
Softw Syst Model (2015) 14:483–524
DOI 10.1007/s10270-013-0328-6

REGULAR PAPER

Environment modeling and simulation for automated testing
of soft real-time embedded software

Muhammad Zohaib Iqbal · Andrea Arcuri ·
Lionel Briand

Received: 5 March 2012 / Revised: 6 February 2013 / Accepted: 26 February 2013 / Published online: 2 April 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Given the challenges of testing at the system
level, only a fully automated approach can really scale up to
industrial real-time embedded systems (RTES). Our goal is
to provide a practical approach to the model-based testing of
RTES by allowing system testers, who are often not familiar
with the system’s design but are application domain experts,
to model the system environment in such a way as to enable
its black-box test automation. Environment models can sup-
port the automation of three tasks: the code generation of an
environment simulator to enable testing on the development
platform or without involving actual hardware, the selection
of test cases, and the evaluation of their expected results (ora-
cles). From a practical standpoint—and such considerations
are crucial for industrial adoption—environment modeling
should be based on modeling standards (1) that are at an
adequate level of abstraction, (2) that software engineers are

Communicated by Dr. Juergen Dingel.

This paper is an extension of a conference paper “Environment
Modeling with UML/MARTE to Support Black-Box System Testing
for Real-Time Embedded Systems: Methodology and Industrial Case
Studies” published in Proceedings of ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems
(MODELS), 2010 [1].

M. Z. Iqbal (B)
Department of Computer Science, National University
of Computer and Emerging Sciences, Islamabad, Pakistan
e-mail: zohaib.iqbal@nu.edu.pk

A. Arcuri
Simula Research Laboratory, Fornebu, Norway
e-mail: arcuri@simula.no

L. Briand
SnT Centre for Security, Reliability, and Trust,
University of Luxembourg, Walferdange, Luxembourg
e-mail: lionel.briand@uni.lu

familiar with, and (3) that are well supported by commercial
or open source tools. In this paper, we propose a precise envi-
ronment modeling methodology fitting these requirements
and discuss how these models can be used to generate envi-
ronment simulators. The environment models are expressed
using UML/MARTE and OCL, which are international stan-
dards for real-time systems and constraint modeling. The
presented techniques are evaluated on a set of three artificial
problems and on two industrial RTES.

Keywords Environment modeling · Environment
simulation · Automated testing · Model-based testing ·
Real-time embedded systems · Search based software
engineering

1 Introduction

Real-time embedded systems (RTES) are widely used in
many different domains, as for example from integrated con-
trol systems to consumer electronics. Already 98 % of com-
puting devices are embedded in nature and it is estimated
that, by the year 2020, there will be over 40 billion embed-
ded computing devices worldwide [2]. Testing these systems
such that they are functionally correct and do not lead their
environment into critical states (e.g., unsafe) is vital. RTES
environments typically comprise a number of physical com-
ponents (e.g., sensors and actuators) and possibly other RTES
systems (e.g., in systems of systems). Typically, there is a
large number and variety of stimuli to the RTES with dif-
ferent patterns of arrival times. These characteristics make
the testing of RTES challenging and increase the need for
automated, systematic testing strategies.

Because RTES are developed for diverse domains pre-
senting different constraints (e.g., different timing, safety,

123

484 M. Z. Iqbal et al.

security requirements), different testing approaches are
required to handle the varying set of characteristics required
by these domains [3]. Our main target RTES in this paper
are soft real-time systems with time deadlines in the order of
hundreds of milliseconds with an acceptable jitter of a few
milliseconds in response time. Our testing approach (black-
box system level testing) not only encompasses functional
correctness of the system under test (SUT), but also enable
to focus testing on particularly critical aspects of the RTES,
i.e., potentially hazardous situations.

