
Cluster Comput
DOI 10.1007/s10586-015-0498-9

An efficient approach to collaborative simulation of variable
structure systems on multi-core machines

Chen Yang1 · Peng Chi2 · Xiao Song3 · Ting Yu Lin2 · Bo Hu Li2 · Xudong Chai2

Received: 19 April 2015 / Revised: 30 September 2015 / Accepted: 3 October 2015
© Springer Science+Business Media New York 2015

Abstract Complex variable-structure systems (CVSSs)
are a common type of complex systems that exhibit changes
both at structural and behavior levels. Simulations of CVSSs
challenge current collaborative execution methods with
increasingly big and complex models. The emergence of
multi-core paradigm presents an exciting opportunity to
address such challenge, so an advanced parallel simulator
under multi-core environments is proposed. The simulator:
(1) provides thread simulation kernels and five kinds of
management services to support dynamic model structure
flexibly; (2) can explore both inherent and dynamic par-
allelism among models based on interaction relations, and
employ the multi-thread paradigm to gain good speedup; (3)
adopts an efficient dynamic load-balancing method, which
can migrate models among cores with very low cost and sup-
port dynamic core allocation on demand, to address evident
load-imbalance problems brought by variable-structure. The
experiments show that structure changes can be supported
while up to 23% performance increase can be gained.

Keywords Multi-core · Parallel discrete event simulation ·
Variable structure · Dynamic load balancing · Collaborative
simulation

B Chen Yang
cyang337@uwo.ca

Xiao Song
songxiao@buaa.edu.cn

1 Department of Electrical and Computer Engineering,
University of Western Ontario, London, ON, Canada

2 Beijing Simulation Center, Beijing, People’s Republic of
China

3 School of Automation Science and Electrical Engineering,
Beihang University, Beijing, People’s Republic of China

1 Introduction

Many complex systems consist of a large number of com-
ponents which adapt or learn as they interact [1], so that the
systems exhibit eminent overall properties, such as emer-
gence, nonlinearity, self-organization, chaos or gaming [2,3].
Among them, complex variable-structure systems (CVSSs)
are systems that have variable constituents and interaction
structure during the execution. In otherwords, CVSSs exhibit
changes simultaneously at structural and behavior levels
[4,5], when evolving over time. Typical CVSSs are widely
distributed in the areas of complex engineering, sociology,
and ecology. Commonly, where there are autonomous and
interactive entities, system changes in interactions and con-
stituents occur frequently.

Parallel discrete event simulation (PDES) involves the
use of multiple processors to collaboratively simulate and
analyze large-scale systems in shorter time. However, using
common PDES methods, a CVSS is mostly modeled as the
“complete” and static-structure system, in which all possible
models, interaction ports and connections exist and partici-
pate in the simulation since the beginning stage and could not
be changed easily and flexibly during the execution period.
Furthermore, models need to be designed to only deal with
related events during the right intervals and discard unre-
lated events caused by redundant components, ports and
connections. Two problems will arise. First, the efficiency
of simulation executions would be severely degraded, if the
structure changes a lot (especially for large-scale simulation
systems), as all the components and the “complete” interac-
tion structure need to be loaded before the simulation starts
and a lot of redundant events flow in the simulation sys-
tem. Secondly, users may be unable to exactly predict all
the possible models, ports and connections at the beginning,
especially for the evolving CVSSs.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0498-9&domain=pdf

Cluster Comput

Researchers try to employ variable-structure theory and
technology in PDES [4,6–8] to address the above problems.
Variable structure PDES (VSP) refers to the PDES that sup-
ports the change of structure (constituent models, model
ports or connections betweenmodels) and parameter changes
to well simulate CVSSs’ behavior. However, current PDES
methods mostly have two drawbacks to deal with increas-
ingly big and complex models of CVSSs [16].

(1) Current VSP methods largely overlook the efficiency
issues, which can lead to unbearably long simulation
time.

The extended formalisms of discrete event system spec-
ification (DEVS [9]) aiming to improve the expressiveness,
such as DYNDEVS [4], DSDE [6], ρ-DEVS [8] have been
proposed to support the modeling of variable structure sys-
tems. Most of these work focuses on the theoretical aspect
of VSP. Hu et al. [7] further introduced the concept of vari-
able “ports” and enabled structure changes (reconfiguration
of simulation systems) by adding extra supporting services
to the DEVS-based simulation environment. However, these
workdid not adopt popularmethods, such asflattened simula-
tion structure [10,11] and load balancing [12,13] to improve
the efficiency. On the other hand, the emergence of multi-
core paradigm provides an exciting opportunity to improve
the efficiency of VSP, by enabling fine-grained parallelism
of code execution and supporting low-latency communica-
tion [16]. However, very few research results of VSP under
multi-core environments have been done.

(2) Current PDES methods adopting multi-core technology
mostly could not support the VSP.

Most cutting-edge simulation applications are trying to
employ high performance computing to solve challenging
problems, such as the aerospace vehicle analysis and design
[14] on the Columbia supercomputer in NASA, the earth
simulator project [15] in Japan, the human brain project in
EuropeanUnion. Thus it is of great importance to improve the
capacity of simulating large-scale CVSSs by utilizing the lat-
est technologies of high-performance computing. The latest
advances in the PDES community such as [16–19] attempt to
exploitmulti-core computers, butmostly, they cannot support
the simulation systems featuring dynamic structure, as they
cannot both allow new models and connections to be created
and added to the existing network ofmodels dynamically, and
eliminate possible straggler events that flow through newly-
added connections.

Overall, there is a lack of flexible, efficient and systematic
methods for the PDES of CVSSs to use multi-core technol-
ogy.

We only discuss conservative simulation in this paper,
because it is usually hard or costly to save the whole state of
models for rollbacks [20,21] that are common in optimistic
simulation, e.g. large continuous models, models built by
using commercial software, legacy models or other models
containing irrevocable operations. The algorithms and meth-
ods presented in this paper can also be applied to common
PDES for static-structure models, which can be deemed as
special cases of variable structure models. It is pervasive that
a high performance computer equips with tens or hundreds
of cores, which means that a computer alone can provide
powerful computing power for some large-scale simulation
applications, so we only discuss the methods on multi-core
machines, though the proposed methods can be adapted to
multi-core clusters.

The paper is organized as follows: Sect. 2 reviews related
work and existing problems. Section 3 briefly introduces the
parallel simulator-Ivy which our methods are based on. Sec-
tions 4 and 5 elaborate on the detailed methods. Section 6
presents the experiment result. Finally, Sect. 7 gives the con-
clusion.

2 Related work and existing problems

The physical system is viewed as comprising some number
of physical processes (PPs) that interact in some fashion [21].
Each PP ismodeled by a logical process (LP) and interactions
between PPs are modeled by exchanging time-stamped mes-
sages between the corresponding LPs. Thus a PDES of the
physical system is typically composed of a collection of col-
laborative LPs. Each LP performs computations to process
events, leading to the modification of state variables and/or
the scheduling of new events for itself or other LPs. If a LP
at simulation time T can only schedule new events with time
stamp of at least T + L , then L is referred to as the looka-
head for that LP. The lower bound time stamp (LBTS) of a
LP is essentially the smallest timestamp of events that may
be received in the future. If events within each LP have been
processed in time stamp order, then it is sufficient to ensure
that the parallel simulation will produce exactly the same
results as the corresponding sequential simulation [21]. This
is the theoretical basis of PDES.

2.1 Variable structure PDES

DYNDEVS and its simulator [4,22] can only support the cre-
ation and the removal of models and connections between
models. Uhrmacher et al. [8] proposed a new formalism ρ-
DEVS by extending DYNDEVS with variable ports. Muzy
and Zeigler [23] proposed a coherent framework for com-
mon dynamic structure formalisms. Barros [24] compared
the advantages of centralized and distributed policies to

123

Cluster Comput

enforce dynamic structures. However, these works did not
discuss the efficiency aspect of their hierarchical simulation
approaches [10,11], such as flattened execution structure and
load balancing. Moreover, they cannot take full advantage of
multi-core architectures. To the best of our knowledge, our
work-Ivy [25] is the first high performance simulator that is
capable of VSP on multi-core machines.

Thus, an efficient method, supporting comprehensive
structure changes in a distributed way, a centralized way,
or a hybrid way, should be developed.

2.2 High performance simulator

2.2.1 Execution architecture

ThreadedWarped [26] adopted a master-slave architecture:
a manager thread, a global event queue of the simulation
objects and several worker threads. Vitali et al. [27] presented
a load-sharing approach by allocating the computing power
to multi-threads dynamically. Chen et al. [28] proposed a
global scheduling mechanism using several event lists and
several active worker threads, each of which selects and
processes the earliest event in current event lists repeatedly.
Tang et al. [19] proposed a hierarchical parallel simulator
(for multi-core clusters) which schedules LPs to process
safe events in parallel with multi-threaded operating system
processes (OSPs). The hierarchical architecture consists of
the OSP level and the thread level. Wang et al. [16] proposed
a thread-based simulator ROSS-MT that can avoid multiple
message copying in the same OSP. Lin et al. [17] introduced
an optimistic and thread-based simulator which creates sev-
eral priority queues within one OSP and maps a subset of
the threads to a single queue to decrease the contention and
improve performance. Bauer et al. [18] proposed a technique
to control optimism of PDES in which each LP continuously
communicates time estimates of its next k outgoing inter-LP
events to its neighboring LPs and uses time estimates from its
neighbours as bounds for its time advance. However, most of
these simulators [16–18,26–28] adopts optimistic synchro-
nization algorithms and we could not find evidence that these
simulators allow new LPs and connections to be established
and added to the existing network of LPs during the execu-
tion and contain proper mechanisms to deal with possible
straggler messages sent through new connections.

