rresalgo> <binary>

where the request parameters are

<budget>: CPU budget given in each period (Q) in µs;
<period>: the VRES granularity (P) in µs;
<rresalgo>: the RRES algorithm according to which the VRES must behave;
<binary>: the application to be managed by RRES.

This request has to be made for both task T1 and T2 with parameter Q1 = 3000 µs,
P1 = 9000 µs and Q2 = 2000 µs, P2 = 3000 µs. The rresalgo parameter, for both
tasks, was set to CBS-HR. The sum of the fractions Q

P
gives the CPU utilization and

is 100% in this example.
For both tasks, the rres_create utility forks a new process, sends a CREATE mes-

sage to the RRES manager to inform it about the new real-time task’s parameters, and

Fig. 10 Schedule of the case
study in milliseconds

Real-Time Syst (2009) 43: 177–210 199

executes the binary. RRES first checks if the user is authorized and then performs an
admission test (whose nature is dependent on the underlying scheduling algorithm
and, with very minor exceptions, corresponds to its schedulability test). Since the
CPU utilization does not exceed 100% (being EDF the underlying scheduling mech-
anism), RRES accepts the requests, creates two virtual resources R1 and R2 with the
required parameters, and sends a START_RT_TASK message to the kernel to tell that
T1 and T2 are real-time tasks from now on. The virtual resources, R1 and R2, will be
enqueued in RRES’ ACTIVE queue, with task T2 at the head of the queue, since T2’s
initial deadline is earlier than that of T1.

We will now analyze the interactions between the RRES manager and kernel dur-
ing the execution of tasks T1 and T2, which produces the schedule shown in Fig. 10.
As discussed in Sect. 5.4, the RRES manager uses the TSC cycle counter for account-
ing. For reasons of simplicity, however, all times below are expressed in milliseconds.

At time T = 0, RRES issues a RRES_SCHEDULE request to the kernel specify-
ing the task to be scheduled, in this case T2, and the amount of CPU budget, that is,
how long the task is allowed to execute, in this case 2. The kernel accepts the RRES
request, sets up the time at which the budget is exhausted, and schedules the task in
the queue with priority level RT_PRIO.

At time T = 2, the kernel notifies RRES about the budget exhaustion of T2. RRES
moves R2 from the ACTIVE to the RECHARGING queue and, since hard-reservation
mode is used, asks the kernel to recharge R2’s budget until the absolute time of R2’s
deadline, T = 3. RRES also tells the kernel to schedule task T1 with budget Q = 3.

At time T = 3, the kernel notifies RRES about R2’s budget being recharged, so
that RRES moves it from the RECHARGING queue back into the ACTIVE one.
Since R2 has the earliest deadline, T1 is preempted and RRES asks the kernel to
schedule task T2 with a budget of 2.

At time T = 4, task T2 experiences a blocking event. The kernel notifies RRES,
which in turn moves T2’s virtual resource, R2, to the BLOCKED queue. Then RRES
asks the kernel to resume execution of T1 with a budget of 2.

At time T = 5, task T2 unblocks. RRES is notified by the kernel and computes the
test in CBS rule 3. Since the remaining budget c = 1 ≥ (6 − 5) 2

3 = 2
3 a new deadline

is placed at T = 8 and the budget is recharged. R2 is moved to the ACTIVE queue
and task T1 is preempted by T2.

At time T = 7, R2’s budget is exhausted again. RRES is notified by the kernel,
moves R2 to the RECHARGING queue, and tells the kernel to recharge until T = 8.
RRES also requests the kernel to resume execution of task T1 with R1’s remaining
budget of 1.

At time T = 8, two things happen: R1’s budget is exhausted and R2’s budget
is recharged. R1 is moved to the RECHARGING queue and the kernel is told to
recharge the task until R1’s absolute deadline, T = 9. In addition, RRES ask the
kernel to schedule task T2 with a budget of 2.