Typically, large scale testing of RTES software in real
environments and on actual deployment platforms is not a
viable option. It would be expensive, the consequences of
failures might be catastrophic (e.g., in safety critical sys-
tems), and the number of variations in the environment that
can be exercised within a reasonable time frame are small.
Moreover, some of the environment components might not
be available at the time of testing, since hardware and soft-
ware components are typically developed concurrently. To
test RTES software in this kind of situations, a common strat-
egy is to develop a simulator for these environment compo-
nents.

When testing RTES, the simulation of three concepts (or
their combinations) is typically considered: the SUT, its hard-
ware platform, and the environment with which the SUT
interacts. Depending on the goal of testing, different com-
bination of these three concepts can be simulated [3]: (i) at
early stages of the development process, a typical approach
is to model and simulate the SUT, its hardware and its envi-
ronment to ensure that the specifications of the SUT are
not incompatible with the environment assumptions; (ii) the
embedded software is tested on the development platform
with a simulated environment to ensure that the developed
software works correctly and can handle possible environ-
ment failures. This is done with either an adapter for the
hardware platform that forwards the signals from the SUT to
the simulated environment or a simulation of the hardware
platform; (iii) another level of simulation is when the actual
software is deployed on the hardware platform (or part of the
platform, e.g., only the processor) and testing is done with a
simulated environment.

The focus of this paper is on the second type (ii) of mod-
eling and simulation in which the actual SUT is used, the
environment is simulated, the hardware platform is simu-
lated or bypassed through an adapter communicating with
the environment simulator. In our experience of working
with two industrial organizations, which were developing
RTES for different domains (seismic acquisition systems
and automated bottle recycling machines), this form of test-
ing was highly critical as it enabled early verification of the
RTES.

To address the above objective, in this paper, we propose
an automated methodology for RTES based on environment

behavioral models developed using software modeling stan-
dards: Unified Modeling Language (UML) [4], UML Profile
for Modeling and Analysis of Real-time and Embedded Sys-
tems (MARTE) [5], and Object Constraint Language (OCL)
[6]. The main contributions of this paper include an environ-
ment modeling methodology and an approach to generate a
simulator of the environment from the environment model
in a way to enable the automated testing of industrial RTES.
As further discussed below, our focus is to devise a practical
approach in a system (level) testing context, and we evaluate
both the modeling methodology and simulation generation
on two industrial case studies.

Environment models describe both the structural and
behavioral properties of the environment. Given an appropri-
ate level of detail, defined by our methodology, they enable
the automatic generation of the environment simulator. These
models can also be used to obtain test oracles, which are typ-
ically modeled as “error states” that should never be reached
by the environment during the execution of a test case. More-
over, the models can further be used to automatically select
test cases and sophisticated heuristics are used to automati-
cally do so from the models without any intervention of the
tester. To summarize, the only required artifacts to be devel-
oped by testers is the environment model and the rest of the
process is expected to be fully automated. Incidentally, by
using this automated Model-Based Testing (MBT) technol-
ogy, one of our industrial partners was able to find new critical
faults in their RTES.

To support environment modeling in a practical fashion,
we have selected standard and widely accepted notations for
modeling software systems, the UML and its standard exten-
sions. We use the MARTE [5] extensions for modeling real-
time features and OCL for specifying constraints. We have
also provided lightweight extensions to UML to ease its use
in our context. As we will discuss later, environment mod-
eling is not a new concept. But, most of the approaches use
non-standardized notations or grammars for modeling, which
makes them difficult to apply from a practical standpoint.
Modeling the environment of industrial RTES systems using
a combination of UML, MARTE, and OCL has not been
addressed in the literature. By using the proposed methodol-
ogy, the software testers (who are primarily software engi-
neers) can model the environment with a notation that they
are familiar with, using commercial or open source tools, and
at a level of precision required to support automated MBT.
The importance of relying on standards for modeling was
confirmed on the two industrial case studies across entirely
different domains.

