
Des Autom Embed Syst (2015) 19:243–275
DOI 10.1007/s10617-014-9156-3

A generic conceptual framework based on formal
representation for the design of continuous/discrete
co-simulation tools

Luiza Gheorghe Iugan · Hanifa Boucheneb ·
Gabriela Nicolescu

Received: 23 May 2013 / Accepted: 17 November 2014 / Published online: 28 January 2015
© Springer Science+Business Media New York 2015

Abstract Modern systems integrate components specific to different application domains.
Frequently, these systems combine continuous and discrete sub-systems and therefore their
design involves overcoming specific global modeling and validation challenges. In order to
generate global simulation models of heterogeneous systems the designers need efficient
tools for systems’ validation. Therefore, a new type of designers emerged, the designers of
co-simulation tools. Their main objective is to provide coherent tools for the co-simulation
models’ designers. Given the diversity of abstractions, languages and simulation tools, the
design of co-simulation tools may be costly and time consuming. Thus, the key for the
improvement of the validation process is to define amodel-based generic approach before the
implementation of these tools. This requires new skills on formalism and formal verification
domain. This paper proposes a generic conceptual framework based on formal representation
of the co-simulation interfaces for co-simulation tools design. The framework can be used to
provide rigorous global formal co-simulation models for continuous/discrete heterogeneous
systems. It allows the definition for implementation of the co-simulation interfaces starting
with their formal definitions that are gradually refined and verified. The global formal model
also provides the rules for the implementation and the generation of the interfaces. The
framework is the skeleton onwhich the designers can build accurate tools for global execution
models of continuous/discrete heterogeneous systems. The approach was used to design a
co-simulation tool that is presented in this paper.

Keywords Continuous time systems · Discrete event systems · Formal verification ·
Modeling · Co-simulation

1 Introduction

System on chip (SoC) trends of the past decade observed the shrinking of the chips’ size
simultaneously with the growth in complexity. In response to the challenges of systems

L. G. Iugan (B) · H. Boucheneb · G. Nicolescu
Ecole Polytechnique de Montréal, Montreal, Canada
e-mail: luiza.gheorghe@polymtl.ca

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-014-9156-3&domain=pdf


244 L. G. Iugan et al.

Fig. 1 Global co-simulation
model

miniaturization, the International Technology Roadmap for Semiconductors (ITRS) empha-
sizes the More Than Moore’s Law Movement that focuses on system integration rather than
increasing transistor density and leads to a functional diversification in integrated systems [1].
Thus, SoCs are currently characterized by the heterogeneity of different modules that are par-
ticular to different application domains such as optical, electronical, mechanical, hydraulics
and biological. These multi-domain systems are the main driver of the development of a wide
range of products across a broad and diverse spectrum of applications in many industries,
but not limited to Automotive, Aerospace, Health Care and Consumer Electronics. Given
the diversity of concepts manipulated, the global design specification and the validation are
extremely challenging. The heterogeneity of these systems makes difficult the elaboration of
a global simulation model for the overall validation.

Currently, one of the methods used for the heterogeneous systems validation is the co-
simulation. The co-simulation allows joint simulation of heterogeneous components with
different executionmodels. This technique allows the designer to use the best executionmodel
and tool for each application domain and provides capabilities to validate the overall model.
The reusability of the models already developed in a well known language and using already
existing powerful tools (i.e. Simulink� for the continuous domain and VHDL, Verilog or
SystemC for the discrete domain) has beneficial results: the development time, the time-
to-market and the costs are reduced. This approach requires the elaboration of a global
co-simulation model (Fig. 1).

There are three types of basic elements that compose this model [2]:

– The execution models of the different components that form the heterogeneous system
(corresponding to the Continuous model and the Discrete model in Fig. 1). An execution
model of the different components can be viewed as the interpretation of the computation
model. To each computation model we can associate one or more execution models.

– The co-simulation bus.
– The co-simulation interfaces.

The co-simulation bus handles the interconnections between the different components of
the system. It serves only as a simple communication means between the two models: the
continuous and the discrete, it does not provide synchronization between them.

The co-simulation interfaces enable the communication of different components through
the simulation bus. They are in charge of the adaptation of different simulators to the co-
simulation bus in order to guarantee the transmission of information between simulators
executing the different components of the heterogeneous systems. They also have to provide
efficient synchronization models for the modules adaptation.

123



A generic conceptual framework of C/D co-simulation tools 245

The implementation and the simulation of an execution model in a given context is called
a co-simulation instance. It refers strictly to the execution model and its simulation for a
given application. Several instances may correspond to the same execution model and these
instancesmay use different simulators andmay present different characteristics (e.g. accuracy
and performances).

In this context, a new type of designers emerged, the designers of co-simulation tools.
Their main objective is to provide coherent tools for the co-simulation models’ design-
ers. Given the diversity of abstractions, languages and simulation tools, the design of co-
simulation tools may be costly and time consuming. Thus, the key for the improvement
of the validation process is to define a model-based generic approach before the imple-
mentation of these tools. This requires new skills on formalism and formal verification
domain.

The main challenge in the definition of new co-simulation tools for continuous/discrete
(C/D) systems is due to the heterogeneity of concepts that are manipulated by the discrete
and the continuous components.

In a C/D heterogeneous system, we find two distinct models: (1) a continuous model
where the computation is carried out in the continuous domain by solving differential or
algebraic equations and (2) a discrete model where the computation is carried out in cycles
and every cycle represents the computation of a sub-set of variables. Thus, in the case of
a global validation tool, several execution semantics have to be taken into consideration in
order to perform global co-simulation. This results in a complex behavior of the interfaces
that leads to time consuming design and can be a significant source of errors. Therefore, their
automatic generation is mandatory.

An efficient tool for the generation of the co-simulation interfaces must rely on an accurate
definitionof the behavior of the interfaces that is the formal representationof the co-simulation
interfaces. Some characteristics of a formalism for the interface generation are: an execution
semantics and a set of rules for the automatic interfaces generation and formal properties for
analyses and verifications [3].

More efforts are necessary for the global formal representation and for the formal verifi-
cation in the co-simulation context that has not been thoroughly if at all addressed until now.
The ITRS emphasizes that “a more structured approach to verification demands an effort
towards the formalization of a design specification” [1]. The global formal representation
of a heterogeneous system requires the formal representation of the synchronization model
between the domains. This representation also has to clearly define the computation and the
communication for the global co-simulation model and verify the behavior of the interfaces
given certain restrictions.

This article proposes a generic conceptual framework based on formal representation,
for the modeling and the generation of the co-simulation interfaces. The generality of the
framework was demonstrated by the co-simulation of a C/D system using two different simu-
lators for the discrete domain model (SystemC and SystemVerilog) while for the continuous
domain model we used Simulink�. We present also an event update schema for a discrete
simulator integrated in a C/D co-simulation environment.

The article is structured as follows. Section 2 presents the related work. Section 3 details
the synchronization model. Section 4 shows the proposed framework for the design of
C/D co-simulation tools. Section 5 illustrates the application of formal methods for the
co-simulation tools design. Section 6 presents CODIS, a tool designed using the proposed
approach. Section 7 discusses the benefits and limitations of our work; Sect. 8 gives our
conclusions.

123



246 L. G. Iugan et al.

2 Related work

The effectiveness of the co-simulation technique is currently exploited in industry for the
validation of Hw/Sw systems [4,5]. This type of validation requires co-simulation of dis-
crete simulators (Instruction Set Simulators or Native Simulators for Sw components and
behavioral event-based discrete simulators for Hw components). However, the heterogeneity
increases for the modern systems integrating components from different application domains
(e.g. electronics, optics, and mechanics) and the C/D co-simulation becomes necessary. This
topic is currently addressed by academia and there is no commercial solution enabling auto-
matic generation of the interfaces enabling concurrent simulation of continuous and discrete
simulators. The current practice in industry consists in developing ad-hoc C/D co-simulation
interfaces that are not formally verified. The obtained interfaces are only appropriate for
specific applications or a unique combination of simulation tools.

The research works existing in the C/D systems validation field can be roughly divided
into the following classes: simulation-based and formal representation-based approaches.

Some approaches in the simulation-based group propose the utilization of a single lan-
guage for the specification of the C/D system. These tools may be obtained by extension of
existing HDLs [6–11]. This requires the abandonment of well established efficient tools for
the continuous domain (e.g. Simulink�).

There are tools such as Ptolemy in which the systems are designed by assembling together
different components [12]. HyVisual is a hybrid systems modeler based on Ptolemy [13]
that supports the construction of hierarchical hybrid systems for continuous-time dynamical
systems and hybrid systems. However, the different sub-systems and components need to be
developed in the same environment in order to be compatible. In [14] Lee argues the need
of plurality of distinct actor-oriented modeling languages and mechanisms for composing
models in these languages, each with an unambiguous, clear semantics. The proposal is
based on formal representation, but the formal verification of the simulation models is not
considered.

The Functional Mock-up Interface (FMI) is a “tool independent standard to support both
model exchange and co-simulation of dynamicmodels” [15]. FMI for co-simulation provides
a common interface for coupling different simulation engines but data exchange is restricted
to discrete communication points. However, the standard does not provide semantics for the
communication between the models (co-simulation algorithm) or their formal verification.