2.2.2 Time management algorithm

Conservative simulation strictly avoids any occurrence of
causality errors, so time management algorithms need to
determine whether the events are safe to process. There have
been many conservative algorithms [29], most of which are
based on lookahead and LBTS. However, common conser-
vative algorithms are not applicable to the VSP, as when

new directed connections are added, the downstream LPs
may receive events with past time stamps. This should be
addressed to guarantee all the events of eachLP are processed
in time stamp order.

As for the efficiency aspect, more related researches are
[19,30]. Peng et al. [30] adopted a multi-threaded architec-
ture for each federate, but the information of all sub-models
in a federate are needed to compute unified LBTS for all
these sub-models. Tang et al. [19] proposed a similar algo-
rithm to compute approximate LBTS in an asynchronous
way. The thread that has finished the processing of current
safe events for its models will seek to acquire the unique han-
dle to initiate the computation of new approximate LBTS and
then share the LBTS inside the federate. However, these two
methods largely ignore the model structure (could not cap-
ture structure changes) and thus constrain the extraction of
inherent and dynamic parallelism among models, especially
when the lookahead of models differ greatly and the models
are sparsely connected. Some work uses application-specific
information, such as model structure, to improve the per-
formance of conservative algorithms, but they cannot cope
with minor changes to the model [29]. We have not yet seen
application-independent algorithms that are capable of using
model structure to extract the parallelism of models.

Thus a multi-threaded simulator with good time man-
agement algorithms is preferred in order to gain good
performance.

2.3 Load balancing

Load imbalanceonmulti-cores can lead to severe degradation
of the system performance [31], as the risk of blocking fast
LPs for a long time to wait slow LPs greatly increases in con-
servative simulation. Research on load balance of PDES can
be broadly divided into two categories: (1) metrics for detect-
ing load imbalances and deciding about LP movements; (2)
protocols or mechanisms to support load migration.

For the first set, there have been many algorithms [13].
Glazer and Tropper [32] proposed the simulation advance
rate, which is calculated using theCPUallocation and the vir-
tual time advance of processors. Jiang et al. [33] generalized
Glazer’s algorithm by considering heterogeneous proces-
sors and background load. Peschlow’s metric of computation
load [31] depended on the number of events processed and
the effective time advance. The model structure/interaction
can be used to build model groups to facilitate load balanc-
ing [36,37]. Overall, these work largely has an underlying
assumption that the structure of simulation systems does not
change. Structure changes require that loads of new models
are considered and evaluated, and loads of removed models
are neglected, to get a precise load distribution, so current
metrics need to be extended.

123

Cluster Comput

For the second set, comparing with current load balancing
methods among nodes or CPUs, balancing load among cores
allocated to an OSP does not necessarily mean copying and
transferring of model state, as LPs can be created as shared
models inside an OSP. Then the efficiency of load balanc-
ing can be substantially improved with proper algorithms.
A more related work is [30]. Peng et al. [30] proposed a
preliminary load balancing method by transferring the state
of models between threads in an OSP, but this can be time-
consuming when a large number of LPs need to be migrated.

Besides, PDES of CVSSs needs the capability of dynam-
ical addition and release of computing resources. Basically,
the quantity of processor time required to process an event
for a LP may change during the simulation, and so does the
event population. Dynamic addition (or removal) of models
to (from) the simulation system for CVSSs further makes
such functions more significant, because of load changes.
Vitali et al. [27] and Carothers et al. [38] did some useful
work on this aspect, but they did not address the problems
caused by structure changes, for example, how to evaluate
the load of new models and how to detect internal work-
load imbalances caused by a sharp change in the simulation
communication pattern.

To address the above problems, a parallel simulator-Ivy
and a high efficient load balancing method on multi-core
machines are proposed, based on our initial work in [25,39].
Adopting our method, Ivy can support dynamic structure in
a distributed, a centralized, or a hybrid way; deep extraction
of the parallelism between models; and fine-grained parallel
execution of models. Moreover it can migrate unbalanced
load between cores without pausing the whole system and
without copying the state of LPs, and can add or release cores
on demand. The comprehensive experiment shows that our
simulator can achieve better performance.

3 Introduction of Ivy under multi-core
environments

3.1 Basic principles of Ivy

We have proposed a parallel simulator-Ivy under multi-core
environments to enhance the ability to naturally and effec-
tively simulateCVSSswhich are normally large in scale [25].
Component-based models in Ivy’s model base are named
as simulation component models (SCMs), which can be
instantiated with initial parameters into different Compo-
nent Model Instances (CMIs). A standard framework of the
SCM is defined in [25] to guide the implementation of for-
mal SCMs. A standard SCM mainly includes a unique ID,
a user model, common attributes, and management inter-
face. The user model can be any domain model built by
users for their specified business. The common attributes

include input/output ports, simulation time, lookahead, and
input/output/waiting event lists. The management interface
contains the common interface that is necessary for Ivy to
schedule CMIs.

Variable structure of a simulation system includes the
change of model ports, constituent models and connections
between models. Basic principles of structure changes are as
the following.

Different data protocols that a CMI uses to communicate
with others are abstracted as ports, in order to (a) increase
the simulation capability for variable-structure systems, and
(b) loose the coupling between CMIs and improve model
reusability. The port lists and the corresponding operation
methods (addPorts and removePorts in model’s unified man-
agement interface MgrInterface [25]) are formally included
in the model implementation to support variable ports. Via
variable ports, significant changes inside the models can be
signalized to the external world, which is particularly impor-
tant in the molecular biological domain [8].

The interaction between CMIs can be described by ori-
ented connections between ports of CMIs. Directed connec-
tions are independent from model implementations, but it
should be guaranteed that the type of source ports match that
of destination ports. The change of connection relationships
between models can be used to naturally simulate the change
of the system network, which can help to study complex sys-
tems with variable interaction structure.

After all connections related to a model are removed, the
model can be removed to change the component parts of the
simulation system. Similarly, models can join the simulation
if they are created, and the related connections and the model
references are added to the connectionmanagement and Sim-
ulation Engine Instances (SEIs, see Sect. 3.2) respectively.
However, when necessary, some inactive models can be kept
in the heap and later initiated as new models to deal with the
frequent change of models in the system, in order to improve
the performance of dynamic structure simulation.

Example Airplanes will normally fly across different air-
traffic-control areas andneed to interactwith different control
centers to guarantee a safe flight. This can be naturally mod-
eled by changes of connections between airplane models and
control center models (cf. Fig. 1). Airplanes will fly over
an air-traffic-control area when it becomes far enough. If
the attention is paid to the operation of only one air-traffic-
control center, then the airplane models should be added to
or removed from the simulation system.

3.2 Multi-thread execution architecture and life-cycle

The multi-thread execution architecture of Ivy is shown in
Fig. 2. Ivy and models-CMIs compose the simulation sys-
tem. Ivy executes as an OSP, which creates a collection of
thread-level SEIs. One or more CMIs, which are initiated

123

Cluster Comput

Fig. 1 Variable interaction structure

Fig. 2 Multi-thread Execution architecture of Ivy

from the SCM base and allocated to a SEI, form the CMI-
reference list of that SEI. The SEIs are created in the form of
threads to schedule CMIs on their ownCMI-reference list. To
efficiently support simulation of variable structure systems,
Ivy provides five kinds of core services: object management,
connection management, simulation engine instance man-
agement, time management and load balance management,
by making good use of the multi-threaded paradigm and the
communication mechanism based on shared variables. The
main thread controller-actually the main thread of the OSP
is designed to respond to user requests, and to configure and
control the simulation experiment using the above core ser-
vices of Ivy.

The life-cycle of Ivy, represented mainly by the main
thread controller and the SEIs, is discussed as follows:

3.2.1 Main thread controller

Themain thread controller initiates Ivy’s core services,which
play their roles as the following:

(a) Object management loads the SCMs and instantiates
them as the CMIs according to the application demand.
Object management can create or delete the CMIs

dynamically, when the components of the simulation
system needs to be changed.

(b) Connection management initiates the network of the
simulation system by loading the interaction model of
the system and maintains directed connections between
ports of the CMIs.

(c) Simulation engine instance management creates, ini-
tializes, starts, pauses and terminates the simulation
engine instances (SEIs). The SEIs schedule the event-
processing of the CMIs in parallel and are responsible
for passing events according to directed connections.
Time management is utilized to synchronize the CMIs
in the simulation system.

(d) Load balance management migrates the CMIs between
the SEIs, or even employs SEI management to release
certain in-use cores or add additional cores on demand,
in order to improve the efficiency of the collaborative
scheduling of the LPs on cores.

3.2.2 Simulation engine instance (SEI)

Once created, a SEI will schedule the CMIs on its CMI-
reference list repeatedly. The SEI will:

(a) Schedule the next CMI on the list to calculate the LBTS
of theCMI and read safe events from theCMI’s inputList
to waitingList under the control of the LBTS,

(b) Sort events in waitingList of the CMI in time stamp
order,

(c) Schedule the processing of the earliest event in wait-
ingList,

(d) Advance CMI’s simulation time to the timestamp of the
processed event,

(e) Send newly scheduled events caused by event process-
ing to inputList of the destination CMIs, according to
connections.