Although code generation from models has been widely
studied, the context of black-box RTES system testing poses
specific challenges and problems that are not fully dis-
cussed and addressed in the literature. For this purpose, we
present extensions to the state pattern [7] specifically aimed

123

Environment modeling and simulation for automated testing 485

at enabling environment simulation for system testing and
define rules for transforming environment models to Java
code (the simulator).

To summarize, the fundamental motivation here is that
system testers, in many industry sectors, are usually appli-
cation domain experts but have a little or no knowledge
of the system design and implementation. Our approach is
therefore black-box and does not require the RTES itself to
be modeled. It only requires its environment to be mod-
eled at the right level of abstraction and in such a way as
to enable effective test automation. The reliance on soft-
ware modeling standards offers significant advantages, such
as the possibility of using (1) different commercial and
open source modeling tools (e.g., IBM Rational Software
Architect (RSA),1 Papyrus,2 or Enterprise Architect3), (2)
notations that many software engineers—including system
testers—might already be familiar with and that can be used
to also model the SUT, and (3) existing analysis tools (e.g.,
[8]) that can take such models as input.

The paper is organized as follows: Sect. 2 sheds light on
the practical motivations and aspects of the work presented in
this paper, setting the context to better justify our approach;
Sect. 3 discusses the related work. Section 4 presents the
motivating example that we use throughout the paper to
explain various concepts. Section 5 discusses the proposed
environment modeling methodology. Section 6 goes into the
details of the most important decisions regarding the trans-
formation of models to simulation code, whereas Sect. 8
presents the case studies. Section 9 discusses the limitation of
the proposed work and finally, Sect. 10 concludes the paper.

2 Practical aspects

The work discussed in this paper was motivated by the prob-
lems faced and practices followed by two industrial orga-
nizations that we worked with, namely WesternGeco AS,
Norway and Tomra AS, Norway. These two organizations
were developing RTES for two different domains; West-
ernGeco was developing a seismic acquisition system and
Tomra was developing automated recycle machines. Both the
RTES were developed to run in an environment that enforces
time deadlines in the order of hundreds of milliseconds with
an acceptable jitter of a few milliseconds in response time. In
one of the organizations, testing the SUT on the development
platform with a simulated environment was considered to be
mandatory before deploying the software on the operational
hardware. To achieve this, software engineers were writing

1 http://www.ibm.com/developerworks/rational/products/rsa/,
accessed on 05/02/2012.
2 http://www.papyrusuml.org/, accessed on 05/02/2012.
3 http://www.sparxsystems.com.au/, accessed on 05/02/2012.

application specific simulators directly in Java. Test cases
for system level testing were written by hand by the soft-
ware test engineers and were executed on the SUT with the
environment simulator. The research presented in this paper
was strongly driven by our investigation of the practical needs
of our industry partners which, based on our experience, are
shared by many others in numerous industry sectors. Our
understanding of these needs is presented in the remainder
of this section.

Manually writing an environment simulator using a pro-
gramming language (e.g., Java or C) appeared to pose a num-
ber of issues, the main one being that software engineers have
to develop such simulator at a low-level of abstraction while
simultaneously focusing on the logic of the simulator, com-
plex programming constructs (e.g., multiple threads, han-
dling timers), and the handling of test case configurations
(when the simulator is used for testing). Making this prob-
lem even more acute, over the course of the RTES develop-
ment, these simulators frequently change due to changes in
the specifications of the hardware components.