The formal representation approaches propose different definitions for heterogeneous
systems modeling. In [16] Lee and Vincentelli present a formal framework for comparing
different models of computation used in heterogeneous models. The authors propose a for-
mal classification framework that makes it possible to compare and express the differences
between them. The intent is “to be able to compare and contrast its notions of concurrency,
communication, and time with those of other models of computation” [16]. The role of the
model of computation in abstracting functionalities of complex heterogeneous systems was
presented by Jantsch and Sander in [17]. In [18], the author proposes the formalization of
the heterogeneous systems by separating the communication and the computation; however
the execution models for the validation of the interfaces between domains were not taken
into consideration. DESTECS [19] is a modeling and co-simulation of a continuous/discrete
system tool that uses Vienna Development Method (VDM) to express discrete event models
and Bond Graphs for the differential equations. The tool uses a direct connection between
the continuous time (CT) interface and the operational semantics of the discrete event (DE)
(a connection point-to-point) while our tool-independent approach allows for multiple sim-
ulators on a co-simulation bus.

123



A generic conceptual framework of C/D co-simulation tools 247

Zeigler introduced in [20], a formalism defined for the modeling and the simulation of dis-
crete event systems (discrete event system specifications—DEVS) where the time advances
on a continuous time base. DEVS is a formal approach that can be used to build the models,
using hierarchy and modularity. It allows the definition of the operational semantics for a
system but not its formal verification. Based on this formalism, [21] proposes a tool for the
modeling and simulation of hybrid systems usingModelica and DEVS. The models are “cre-
ated usingModelica notation and a translator converts them into DEVSmodels” [21]. In [22],
a heterogeneous simulation framework usingDEVSBUS is proposed.Non-DEVS-compliant
models are converted through a conversion protocol into DEVS-compliant models.

The authors present in [23] amodeling library on top of SystemC, targeting heterogeneous
embedded system design, based on four models of computation. The approach is based on
formal representation, but the formal verification of the interfaces/models is not consid-
ered and the framework is tool-dependent. In [24] the authors present how the HetSC and
SystemC-AMS specification methodologies can be used together to enable models based on
SystemC language. In [25] the authors address the connection of system parts using different
models of computation and data types, using convertor channels. However, there is no formal
representation and formal verification and their approach is also tool dependent.

Compared with the previous work, the main contribution of this paper is the definition of
a generic conceptual framework based on formal representation for the generation of C/D
co-simulation interfaces and the efficient design of C/D co-simulation tools. This framework
allows for the convergence of the formal verification and the simulation based approaches
into a generic environment in the context of global validation of C/D systems

The proposed framework includes the definition of the operational semantics for a C/D
synchronization model with respect to the generic canonical synchronization model [26,27]
as well as the formal representation and verification of the behavior of C/D co-simulation
interfaces. The functionality and the architecture of the co-simulation interfaces with respect
to the execution models of typical discrete and continuous simulators and the canonical syn-
chronization model are defined in this framework. In order to be integrated in a co-simulation
tool using this approach, the main property required from the continuous and discrete simu-
lators is to provide application programming interfaces (APIs) or the possibility to develop
custom APIs that allow for the addition of some functionality for events management. The
importance of the interaction with external tools is currently acknowledged by the simu-
lators designers. Therefore, most of the existing simulators feature the required property.
Illustrative simulators compatible with our approach are the two popular continuous simu-
lators: Simulink�, Spice and the discrete simulators: VHDL, SystemC and SystemVerilog
simulators.

3 Basic concepts

Before giving the details of the proposed framework we present the basic concepts that are
used in our work: DEVS [20], timed automata [28,29] and UPPAAL [30].

3.1 Discrete event systems specification (DEVS)

DEVS is a formalism supporting a full range of dynamic system representation, hierarchical
and modular model development. The abstraction separates modeling from simulation and
provides atomic models that can be used to build complex simulations, as well as defined
coupling of components [20]. Its features allow the integration of continuous and discrete-

123



248 L. G. Iugan et al.

eventmodels. It also provides all themechanisms for the definition of anoperational semantics
for the continuous/discrete synchronization model, the high level representation of the global
formal model.

Definition ADEVS is defined [20] as a structure M =< X, S, Y, δint , δext , λ, ta >,where:

The system’s state is, at any time, s. There are two possible situations:

– case 1 where we assume that no external events occur before the expiration time, ta(s).
In this case the system stays in this state s for the time ta(s). When the elapsed time
e equals ta(s) (that is the time allocated for the system to stay in state s), the system
outputs the value λ(s). The state s changes to the state s’ as a result of the transition
δint (s). We emphasize here that the output is possible only before the internal transitions.
We propose, for the definition of this type of transition the following rule of the form
Premises

Conclusions :

e = ta(s) ∧ s′ = δint (s)

(s, e)
!λ(s)−−→ (s′, 0)

where ! represents the operator send.

– case 2 where there is an external event x before the expiration time, ta(s) the system is
in state (s, e), with e ≤ ta(s)), the system’s state changes to state s’ as a result of the
transition δext (s, e, x). For this type of transition we propose the following rule:

e ≤ ta(s) ∧ s′ = δext (s, e, x)

(s, e)
?x−→ (s′, 0)

where ? represents the operator receive.

The internal transition function dictates the system’s new state when no external events
occurred since the last transition while the external transition function dictates the system’s
new state when an external event occurs—this state is determined by the input x , the current
state s and how long the system has been in this state, e. In both cases the system passes into
a new state s′ with a new expiration time ta(s′).

This formalism is used to define each module composing the model; modules that will
be integrated into a discrete event system using the formalism for parallel DEVS coupled
models [20]. The resulting model is generic, the input and output ports of the coupled DEVS
model are configurable in terms of name, number, data type and sampling period.

3.2 Timed automata

A timed automaton [28] is a formalism for modeling and verification of real time systems. It
can be seen as classical finite state automata with clock variables and logical formulas on the

123



A generic conceptual framework of C/D co-simulation tools 249

qp

y<=4; b?; x:=0

x=5; b!

c; y:=0

guard action reset

Clocks: {x, y}

p
q

Start location

Location

Transition
!
?

Operator send
Operator receive

Legend

Fig. 2 Example of a timed automaton

clock (temporal constraints). The constraints on the clock variables are used to restrict the
behavior of the automaton. The logical clocks in the system are initialized to zero when the
system is started and then increase at an uniform rate counting time with respect to a fixed
global time frame. Each clock can be separately reset to zero. The clocks keep track of the
time elapsed since the last reset [28]. There are two types of clock constraints: constraints
associated to transitions and constraints associated to locations. A transition can be taken
when the clocks’ values satisfy the guard labeled on it. Figure 2 shows an example of a timed
automaton. The constraints associated to locations are called invariants and they specify the
amount of time that may be spent in a location. The invariant “true” for a location means
there are no constraints for the time spent in the location.

The process shown in Fig. 2 starts at a location p with all its clocks (x and y) initialized
to 0. The values of the clocks increase synchronously with time at the location q.

At any time, the process can change the location following a transition p
g;a;r−−−→ q if the

current values of the clocks satisfy the enabling condition g (guard). A guard is a Boolean
combination of integer bounds on clocks and clock-differences. With this transition, the
variables are updated by r (reset) which is an action performed on clocks. The actions are
used for synchronization and are expressed by a (action) [29]. A synchronization label is of
the form Expression? or Expression! where ! represents the operator send and ? represents
the operator receive.

The semantics for a time automaton is defined as “a transition system where a state or
configuration consists of the current location and the current values of clocks” [29]. In [28]
the authors define the state as the tuple: (l, v) where l is the location and v is the clock
valuation. The clock valuation is a function defined on the set of the clocks with values in
the real positives including 0 (v vector reflects the actual value of each clock). Given the
system, we can have two types of transitions between locations: a delay transition when the
automaton may delay for some time or an action transition when the transition follows an
enabled transition.

The transition showing the time passing is (l, v)
t−→ (l′, v′) if and only if:

{
v′ = v + t
∀t ′ ∈ [0, t], (v + t ′) verifies Inv(l)

(1)

where Inv(l) is the invariant in the location l, l=l’, v’=v + t showing that for all
clocks x, v’(x)=v(x)+t. An invariant is a clock constraint that specifies the time that
may be spent in a location. It is used to force a transition.

123



250 L. G. Iugan et al.

For the discrete transitions (p,v)
g;a;r−−−→ (q,v′), v′ has to satisfy the invariant of q. v′ is

obtained from v by resetting the clocks indicated by the reset r.
Compared to other formalism, timed automata have the following characteristics thatmake

them desirable for our formal model.

– the ease and the flexibility of systems’ modeling [31].
– a whole range of verification techniques becomes available [31].
– it possesses the adequate expressivity in order to model time constrained concurrent

systems.

Our formal model needs to support concurrency between C/D systems thus it was represented
as a parallel composition of several timed automata with no constraints regarding the time
spent in the locations.

In order tomodel, validate and checkourmodelweusedUPPAAL[30].UPPAAL[30] is an
integrated tool environment for modeling, simulation and verification of timed automata that
consists of three parts: a model descriptor, a simulator and a model-checker. The descriptor
models systems that can be represented as a collection of non-deterministic processes with
finite control structure and real-valued clocks (i.e. timed automata), communicating through
channels and (or) shared data structures.Amodel consists of one ormore concurrent processes
(also named here simulators), local and global variables, and channels.

The main advantage of UPPAAL is that the product automaton1 is computed on-the-fly
during verification. This reduces the computation time and the required memory space.