(f) Repeat step (c)–(e) until no events exist in waitingList,
otherwise go to step (a).

4 Efficient structure change and time management
algorithm

Section 4.1 introduces how dynamic and distributed struc-
ture changes of models are achieved. Section 4.2 presents
the synchronization algorithm for VSP, but we only elab-
orate on how it correctly synchronizes the models, exploits
the fine-grained inherent parallelism between themodels and
achieve the deadlock avoidance, in the static-structure sim-
ulation system. Then based on the results in Section 4.2,
Section 4.3 further discusses how the proposed algorithm and
extramechanismwork inVSP, for example how the deadlock
is avoided in VSP.

123

Cluster Comput

Table 1 Locks used in Ivy

Lock name Locked object Affiliated to Contention by

CRL_RW_lock CMI-reference list SEI MTC, SEIs, LB

IPL_RW_lock input port list CMI MTC, SEIs

OPL_RW_lock output port list CMI MTC, SEIs

IEL_RW_lock input (event) list CMI MTC, SEIs

TV_RW_lock time variable CMI MTC, SEIs

CC_RW_lock CMI connections CM MTC, SEIs

CM connection management, MTC main thread controller, LB load
balance management

Fig. 3 Locks used in Ivy

4.1 Dynamic and distributed structure change

Due to dynamic structure, multiple threads may try to read
and modify the same information of the simulation system
simultaneously, so locks are used to guarantee safe concur-
rent access to the shared resources among threads [25]. We
made some optimizations by redesigning some data struc-
tures and removing some locks based on [25] (Table 1).

The locks (cf. Fig. 3) are used to avoid resource contention.
All these locks are readers-writer locks. A readers-writer
lock allows concurrent access for read-only operations but
requires exclusive access for write operations.

4.1.1 Control of structure change

As shown in Fig. 4, the models in a simulation system can be
divided into several groups, in each of which a control model
of variable structure is responsible for issuing orders of struc-
ture changes. Each SEI acting as a scheduling center for its
CMIs, can execute structure changes under the regulation of
related locks, so the structure can be changed in a distrib-
uted and concurrent way. If only the models (or even only
one model) scheduled by a certain SEI are programmed with

Fig. 4 Distributed control of variable structure

the structure-change ability, then the structure change will
be performed in a centralized way. Another extreme would
be that each model is only responsible for structure changes
related to itself, like an agent in complex systems.

IPL_RW_lock and OPL_RW_lock can ensure safe con-
current access to the input port list and the output port list
respectively. The addition and removal of model ports are
used to simulate the evolving phenomenon of subjects with
new output/input. Port changes can be initiated by the CMI
itself to exhibit internal state changes by different ports (i.e.
reflection [4,8]), or even by other CMIs to exert external
influence.

Connection management uses CC_RW_lock to control
reading and writing operations of connections among mod-
els. Current connections to a CMI are utilized to acquire the
simulation time and lookahead of CMIs on the other side of
those connections to compute the LBTS of that CMI. With
CC_RW_lock, connections can be changedwithout interrupt-
ing the execution of unrelated CMIs, while the potential risk
of access violations is eliminated. When connections are
being changed, read operation will be suspended until the
alteration has been finished and vice versa, but multiple read
operations on connections are allowed.

CRL_RW_lock and certain procedures are proposed to
guarantee the safe removal and addition of CMIs. Three steps
to remove a CMI include: 1) delete the reference of this CMI
from the CMI-reference list of a certain SEI, 2) delete related
connections of the CMI, and 3) delete the CMI. The process
to add a CMI is largely reversed except some special treat-
ment on time management is needed (see Sect. 4.2).

4.1.2 Efficiency and flexibility of variable structure

Our proposed method can achieve smooth and safe structure
changes with little intervention, instead of pausing the whole

123

Cluster Comput

simulation. For large-scale simulation runningon tens or hun-
dreds of computing nodes, this can substantially improve
the efficiency, due to that any unrelated CMI can be sched-
uled normally. As stated in [40], variable structure model can
make the simulation more efficient, due to the focus only on
active models without the burden of all models always active
in the system. However our work is a starting point, more
research effort should be paid to gain higher efficiency.

The method also exhibits good flexibility for users to
simulate the complex system: support both the distributed
way and the centralized way (autonomy and control [41]) to
change model structures. The way and algorithms to control
structure changes are leaved to users. Comparatively, Barros
[6] defined the dynamic structure system network using the
DEVS formalism, but the work based on the vision of an
executive that resides as a kind of all-mighty atomic model
in the coupled model [42], showed limited capability to deal
with complex systems that consist of autonomy entities and is
essentially a centralized mechanism of controlling structure
changes [43].

4.2 Time management algorithm

Only the CMIs that have connections to CMI i currently are
considered to compute LBT S(i), as only the CMIs that send
events to CMI i can affect the time advance of CMI i . The
influence of structure changes on time management is ulti-
mately reflected on the change of connection relationships.
Thus LBT S(i) can be computed, according to the current
connection relationship, as

LBT S(i) = min{T (j) + L A(j)} (1)

in which CMI i receives messages from CMI j , L A(j) is the
lookahead of CMI j , and T (j) is subject to the constraint
(Tc(j) is the current simulation time of CMI j):

T (j) =
{
Tc(j) if processing safe events

LBT S(j) if no safe events
(2)

The transient messages do not exist in Ivy, because the
scheduled events (actually the references to these events) are
directly written into inputList of destination CMIs and the
SEI thread in charge of sending an event will never return
until the write operation is finished.

4.2.1 Correct synchronization of the static-structure model

We will first check whether the above algorithm can cor-
rectly synchronize all CMIs in the static-structure system.
To facilitate the proof, we define the following variables:

Ta : the timestamp of event a sent to CMI i

Tb(i, j): the timestamp of event b sent from CMI i to
CMI j

Tc(i), Tc(j): the current time of CMI i , CMI j
L A(i), L A(j): the lookahead time of CMI i , CMI j
Event b is scheduled by CMI i , after the process of any

event a. Assume b should be sent to CMI j , in other words
CMI j receives messages from CMI i . so

Tc(i) = Ta (3)

Tb(i, j) ≥ Tc(i) + L A(i) (4)

Tc(j) ≤ LBT S(j)

= min{T (m) + L A(m)}
≤ Tc(i) + L A(i) (5)

CMI i advance its current time to Tc(i), after event a is
processed, i.e. Eq. (3). CMI i can only schedule events with
time stamp not less than Tc(i) + L A(i), i.e. Eq. (4).

Because there are no transient messages that arrive with
the past time stamp, and the scheduling of events is con-
strained by Eqs. 1 and 2, so Eq. 5 is correct. m refers to any
model that has connections to model j. So Tb(i, j) ≥ Tc(j),
i.e. CMI j will not receive straggler messages. Then by
processing received events in time order, CMI j conforms
to the local causality constraint [21]. Event a is scheduled
to CMI i , so it can be proofed that CMI i conforms to the
local causality constraint similarly. Thus all CMIs are syn-
chronized in the static-structure system.

4.2.2 Fine-grained inherent parallelism

This algorithm could exploit the parallelism by only taking
into account of relatedmodels through acquiring current con-
nection relations (by connection management) to compute
the LBTS of a model. Traditional conservative algorithms
base on global reductions to derive a unified LBTS, so its
LBT SG equals min{T (j) + L A(j)} , for each model j in
the simulation. Time advance of each model is constraint by
LBT SG , i.e. LBT S(i) = LBT SG . In our method, the SEIs
schedule the LBTS computation for their own models in par-
allel. LBT SIvy(i) = min{T (j)+ L A(j)}, for each model j
whichwill sendmessages tomodel i . Thuswe can derive that
LBT SIvy(i) ≥ LBT S(i) = LBT SG , i.e. our algorithm can
get the fine-grained inherent parallelism to facilitate parallel
scheduling of models.

4.2.3 Deadlock avoidance in the static-structure system

Conservative time management algorithms may lead to a
deadlock, manifesting that some CMIs cannot advance their
local time anymore. During the period between the times
of two consecutive structure changes, the simulation system

123

Cluster Comput

will not change its connections and models. We will first see
the properties of such static-structure system.

Theorem 1 If the system encounters a deadlock, there must
exist cycles.

Proof We assume that there is no cycle in the deadlocked
simulation system. Then the system can be abstracted as
a directed acyclic graph (DAG), in which nodes represent
CMIs and directed connections indicate interaction relation-
ship. The DAG of the simulation system can be topologically
sorted as a linear array, so that if the array is aligned in a row,
all connections (edges) are directed from the left nodes (ver-
tices) to the right ones. The nodes in the n-th position are
denoted as CMI n. Intuitively if the upstream nodes (actually
CMIs) do not stop the time advance, the downstream nodes
will not encounter a deadlock in a DAG using our proposed
algorithm, because the upstream senders (nodes) that eventu-
ally advance their local time make LBTS of the downstream
nodes become larger and larger, so that the downstreamnodes
can also advance to anywhere in the future in a finite amount
of time. We will proof it strictly as the following. ��
Lemma 1 Any CMI n can advance to anywhere in the future
in a finite amount of time, if the simulation is not over.