Typically, modeling and simulation (M&S) approaches
focus on simulating hardware components, execution plat-
forms, and natural phenomena in the RTES environment
using various simulation tools, such as DEVS [9] and Mod-
elica [10]. These M&S tools support precise simulations
of both discrete and continuous system behaviors and are
typically based on mathematical models. However, in our
context, such M&S tools are not practical, for a number of
reasons: (i) Software engineers, who are typically in charge
of system testing at this level, are often not familiar with
such simulation languages. To enable technology transfer in
industrial practice, it would be more convenient for them
to develop or generate the simulator using a language that
they are familiar with, as for example the languages used to
program and model the SUT; (ii) These simulation tools do
not support automated environment-based testing of RTES
software. A number of features must be modeled to enable
this kind of testing. For example, the models need to pro-
vide information for the automated generation of oracles (to
verify whether test cases pass or fail). Furthermore, the sim-
ulator needs to interact with a test harness to get appropri-
ate values for various non-deterministic events. The exact
occurrences of such events in the environment cannot be
determined. These events may follow different probability
distributions (e.g., probability of failure of a sensor) or may
occur at any time within a given time interval (e.g., a gate at
a railroad intersection may take from 5 to 7 s to close); (iii)
Another issue is that in simulation languages, such as Mod-
elicaML [11] and DEVS [12], since they were developed
for a different purpose, there are limitations regarding the
interactions of the simulator with the production code of the
RTES (e.g., handling of operating system resources, such as
inter-process communication with the production code over

123

http://www.ibm.com/developerworks/rational/products/rsa/
http://www.papyrusuml.org/
http://www.sparxsystems.com.au/

486 M. Z. Iqbal et al.

TCP/UDP). Such an interaction is a requirement for the type
of testing we deal with in this paper, since the environment
simulator has to interact with the actual RTES production
code to receive stimuli and to send responses. In dealing with
such interactions, we do not want any constraint regarding
the programming language in which the RTES is written.

The modeling methodology presented here provides an
automated model-based approach to derive environment sim-
ulators, test cases, and test oracle, taking into consideration
all the practical aspects described above, which are common
place in many industrial environments. The only major input
required are the environment models describing the structure
and behavior of the environment as well as the test oracles
(i.e., the error states). Since the intended users are software
engineers, we chose standard software modeling languages
for environment modeling with the aim to make the model-
ing methodology as simple as possible. This paper discusses
the methodology for modeling the environment based on the
selected modeling standards and a specific profile and fur-
thermore describes the process of simulation generation from
those environment models. It does not, however, address in
detail test generation and test oracles.

3 Related work

In this section, we discuss the related literature in the areas
of (1) modeling and simulation for RTES Testing, (2) envi-
ronment modeling and environment model-based testing of
RTES, and finally (3) code generation approaches from UML
state machines and class diagrams.

3.1 Modeling and simulation for RTES testing

As discussed earlier, based on the goals of testing of RTES,
the SUT, the hardware platform, the environment, or their
combinations can be modeled and simulated.

At the early stages of the development process for RTES,
a typical approach is to model and simulate the SUT, its hard-
ware and its environment. The aim is to ensure that the model
of the SUT complies with the requirement specifications and
is compatible with environment and hardware assumptions.
This approach is sometimes also referred as “model-in-the-
loop” simulation [3,13,14].

Another level of simulation for testing is when the actual
executable software is deployed on the real hardware plat-
form (e.g., electronic control unit) and their combination is
tested with a simulated environment (e.g., with the simulation
of plant model [3]). This approach is generally referred to as
hardware-in-the-loop testing [15,16]. Typically, a prototype
of the hardware platform is used at this stage. A variation to
hardware-in-the-loop testing is the case where only the actual
processor is used during testing and rest of the hardware and

environment are simulated. This variation is referred to as
processor-in-the-loop testing [17].

Before the hardware or the processor is available, the
embedded software can also be tested on the develop-
ment platform (e.g., Linux or Windows-based machine) with
a simulated environment and hardware platform. This is
typically done to ensure that the developed software is not
violating any of the environment assumptions and behave
appropriately in hazardous or abnormal situations. This is
mostly referred to as software-in-the-loop simulation [3,13].