The co-simulation requires rigorous concurrent models. An efficient formalization of such
models can be realized using multiple automata incorporated into a single one. UPAAL is
a well established tool offering formal verification of system modeled as product automata.
Therefore, this tool was selected in our approach.

4 C/D synchronization model

Discrete and continuous simulation models present different communication means, time
notions and process activation rules. While the behavior of each of these systems was widely
presented in the literature (and will be revised in the first part of this section), the synchro-
nization model in the co-simulation context was less shown. The key issue for composing
these two types of models is to provide the adaptation of the specific domain concepts.

A linear continuous system is described by the equations:

{
dxc
dt = Acxc(t) + Bcu(t).
y(t) = Ccxc(t) + Dcu(t)

(2)

where xc is the state vector, u the input signal vector, y the output signal vector and Ac, Bc,Cc

and Dc are constant matrixes that describe the dynamic of the system. The simulation of con-
tinuousmodel, described bydifferential and algebraic equations, requires solving numerically
these equations. A widely used class of algorithms discretizes the continuous time line into
an increasing set of discrete time instants, and computes numerically values of state variables
at these ordered time instants.

1 The product automaton is defined as multiple automata in a system, incorporated into a single one. The
product automaton creates a new state for all possible states of each automaton [30].

123



A generic conceptual framework of C/D co-simulation tools 251

The discrete system is described by the equations [32]:
{
xd(t(k+1)) = f (xd(tk), u(tk), tk) with x(t0) = x0
y(tk) = g(xd(tk), u(tk), tk)

(3)

where xd is the discrete state vector, u the input signal vector, y the output signal vector [32].
For the linear discrete systems, (3) becomes:

{
xd(t(k+1)) = Adxd(tk) + Bdu(tk)
y(tk) = Cdxd(tk) + Ddu(tk)

(4)

where Ad , Bd , Cd and Dd are matrixes that can be time-varying and describe the dynamics
of the system.

For the model presented in this paper, the time interval is [tk, tk+1]. The input signal vector
for the continuous domain is the output signal vector from the discrete domain and vice versa.
The simulation of discrete models is based on events [32]. At each simulation cycle, the first
event with the smallest time stamp (that is the time of occurrence of the event) is processed
and the processes sensitive to this event are executed. This may generate other events causing
execution of other processes. Once all events with discrete time stamp equal to the current
time have been treated, the simulator advances the time to the nearest discrete scheduled
event.

The events exchanged between the discrete and the continuous simulators are:

– discrete events (from the discrete simulator)—timed events that are scheduled by the
discrete simulator. They are defined by the couple (value, time of occurrence).

– state events (from the continuous simulator)—events that are triggered by a condition
that depends on the values of the state or other dynamic variables in the simulation such
as zero passing or a threshold crossing. They are generated by the continuous simulator,
their time stamp depends on the values of state variables [33].

Both discrete events and state events can be unpredictable.
When stepping ahead in time, a discrete event simulator must consider the time stamps

of the events sourced from the interfaces to other simulators (the continuous time simula-
tor in this case), and the continuous time simulator must consider the new state (boundary)
conditions fixing state values at certain time stamps imposed from their interface to other
simulators (the discrete time simulator in this case). The response of one simulator at events
generated by the other simulator is called here events detection. The time stamps are the syn-
chronization and communication points between the different simulators involved in a global
simulation. Depending on the Discrete Model (DM) behavior the following synchronization
modes, without roll back are possible:

– A loose synchronization that can be used when discrete events are predictable (e.g.
periodic events). In this case, event time stamps and sampling events are placed and
sorted in a queue. In order to obtain the time stamp of the subsequent output event, the
queue is consulted to find the minimum time stamp. Then, the type event (sampling or
update signal) is verified and the information is sent to the continuous simulator.

– A conservative synchronization that can be used when the events are unpredictable. In
this mode, the discrete simulator sends its next discrete time (always known) which may
correspond to the time stamp of a signal update event. The synchronization overhead
specific to this mode depends on the DM computation granularity.

123



252 L. G. Iugan et al.

sdk =(xdk,tk) Discrete simulator interface state at time t k

qk =(xck,tk) Continuous simulator interface state at time t k

Reflected event
Scheduled event

State event Simulation step

Synchronization

(b) state event

2

4
t

t

1
(data, tk+1)

5
(data, t' )

q'k+1

sdk sse s'd(k+1)

qk qse

Discrete
simulator

Continuous
simulator

(a) no state event

1
(data, tk+1)

2

4

5
(data, tk+2)

qk+1

sdk sd(k+1)

qk

k+1

tk tk tk+1 tse k+1t' t

Fig. 3 Synchronization model in C/D co-simulation interfaces

Both synchronization modes can be used during the same simulation:

– If the timed events are predictable and no unpredictable event is triggered by the contin-
uous model during part of the simulation, the simulator works in loose synchronization
mode, in order to avoid overhead.

– If unpredictable events are triggered by the continuousmodel the simulator would change
to conservative synchronization.

In the work presented here, in order to provide accuracy and avoid roll back we consider a
conservative synchronizationmode. In order to avoid the roll back, there is a sequentialization
of the execution of the simulators. The discrete simulator is always with one step behind the
continuous simulator therefore, the discrete simulator will always detect the state events from
the continuous simulator.

Figure 3 presents the synchronization model in the C/D interfaces without (Fig. 3a) and
with state event (Fig. 3b).

For a rigorous synchronization, the discrete domain has to detect the events generated by
the continuous domain and the continuous simulator must detect the scheduled events from
the discrete domain. The simulators have to be controlled by the co-simulation interfaces in
order to provide these functionalities.

At the time tk the discrete simulator is in the state (xdk, tk) with xdk the the location and
tk the k-th discrete time (that can be seen also as the kth event in the queue of events in the
discrete domain). The discrete simulator executes all the processes sensitive to this event and
sends to the continuous simulator the C/D coherence data, the next synchronization time tk+1

and switches the context from the discrete to the continuous simulator without advancing the
time (arrow 1 in Fig. 3a, b).

The continuous simulator that is in state (xck, tk) receives the data and the time from the
discrete simulator and starts the simulation of the continuous model. The simulation will
stop when the time equals tk+1, (sent by the discrete simulator) or when a state event was
generated.

123



A generic conceptual framework of C/D co-simulation tools 253

The behavior of the continuous interface can be described by the following transition state
(arrow 2 in Fig. 3a, b):

(xck, tk) →
{

(xck+1) if t = tk+1 (5)

(se, tse) if t < tk+1 (6)

where tc is the time in the continuous domain, the state (xck+1, tk+1) is the state of the
continuous simulator when no state event was generated in the time interval [tk, tk+1]. The
state events are, as were defined in Sect. 4 of this article, events generated by the continuous
simulator at times that are not known beforehand. The state (se, tse) represents the state of the
continuous simulator when a state event se was generated and tse represents the time when
the state event occurred. In both situations the continuous simulator will stop and send the
data to the discrete simulator and then switch the context to the time tk (arrow 3 in Fig. 3a, b).
The event taken into consideration is the event generated within the time interval [tk, tk+1],
after the context switch from the discrete domain to the continuous domain at the time tk .
This event can be a state event or the detection of an event scheduled by the discrete simulator
(and consequently a synchronization point).

In the case described by Eq. (5), after switching the context, the discrete simulator will
advance to the time tk+1 that is the next synchronization point, where it will execute all the
processes sensitive to this event. Before switching the context to the continuous interface
the discrete simulator sends the C/D state coherence data (that is synchronization data and,
eventually, a result of a process execution) and the time of the next scheduled event tk+2 (also
the next synchronization point) and the cycle restarts (arrow 4 in Fig. 3a).

Equation (6) describes the case where a state event occurred. The continuous simulator
sends not only the data but also the time when the state event occurred tse (arrow 3 in Fig. 3b).
The discrete simulator advances until this time (tse) where it executes all the processes
sensitive to the event and recalculates the time of the next scheduled event t ′k+1 (arrow 5
in Fig. 3b). According to the state event the time stamp of the next scheduled event in the
discrete simulator can stay the same (tk+1) or can change (t ′k+1) as a consequence of the
event triggered by the continuous simulator. This time stamp takes any value bigger than tse
but smaller than tk+1. The discrete interface switches the context to the continuous simulator
and sends the data and the time stamp of the next scheduled event that is a synchronization
point between the two simulators. The advantage of this model is that it avoids any need of
roll-back even if one or multiple state events were generated.

Figure 4, inspired by [32] presents the event update schema for a discrete simulator
integrated in a C/D co-simulation environment. In [32] the authors proposed the event update
schema for a purely discrete event system. Figure 4 extends this schema with the interaction
in terms of communication/synchronization (through the events exchanged) between the
discrete and the continuous simulators.

The elements used in this representation respect the definitions introduced in [32]:

– The discrete simulator maintains a list of the feasible events at the current state named
ScheduledEvent List L = {(xdk, tk)}with k=1,2,3,...n. The list is ordered on the smallest-
scheduled-time-first basis [32].

– The queue of events is ordered by the events lifetimes, from the smallest to the largest.
The lifetime vk is the length of the time interval between two successive events [32].