The lemma can be translated into the mathematic description
as:

Lemma 2 Given any M > 0, a TM, subjected to TM > 0,
can be found, so that after the wall clock time TM, the virtual
time of CMI n, T (n) > M.

Proof Strong induction is used to proof this lemma. ��
Basis: n = 1, CMI 1 has no senders, so LBT S(1) = +∞.
If there are unprocessed events, it is safe to process them
without a deadlock and eventually advance its local time to
anywhere in the future if the simulation is not over. If no
events exist, T (1) = LBT S(1) = +∞. Thus Lemma 2
holds for n = 1.

Induction step: assume Lemma 2 holds for n ≤ m.
When n = m + 1, given any M(m + 1) > 0, LBT S(m +

1) = min{T (h) + L A(h)}, for any upstream CMI h (0 <

h ≤ m) that connects to CMI m + 1.
According to the induction step, for any δ > 0, M(m +

1) + δ > 0, a TM (k) > 0 for each CMI k(0 < k ≤ m) can
be found, so that after TM (k), T (k) > M(m + 1) + δ.

We set T ′
M = Max{TM (k)|0 < k ≤ m}, so after T ′

M ,
T (l) > M(m + 1) + δ, for any CMI l that 0 < l ≤ m.
And we assume that CMI p has the smallest T (p) + L A(p)
among CMI l that 0 < l ≤ m. Then

LBT S(m + 1) = min{T (h) + L A(h)}
� min{T (l) + L A(l)}

= T (p) + L A(p)

> M(m + 1) + δ (6)

so CMI m + 1 can process any events with timestamp less
than M(m+1)+δ. When no events exist, according to Eq. 2
and Ineq. 6,

T (m + 1) = LBT S(m + 1)

> M(m + 1) + δ

> M(m + 1)

Thus for n = m + 1, Lemma 2 holds.
Thus using strong induction, we can infer that the lemma

holds. So for anyCMI, if any event exists, it will be processed
after a finite amount of time. This contradicts to the deadlock
assumption. So alternatively theremust be cycles in the dead-
locked system.

Lemma 3 Upstream nodes not on cycles can advance to
anywhere in the future in a finite amount of time.

Proof These nodes and their upstream nodes consist of a
DAG, so the lemma can be deduced from lemma 1. ��
Theorem 2 With our time algorithm there is no deadlock on
cycles.

Proof Assuming that there are unprocessed events, and one
of the earliest events is contained in CMI i . Due to the
constraint of LBTS, no event can be safely processed. So
T (k) = LBT S(k) = min{T (l) + L A(l)}, for any CMI k on
cycles. When deadlocking,

LBT S(i) = min{T (j) + L A(j)} j→i

= T (k) + L A(k)

= min{T (l) + L A(l)}l→k + L A(k)

= · · ·
= LBT S(i)latest + L A(m) + · · · + L A(k) (7)

Because all the upstream nodes can have enough big LBTS
after some time, so when deadlocking, all CMI j in Eq. 7
belongs to the cycles. Due to finite nodes on the cycles,
the node that determines the time advance of its direct
downstream nodes can be ultimately traced to CMI i itself.
If any CMI on the cycle has L A(j) > 0, LBT S(i) can
increase gradually and its unprocessed events will certainly
be processed after some time. Thus the earliest time of events
on the cycles increases. This contradicts with the assumption
that the system is deadlocked. So no deadlock exists on the
cycles. We can infer from the process of proof that this effi-
cient algorithm has the same restriction as the null message
algorithm: there should be no zero-lookahead cycle [21]. ��

123

Cluster Comput

Theorem 3 Downstream nodes will not encounter a dead-
lock.

Proof Due to the incremental simulation time of nodes on
the upstream and cycles, it can be easily inferred that with
enough time advance of nodes on the upstreamand cycles, the
downstream nodes can process any future event. So Theorem
3 holds. ��

If all the nodes do not have events to be processed, then
the simulation ends. Otherwise all the nodes can process any
future event after a finite amount of time, i.e. the simulation
system adopting our time management algorithm can avoid
the deadlock.

4.3 Relations between time management and dynamic
structure

Connection relations are the core part of the time manage-
ment shown in Sect. 4.2, as the algorithm acquires the set of
models-CMI j only through directed connections. The set of
models-CMI j in the Eq. 1 may change, due to the change
of connections.

4.3.1 Dynamic parallelism

When the interaction structure changes, new parallelism (we
call it dynamic parallelism) may emerge. For example, when
an airplane flies over an air control area, the interaction
between the airplanemodel and the control centermodel does
not exist anymore, and thus the two models can be scheduled
totally in parallel. Our algorithm deals with such situation in
the way that if some connections to CMI i are removed, the
CMIs on the other side of these connections are no longer
considered to compute LBT S(i), so that such dynamic par-
allelism between CMI i and other CMIs can be naturally
acquired. The effects of removing the CMIs on time syn-
chronization are indirectly exerted by the removal of related
connections. The removal of senders (CMIs) or connections
only makes time constraint on recipients (CMIs) relaxed, so
the normal scheduling of recipients is not influenced.

4.3.2 Special treatment on new connections

The removal of connections or models increases the paral-
lelism between models, while the addition of connections
or models might bring straggler events or lead to sudden
decreases of the LBTS of the downstream models. Actually,
an optimistic algorithm can deal with straggler events by
the rollback mechanism to guarantee strict synchronization,
but it is impractical for many reasons (see Sect. 1). Nor-
mally, in conservative simulation either receivers or senders
are constrained to eliminate straggler events [21]. In the first

approach, receivers are prevented from advancing too far
ahead of all potential sending models, so that receivers will
not receive messages in their past. However, the assump-
tion of this method is that we know all potential senders
for any receiver in advance. Even if such assumption holds,
receivers will advance slowly by taking account of all poten-
tial senders. The window-based method described in [21] is
an extreme of this approach by introducing a time window
of size Tw to prevent any LP from advancing more than Tw

units of time ahead of any other LP. The second approach
allows LPs with greater flexibility to advance further ahead
of others but provides less control due to, in general, no limit
on how large TR − TS (the initial lookahead on the new con-
nection) can be [21], but lookahead has to be changed to the
normal value after the initial transition period. Rajaei et al.
[44] proposed an idea by delaying the timestamp of strag-
gler messages (to be not smaller than the current time of the
receivers-CMIs) without the modification of lookahead.

Comparatively, we define two kinds of events: the essen-
tial and the non-essential events. The essential events can
exert significant effects on other models, while the non-
essential events are kinds of events that can be discarded like
in the parallel discrete event simulation of continuous sys-
tems [20], for example the periodical state-reporting events.
Events with time stamp less than the simulation time of a
CMI can either be adopted by delaying its time stamp like
in [44] (or even NOTIME, NOTIME which accepts strag-
gler events as correct is another extreme algorithm without
any synchronization [45].) or simply be discarded accord-
ing to the tag that denotes the significance of the event. Our
algorithm leaves this kind of decisions to users and Ivy can
automatically dispose straggler events when reading input
events of a model.

A more recent method [20] only stores the straggler event
with the latest timestamp for each input port of a LP and the
arrival of a new message will override the event no matter if
the LP was able to read it or not. Ivy can also support this
method simply by removing straggler input events except the
latest one when reading the input events from inputList for a
LP.

The effect caused by a sudden decrease of LBTS of down-
streammodels can be eliminated by discarding the decreased
LBTS and keeping the old one.When the smaller LBTS is not
accepted, the corresponding CMI will not be able to advance
and will wait until its new senders advance to proper time
(under the constraint of Eq. 1). Time advance of the new
CMIs is driven by the processing of received events.

4.3.3 Deadlock avoidance in the dynamic-structure
simulation system

Section 4.2 presents that our time management algorithm
can guarantee the deadlock avoidance of static-structure

123

Cluster Comput

simulation systems, which can actually be considered as
variable-structure systems during the period between two
consecutive structure changes. After new connections or
models are added, the immediate downstreammodelsmay be
affected, not being able to get a bigger LBTS to advance their
simulation time by processing future events. But once the
structure has changed and before the next structure change
happens, no matter where the earliest events exist (on the cir-
cle or not), the minimal simulation time (or exactly LBTS)
of all models in the simulation system, behaving like a static-
structure system, will continue to advance in order to process
the earliest events, so the variable structure system adopting
our time management algorithm can avoid the deadlock nat-
urally.

5 Dynamic load balancing of variable structure
simulation systems

5.1 Dynamic load balancing mechanism

Two mechanisms are proposed to achieve high efficient load
balancing (as shown in Fig. 5): an efficient mechanism for
load migration and a mechanism that supports dynamic allo-
cation of computing resources. The latter one is mostly
neglected by researchers, but it can achieve high utility of
computing resources and substantially increase the perfor-
mance of simulation systemswith obvious structure changes,
as dynamic structure (changes of constituent models, inter-
action structure and model ports) can cause changes of the
communication or/and computation load on computing facil-
ities, and allocating fewer cores may greatly decrease the
synchronization cost when there exist fewer models, or allo-
cating more cores may increase the speed to simulate more
models.