Existing modeling and simulation languages have been
developed and are widely used for the first three types of sim-
ulations. In these cases, the environment simulation needs to
interact with the actual hardware or its simulation. In such
cases, precise simulation of both discrete and continuous phe-
nomena is required and is typically based on mathematical
models. The existing simulation approaches (e.g., simulation
generation from ModelicaML [11], Simulink [18], DEVS
[12]) require the modeler to have sufficient knowledge of
the target simulation language, that is different from the lan-
guages used to develop (e.g., C/Java) and model (e.g., UML)
RTES software. Other languages, such as Mason [19] and
SimJava [20], are developed for modeling and simulation
of RTES to overcome these constraints. The existing simu-
lation languages do not cater for the type of modeling and
simulation that we require for black-box system testing of
RTES (as discussed in Sect. 2), such as non-determinism
(a common feature of the environment) and test-specific
behavior (e.g., modeling of error and failure states to guide
search-based testing). Moreover, as discussed in Sect. 2, the
target users of our approach are software testers, who are
software engineers. We made a conscious effort to select a
modeling language that most of the software engineers are
already familiar with. Moreover, in our context, it is highly
important that we use the same models to generate both the
simulator and test cases.

In this paper, we target a slight variation to the typ-
ical software-in-the-loop simulation. We only model and
simulate the environment and use an adapter for the hard-
ware platform that forwards the signals from the SUT to
the simulated environment. Our research problem defini-
tion is motivated primarily by the practical needs of our
industrial partners (Sect. 2) but it is expected to be rele-
vant in many other industrial environments developing sim-
ilar RTES. Other approaches that do testing with a similar
focus are discussed next.

3.2 Environment modeling and environment model-based
testing

In this section, we discuss various environment modeling and
model-based testing approaches reported in the literature.

123

Environment modeling and simulation for automated testing 487

3.2.1 Environment modeling

There are a number of works in literature focusing on environ-
ment modeling of real-time or embedded systems. Kishi and
Noda [21] present an approach for modeling the environment
of an embedded system using an aspect-oriented modeling
technique. Karsai et al. [22] propose a new language for mod-
eling the environment of an embedded system. Choi et al. [23]
use annotated UML class and sequence diagrams for model-
ing and simulation of environment. Kreiner et al. [24] present
a process to develop environment models for simulation of
automatic logistic systems and its environment. Burmeister
[25] discusses the importance of environment modeling in
order to have separate models for devices and control soft-
ware of RTES. Ubayashi et al. [26] present a UML profile for
context-based requirement analysis. The models developed
using the profile identify the relationships between hardware
components and the system context. Petit and Street [27] dis-
cuss the use of a context diagram to model the interfaces of
input devices in a system. Axelsson [28] evaluates how UML
can be used to model real-time features and provides exten-
sion to UML for modeling of real-time systems and their
environments. Gomaa [29] discusses the use of a context
diagram for modeling the relationship between an RTES and
its external entities. Friedentahl et al. [30] use the concept of
SysML block diagram and activity diagrams to represent the
system and its interfaces with environment components.

To summarize, there are works reported in the literature
that deal with modeling the environment of a system for var-
ious purposes. Most of these works [21–30] do not focus
on test automation and hence lack the corresponding mod-
eling constructs required for this purpose (such as modeling
of error and failure states for modeling oracles and failure
scenarios, as done in our work). Moreover, approaches dis-
cussed in some of these works are only limited to modeling
the static structure of the environment [25,27,29].

3.2.2 Environment model-based testing

There are a few works reported in literature that discuss test-
ing of RTES based on its environment. Auguston et al. [31]
discuss the development of environment behavioral models
using Attributed Event Grammar for testing of RTES. The
behavioral models contain details about the interactions with
the SUT and possible hazardous situations in the environ-
ment. These models are then traversed to obtain various test
scenarios. The approach is applied on a simulation of the
RTES specifications. Heisel et al. [32] propose the use of a
requirement model and an environment model using UML
state machines along with the model of the SUT for test-
ing. Adjir et al. [33] discuss a technique for testing RTES
based on a model of the system and intended assumptions
in the environment in Labeled Prioritized Timed Petri Nets.