The Scheduled Event List (SEL) that is the list we use for the discrete events and their
time stamps is reordered each time the context is switched from the continuous domain to the
discrete domain. It is possible that some events in the discrete domain will become unfeasible

123



254 L. G. Iugan et al.

Fig. 4 The event update schema for the discrete simulator

as a consequence of an unpredictable state event so they have to be deleted from the list.
There are two possible behaviors of the scheduler (corresponding to the two branches in
Fig. 4), both of them depending on the behavior of the continuous domain:

– When no state event was generated in the continuous domain.
– When a state event was generated in the continuous domain.

In both cases State is initialized to a given value x0 and the simulation time- Time is
initialized to 0. The Clock Structure is a set of clock sequences, one for each event. The
following steps are executed (see Fig. 4):

The procedure repeats with step 1 for the new list. If no state event occurs, the clock structure
is controlled by the discrete domain; the events queue is reordered by the discrete kernel. In
the case when a state event occurs, the clock structure is controlled by the continuous solver,
the time of the state event is sent by the continuous domain and the first consequence is the
re-start of the discrete simulator at a time tse, before the expected time tk+1.

123



A generic conceptual framework of C/D co-simulation tools 255

5 Generic conceptual framework based on formal representation

This section introduces a conceptual framework, formal representation based, for the design
of C/D co-simulation tools. The framework presents several steps that are independent of
the simulation tools used for modeling of the continuous and discrete components of the
system. During these steps, the co-simulation interfaces are defined; their functionality and
the internal structure of co-simulation interfaces are expressed using existing formalisms and
temporal logic. The framework is composed by the following steps:

1. Definition of the operational semantics for the synchronization in C/D global execution
models.

2. Distribution of the synchronization functionality to the co-simulation interfaces.
3. Formalization and verification of the co-simulation interfaces behavior.
4. Definition of the library elements and the internal architecture of the co-simulation inter-

faces.

This structure leads to the rigorous definition of the internal architecture of the interfaces
that is the skeleton for the library elements implementation using existing simulation tools.
The rigorous definition of the required functionality for co-simulation interfaces is naturally
followed by the implementation of the interfaces components in an interfaces library (by tool
designers) and the generation of the global execution model. During this stage (implemen-
tation), the developers will:

5. Analyze the existing simulators for the discrete, respectively continuous domain.
6. Implement the library elements specific to different simulation tools, using these simu-

lators.
7. Validate the implementation.

Figure 5 presents the proposed conceptual framework in the context of the generation of
global execution models completed with the implementation stage that is not the main focus
of the work presented is this article. The first four steps will be detailed in the following
subsections.

5.1 Definition of the operational semantics for the synchronization in C/D global execution
models

The first step of the framework is the definition of the operational semantics for the syn-
chronization in C/D global execution models. An operational semantics gives a detailed
description of the system’s behavior in mathematical terms. This model serves as a basis for
analysis and verification. The description provides a clear language independent model that
can serve as a reference for different implementations.

The operational semantics for C/D systems requires the rigorous representation of the
interaction between simulators (communication/synchronization, data exchanged) as well as
their high level and dynamic representations.

In order to demonstrate the approach we show here the definition of the operational
semantics of the co-simulation interfaceswith respect to the synchronizationmodel presented
in Sect. 4 usingDEVS. The operational semantics for the C/D synchronizationmodel is given
by the set of rules presented in Table 1. The notations used in this table are:

– DataDC—Data sent by the discrete simulation interface (DSI) to the continuous simula-
tion interface (CSI) that is also the data received by CSI from DSI.

– DataCD—Data sent by CSI to DSI that is also the data received by DSI from CSI.

123



256 L. G. Iugan et al.

Fig. 5 Conceptual framework
integrated in the global
co-simulation model (for
co-simulation tools design)

Generic stage

Definition of the operational semantics 
for the synchronization 

Distribution of the synchronization
 functionality to the interfaces 

Formalization and verification of the 
interfaces behavior 

Definition of the internal architecture of 
the interfaces and the library elements

Implementation 
stage

Library elements 
implementation

Implementation 
validation

Simulation 
tools analysis

In Table 1, DataDC is the output function from the discrete domain interface λ(sd), and
DataCD is the output function from the continuous domain interface λ(q). The semantics
of the global variable flag is related to the context switch between the continuous and
discrete simulators. When flag is set to 1, the discrete simulator is executed. When it is 0,
the continuous simulator is executed. The global variable synch is used to impose the order
of the different operations expressed by the rules.

In order to introduce the rules, we detail here the first rule, corresponding to the arrow 1 in
Fig. 3a, b. The premises of this rule are: the synch variable has value 1, the flag variable
has value 1, and we have an external transition function (δext ) for the continuous model.

The discrete model is initially in the total state (sdk, edk), this means it is in the state sdk
from the time edk . In this state, the discrete simulator performs the following actions: (1)
sends the data and the value of its next time stamp (this action is expressed by !(DataDC,
ta(sdk)) and (2) switches the co-simulation context to the continuous model (this action is
expressed byflag = 0). For the same rule, the continuousmodel is in state qk and performs
the following actions: (1) receives the data and the value of the time stamp from the discrete
simulator (expressed by ?(DataDC, ta(sdk)) and (2) sets the global variable synch to 0
(action expressed by synch=0) in order to respect the premise of the rule corresponding to
the arrow 4.

The actions expressed by this rule are executed by the discrete simulator when the context
will be switched to it.

5.2 Distribution of the synchronization functionality to the co-simulation interfaces

Based on the operational semantics, we can now define the synchronization functionality
between the continuous and the discrete simulators. This functionality is provided by the

123



A generic conceptual framework of C/D co-simulation tools 257

Ta
bl
e
1

O
pe
ra
tio

na
ls
em

an
tic

s
fo
r
co
nt
in
uo

us
/d
is
cr
et
e
sy
nc
hr
on

iz
at
io
n
m
od

el

R
ul
e

A
rr
ow

s
in

Fi
g.
3

sy
nc

h
=1

∧
fl
ag

=1
∧q

k
=δ

ex
t(
q k

)

(s
d k

,e
d k

)
!(D

at
a
D
C

,t
a
(s
d k

))
;f

la
g:=

0
−−

−−
−−

−−
−−

−−
−−

−−
−−

→
(s
d k

,e
d k

);q
k

?(
D
at
a
D
C

,t
a
(s
d k

))
;sy

nc
h
:=

0
−−

−−
−−

−−
−−

−−
−−

−−
−−

−→
q k

A
rr
ow

1
Fi
g.
3a
,b

fl
ag

=0
∧

¬s
ta
te
ev
en

t
∧q

k+
1
=δ

in
t(
q k

)

q k
δ i
nt −−→

q k
+1

!D
at
aC

D
;f

la
g:=

1
−−

−−
−−

−−
−−

−−
→

q k
+1

A
rr
ow

s
2
an
d
3
in

Fi
g.

3a

sy
nc

h
=0

∧
fl
ag

=1
∧

¬s
ta
te
ev
en

t
∧

sd
k+

1
=δ

ex
t(
sd

k
)

(s
d k

,e
d k

)
t a

(s
d k

):=
t a

(s
d k

)−
ed
k

−−
−−

−−
−−

−−
−−

−−
→

(s
d k

,t
a
(s
d k

))
?D

at
aC

D
,δ
in
t(
sd
k+

1
);λ

(s
d k

+1
);s

yn
ch

=1
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−→
(s
d k

+1
,0

)

A
rr
ow

4
in

Fi
g.

3a

fl
ag

=0
∧

¬s
ta
te
ev
en

t∧
q k

+1
=δ

in
t(
q k

)

q k
δ i
nt −−→

q s
e

!D
at
aC

D
;f

la
g:=

1
−−

−−
−−

−−
−−

−−
→

q s
e

A
rr
ow

s
2
an
d
3
in

Fi
g.

3b

sy
nc

h
=0

∧
fl
ag

=1
∧

¬s
ta
te
ev
en

t
∧

sd
k+

1
=δ

ex
t(
sd

k
,t

)

(s
d k

,e
d k

)
?t
se −−→

(s
d k

,t
se

)
?D

at
aC

D
,δ
in
t(
s s
e)

;λ(
s s
e)

;sy
nc

h
=1

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−→

(s
d s

e,
0)

A
rr
ow

4
in

Fi
g.

3b

123



258 L. G. Iugan et al.

Start ()

-detection of the end of discrete
simulation cycle

- get data from the discrete event
simulator

- send data to co-simulation bus

- send time of next event to co-
simulation bus

- get data from the co-simulation
bus

- send data to the discrete event
simulator

- get time of state event from the
co-simulation bus

- activate state event detection
module

- get data from the co-simulation bus
- send data to the discrete event

simulator

Stop

from discrete event
simulator

to discrete event
simulator

to co-simulation bus

to co-simulation bus

Stop

wait data from the
continuous simulator

wait event from the
continuous sim.

stateventstatevent

wait data from the
continuous simulator

L

Fig. 6 Flowchart for the discrete domain interface

interfaces that are the link between the different execution models and the co-simulation bus
(see Fig. 1). They are each in charge of a part of the synchronization between the twomodels.
To ensure the system’s flexibility, the synchronization functionality has to be distributed to
the co-simulation interfaces.Moreover, each computation step has to be thoroughly specified.

The behavior of the discrete domain interface can be described by a few processing steps
detailed in Fig. 6:

– exchanging data between the simulators.
– sending the time stamps of the next events.
– the state events consideration.
– the context switch to the continuous interface.