Our basic idea of the first mechanism is to separate the
necessary elements to schedule a model from the threads, so
that load migration can be easily realized when the model as
a whole is migrated. When a model is scheduled, four kinds

Fig. 5 High efficient load balancing strategy

of elements are tightly related, (1) input events, (2) current
simulation time, (3) LBTS, and (4) output destinations of
events. The input event queue inputList, current simulation
time andLBTS of themodel aremaintained inside themodel,
so the first three kinds of the related elements can bemigrated
with models.

The CMIs and connections are shared among all threads
(SEIs) in the OSP (Ivy). Each SEI maintains a list of CMI
references (cf. Figs. 2, 3). The CMIs can be accessed using
these references, so that the CMIs can be traversed by a SEI
to schedule LBTS computing, processing of safe events and
event output in each simulation cycle. The LBTS computa-
tion for a model is decided by the CMIs that connect to this
model. With the help of shared connections, the information
of the sender CMIs can be acquired to compute the LBTS
and the events are output by directly inserting event refer-
ences into the input event queue of the destination CMIs.
Thus we can see that the scheduling of migrated models is
not affected, except for a short pause of their execution. So
the migration of models is simplified as the removal of CMI
references from the source SEIs and the addition of CMI
references to the destination SEIs.

Operations on the list of model references are controlled
by the readers-writer lock CRL_RW_lock. Once the next
model reference on the list is got, the SEI will release the
reader lock of CRL_RW_lock to schedule the model, and
then load balance management can get the writer lock and
modify the list before the SEI returns to get the reader lock of
CRL_RW_lock. So it is possible that the migration of models
can be done without interrupting the normal scheduling of
models. During the migrating process, there is a short inter-
val when models are removed from the source SEI and not
added to the destination SEI. However, due to the shared con-
nections, messages are normally received without the loss of
message and the computation of LBTS for receivers is not
affected. Thus the proposed load migration mechanism can
be a high efficient way for migration of models without paus-
ing the whole system, and without copying and transferring
of the model state.

Our method to achieve dynamic resource allocation is to
create new SEI threads or delete old SEI threads on cores.
As for decreasing the occupied computing resource, the first
step is to migrate models from SEIs to be deleted, and then
the redundant SEIs can be safely removed. In order to allo-
cate more computing resource, SEI management need create
new SEI threads first and then load balance management
would migrate models to the new SEI threads. Such adjust-
ing processes can be executed dynamically, which would
raise the efficiency of the simulation execution with little
intervention. Our method enables good scalability and can
cope effectively with the changing demand for the comput-
ing resource.

123

Cluster Comput

5.2 Load balancing algorithm

In themulti-core era, the inter-thread communication is extra-
ordinarily fast (the delay is in the nanosecond range [46]),
thus the computation speed of CMIs becomes a primary
affecting factor and the communication requirement is taken
into consideration as a secondary optional factor.

Peschlow et al. [31] and Jiang et al. [33] did some useful
work on load balancing in common PDES. Inspired by their
work, a metric for fine-grained component models is pro-
posed by considering the processing time of events. During
amonitoring interval, TMtr , the event set evt Set (m) for CMI
m is

evt Set (m) = {evti |timestamp(evti) ∈ TMtr,

evti ∈ sa f eEvent List (m)}. (8)

Events in evt Set (m) are processed and Advancem is the sim-
ulation advance of the simulation time of CMIm. The load of
CMIm is ameasure of the amount of the CPU time it needs to
advance its local simulation clock one unit.We consider only
homogeneous cores in the multi-core machines, because the
metric for heterogeneous cores can be easily deduced like
the method in [33].

Loadm = CPUm

Advancem

=
∑

evti∈evt Set (m) CPUm(evti)

Advancem
(9)

The load metric of LPs in [31] can be deduced by setting
CPUm(evti) as one to get the number of events a LP has exe-
cutedwithin themeasurement interval. However, suchmetric
in [31] cannot reflect the real LP load when the processing of
individual events needs very different CPU time. Assuming
that there exist LPs whose total number is M in the monitor-
ing interval, and M ′ in the next interval, the mean load of the
LPs and the future total load in the next interval are defined
as:

MEAN =
∑M

m=1 Loadm
M

(10)

LPsLoad = ∑M ′
m=1 Loadm (11)

The load of a new CMI is evaluated as the same as that of a
CMI that have the same template SCM, or else is evaluated
as MEAN . So the future load is the sum of all CMIs in the
system as Eq. 11. In order to reduce the time cost of dynamic
instantiation of the SCMs, certain number of CMIs can be
kept in the system (but not in the simulation) and reused in
the simulation after re-initialized. This leaves as the future
work.

The algorithm can be configured, according to the follow-
ing two situations.

5.2.1 Resource-constrained dynamic load balancing

It is highly possible that the available cores are limited, due
to the background load of other applications, when the com-
putational infrastructure is not dedicated. Due to fluctuations
of the background load, the available cores change over time,
indicated in Eq. 12. The load distribution of the simulation
also changes because of the variation of the system con-
stituents, reflected in Eq. 11, so the load balancing should
also proactively eliminate such possible imbalance.

The ratio of the CPU allocation by processor n to the total
CPU allocation is

FRACn = E f f C PUn

E f f C PU
= E f f C PUn∑N

j=1 E f f C PU j
(12)

Thus the load undertaken by processor n is defined as

CoreAllocn = FRACn × LPsLoad. (13)

This is a classical bin-packing problem thatmany bin pack-
ing algorithms can be employed, such as [33–35]. We have
implemented one bin-packing algorithm described in [33].

5.2.2 Dynamic load balancing with ample resources

For the multi-core machine with enough available cores,
cores can be allocated exclusively to the SEI threads. How-
ever, too many cores may lead to costly communication
overhead, as the wide distribution of LPs (extreme: each
LP allocated to one core exclusively) make the inter-core
communication increase greatly and the inter-core communi-
cation brings higher latency and overhead than the intra-core
communication. More cores also mean it takes less average
time to process an event, so the communication delay and
overhead become obvious. Thus communication should not
be neglected any more.

With the help of connection management, a SEI will
schedule its CMIs to pass events to destination CMIs. During
this process, the number of events sent between LPs can be
naturally acquired to compute Eqs. 16 and 17. These data
are used to reduce the communication cost on the basis of
computation load balance. The size of events is generally
overlooked, because the communication delays are more or
less the same using the shared-variable communication.

RatioSyncCost = CommCPU

E f f C PU

= E f f C PU − ∑M
m=1 CPUm

E f f C PU
(14)

123

Cluster Comput

where RatioSyncCost indicates the ratio of the communica-
tion cost to the whole cost of CPU.

minCost =wcomm × Comm′

Comm
× CommCPU

+ wcomp × Load ′

Load
× CPU

CPU ′ (15)

Commm→n = LpEventsm→n

Advancem
(16)

Commm,n = Commm→n + Commn→m (17)

Comm = ∑(SE Ii ,SE I j)
CMIm∈SE Ii ,CMIn∈SE I j

Commm,n (18)

{Comm, Load,CPU } and {Comm′, Load ′,CPU ′} are the
states of the simulation system before and after dynamic
balancing. Comm and Comm′ denote the total inter-thread
communication by considering interactions between LPs in
different SEI threads. Because of only one single thread for
each SEI, little communication cost between LPs in one SEI
can be achieved.

RatioSynCost can be set before the simulation to indi-
cate the acceptable threshold of the communication cost.
When the threshold is exceeded, the load balancing service
considering both computation and communication is started
up. A large number of modern computational intelligence
methods can be employed to achieve minimal cost in Eq. 15.
The values of weights and depend on the simulation applica-
tion type (computation or communication intensive) and can
be assigned using experimental methods or machine learning
methods.

6 Experiment and analysis

According to the standard interface defined in [25], the port
alteration methods are encapsulated inside the model as the
unique entry to modify ports, so naturally variable ports can
be supported. Our initial application (Fig. 6) [25], in which a
tanker aircraft and several normal planes fly in formation to
one remote place has validated our methods on the removal
and addition of connections andmodels. The situation is that:
when a normal plane does not receive oil refueling in time,
it would land emergently on a nearby airport (exit from the
formation fly) and should be removed from the simulation
system; before it lands, it will request for reinforce-a new
normal plane nearby will join. We do not explain the detailed
support of structure changes in this section any more.

The following section demonstrates another application
and its experiment results, based on Ivy. Ivy along with
the load balancing strategies has been tested to acquire its
performance on a common simulation system and a variable-
structure simulation system using a typical scenario of the air
traffic control system.

Fig. 6 An example application of the formation flight

6.1 Simulation models

The simulation models are built to simulate the scenario that
multiple teams of controllers in a major airport direct hun-
dreds of airplanes to land or take off. Each team is in charge
of airplanes in certain sector airspace that can be scanned
with radars. The airplanes enter or depart from the controlled
airspace when their distances with the control tower are less
or more than 80km. The simulation for this scenario includes
the change of airplane models and related connections in the
simulation system. The simulation system consists of one
scheduling center, several teams of controllers and hundreds
of airplanes. The landing or taking-off plan of airplanes are
made by the scheduling center. Multiple teams of controllers
are responsible for coordination between airplanes and the
scheduling center. The airplanes are randomly generated and
they join the simulation to simulate the entrance of airplanes
into the controlled airspace. After landing, the airplane will
stay in the airport for different time intervals, take off and
ultimately depart from the controlled airspace, which is sim-
ulated by the removal of airplane models. The time interval
is drawn from the same normal distribution with a standard
deviation of 10%. The constituents and the interaction struc-
ture of the whole simulation system can be abstracted as
Fig. 7.