The works in [34,35] discuss an approach for conformance
testing of RTES based on their specifications and environ-
ment assumptions. They propose an approach for generat-
ing test cases on the fly during testing. The specifications
are modeled using UPPAAL timed automata. In [36], the
UPAAL automata based testing approach is applied to an
industrial case study. Krichen and Tripakis [37] discuss and
approach based on timed automata for conformance testing
of RTES. Bousquet et al. [38] present an approach for testing
of synchronous reactive software by representing the envi-
ronmental constraints using temporal logic. Another work is
presented by Lindlar et al. [14], in which the tester needs
to provide annotated FSMs specifying the search space for
test cases and a fitness function to assess the outputs of the
test cases. Peleska et al. [39,40] discuss the RT-Tester tool
that enables SUT and environment modeling for test-case
generation. The tool supports modeling in various notations
including UML. David et al. [41] discusses an approach for
modeling a partially observable SUT using Timed Game
Automata for testing. In [42], the approach allows the mod-
elers to capture various usage scenarios using Markov Chain
models. These scenarios are then used to generate test-cases.

Among the works that discuss environment model-based
testing, a number of approaches do not consider the SUT as
a black-box [32,33,38–40]. Keeping the SUT as a black-box
is a common approach for system-level testing where the test
engineers are not familiar with the SUT internal design and
is the one of the requirements in our context as discussed in
Sect. 2. A simulator is essential to execute different possible
behaviors of the environment based on its interaction with
SUT for system testing. Most of the approaches discussed in
literature are restricted to generating restrictive sets of inter-
action sequences with the environment rather than simulating
the environment. Generating such test sequences or test sce-
narios from the environment models, as done by Auguston
et al. [31], can only provide a limited coverage of the envi-
ronment models. A simulator is also essential to simulate the
failure behavior of environment components. Our approach
allows the simulation of nominal as well as exceptional envi-
ronment behavior (e.g., hardware breakdown of environment
components). In our context, a test case is a setting of the
environment simulator. To the best of our knowledge, the
environment model-based testing approaches discussed in
the literature, except the one by Heisel et al. [32], use
non-standard languages for modeling the environment. Even
Heisel et al. provide UML extension for modeling the con-
cepts of probabilities and time without relying on UML
extension mechanisms. Another major limitation of most of
the relevant works is the application of the testing approach
is on toy problems or simulations of actual industrial RTES
(e.g., [31–35,37]). We believe that application on industrial
case(s) is a requirement to assess the credibility and applica-
bility of any MBT approach.

123

488 M. Z. Iqbal et al.

In our previous work, we evaluated and reported [43,44]
the fault detection effectiveness of testing strategies based
on the models developed using the modeling methodology
proposed in this paper. We evaluated Random Testing (RT),
Adaptive Random Testing (ART), and Search-based Test-
ing (SBT) with Genetic Algorithms (GA) and (1+1) Evo-
lutionary Algorithm (EA). The results indicate that SBT
shows significantly better performance over RT for a num-
ber of cases and significantly worse performance than RT
for a number of other cases. The testing strategy were fur-
ther improved by devising a hybrid approach that combined
ART and (1+1) EA [45]. The current paper focuses on the
environment modeling and simulation aspect of our overall
approach.

3.3 Code generation from UML classes and state machines

To the best of our knowledge, there is no reported approach in
the literature generates RTES environment simulators from
UML models or their extensions. A number of model-based
testing techniques do generate test sequences, which contain
interactions between the environment and SUT. Generating
such test sequences or test scenarios from the environment
models, as done by Auguston et al. [31], can only provide
a limited coverage of the environment models. On the other
hand, generating a simulator, as in our case, allows for a more
realistic set of interactions between the environment and the
SUT. Such a simulator also enables testing in nominal as
well as exception environment situations. As we discussed
in Sect. 3.2, though modeling and simulation languages and
environments have been proposed, they do not fit our purpose
of black-box system testing (Sect. 2).