Theflowchart allows for the definition of the operational semantics specifically for the discrete
interface. The representation can also be done using DEVS for coherence purposes. From
the rules we can trace the state graph of the DSI for the canonical synchronization model as
shown in Fig. 7. The dashed lines represent internal transitions and the corresponding states
and the plain lines represent external transitions and the corresponding states.

The behavior of the continuous domain interface can also be described by a few processing
steps (see Fig. 8):

– exchanging data between the simulators.
– sending the time stamps of the next events.
– the indication (to the discrete interface) of the occurrence of a state event.
– the context switch to the discrete interface.

123



A generic conceptual framework of C/D co-simulation tools 259

Start

Data 
Got

Wait

Event
GotState

Event

Wait

?DataFromCSI ?E
vent

?DataFromDisc !DataToCSI

?DataFromCSI
?EventTime

csi
DoTat a

D!

δext

δext

δext

δint

δext

δext

δint

Fig. 7 State graph of the DSI for the canonical synchronization model represented using DEVS

Fig. 8 Flowchart for the continuous domain interface

Init

Start

Wait

Event
GotState

Event

!DataToDSI

?DataFromCont

?DataFromDSI !DataToCont

!DataToDSI !StateEvent

δext

δext

δint

δint

δint

δint

Fig. 9 State graph of the CSI represented using DEVS

Same as for the discrete interface we can trace the state graph of the DSI for the canonical
synchronization model as shown in Fig. 9. The dashed lines represent internal transitions
and the corresponding states and the plain lines represent external transitions and the corre-
sponding states.

123



260 L. G. Iugan et al.

5.3 Formalization and verification of the co-simulation interfaces behavior

After the distribution of the synchronization functionality to the interfaces, the resulting state
graphs are interface specific and show the behavior of each interface. The formalization and
verification of the co-simulation interfaces behavior stage can be roughly divided in two or
three steps: formalization (that can be the formal specification of the heterogeneous system),
the validation by simulation and/or the formal verification. The validation can be done either
through simulation or formal verification. For our work we need to validate through formal
verification because our goal was to check system’s properties for a broad class of inputs.
The validation was also done by simulation because the tool we used (UPPAL) allowed it.

The two main techniques that can be used for the formal verification of the interfaces are
model checking and theorem proving [34].

Considering that our system is dynamic, it is necessary to use a formalism that allows
the expression of dynamic properties (the state of a system changes and by consequence
the properties of the state also change). The temporal logic handles formalization where the
properties evolve over the time and in general uses:

– Propositions that describe the states (i.e. elementary formulas and logical connectors).
– Temporal operators that allow the expression of the properties of the states successions

(called executions).

For our formalmodel, the properties that need to be checked are the connection (branching)
properties expressed using Computation Tree Logic (CTL), which is an untimed temporal
logic or its timed extension TCTL logics. Figure 10 shows the global formal model for
the validation of the C/D simulation interfaces with respect to the synchronization model
presented in Sect. 4. The input is the simplified formal representation of the continuous and
the discrete models while the interfaces are the timed automata presented here. This model
is further used for the simulation and formal verification. We can see here the similarities
between the global co-simulation model shown in Fig. 1 and the global formal model used
in our application. The next subsections focus on the detail the formalization and the formal
verification of the co-simulation interfaces.

5.3.1 Formalization of the co-simulation interfaces

Figure 11 shows the formal model (using timed automata) for the discrete domain interface.
The model has only one initial location (marked in Fig. 11 by a double circle) Start.

In [35] the authors present the transition from DEVS model to timed automata. In our
approach the timed-automata model completes the DEVS graph shown in Fig. 11 with the
addition of the timing evolution notions. Thus, the transition labels may include operation
for the time variable update.

For instance, during the transition from the DataFromCont state to the Start state, the value
of the NextTime variable is assigned to the td variable expressing the time of the discrete
simulator. The NextTime variable represents the next synchronization instance and its value
is calculated respecting the canonical synchronization model.

The discrete interface will change location from Start to NextTimeGot following the
transition:

Start
DataFromDisc?−−−−−−−−−−→ NextTimeGot

This is an external transition realized with zero time and it is triggered by the receiving of
the data (that is also a synchronization between the discrete simulator and the interface) from

123



A generic conceptual framework of C/D co-simulation tools 261

Fig. 10 Global formal model for the validation of C/D interfaces behavior

Fig. 11 The discrete domain interface model

the discrete simulator (DataFromDisc?). Here the interface receives the data from discrete
simulator and the time of the next event in the discrete domain.

The location changes to WaitEvent following the transition:

NextTimeGot
DataDC !,NextT ime=cycle,cycle:int[0,period]−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ WaitEvent

In order to change the location, the continuous interface sends to the discrete interface the
time of the next event (occurred/scheduled event) in discrete (the synchronization DataDC!).
The variable NextTime is the time of the next event in the discrete domain. This variable
takes, in this mode, the value cycle. For an accurate co-simulation we assume the sampling

123



262 L. G. Iugan et al.

intervals are not equidistant, therefore, cycle takes random values in an interval defined here
as [0, period]. In WaitEvent location, the context is switched from the discrete to the
continuous simulator.

When the context is switched back to the discrete simulator, the location is changed to
EventGot following the synchronization transition:

WaitEvent
Event?−−−−→ EventGot

During this transition the discrete interface receives from the continuous interface the syn-
chronization Event?. Once arrived to EventGot location, the occurrence of a state event in the
continuous domain is considered. EventGot is an urgent location (as defined in the previous
section). Two cases are possible:

(1) When no state event was generated by the continuous domain, the location changes from
EventGot to NoStEv. The transition

EventGot
StateEvent==0−−−−−−−−−→ NoStEv

is annotated in this case only with the guard StateEvent==0.

(2) When a state event was generated by the continuous domain the location changes from
EventGot to StEvDetect following the transition:

EventGot
StateEvent,NextT ime=St EvT ime−−−−−−−−−−−−−−−−−−−−→ StEvDetect

This transition is annotated with a guard (StateEvent) and the update of the NextTime in
the discrete domain as the time when the state event occurred in the continuous domain
StEvTime (for a rigorous synchronization, the discrete domain has to consume this event and
stop at the time when it was generated by the continuous domain interface). This is the time
of the next event that is going to be sent to the continuous simulator. From both locations
StEvDetect and NoStEv, the system will reach the next location: TimeOfStEvDisc. In both
cases the model performs synchronization (DataCD?). At this point the discrete interface will
synchronize and send data to the discrete simulator (DataToDisc!) and changes the location
to WaitDataFromCont. The next location is Start, the discrete time variable is initialized on
this channel (td=NextTime) and the cycle restarts.

The graph presented in Fig. 9 with the addition of the time notion allows for the repre-
sentation of the continuous domain interface using timed automata (see Fig. 12) [35]. This
formal model also has only one initial location (marked in Fig. 12 by a double circle) Start.

The continuous interface will leave the initial location Start following the transition:

Start
DataDC?−−−−−→ ReceiveDataFromBus

This is also an external transition realized with zero time and it is triggered by the receiving
of the data from the discrete interface (DataDC?) that is also the first synchronization point
between the discrete interface and the continuous interface. The interface receives the data
from discrete and the time of the next event in discrete. From ReceiveDataFromBus location
the process will move to the next location SendDataToCont following the transition

ReceiveDataFromBus
DataT oCont !,tcn=NextT ime−−−−−−−−−−−−−−−−−→ SendDataToCont

The value NextTime, the time of the next event (occurred/scheduled event) in the discrete
simulator is assigned to tcn , the next time scheduled by the discrete simulator which will

123



A generic conceptual framework of C/D co-simulation tools 263

Fig. 12 The continuous domain interface model

be transferred to the continuous time simulator. In our model, the synchronization on this
transition is between the continuous domain interface and the continuous domain simulator.
The interface sends to the simulator data received from the discrete domain interface and the
time of the next event in the discrete domain.

The system changes the location from SendDataToCont to ReceiveDataFromCont follow-
ing the synchronization transition:

SendDataToCont
DataFromCont?−−−−−−−−−−→ ReceiveDataFromCont

During this transition the continuous interface receives data from the continuous simulator
and the time of the state event if a state event occurred. In the ReceiveDataFromCont location,
the continuous interface evaluates if a state event was generated. Two cases are possible:

(1) When no state event is generated, the location changes from ReceiveDataFromCont to
TimeOfStEv following the transition:

ReceiveDataFromCont
Event !StateEvent=0−−−−−−−−−−−−→ TimeOfStEv

The transition is annotated in this case by the synchronization Event! and with the update
StateEvent=0.

(2) When a state event is generated, the location changes from ReceiveDataFromCont to
StEvDetect following the transition:

ReceiveDataFromCont
Event !StateEvent=1,St EvT ime=(tse<tcn)?tse:tcn,tse:int[0,period]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

StEvDetect

This transition is annotatedwith a synchronization (Event!) and three variable updates: Sta-
teEvent=1 (for the detection of a state event), StEvTime=(tse<tcn)? tse:tcn, tse:int[0,period]
(for the time of the state event that occurs during the time interval [0,period]; this time will
be sent to the discrete simulator). StEvDetect is an urgent location. The location StEvDetect
changes to TimeOfStEv following the transition:

StEvDetect
tcn=St EvT ime−−−−−−−−−→ TimeOfStEv

123



264 L. G. Iugan et al.

At this point there is no synchronization, just an update of the time in the continuous domain
having assigned the time of the state event StEvTime: tcn=StEvTime.