6.2 Testing environment and results

All experiments were performed on a high performance
multi-core machine with four way 3.07GHz Intel Xeon
CPU X5657, 24G RAM to test our work on the capabil-
ity of dynamic structure and load balancing among cores.
Each CPU contains six cores, so 24 independent threads
at most can be created to execute exclusively on different
cores. We have created 500 entities including one schedul-
ing center model, four team models and 495 airplanes. The

123

Cluster Comput

Fig. 7 Model of the air traffic control in an airport

event-processing time for models was randomly generated
among [1, 100ms] and saved to simulate different computa-
tion requirements of event processing. Ivy and 500 models
executed as anOSPholding 4, 8, 12, 16 and20 threads respec-
tively on the dedicated multi-core machine. The system ran
for the wall-clock time 10h each. Two kinds of conditions
are set, (1) the system constituents of the system is do not
changed during the system execution; (2) the system con-
stituents of the system is changed dynamically. Because there
are enough available cores, the secondmethod is adopted and
the values of weights wcomm and wcomp are firstly set as 1
and 10 respectively according to our empirical analysis. The
cores allocated to the simulation are not changed in this test.
The comprehensive experiment covering more applications
with the function of dynamic core allocation is the next focus
of our work.

6.2.1 Load balancing of the normal simulation system

At the beginning, models are scattered evenly among threads
on cores. We set the radius of the controlled airspace as
an extraordinarily big value. The airplanes are generated
at the beginning and randomly distributed in the controlled
airspace, so that during the experiment, the constituents
and interaction structure of the simulation system were not
changed. The results of the experiments with/without load
balancing are shown in Fig. 8.

Comparing with the results of the experiments with-
out load balancing, the average performance by adopting
our load balancing method has been improved by 16.05%
(cf. Table 2). With the increase of the thread number, our
algorithm can achieve better performance, because load bal-
ancing is increasingly important when there exist many
collaborative working threads and the efficiency can be
extremely low when the load discrepancy is large. Thus we
can see that adopting our balancing method can upgrade the
performance of the common simulation system.

Fig. 8 Experiment results of common simulation

Table 2 The performance improvement

System
configuration

Thd 4 Thd 8 Thd 12 Thd 16 Thd 20 Aver

Performance
improvement

0.0868 0.1610 0.1769 0.1861 0.1918 0.1605

Fig. 9 Experiment results of variable structure simulation

6.2.2 Load balancing of the dynamic-structure simulation
system

To enable variable structure, the radius of the controlled
airspace was set as a normal value-80km. The airplanes were
created to join the simulation and deleted from the simula-
tion dynamically. The airplane would fly in the controlled
space and stay in the airport after landing. The comparing
experiment results are shown in Fig. 9.

From Table 3, we can infer that our method works well
as the number of cores increases. Comparing with the results

123

Cluster Comput

Table 3 The performance improvement

System
configuration

Thd 4 Thd 8 Thd 12 Thd 16 Thd 20 Aver

Performance
improvement

0.1352 0.1974 0.2695 0.2848 0.2795 0.2333

of the experiments without load balancing, the average per-
formance improvement through adopting our load balancing
method can be 23.33%, which is better than the results for
the normal simulation system.With the increase of the thread
number, our algorithm can achieve better performance.
Thus we conclude that adopting our balancing method can
upgrade the performance of the variable-structure simulation
system.

6.3 Comparison with other implementations

We further compare our simulator with ROSS-MT [16],
NTW-MT [17], Adevs [11] based on dynDEVS and DEVS-
JAVA3.0 based on [7] in terms of runtime model structure,
scheduling of models, variable-structure capability, and load
balancing in Table 4. As for the runtime model structure,
only Adevs [11] and Ivy adopt the flattened one, which
can improve efficiency by (1) eliminating unnecessary sim-
ulator and coordinator objects, and unnecessary internal
synchronization messages, and (2) avoiding unnecessary
event routing messages. From the perspective of time man-
agement algorithm, ROSS-MT and NTW-MT use optimistic
and global induction based time warp mechanism, which
does not consider the model structure. Adevs and DEVS-
JAVA3.0 are conservative and DEVS based, in which the
model structure is only used to compute the global LBTS.
In constrast, Ivy which is conservative, uses the model
structure to extract the inherent parallelism by considering
the related “sender” models only and naturally capture the
dynamic parallelism caused by the change of interaction
relations, to facilitate the parallelization of model execu-
tions (see Sects. 4.2 and 4.3). Concerning the scheduling of
models, Ivy, ROSS-MT, and NTW-MT adopting the multi-
thread paradigmcan fully exploitmulti-coremachines by fast
communication (e.g., using shared parameters and events,
or pointers between threads). Ivy can further use the fine-
grained (higher) parallelism to increase the performance.
Moreover, Ivy’s timemanagement algorithm is implemented
in a fully decentralized way, as SEIs will schedule each CMI
to compute its LBTSwhen the CMI does not have safe events
to process. In the case of variable-structure capability, only
DEVSJAVA3.0 and Ivy can comprehensively support the
change of constituent models, model ports and connections.
As for the load balancing ability, ROSS-MT, NTW-MT and
Adevs do not support load balancing (at least, we have not Ta

bl
e
4

C
om

pa
ri
so
n
be
tw
ee
n
si
m
ul
at
or
s
th
at
su
pp
or
tv

ar
ia
bl
e
st
ru
ct
ur
e

It
em

R
O
SS

-M
T

N
T
W
-M

T
A
de
vs

D
E
V
SJ
A
V
A
3.
0

Iv
y

R
un

tim
e
m
od

el
st
ru
ct
ur
e

Fl
at
te
ne
d

Fl
at
te
ne
d

Fl
at
te
ne
d

H
ie
ra
rc
hi
ca
l

Fl
at
te
ne
d

T
im

e
m
an
ag
em

en
t

al
go
ri
th
m

O
pt
im

is
tic

,g
lo
ba
li
nd

uc
tio

n
ba
se
d,

ig
no
ri
ng

in
te
ra
ct
io
n

st
ru
ct
ur
e

O
pt
im

is
tic

,g
lo
ba
li
nd

uc
tio

n
ba
se
d,

ig
no
ri
ng

in
te
ra
ct
io
n

st
ru
ct
ur
e

C
on

se
rv
at
iv
e,
us
in
g

in
te
ra
ct
io
n
st
ru
ct
ur
e
to

do
gl
ob
al
in
du
ct
io
n

C
on

se
rv
at
iv
e,
us
in
g

hi
er
ar
ch
ic
al
st
ru
ct
ur
e
to

do
gl
ob
al
in
du
ct
io
n

C
on

se
rv
at
iv
e,
fu
lly

di
st
ri
bu
te
d,

ex
pl
oi
tin

g
m
od
el
st
ru
ct
ur
e

Sc
he
du

lin
g
of

m
od

el
s

Pa
ra
lle

lb
y
us
in
g
th
re
ad
ed

pr
oc
es
se
s

Pa
ra
lle

lb
y
us
in
g
th
re
ad
ed

pr
oc
es
se
s

Pa
ra
lle

lb
y
us
in
g
th
re
ad
ed

pr
oc
es
se
s

Pa
ra
lle

lb
y
us
in
g
th
re
ad
ed

pr
oc
es
se
s

H
ig
hl
y
pa
ra
lle

lb
y
us
in
g
th
re
ad
s

an
d
ex
tr
ac
te
d
pa
ra
lle

lis
m

V
ar
ia
bl
e-
st
ru
ct
ur
e
ab
ili
ty

N
o
su
pp
or
t

N
o
su
pp
or
t

V
ar
ia
bl
e
m
od
el
s
(s
ta
tic

po
rt
s)
,

co
nn
ec
tio

ns
V
ar
ia
bl
e
m
od

el
s
(v
ar
ia
bl
e

po
rt
s)
,c
on
ne
ct
io
ns

V
ar
ia
bl
e
m
od

el
s
(v
ar
ia
bl
e

po
rt
s)
,c
on
ne
ct
io
ns

L
oa
d
ba
la
nc
in
g

N
o
su
pp
or
t

N
o
su
pp
or
t

N
o
su
pp
or
t

Pa
rt
su
pp
or
t

Fu
ll
su
pp
or
t

123

Cluster Comput

seen the related literature). DEVSJAVA3.0 supports model-
continuity for automatic migration to distributed execution,
but the method of migrating models is not fully optimized
to make full use of multi-core architecture. Also it is not
able to evaluate the load of new models and neglect the load
of removed models, after the structure change. Compara-
tively, Ivy can fulfill such gap. Overall, Ivy has advantages
on several aspects to perform the simulation of large-scale
CVSSs efficiently.More detailed comparisons of experimen-
tal results between these simulators are leaved as our next step
work.

7 Conclusions and remarks

In this paper, an advanced parallel simulator with load bal-
ancing strategies is proposed to support large-scale variable
structure simulation. To substantially improve the capacity of
simulating large-scale CVSSs, four aspects of contributions
are made:

– Support flexible structure changes of the simulation sys-
tem A natural and effective method for building modular
models of the CVSSs and a corresponding lock-based
concurrent execution approach are proposed, so that
safe, flexible and dynamic structure changes of the
coupled model, with little intervention to the simula-
tion execution, are achieved. The changes of model
ports, connections and composition are comprehen-
sively supported. Readers-writer locks are employed to
guarantee the safe concurrency among all operations
related to distributed structure changes and trajectory
simulations.