This example shows how a user-space scheduler can do all the work using a small
number of interactions with the kernel, obtaining the schedule produced in Fig. 10.
In Sect. 7 we will see how these interactions impose a very limited timing overhead
on the system.

200 Real-Time Syst (2009) 43: 177–210

7 Experimental evaluation

In addition to the case study shown in Sect. 6, we ran several experiments on a pro-
totype implementation to evaluate the RRES framework. The results are presented
below.

7.1 Timing measurements

As explained in Sect. 5.4, time accounting is done using the TSC cycle counter. The
TSC facility is available in both kernel space and user space, allowing RRES to be
kept synchronized with the kernel time line. In addition, this enabled precise timing
measurements, depending on CPU speed only. The tests were conducted on a DELL
desktop PC with a 2.4 GHz Intel Pentium IV CPU and 512 MB RAM. None of the
tests required to access the disk.

First, we measured the latency introduced by MINIX 3’s message passing subsys-
tem, which is independent from the RRES framework. In particular, we measured
the time between issuing a request in a user process (just before IPC_SEND) and the
moment that the kernel starts working on it (just after IPC_RECEIVE), that is, the
time purely spent on delivering the message from the user process to the SYSTEM
task. We found a message delivery time of about 2 µs. This time has to be summed
up to every interaction which takes place in the framework.

Second, we measured the latency introduced by the GRRF framework. We planned
to separately measure the degree of performance hit in three different flavours:

– Time between receiving a rres_create or a rres_destroy command in the RRES
framework and the moment in which the kernel schedules or stops scheduling the
task respectively according to the new policy.

– Time between a RRES-related kernel event and the corresponding action which
the RRES manager requires the kernel to enforce.

– Actual times spent within the kernel with respect to the actual times requested by
the manager.

In order to measure the times needed for the creation phase, we simply created
and repeatedly destroyed one VRES serving a cpu-bound task (here the nature of the
process is not relevant, being the creation and destruction phases totally independent
of it) for ten thousands time (see Fig. 11).

As far as running and recharging times measurements are concerned, we created
a cpu-intensive task, triggering continuous budget exhaustions and recharging events
with a (50 ms, 200 ms) budget/period couple. By letting it execute for a while, we took
slightly less than 2000 samples shown in Figs. 12 and 13. This numbers represent the
amount of actual time the system dedicates to serve a real-time task with the specified
parameters, during its execution: the closer they are to the requested values, the more
likely task deadlines will be met. The recharging values refer to the amount of time
the task has to wait for before being scheduled over (so it has to be around 150 ms).

Finally, in order to evaluate the overhead imposed by the RRES manager when
dealing with the algorithms events, we exploited the previous experiment and ob-
tained the results shown in Fig. 14.

Real-Time Syst (2009) 43: 177–210 201

Fig. 11 Times spent creating and destroying new sample task VRESes

202 Real-Time Syst (2009) 43: 177–210

Fig. 12 Times spent in executing as long as the sample VRES budget gets exhausted

Fig. 13 Times spent in recharging the sample VRES budget

Real-Time Syst (2009) 43: 177–210 203

Fig. 14 Times spent within the RRES manager to manage the various kernel notifications

Table 1 Several statistics about
the measurements taken. Times
are expressed in µs where
applicable

Measure Avg, Var, StdDev, MaxValue

Creation (334.74, 17088, 130.72, 1122)

Destruction (139.8, 90.14, 9.5, 8320)

Running (50038, 22458, 149.85, 51003)

Recharging (150030, 32075, 179, 150037)

RRES computations (5, 0, 0, 5)

Message passing (2, 0, 0, 2)

Since it is evident how in all these experiments random system events may lead
to some variable response times, we computed some statistics about these variations
and presented them in Table 1. The most important parameters are the amount of
running time a real-time task may get advantage of and the maximum delay it may
be subjected to with respect to its activation period. In the first case we obtained an
average standard deviation of 0.3%, with respect to the average value, and in the
second case this value gets even lower, totalizing a 0.16%. This means that for each
execution period, a real-time task might execute with a budget in a range equal to
[99.7,100.3]

100 Q every period in a range of [99.84,100.16]
100 P , with respect to (Q,P) as the

nominal reservation parameters. Hence, it imposes an utilization in the following
range: [99.56,100.44]

100
Q
P

. We deem this is a really negligible fluctuation for a system
with soft real-time purposes.