TimeOfStEv location is common for both cases, StateEvent=0 or StateEvent=1. This
location changes to WaitDataFromDisc. The system performs synchronization (DataCD!)
between the continuous interface and the continuous simulator. The next location is Start,
the continuous time variables is initialized on this channel (tc = tcn) and the cycle restarts.

5.3.2 Formal model simulation and formal verification

The UPPAAL tool allows for the validation of the system’s expected behavior regarding the
synchronization, the communication and conflicts. Our goal was to verify all the possible
dynamic executions of our model.

The formal verification consists of checking properties of the system for a broad class of
inputs [36]. In our work we checked properties that fall into three classes:

– Safety properties—the system does not get into an undesirable configuration, (i.e. dead-
lock, etc) [34,37].

– Liveness properties—some desired configuration will be visited eventually or infinitely
(i.e. expected response to an input, etc.) [34,37].

– Reachability properties—the system always has the chance of reaching a given situation
(some particular situation can be reached) [36].

The properties verified in order to validate the synchronizationmodel are described below.

P0 Deadlock freedom (safety property)
Deadlock exists among a set of processes if every process is waiting for an event that

can be caused only by another process in the set. In UPPAAL deadlock is expressed by a
formula using the keyword deadlock (A[] not deadlock). A state is a deadlock
state if there are no outgoing action transitions either from the state itself or any of its delay
successors [36].

Definition A state is in deadlock if it is impossible that the model evolves to a successor
state neither by waiting some time nor by a transition between locations, i.e. there are no
enabled transitions.

P1 State event detected by the discrete domain (liveness property)
The indication of a state event by the continuous interface and its detection by the discrete

interface is very important for continuous/discrete heterogeneous systems. We defined a
liveness property in order to check this behavior that is stated as follows:

Definition A state event detected in the continuous domain leads to a state event detected in
the discrete.

P2 No state event detected in discrete domain if no state event generated in
continuous domain (safety property)
In order to avoid false responses from the discrete simulators, we defined a safety property

to verify if the system will “detect” a state event in the discrete when it was not generated
(and indicated) by the continuous domain:

Definition Invariantly a state event detected in the discrete domain imply state event in the
continuous.

123



A generic conceptual framework of C/D co-simulation tools 265

Fig. 13 Hierarchical representation of the generic architecture of the co-simulation model

P3 Synchronization between the interfaces (reachability property)
Oneof themost important properties characterizing the interaction between the continuous

and the discrete domains is the communication and implicitly the synchronization. This
property verifies that after a cycle executed by each model, both are at the same time stamp
(and by consequence are synchronized).

Definition Invariantly both processes in the Start location (initial state) imply the time in
the continuous tc is equal with the time in the discrete td .

P4 Causality principle (liveness property)
The causality can be defined as a cause and effect relationship. The causality of two events

describes to what extent one event is caused by the other. The causality is already verified by
P3 for scheduled events. However, when a state event is generated by the continuous domain,
the discrete domain has to detect this event at the same precise time (the cause precedes
or equals the effect) and not some other possible event existing at a different time in the
continuous domain.

Definition Invariantly both processes in the StEvDetect location (detection of state event)
imply the time in the continuous tc is equal to the time in the discrete td .

5.4 Definition of the internal architecture of the co-simulation interfaces

The formalization of the co-simulation interfaces behavior step is naturally followed by
the definition of their internal architecture. This definition eases the generation of the co-
simulation interfaces. We present in Fig. 13 the hierarchical representation of the global
co-simulation model used in our approach.

At the top hierarchical level, the global model is composed of the continuous and discrete
models and of the C/D co-simulation interface required for the global co-simulation.

The second hierarchical level of the global co-simulation model includes the domain
specific co-simulation interfaces and the co-simulation bus in charge of the data transfer
between these interfaces.

123



266 L. G. Iugan et al.

End of Discrete 
Simulation Cycle 

Detection and 
Time Sending

DDTS

Event 
Detection 

DEC

Context 
Switch

CS

Data 
Exchange

DE

Signal 
Conversion 
and Data 
Exchange

SCDE

Context 
Switch

CS

Event 
Detection 

DED

State Event 
Indication 
and Time 
Sending
SETS

Flag from the discrete to the continuous model

Time of the next scheduled event in the discrete simulator td

Flag from the continuous to the discrete model

Time of state event tse

Discrete Domain Interface DDI Continuous Domain Interface CDI 

/ 
Discrete Simulator DS

/ Data to from the Data to from the 
Continuous Simulator CS

Fig. 14 Internal architecture of the C/D co-simulation interface

The bottom hierarchical level includes the elements from the co-simulation library that
are the atomic modules of the domain specific simulation interface. These atomic com-
ponents implement basic functionalities of the synchronization model. The overall continu-
ous/discrete co-simulation interface is formally defined usingDEVS formalism. The interface
is composed by as a set of coupled models that are: the continuous domain interface (CDI),
the discrete domain interface (DDI) and the co-simulation bus.

The specific functionalities of the interfaces were presented in Sect. 5.2. In term of internal
architecture the blocks assuring these features are:

• For the Continuous Model Simulation Interface:

– The State Event Indication and Time Sending block (SETS).
– The Signal Conversion and Data Exchange block (SCDE).
– The Event Detection block (DED).
– The Context Switch block (CS).

• For the Discrete Model Simulation Interface:

– The End of Discrete Simulation Cycle Detection and Time Sending block (DDTS).
– The Data Exchange block (DE).
– The Event Detection block (DEC).
– The Context Switch block (CS).

These atomic modules are forming the co-simulation library and the co-simulation tools
enable their parameterization and their assembly in order to generate a new co-simulation
instance.

Figure 14 presents the atomicmodules interconnection in each domain specific simulation
interface. The block that is the co-simulation bus was omitted for a clearer figure, but we
show the signals and the interactions between the interfaces.

The modules connect with each other through ports. A port can be defined as a module’s
point of interaction with other modules. The interactions are limited to sending and receiving
data (where time is part of the data). Eachmodule has at least one port. Twoports are connected
when the ports that communicate are compatible but they have different directions.Depending
on the data flow direction a module can have a set of Input ports and a set of Output ports.

A port can be defined by a tuple {abstraction, type, number, direction, execution type}:
portname = {level, type, number, direction, execution} where:

– level ∈ {abstraction levels set}

123



A generic conceptual framework of C/D co-simulation tools 267

U

U

StartWaitDataFromDisc

TimeOfStEv

StEvDetect

ReceiveDataFromBus

SendDataToContReceiveDataFromCont

UNoStEv

U

U

Start WaitDataFromCont TimeOfStEvDisc

StEvDetect NoStEv

EventGotWaitEvent

NextTimeGot

U
DiEvDetect

“Signal Conversion and Data 
Exchange” block 

“State Event 
Indication and 
Time Sending” 

block

“Event Detection” 
block 

“Context Switch” 
block 

“Context 
Switch” 

block 

“End of Discrete 
Simulation Cycle 

Detection and 
Time Sending”

block 

“Signal Conversion and Data Exchange” block 

“Event 
Detection” 

block 

Discrete Domain Interface Continuous Domain Interface

Fig. 15 Formal model and the internal architecture of the co-simulation interface

– type ∈ {port type set}
– number ∈ N\{0}
– direction ∈ {Input ports set} ∨ {Ouput ports set}
– execution ∈ {continuous, discrete}

Two ports are compatiblewhen there is a correspondence 1->1, 1->N or N->1 between them,
the type of the port that sends is the same as or less than the type of the receiving port(s). If
the send port has a declared type, it can also send types that are less than the declared type
(i.e if the type is declared double, it can send float) outType<=inType [38]. In terms of
ports compatibility, the following situations can be found:

– covariance converting from narrow to wide [39].
– contravariance converting from wide to narrow [39].
– invariance not able to convert.

The architecture of the discrete domain interface and the continuous domain interface are
also formally defined as a set of coupled modules. Formal descriptions for DDI and CDI
respect the coupled module DEVS formalism [20]. Each element of the structure follows the
concepts presented in Sect. 5.1 and applied for the overall continuous/discrete co-simulation
interface. The modules are implemented in a generic way.

5.5 Discussion

There is a tight connection between the internal architecture of the C/D co-simulation
interfaces (shown in Fig. 14) and formal representation of the continuous and discrete co-
simulation interfaces usingUPPAAL (and shown in Figs. 10 and 11). Each block that provides
a functionality in the internal architecture of the interface corresponds to at least one location
in the domain specific formal model.

Figure 15 shows the correspondence between the blocks that represent the internal archi-
tecture of the co-simulation interface and the locations in the formal model. The mapping

123



268 L. G. Iugan et al.

of the formal model onto the blocks that form the interfaces helps with the definition of the
elements that are necessary for the library.

6 Application of the conceptual framework to the design of A C/D co-simulation tool

The steps of the proposed methodology presented in Sect. 5 describe the gradual refine-
ment from the operational semantics to the definition of the internal architecture of the
co-simulation interfaces. They are independent of the different simulation tools and specifi-
cation languages used generally for the specification/execution of the continuous and discrete
sub-systems.