– Exploit the parallelism to a large extent between sim-
ulation models We propose a connection-based time-
management algorithm that can extract the inherent
parallelism by considering the related “sender” mod-
els only and naturally capture the dynamic parallelism
caused by the interaction structure change, to facili-
tate the parallel execution of models. Then the algo-
rithm’s ability to correctly synchronize all models is
proofed. Using the strong induction, we further proof
that the algorithm enables deadlock-free scheduling of
models.

– Take full advantage of multi-core machines The multi-
threaded paradigm is adopted to substantially utilize
abundant computing cores and low communication
latency among cores, in order to efficiently schedule sim-
ulation models in fine-grained parallel.

– Guarantee the load balance among tens or hundreds
of cores We propose an efficient dynamic load balanc-
ing method, which can migrate models among cores
with very low cost (only migrating model references)

and change the set of cores utilized by the simulation
dynamically on demand, to address the load imbalance
problems of variable-structure simulation. Using the pro-
posed method, the unrelated SEIs are not interrupted to
schedule their models. Structure changes are considered
in the load balancingmetrics, e.g. evaluating loads of new
models, to get the exact the computation/communication
load of variable structure simulation.

Based on our developed simulator Ivy and the load bal-
ancing strategies, an application example is given. The
simulation results show that our methods (flexible structure-
change mechanism, dynamic-parallelism extraction, fine-
grained parallelization on multi-cores and efficient load
balancing strategies) can greatly improve the performance.
More application examples need to be implemented to help
identify and eliminate the bottlenecks, in order to gain higher
performance.

VSP can also bring another important capability - open-
ness for users to adjust scenarios during simulation execu-
tions. Traditionally, scenarios predetermine the structure of
simulation systems. Some skilled practitioners code condi-
tional structure changes into models, but this makes for a
less elegant and coherent model design, and makes the run-
time human-machine interaction to change model structure
difficult to realize. To change the model structure, accord-
ing to intermediate results, is critical for simulations of
CVSSs. Our work can make structure changes convenient
and efficient to realize. We can imagine the situation that
users change the parameters and structure of the simula-
tion system when necessary, to make the simulation more
powerful.

Prospective applications can be the design simulation of
variable structure computers [47,48], which utilize the same
hardware in a variety of special purpose structures to achieve
performance and economic gains, and internetware [49],
which is constructed by a set of autonomic software entities
distributed over the Internet and a set of connectors enabling
the collaboration among these entities. Our method can also
be extended to support multi-resolution simulation and on-
line simulation, such as symbiotic simulation [50], dynamic
data-driven simulation [51], cyber-physical simulation [52],
to change the structure of simulation models dynamically.
For example, equippedwith proper algorithms steering adap-
tive resolution and consistency maintenance, our work can
be adapted to support dynamic switching among 3D models
with different levels of details according to metrics such as
object importance and viewpoint, in the area of dynamic data
driven animation [53].

Acknowledgments This work is financially supported by National
Key Lab in Intelligent Manufacturing System Technology of Complex
Product and the National 863 Plan (2015AA042101), China.

123

Cluster Comput

References

1. Holland, J.H.: Studying complex adaptive systems. J. Syst. Sci.
Complex. 19(1), 1–8 (2006)

2. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-
organization in multi-agent systems. Knowl. Eng. Rev. 20(02),
165–189 (2005)

3. Anderson, P.: Perspective: complexity theory and organization sci-
ence. Organ. Sci. 10(3), 216–232 (1999)

4. Uhrmacher, A.M.: Dynamic structures in modeling and simula-
tion: a reflective approach. ACM Trans. Model. Comput. Simul.
(TOMACS) 11(2), 206–232 (2001)

5. Zeigler, B.P., Praehofer, H.: Systems theory challenges in the sim-
ulation of variable structure and intelligent systems. In: Computer
Aided Systems Theory EUROCAST’89, pp. 41–51 (1990)

6. Barros, F.J.: Modeling formalisms for dynamic structure systems.
ACM Trans. Model. Comput. Simul. (TOMACS) 7(4), 501–515
(1997)

7. Hu, X., Zeigler, B.P., Mittal, S.: Variable structure in DEVS
component-basedmodeling and simulation. Simulation. 81(2), 91–
102 (2005)

8. Uhrmacher, A.M., Himmelspach, J., Rohl, M., et al.: Introducing
variable ports and multi-couplings for cell biological modeling in
DEVS. In: Proceedings of the Winter Simulation Conference, pp.
832–840 (2006)

9. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. Academic Press, New York (2000)

10. Zacharewicz, G., Hamri, M.E.A., Frydman, C., et al.: A general-
ized discrete event system (g-DEVS)flattened simulation structure:
application to high-level architecture (HLA) compliant simulation
of workflow. Simulation 86(3), 181–197 (2010)

11. Muzy, A., Nutaro, J.J.: Algorithms for efficient implementations
of the DEVS and DSDEVS abstract simulators. In: 1st Open Inter-
national Conference on Modeling and Simulation (OICMS), pp.
273–279 (2005)

12. Robson, E., Boukerche, A.: Dynamic balancing of communication
and computation load for HLA-based simulations on large-scale
distributed systems. J. Parallel Distrib. Comput. 71(1), 40–52
(2011)

13. Gan, B.P., Low, Y.H., Jain, S., et al.: Load balancing for conser-
vative simulation on shared memory multiprocessor systems. In:
Proceedings of Fourteenth Workshop on Parallel and Distributed
Simulation, pp. 139–146 (2000)

14. Biswas, R., Aftosmis, M.J., Kiris, C., et al.: Petascale computing:
impact on future NASA missions. In: Bader, D. (ed.) Petascale
Computing: Architectures and Algorithms, pp. 29–46. CRC Press,
Boca Raton (2007)

15. Habata, S., Yokokawa, M., Kitawaki, S.: The earth simulator sys-
tem. NEC Res. Dev. 44(1), 21–26 (2003)

16. Wang, J., Jagtap, D., Abu-Ghazaleh, N., et al.: Parallel discrete
event simulation formulti-core systems: analysis and optimization.
IEEE Trans. Parallel Distrib. Syst. 25(6), 1574–1584 (2014)

17. Lin, Z., Tropper, C., Ishlam Patoary, M.N., et al.: NTW-MT:
a multi-threaded simulator for reaction diffusion simulations in
NEURON. In: Proceedings of the 3rd ACM Conference on
SIGSIM-Principles ofAdvancedDiscrete Simulation, pp. 157–167
(2015)

18. Bauer, P., Lindn, J., Engblom, S., et al.: Efficient inter-process syn-
chronization for parallel discrete event simulation on multicores.
In: Proceedings of the 3rdACMConference on SIGSIM-Principles
of Advanced Discrete Simulation, pp. 183–194 (2015)

19. Tang, W., Yao, Y., Zhu, F.: A hierarchical parallel discrete event
simulation kernel for multicore platform. Clust. Comput. 16(3),
379–387 (2013)

20. Bergero, F., Kofman, E., Cellier, F.: A novel parallelization tech-
nique for DEVS simulation of continuous and hybrid systems.
Simulation 89(6), 663–683 (2012)

21. Fujimoto, R.M.: Parallel and Distributed Simulation Systems.
Wiley, New York (2000)

22. Himmelspach, J., Uhrmacher, A.M.: Processing dynamic PDEVS
models. In: The IEEE Computer Society’s 12th Annual Inter-
national Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems, pp. 329–336
(2004)

23. Muzy, A., Zeigler, B.P.: Specification of dynamic structure discrete
event systems using single point encapsulated control functions.
Int. J. Model. Simul. Sci. Comput. 5(03), 1450012 (2014)

24. Barros, F.J.: On the representation of dynamic topologies: the case
for centralized and modular approaches. In: Proceedings of the
Symposium on Theory of Modeling and Simulation-DEVS Inte-
grative, p. 40 (2014)

25. Yang, C., Li, B.H., Chai, X., et al.: Ivy: a parallel simulator for
variable structure systems under multi-core environments. Int. J.
Serv. Comput. Oriented Manuf. 1(2), 103–123 (2013)

26. Miller, R.J.: Optimistic Parallel Discrete Event Simulation on a
Beowulf Cluster ofMulti-coreMachines. University of Cincinnati,
Cincinnati (2010)

27. Vitali, R., Pellegrini, A., Quaglia, F.: Load sharing for optimistic
parallel simulations on multi core machines. ACM SIGMETRICS
Perform. Eval. Rev. 40(3), 2–11 (2012)

28. Chen, L., Lu, Y., Yao, Y., et al.: A well-balanced time warp system
on multi-core environments. In: Proceedings of the 2011 IEEE
Workshop on Principles of Advanced and Distributed Simulation,
pp. 1–9 (2011)

29. Jafer, S., Liu, Q., Wainer, G.: Synchronization methods in paral-
lel and distributed discrete-event simulation. Simul. Model. Pract.
Theory 30, 54–73 (2013)

30. Peng, Y., Cai, Y., Zhong, R.H., et al.: Parallel framework for HLA
federate oriented to simulation component on multicore platform.
Ruanjian Xuebao/J. Softw. 23(8), 2188–2206 (2012)