204 Real-Time Syst (2009) 43: 177–210

An important observation is that, being the maximum average measured standard
deviation lower than 200 µs, and being the RRES clock tick at kernel level manually
set at 4000 Hz (e.g. 250 µs), the RRES framework seems not to impose a penalizing
overhead to the used real-time parameters, thus not further limiting the resolution
obtainable at user-space level.

As a further note, the overhead imposed by the message passing mechanism is
clearly negligible if compared to the other parameters here considered.

It is important to realize that these values are not dependent on the presence of
other real-time tasks, because (1) the kernel’s interrupt handler always preempts run-
ning tasks and (2) messages that are exchanged upon RRES events are delivered and
handled at the highest priority, as shown in Fig. 9.

The measured values have to be compared with the resolution the system is able
to grant to the framework. Since time accounting is done at 4000 Hz, the minimum
amount of budget and period can, in principle, be 250 µs. However, to prevent com-
promising the requested parameters, they should be at least an order of magnitude
larger. Therefore, the budget and period should be set starting from 5–10 ms in prac-
tice.

7.2 Impact on kernel and user-space code

With the help of the Source Code Line Counter5 tool available on the Internet we
collected data on the total engineering effort required. The number of lines of source
code for both the standard and modified version of the MINIX 3 kernel are shown in
Table 2. Notice that the files shown here are the only that got modified: all the other
ones, for a total amount of slightly more than 4k, have not been changed. Similar
statistics for the new user-space RRES manager are shown in Table 3.

These figures may be compared to the one shown in Table 4, with GRRF in place.
Although there is a consistent increment in the total number of lines of code, we
may notice how the generic common header and source files are decreased in length,
since the complex algorithm management operations are demanded to the specific
algorithm implementations to be found in the corresponding source file.

Table 2 Lines of source code
(LoC) for the standard MINIX 3
kernel and the modified version
with the RRES framework

File Standard RRES MINIX 3 Delta

proc.h 99 103 +4

proc.c 482 500 +18

clock.c 115 137 +22

system.c 314 327 +13

rres.h – 24 +24

rres.c – 197 +197

do_resres.c – 131 +131

Total Changes +339

5The Source Code Line Counter. http://www.cmcrossroads.com/bradapp/clearperl/sclc.html.

http://www.cmcrossroads.com/bradapp/clearperl/sclc.html

Real-Time Syst (2009) 43: 177–210 205

Table 3 Lines of source code (LoC) for the RRES server

Header Files LoC

glo.h 42

inc.h 29

proto.h 51

rres.h 106

Header Total 228

Source Files LoC

main.c 158

rres.c 543

rres_kernel.c 254

rres_userspace.c 251

Source Total 1206

Table 4 Lines of source code (LoC) for the RRES server with GRRF

Header Files LoC

glo.h 47

inc.h 29

proto.h 67

rres.h 79

Header Total 222

Source Files LoC

main.c 205

rres.c 510

rres_kernel.c 66

rres_userspace.c 227

rres_algo_CBS.c 179

rres_algo_CBSHR.c 190

rres_algo_IRIS.c 205

Source Total 1582

Furthermore, the new file organization is a lot clearer and more easily maintain-
able, since each algorithm implementation resides in a different file.

7.3 RRES tracer and simulations

We also created a tool written in Ruby to trace the execution of RRES real-time tasks.
The tool parses a log file generated by the RRES server and produces a graphical
representation of the scheduling decisions taken.