The considerations presented in the previous steps of the methodology show that specific
functionalities are required for the co-simulationof continuous anddiscretemodes.Therefore,
the integration of a simulation tool in the co-simulation environment demands their analysis.
Thus, in the case of continuous simulator integration in the co-simulation tool, this simulator
has to provide APIs enabling the following controls:

– State events detection.
– Setting break points during differential equation solving.
– On-line update of the breakpoints settings.
– Mechanism for sending processing results and information for synchronization (i.e. the

time step of the state event) to the discrete simulator. This implies generally the possibility
to integrate C-code and Inter-Process Communications (IPC).

After the analysis of the existing tools we found that Simulink� [40] is an illustrative
example of a continuous simulator enabling the control functionalities presented here. These
functionalities can be added in configurable library blocks and a given Simulink� model
may be prepared for the co-simulation by parameterization and addition of these blocks.
These blocks are manipulated like all other components of the Simulink� library. They
contain input/output ports compatible with all model ports that can be connected directly
using Simulink� signals.

For the integration of a discrete simulator in the co-simulation tool, the simulator has to
enable the addition of the following functionalities:

– End of simulation cycle detection.
– Insertion of new events (state events) in the scheduler’s queue. This must be done before

the advancement of the simulator time.
– Mechanism for sending processing results and information for synchronization to the

continuous simulator (i.e. the time stamp of its next discrete event).

Several discrete simulators present the characteristics required for the integration in the
co-simulation tool. SystemC [41] is an illustrative example. Since it is open source, SystemC
enables the addition of the presented functionalities in an efficient way—the scheduler can
be modified and adapted for co-simulation. In this way, the co-simulation overhead may
be minimized. In order to increase the simulation performance, part of the synchronization
functionality has been implemented at the scheduler’s level, which is a part of the state event
management and the end of the discrete cycle detection (detects that there are no more delta
cycles at the current time).

Following the proposed steps, CODIS a co-simulation tool allowing continuous/discrete
co-simulation (see Fig.16), was implemented. The tool uses Simulink� [40] for the mod-
eling of the continuous execution model and SystemC [41] for the modeling of the discrete
execution model.

123



A generic conceptual framework of C/D co-simulation tools 269

Fig. 16 CODIS framework—co-simulation flow

The co-simulation interfaces that are specific for each domain are generated by selecting
components, from a co-simulation library. The inputs in the flow are the continuous model in
Simulink� and the discrete model in SystemC which are schematic and respectively textual
models. The output of the flow is the global co-simulation model instance.

6.1 Organization of the simulation libraries for SystemC and Simulink�

The Simulink� interfaces are functional blocks programmed in C++ using S-Functions.
These blocks are manipulated like all other components of the Simulink� library. They
contain input/output ports compatiblewith allmodel ports that can be connected directly using
Simulink� signals. The user starts by dragging the interfaces from the interface components
library into his model’s window, then parameterizes them and finally connects them to the
inputs and the outputs of his model. The parameters of the interfaces are the number of
input and respectively output ports, their type, and the number of state events. Before the
simulation, the functionalities of these blocks are loaded by Simulink� from the .dll libraries.

The Simulink� interfaces are:

– Sim_inter_In interface provides the input communication function and synchronization
with signals update events.

– Sim_inter_Out interface implements the output communication function and provides
synchronization with the sampling events sent by SystemC.

– State interface implements synchronization functions used to send the state events once
detected and to synchronize with SystemC. For the detection we use the Hit Crossing
component from Simulink� library.

– Sync interface implements the synchronization function that creates break points which
must be reached accurately by a solver (a variable step solver).

Figure 17 shows an example of simulation interfaces utilization.
For SystemC, in order to increase the simulation performances, a part of the synchroniza-

tion functionalities have been implemented at the scheduler’s level which is a part of the state

123



270 L. G. Iugan et al.

Fig. 17 Extending a Simulink� model with simulation interfaces

event management and the end of the discrete cycle detection (detects that there are no more
delta cycles at the current time). The SystemC interfaces are:

– SC_inter_In implements the input communication function and ensures synchronization
with input data and state events.

– SC_inter_Out implements the output communication function and provides synchro-
nization with the sampling events sent by SystemC.

For SystemC, the library blocks are state event management blocks and communication
blocks. The interfaces are generated by a script generator that has as input user-defined
parameters. The interface parameters are: the names, the number and the data type of the
discrete model inputs ports, and the sampling periods. Once the interfaces are generated,
their connection is realized within the sc_main function that connects the interfaces to the
user model. The model is compiled and the link editor calls the library from SystemC and a
static library.

Figure 18 presents a screen capture of the co-simulation; both models are running and the
developers can use the different features for debugging.

In the development of CODIS, the steps of the conceptual framework we proposed in this
paper are “hidden” in different stages of the co-simulation flow. The “definition of the library
elements and the internal architecture of the co-simulation interfaces” step represents the
foundation for the generation of the co-simulation library and implicitly for the co-simulation
interfaces generation. The “definition of the operational semantics”, the “distribution of the

123



A generic conceptual framework of C/D co-simulation tools 271

Fig. 18 SystemC/Simulink� co-simulation

synchronization functionality” as well as their behavior play an important role at the output
flow with the behavior of the co-simulation interfaces and the synchronization model. This
tool was detailed in [27].

6.2 Analysis

In order to have quantitative information regarding the performances of our approach we
measured the simulation interfaces overhead. In our case study the functionalities of the
continuous and discrete sub-systems were very simple (a few very simple computations).
Considering that the communication is the main factor contributing to the co-simulation
overhead, the objective was to define an application where the communication between the
two subsystems is critical. The Simulink� integration step adjustment when detecting a
SystemC event overhead is maximum 5 % of total simulation time. The overhead caused
by inter process communication represents about 20 % of the total simulation time. The
SystemC synchronization overhead does not exceed 0.2 % of the total simulation time. This
cost depends of the number of state events generated by the continuous simulator and the
synchronization steps required by an application. The presented overhead was measured
in the case where we have a state event generated by the continuous simulator during each
discrete step, therefore the synchronization is performed at each step of the discrete simulator.
We measured the overhead after 106 synchronization points.

TheCODIS frameworkwas used to implement a glycemia level regulator that was detailed
in [42].

In order to show that the proposed formal framework is generic, after the analysis of the
discrete domain simulators, we used SystemVerilog for the discrete domain implementation
of the glycemia level regulatorwhile for the continuous domainweused theSimulink�model
already tested with SystemC-Simulink� implementation. The SystemVerilog-Simulink�
co-simulation replicates the results obtain with the SystemC-Simulink� co-simulation.

7 Discussion

Table 2 presents the advantages and the limitations of our contribution, compared with the
existing approaches. In this table, the three pluses (+++) notation refers to a very good

123



272 L. G. Iugan et al.

Table 2 Advantages and limitations of the proposed approach

Approach Requirement

Interfaces
generation

Modularity/
scalability

Formal verif.
of C/D interf.

Validation
perform.

Flexibility

Existing
simulation-based
approaches (e.g.
VHDL-AMS,
SystemC-AMS...)

+++ ++ N/A +++ ++

Existing formal
representation—
based
approach

N/A +++ +++ + ++

Proposed approach +++ +++ +++ ++ +++

approach; the two pluses (++) notation is used for a good approach while the one plus (+)
refers to a fair approache. We can note that the same approach can be very good, good or fair
according to the different metrics given in the columns of the table.

Two main existing approaches (discussed also in Sect. 2) are considered:

– The simulation-based approach.
– The different approaches proposing the formal representation of C/D systems.

The following metrics are analyzed:

– The C/D Interface generation metric measures the effort required for the design of C/D
interfaces design.

– The Modularity and scalability metric indicates the possibility to enable independent
handling of the different components of theC/D systems (ex. addition of newcomponents,
validation of different solutions).

– The Formal verification metric refers to the correctness of the C/D interfaces. This cor-
rectness can be formally guaranteed or not.

– The Validation performance is directly related to the simulation speed characterizing the
global execution models provided by the different approaches.

– The Flexibility metric refers to the ability of the co-simulation models to be adapted
to the modifications occurring during the design flow (e.g. environment modification,
technology modification).

The existing simulation approaches are very good from the perspective of the simula-
tion interface generation metrics. This is mainly because these approaches do not require
any additional effort from the user in order to generate the global simulation model. How-
ever, these approaches accept only integration of modules described in a specific language
(ex. VHDL-AMS or SystemC-AMS), consequently these approaches are considered good
(instead of very good) from the modularity/scalability point of view. This also impacts the
flexibility as these approaches accept only certain solvers and their library is less elaborated
than the library of well established continuous tools (i.e. Simulink�).

The formal representation-based approaches are powerful in terms of modularity/
scalability and formal verification of the simulation interfaces. However, the validation per-
formance is fair aswith the increase of the system’s complexity the simulation speed decreases
considerably. More so, any change in the system has to be translated in its formal representa-

123



A generic conceptual framework of C/D co-simulation tools 273

tion and some changes cannot be expressed formally as only some properties are taken into
consideration. Therefore, we consider this having impact on the flexibility of this approach.

Considering the effort required by the C/D interfaces, our approachmay be comparedwith
the existing simulation-based approaches. These metrics are not directly related to the formal
representation approaches. The main purpose of the approaches using formal representation
is to offer a very well defined conceptual framework for interfaces modeling. The users can
exploit this in order to formalize the functionalities of the interfaces.

Comparing with the existing simulation-based approaches, our solution improves the
scalability and the modularity. This is mainly due to the generic stage offering a formally
correct functionality and guiding the implementation of interfaces if simulators need to be
added in the design flow.