31. Peschlow, P., Honecker, T., Martini, P.: A flexible dynamic parti-
tioning algorithm for optimistic distributed simulation. In: Proceed-
ings of the 21st International Workshop on Principles of Advanced
and Distributed Simulation, pp. 219–228 (2007)

32. Glazer,D.W., Tropper,C.:Onprocessmigration and load balancing
in time warp. IEEE Trans. Parallel Distrib. Syst. 4(3), 318–327
(1993)

33. Jiang, M.R., Shieh, S.P., Liu, C.L.: Dynamic load balancing in
parallel simulation using time warp mechanism. In: International
Conference on Parallel and Distributed Systems, pp. 222–227
(1994)

34. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks.
ACM Comput. Surv. (CSUR) 3(2), 67–78 (1971)

35. Lewis, R.: A general-purpose hill-climbing method for order inde-
pendent minimum grouping problems: a case study in graph
colouring and bin packing. Comput. Oper. Res. 36(7), 2295–2310
(2009)

36. Som, T.K., Sargent, R.G.: Model structure and load balancing in
optimistic parallel discrete event simulation. In: Proceedings of the
Fourteenth Workshop on Parallel and Distributed Simulation, pp.
147–154 (2000)

37. D’Angelo, G., Bracuto, M.: Distributed simulation of large-scale
and detailed models. Int. J. Simul. Process Model. 5(2), 120–131
(2009)

38. Carothers, C.D., Fujimoto, R.M.: Efficient execution of time warp
programs on heterogeneous, NOW platforms. IEEE Trans. Parallel
Distrib. Syst. 11(3), 299–317 (2000)

39. Yang, C., Li, B.H., Chai, X., et al.: An efficient dynamic load
balancing method for simulation of variable structure systems.

123

Cluster Comput

In: 2013 8th EUROSIM Congress on Modelling and Simulation
(EUROSIM), pp. 525–531 (2013)

40. Sun, Y., Hu, X.: Performance measurement of dynamic structure
DEVS for large-scale cellular space models. Simulation 85(5),
335–351 (2009)

41. Uhrmacher, A.M.: Variable structure models: autonomy and con-
trol answers from two different modeling approaches. In: Proceed-
ings of AI, Simulation, and Planning in High Autonomy Systems,
pp. 133–139 (1993)

42. Uhrmacher, A.M., Ewald, R., John, M., et al.: Combining micro
and macro-modeling in devs for computational biology. In: Pro-
ceedings of the 39th Conference on Winter Simulation: 40 years!
The Best is Yet to Come, pp. 871–880 (2007)

43. Mittal, S.: Emergence in stigmergic and complex adaptive systems:
a formal discrete event systems perspective. Cogn. Syst. Res. 21,
22–39 (2013)

44. Rajaei, H., Ayani, R., Thorelli, L.E.: The local time warp approach
to parallel simulation. ACM SIGSIM Simul. Dig. 23(1), 119–126
(1993)

45. Rao, D.M., Thondugulam, N.V., Radhakrishnan, R., et al.: Unsyn-
chronized parallel discrete event simulation. In: Proceedings of the
30th Conference on Winter Simulation, pp. 1563–1570 (1998)

46. Steinman, J., Parks, J.: A proposed open system architecture for
modeling and simulation (OSAMS). In: SISO Simulation Interop-
erability Workshop. Orlando, FL (2007)

47. Estrin, G.: Organization of computer systems: the fixed plus
variable structure computer. In: Western Joint IRE-AIEE-ACM
Computer Conference, pp. 33–40 (1960)

48. Bobda, C.: Introduction to Reconfigurable Computing: Architec-
tures, Algorithms, and Applications. Springer, Dordrecht (2007)

49. Yang, F., Lü, J., Mei, H.: Technical framework for internetware:
an architecture centric approach. Sci. China Ser. F 51(6), 610–622
(2008)

50. Aydt, H., Turner, S.J., Cai, T.W., et al.: Symbiotic simulation sys-
tems: an extended definition motivated by symbiosis in biology. In:
IEEE 22nd Workshop on Principles of Advanced and Distributed
Simulation, pp. 109–116 (2008)

51. Darema, F.: Dynamic data driven applications systems: a new para-
digm for application simulations and measurements. Comput. Sci.
ICCS 2004, 662–669 (2004)

52. Kim, J.E., Mosse, D.: Generic framework for design, modeling and
simulation of cyber physical systems. ACM SIGBED Rev. 5(1), 1
(2008)

53. Liu, H., He, F., Cai, X., et al.: Performance-based control interfaces
using mixture of factor analyzers. Vis. Comput. 27(6–8), 595–603
(2011)

Chen Yang received his B.E.
Degree and Ph.D. degree at
School of Automatic Science
and Electrical Engineering &
School of Advance Engineering,
Beihang University (BUAA).
His doctoral research focused
on cloud based high perfor-
mance simulation and parallel
discrete event simulation of com-
plex variable-structure systems
on multi-core machines. His cur-
rent research interests include
advanced distributed simulation,
cloud computing/simulation/

manufacturing, Internet of Things, BigData, complex systemmodeling,
etc.

Peng Chi received his doc-
tor degree in Condensed Mat-
ter Physics from Nankai Uni-
versity, Tianjin, China in 2012.
His Doctor’s thesis is a simu-
lation study of polymers which
aims to study the physical prop-
erties of block copolymers and
polyelectrolytes, by high perfor-
mance computing technologies
and Monte Carlo method. He
is currently an engineer at Bei-
jing Simulation Center. His cur-
rent interests focus on complex
system modeling language and
advanced parallel simulation.

Xiao Song is an Associate Pro-
fessor of Automation School,
Beihang University (BUAA),
Beijing, China. He was a vis-
iting researcher at the School
of Computing, National Univer-
sity of Singapore between 2013
and 2014. He has been a mem-
ber of ASIASIM (the federa-
tion of Asia simulation societies)
council meeting since 2012 and
performs the role of editor-in-
chief of ASIASIM newsletter
since 2015.His research interests
include system modeling and
simulation, big data and cloud
computing.

Ting Yu Lin was born in 1984.
He received his B.S. degree and
Ph.D. in the School of Automatic
Science and Electrical Engineer-
ing, Beihang University, Beijing,
China. He is currently an engi-
neer in Beijing Simulation Cen-
ter. His research interests include
multi-disciplinary virtual proto-
type, cloud simulation and cloud
manufacturing.

123

Cluster Comput

Bo Hu Li received his B.E.
Degree in computer science and
technology from Tsinghua Uni-
versity, China, in 1961. He was a
visiting scholar majored in dig-
ital simulation in University of
Michigan and University of Cal-
ifornia, Los Angeles, from 1980
to 1982. He is a Professor at
School ofAutomatic Science and
Electrical Engineering, Beihang
University, and Chinese Acad-
emy of Engineering, and the
chief editor of “Int. J. Model-
ing, Simulation, and Scientific

Computing”. His research interests include multi-disciplinary virtual
prototype of complex products, intelligent distributed simulation and
cloud manufacturing.

Xudong Chai received his B.E.
Degree from Nanjing University
of Aeronautics & Astronautics,
and his M.E. and Ph.D. degrees
in Beihang University. He was a
postdoctoral scholar majored in
virtual prototyping in National
CIMS Center of Tsinghua Uni-
versity from 1999 to 2001. Cur-
rently, he is the vice director
of Beijing Simulation Center, as
well as member of the Coun-
cil of Chinese System Simula-
tion Association. His research
interests include virtual proto-

typing of complex products, cloud simulation/manufacturing, high-
performance simulation and integrated platform.

123

	An efficient approach to collaborative simulation of variable structure systems on multi-core machines
	Abstract
	1 Introduction
	2 Related work and existing problems
	2.1 Variable structure PDES
	2.2 High performance simulator
	2.2.1 Execution architecture
	2.2.2 Time management algorithm

	2.3 Load balancing

	3 Introduction of Ivy under multi-core environments
	3.1 Basic principles of Ivy
	3.2 Multi-thread execution architecture and life-cycle
	3.2.1 Main thread controller
	3.2.2 Simulation engine instance (SEI)

	4 Efficient structure change and time management algorithm
	4.1 Dynamic and distributed structure change
	4.1.1 Control of structure change
	4.1.2 Efficiency and flexibility of variable structure

	4.2 Time management algorithm
	4.2.1 Correct synchronization of the static-structure model
	4.2.2 Fine-grained inherent parallelism
	4.2.3 Deadlock avoidance in the static-structure system

	4.3 Relations between time management and dynamic structure
	4.3.1 Dynamic parallelism
	4.3.2 Special treatment on new connections
	4.3.3 Deadlock avoidance in the dynamic-structure simulation system

	5 Dynamic load balancing of variable structure simulation systems
	5.1 Dynamic load balancing mechanism
	5.2 Load balancing algorithm
	5.2.1 Resource-constrained dynamic load balancing
	5.2.2 Dynamic load balancing with ample resources

	6 Experiment and analysis
	6.1 Simulation models
	6.2 Testing environment and results
	6.2.1 Load balancing of the normal simulation system
	6.2.2 Load balancing of the dynamic-structure simulation system

	6.3 Comparison with other implementations

	7 Conclusions and remarks
	Acknowledgments
	References