Figure 15 represents a piece of the scheduling of the task set in Table 5 which is
scheduled according to CBS-HR (CBS with hard reservations); IRIS time warping is
not used. The three horizontal lines represent each task’s timeline. The tasks used are
an infinite CPU-bound program (cpuload) which performs calculations in a loop and
a finite I/O-bound program (interactive) that does some work, sleeps one second, and
continues calculating. The tracer output shows three aspects:

– cpuload continuously triggers CBS’ deadline postponement rule, as is clear in the
first two task lines where arcs connect consecutive deadlines;

– since interactive has a large budget, it can execute whenever there is a free slot,
unless it blocks on the sleep() system call;

– at that point, the hard-reservation mode becomes evident, since the two cpuload
utilities run without time warping (the scheduling is not work-conserving).

206 Real-Time Syst (2009) 43: 177–210

Fig. 15 Actual schedule executed for the task set of Fig. 5 produced by the RRES tracer based on RRES
server logs

Table 5 Task set and
reservation parameters used for
tracer simulation. The execution
is shown in Fig. 15

Task Type Budget (ms) Period (ms)

cpuload CPU-bound 100 450

cpuload CPU-bound 200 1800

interactive I/O-bound 10000 20000

Numerous other simulations have been run to verify the correctness of our imple-
mentation in few real cases, but we refrained from including them here, since they
simply are comprised of enlarged task sets of very different nature whose schedul-
ing sequences and performances are tightly dependent on the specific nature of the
chosen scheduling algorithm.

8 Conclusions and future work

Resource Reservation algorithms constitute a really valid choice for providing op-
erating systems with temporal protection capabilities. This kind of protection is
definitely attractive for systems that must accommodate time-sensitive applications
within them. Being the number of RRES algorithms really high, it is often not clear
as to what extent an algorithm perform better than another one and why.

Basing our framework on the state diagram of Sect. 4, we are able to represent a
number of very different resource reservation algorithms with an effective and unified
programming interface. By refining this diagram, it is possible to represent resource
sharing concepts as well, so far set aside from our analysis.

On the other hand, although representing an almost perfect solution as far as work-
ing dependability is concerned, most microkernel based systems do not offer such
temporal protection capabilities. Being MINIX 3 one of the most adopted systems of
this kind, we decided to experiment our framework in this context, in order to prove
its pliability.

By performing many tests on the prototype implementations, we were able to de-
termine that the old detriments about its IPC long latencies and slow response times
simply do not hold any more and may be considered as negligible with respect to
typical real-time tasks parameters.

Real-Time Syst (2009) 43: 177–210 207

Our design enables running soft real-time applications on top of MINIX 3. The cur-
rent status is that correct time accounting happens in presence of non-blocking tasks.
If blocking events occur, the framework operates correctly under the assumption of
short server and driver execution times. Since kernel’s generic interrupt handler has
a short strictly bounded execution time, limited hard real-time support is provided
for tasks that do not rely on the standard MINIX 3 services. In addition, the RRES
framework eliminates denial of service (DoS) attacks (Tsafrir et al. 2007) targeting
the scheduler, because time accounting uses the TSC cycle counter independent from
the system tick facility.

Work is in progress about implementing a microkernel equivalent of bandwidth
inheritance (Lamastra et al. 2001) algorithm (as it has been done in the context of
Linux, Faggioli et al. 2008a) so that the drivers and servers working on behalf of
a real-time task can use its RRES parameters during the servicing time. This gives
two important benefits, namely, correct time accounting and a very simple resource-
access protocol, priority inheritance, in order to prevent priority-inversion phenom-
ena. In addition, we intend to analyze the possibility of reserving other resources
types, such as file system and network access, through the RRES framework. Suc-
cess in this area would result in a completely compartmentalized and fully protected
resource environment, enabling full hard real-time support.