Unlike the exiting simulation-based approaches, our solution also considers formal veri-
fication of C/D interfaces.

As explained in Sect. 6, the integration of several existing simulators implies a cost in
validation performance. However, it is important to note that this cost is comparable with
the cost already accepted by the designer for the classical Hw/Sw co-simulation. This cost is
compensated by the flexibility improvement: the facility to integrate other existing powerful
continuous and/or discrete simulators gives the ability to adapt easily to eventual modifica-
tions during the design flow (e.g. the technology modification can lead to the necessity to
introduce a new simulator in the design flow).

8 Conclusion and future works

This paper proposes a conceptual framework based on formal representation that gives the
designers the flexibility and correctness to design C/D co-simulation tools. The main contri-
bution is the representation of the functionality of the co-simulation interfaces, using formal
methods for the specification and the validation that is a step in bridging the gap between
formalization and the simulation mapping from formal specification to implementation. This
methodology was successfully applied for the design of CODIS a co-simulation tool inte-
grating Simulink�, and SystemC simulators.

Our future works concentrate on the formal verification of the composition of the elements
of the library in order to create an interface and the analysis of the continuous and discrete
models to be integrated in order to verify their compatibility in terms of inputs, outputs
and abstraction levels. We are also working on more complex systems where a discrete and
multiple continuous systems are taken into consideration.

References

1. ITRS (2010) http://public.itrs.net/
2. Nicolescu G, Sungjoo Y, Bouchhima A, Jerraya AA (2002) Validation in a component-based design flow

for multicore SoCs. In: Proceedings of the 15th ISSS (ISSS’02) Kyoto
3. Romitti S, Santoni C, Francois P (1997) A design methodology and a prototyping tool dedicated to

adaptive interface generation. In: Proceedings of the 3rd ERCIM workshop on user interfaces for all
4. Cadence http://www.cadence.com
5. Mentor Graphics. Seamless CVE. http://www.mentorg.com/seamless
6. Frey P, O’Riordan D (2000) Verilog-AMS: mixed-signal simulation and cross domain connect modules.

In: Proceedings of the BMAS’00, Orlando
7. IEEE Standard VHDL AMS Extensions, IEEE Std 1076.1-1999

123

http://public.itrs.net/
http://www.cadence.com
http://www.mentorg.com/seamless


274 L. G. Iugan et al.

8. Marion C, Fanucci L, Iozze F, Forliti M, Rocchi A, Giambastiani A, De Marinis M (2005) VHDL-AMS
modelling and system verification flow. Trans Energy Convers 28:189–196

9. Patel DH, Shukla SK (2004) SystemC Kernel-extensions for heterogeneous system modeling. Kluwer
Academic Publishers, Dordrecht

10. Vachoux A, Grimm C, Einwich K (2003) Analog and mixed signal modeling with SystemC-AMS. In:
Proceedings of the international symposium on circuits and systems

11. Verilog AMS http://www.vhdl.org/verilog-ams/htmlpages/public-docs/lrm/2.3.1/VAMS-LRM-2-3-1.
pdf

12. Ptolemy http://ptolemy.eecs.berkeley.edu/
13. Lee EA, Zheng H (2005) Operational semantics of hybrid systems. In: 8th international workshop:

computation and control, HSCC, pp 25–53
14. Lee EA (2010)Disciplined heterogeneousmodeling. In: Proceedings of theACM/IEEE 13th international

conference on model driven engineering, languages, and systems (MODELS). Springer, New York, pp
273–287

15. Functional Mock-up Intergace https://www.fmi-standard.org/
16. Lee EA, Sangiovanni-Vincentelli A (1996) Comparing models of computation. In: IEEE proceedings of

the international conferenceon computer aided design, pp 234–241
17. Jantsch A, Sander I (2005) Models of computation and languages for embedded system design. Kluwer

Academic Publishers, Dordrecht
18. Jantsch A (2003)Modeling embedded systems and SoCs: concurrency and time inmodels of computation

(systems on silicon). Morgan Kaufmann Publishers, San Francisco
19. Fitzgerald J, Larsen PG, Verhoef M (eds) (2014) Collaborative design for embedded systems: co-

modelling and co-simulation. Springer, Berlin
20. Zeigler BP, Praehofer H, Kim TG (2000) Modeling and simulation - integrating discrete event and con-

tinuous complex dynamic systems. Academic Press, San Diego
21. D’Abreu M, Wainer G (2005) M/CD++: modeling continuous systems using Modelica and DEVS. In:

Proceedings of the IEEE international symposium of MASCOTS’05
22. Kim YJ, Kim JH, Kim TG (2003) Heterogeneous simulation framework using DEVS-BUS. Simul Soci

Model Simul Int 79(1):3–18
23. SH Attarzadeh Niaki SH, Jakobsen MK, Sulonen T, Sander I (2012) Formal heterogeneous system

modeling with SystemC. In: Forum on specification and design languages (FDL 2012). Vienna, pp 160–
167

24. Herrera F, Villar E, Grimm C, Damm M, Haase J (2008) Heterogeneous specification with HetSC and
systemC-AMS: widening the support of MoCs in SystemC. In: Embedded systems specification and
design languagtes. Springer, New York

25. Haase J, Damm M, Grimm C, Herrera F, Villar E (2008) Bridging MoCs in SystemC specifications of
heterogeneous systems. EURASIP J Embed Syst 2008:371768

26. Ghasemi HR (2005) An effective VHDL-AMS simulation algorithm with event. In: International confer-
ence on VLSI design

27. Bouchhima F, Nicolescu G, Aboulhamid EM, Abdi M (2007) Generic discrete-continuous simulation
model for accurate validation in heterogeneous systems design. Microelectr J 38:805–815

28. Alur R, Dill D (1990) Automata for modeling real-time systems. In: Proceedings of the 17-th International
CALP, vol 443, pp 322–335

29. Bengtsson J, YiW (1996) Timed automata: semantics, algorithms and tools. Uppsala University, Uppsala
30. Behrmann GF, Behrmann G, David A, Larsen K (2005) A tutorial on UPPAAL. In: Real-time systems

symposium, Miami
31. Behrmann G, Fehnker A, Hune T, Larsen K, Pettersson P, Romijn J, Vaandrager F (2001) Minimum-cost

reachability for priced timed automata. In: Hybrid systems: computation and control, HSCC 2001
32. Cassandras CG, Lafortune S (2007) Introduction to discrete event systems. Springer, New York
33. Cellier FE (1979) Combined continuous/discrete system simulation languages: usefulness, experiences

and future development. In: Proceediings of methodology in systems modelling and simulation confer-
ence, Rehovot, pp 201–220

34. Wang F (2004) Formal verification of timed systems: a survey and perspective. In: Proceedings of the
IEEE, vol 92, pp 1283–1305

35. Chane F, Giambiasi N, Paillet J-L (2004) From DEVS model to timed automata. In: Proceedings of the
international conference on software engineering research and practice, SERP’04

36. Monin J-F (2003) Understanding formal methods. Springer, New York
37. Edwards S, Lavagno L, Lee EA, Sangiovanni-Vincentelli A (1997) Design of embedded systems: formal

models, validation, and synthesis. In: Proceedings of the IEEE, vol 85, pp 366–390
38. Claudius Ptolemaeus (2013) System design, modeling, and simulation using Ptolemy II. Ptolemy.org

123

http://www.vhdl.org/verilog-ams/htmlpages/public-docs/lrm/2.3.1/VAMS-LRM-2-3-1.pdf
http://www.vhdl.org/verilog-ams/htmlpages/public-docs/lrm/2.3.1/VAMS-LRM-2-3-1.pdf
http://ptolemy.eecs.berkeley.edu/
https://www.fmi-standard.org/


A generic conceptual framework of C/D co-simulation tools 275

39. Cardelli L (1984) A semantics of multiple inheritance. Semantics of data types (International Symposium
Sophia-Antipolis, June 27–29, 1984). Lecture Notes in Computer Science

40. MathWorks, MATLAB/Simulink. http://www.mathworks.com
41. SystemC LRM http://www.systemc.org
42. Gheorghe L, Bouchhima F, Nicolescu G, Boucheneb H (2008) Semantics for model-based validation of

continuous/discrete systems. In: Design automation and test in Europe (DATE’08)

123

http://www.mathworks.com
http://www.systemc.org

	A generic conceptual framework based on formal representation for the design of continuous/discrete co-simulation tools
	Abstract
	1 Introduction
	2 Related work
	3 Basic concepts
	3.1 Discrete event systems specification (DEVS)
	3.2 Timed automata

	4 C/D synchronization model
	5 Generic conceptual framework based on formal representation
	5.1 Definition of the operational semantics for the synchronization in C/D global execution models
	5.2 Distribution of the synchronization functionality to the co-simulation interfaces
	5.3 Formalization and verification of the co-simulation interfaces behavior
	5.3.1 Formalization of the co-simulation interfaces
	5.3.2 Formal model simulation and formal verification

	5.4 Definition of the internal architecture of the co-simulation interfaces
	5.5 Discussion

	6 Application of the conceptual framework to the design of A C/D co-simulation tool
	6.1 Organization of the simulation libraries for SystemC and Simulink"472
	6.2 Analysis

	7 Discussion
	8 Conclusion and future works
	References