References

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In: Proc IEEE
real-time systems symposium, Madrid, Spain

Abeni L, Lipari G (2002) Implementing resource reservations in Linux. In: Real-time Linux Workshop
Abeni L, Cucinotta T, Lipari G, Marzario L, Palopoli L (2005) Qos management through adaptive reser-

vations. Real-Time Syst J 29(2–3):131–155
Baker TP (1990) A stack-based allocation policy for realtime processes. In: Proc IEEE real time systems

symposium
Caccamo M, Buttazzo G, Sha L (2000) Capacity sharing for overrun control. In: Proc 21st IEEE real-time

systems symposium, pp 295–304
Faggioli D, Lipari G, Cucinotta T (2008a) An efficient implementation of the bandwidth inheritance pro-

tocol for handling hard and soft real-time applications in the Linux kernel. In: Proceedings of the
fourth international workshop on operating systems platforms for embedded real-time applications,
pp 1–10, July 2008

Faggioli D, Mancina A, Checconi F, Lipari G (2008b) Design and implementation of a posix compliant
sporadic server for the Linux kernel. In: 10th real-time Linux workshop, pp 65–80, Oct 2008

Lipari G, Baruah S (2000) Greedy reclamation of unused bandwidth in constant bandwidth servers. In:
Proc 12th Euromicro conf on real-time systems

Hamann C-J, Reuther L, Wolter J, Härtig H (2006) Quality-assuring scheduling. Technical report, TU
Dresden

Hamann C-J, Roitzsch M, Reuther L, Wolter J, Härtig H (2007) Probabilistic admission control to govern
real-time systems under overload. In: Proc 19th Euromicro conf on real-time systems

Herder JN, Bos H, Gras B, Homburg P, Tanenbaum AS (2006) Construction of a highly dependable oper-
ating system. In: Proc 6th European dependable computing conf

Herder JN, Bos H, Gras B, Homburg P, Tanenbaum AS (2007) Failure resilience for Device Drivers. In:
Proc 37th int’l conf on dependable systems and networks

Kaneko H, Stankovic JA, Sen S, Ramamritham K (1996) Integrated scheduling of multimedia and hard
real-time tasks. In: Proc IEEE real-time systems symposium

Lamastra G, Lipari G, Abeni L (2001) A bandwidth inheritance algorithm for real-time task synchroniza-
tion in open systems. In: Proc 22nd IEEE real-time systems symposium

Liedtke J (1996) Toward real microkernels. CACM 39(9):70–77

208 Real-Time Syst (2009) 43: 177–210

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time environment.
J Assoc Comput Mach 20(1):46–61

Marzario L, Lipari G, Balbastre P, Crespo A (2004) Iris: A new reclaiming algorithm for server-based
real-time systems. In: Proc IEEE real-time and embedded techn and app symp

Mercer CW, Savage S, Tokuda H (1993) Processor capacity reserves: an abstraction for managing proces-
sor usage. In: Proc 4th workshop on workstation operating systems

Mercer CW, Rajkumar R, Zelenka J (1994) Temporal protection in real-time operating systems. In: Proc
11th IEEE workshop on real-time operating systems and software

Meurs R (2006) Building performance measurement tools for the MINIX 3 OS. Master’s thesis, 2006.
Vrije Universiteit, Amsterdam

Pessolani PA (2006) MINIX4RT: A real-time operating system based on MINIX. Master’s thesis. Univer-
sidad Nacional de La Plata

Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource kernels: a resource-centric approach to real-
time and multimedia systems. In: Proc conf on multimedia comp and netw

Rogina P, Wainer G (2001) Extending rt-minix with fault tolerance capabilities. In: Proc Latin-American
conf on informatics

Rogina P, Wainer G (1999) New real-time extensions to the minix operating system. In: Proc of 5th int
conf on information systems analysis and synthesis

Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: An approach to real-time synchro-
nization. IEEE Trans Comput 39(9):1175–1185

Spuri M, Buttazzo GC (1994) Efficient aperiodic service under the earliest deadline scheduling. In: Proc
IEEE real-time systems symposium

Tokuda H, Nakajima T, Rao P (1990) Real-time mach: towards predictable real-time systems. In: Proc
USENIX mach workshop

Torrey LA, Coleman J, Miller BP (2007) A comparison of interactivity in the Linux 2.6 scheduler and an
mlfq scheduler. Softw Pract Exp 37(4):347–364

Tsafrir D, Etsion Y, Feitelson DG (2007) Secretly monopolizing the CPU without superuser privileges. In:
USENIX security

Antonio Mancina took his Ph.D. in 2009 working at the Real-Time
System Laboratory, Scuola Superiore Sant’Anna. In his thesis, enti-
tled “Operating Systems and Resource Reservations”, he focused on
the problem of real-time scheduling algorithms applied to multimedia
domains from both a theoretical and practical point of views especially
in the context of general purpose operating systems.

Real-Time Syst (2009) 43: 177–210 209

Dario Faggioli received his master degree (cum laude) in computer
science engineering from the University of Pisa in 2007. He is now
Ph.D. student in embedded systems at the Scuola Superiore Sant’Anna.
His ongoing research is about scheduling and synchronization mecha-
nisms for real-time and embedded systems, and on integrating real-time
mechanisms inside general purpose operating systems.

Giuseppe Lipari graduated in Computer Engineering at the University
of Pisa in 1996, and received the Ph.D. degree in Computer Engineer-
ing from Scuola Superiore Sant’Anna in 2000. He is Associate Profes-
sor of Operating Systems with Scuola Superiore Sant’Anna. His main
research activities are in real-time scheduling theory and its applica-
tion to real-time operating systems, soft real-time systems for multime-
dia applications and component-based real-time systems. He has been
member of the program committes of many conferences in the field. He
is currently Associate Editor of IEEE Transactions on Computers.

Jorrit N. Herder received an M.Sc. degree in computer science (cum
laude) from Vrije Universiteit in Amsterdam in 2005 and is currently
wrapping up his Ph.D. project there. His research focuses on operating
system dependability. He is closely involved in the design and imple-
mentation of MINIX 3, and has authored various papers on this topic.

210 Real-Time Syst (2009) 43: 177–210

Ben Gras holds an M.Sc. degree in computer science from Vrije Uni-
versiteit in Amsterdam and has previously worked as system adminis-
trator and programmer. He is now employed by Vrije Universiteit in the
Department of Computer Systems as a scientific programmer working
on the MINIX 3 project.

Andrew S. Tanenbaum is a professor of computer science at Vrije
Universiteit in Amsterdam. He has written 17 books and 140 papers and
is a Fellow of both the ACM and the IEEE. He is also a member of the
Royal Netherlands Academy of Arts and Sciences. He firmly believes
that we need to radically change the structure of operating systems to
make them more reliable and secure and that MINIX 3 is a small step
in this direction.

	Enhancing a dependable multiserver operating system with temporal protection via resource reservations
	Abstract
	Introduction
	Resource reservations
	MINIX 3
	Paper outline

	Related work
	Monolithic operating system structure
	Multiserver operating system structure

	Resource reservations
	Achieving temporal protection
	Resource reservation algorithms
	CBS
	CBS-HR and IRIS

	Generic resource reservation framework
	State diagram
	Mappings in GRRF
	GRRF: CBS
	GRRF: IRIS

	Design and implementation
	High-level design overview
	Implementation of the RRES manager
	RRES data structures
	RRES interactions
	The rres_server structure

	Kernel and scheduler modifications
	CPU time accounting
	Working of RRES accounting
	Eliminating CPU monopolization

	Abstracting from Minix 3

	RRES case study
	Experimental evaluation
	Timing measurements
	Impact on kernel and user-space code
	RRES tracer and simulations

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