Generating code from state machines is not a new prob-
lem. Even though a number of works are reported in the
literature (e.g., [46,47]) and a number of tools are avail-
able that generate code from state machines (e.g., SmartState
[48], IBM Rhapsody [49]), their purpose is not environment-
model based testing. The use of standards is an important
requirement for our modeling methodology, as discussed ear-
lier. The modeling standards that we selected for our method-
ology are supported by a wide range of tools and support is
available for training. The existing code generation tools and
techniques discussed in the literature are focused on generat-
ing system code and not environment simulators for testing.
They are not directly applicable for our purpose as already
discussed earlier in Sect. 2.

The original state pattern, discussed in [7], provided a
design pattern to implement state-driven behavior but did not
address a number of important features present in UML 2.x
state machines, e.g., concurrency, time events, change events,
and actions. A number of extensions for the pattern have
been discussed over time to handle missing features (e.g.,
[50,51]). Most of these extensions are focused on increasing

the understanding and usability of the code obtained using
the state pattern to support programmers (e.g., [51]) and are
not very useful in our context where the code is automat-
ically generated from the models. Chin and Millstein [52]
propose an extension to the state pattern for handling state
behavior in inherited sub-classes. Holt et al. [53] propose
an extension for handling state and transition actions and
report its application on an industrial case. Palfinger [54]
provides an extension to the state pattern that allows exten-
sion of object’s behavior at runtime by using a mapper class.
In our approach, this was not applicable as we do not require
the addition of new behavior during the execution of environ-
ment components. The work in [55] extends the state pattern
to support hierarchical state machine and time events. We
handle time in a similar way, i.e., by using a separate timer
class that calls timeout() on the context object in case
of a timeout. The approach in [55] does not handle parallel
regions and change events, does not provide details on han-
dling actions, and does not provide support for the test-related
features required by our approach. We provided a number of
extensions to the original state pattern in order to meet the
needs for RTES environment simulation to support system
testing.

There has been some work on generating code from
UML/MARTE models. Among them, Qureshi et al. extend
MARTE to generate code for Systems-on-Chips (SoC) [56],
Rodrigues et al. discuss an approach to generate code in
OpenCL for SoCs by using Allocation, Generic Compo-
nent Model, and Hardware Resource Modeling packages
of MARTE [57]. Piel et al. present an approach for gen-
eration of SystemC code from MARTE models for simula-
tion of Multiprocessor SoCs [58]. Another work discussing
code generation in SystemC from MARTE models is dis-
cussed in [59]. Vidal et al. discuss code generation in VHDL
from MARTE models [60]. Mraidha proposes an approach
to translate MARTE models, specifically RtUnits to Accord
[61]. Our approach automates the test oracle by model-
ing error states in the environment, which is a requirement
for automated environment model-based testing. The work
reported in [62] discusses code generation for multiple clock
domains modeled using the Clock Constraint Specification
Language (CCSL). The concepts discussed can be used in our
simulation approach, but for both our industrial case studies,
we only used one clock (which is based on CPU clock, see
discussion in Sect. 6.5.2).

We could have used some optimizations to improve the
ease of understanding and modification, and cleaner code
generation, but these would not have had a large impact
as the generated source code is not visible to the end-user
and is only provided as an executable archive. Further-
more, there are optimizations in the literature to improve
the performance of the generated code (e.g., minimizing
the number of running threads to avoid overheads due

123

Environment modeling and simulation for automated testing 489

to context switching). However, in our framework (as we
have explained in details throughout the paper), we do not
need to optimize performance. The generated simulators are
used only for testing purposes, and each test case runs on
a different process, lasting from a few seconds to a few
minutes (depending on the RTES). As long as the envi-
ronment simulators can behave as expected (e.g., providing
the right stimuli at the right time), this would be sufficient
for our testing purposes. This was the case for all our case
studies.

3.4 Summary

To summarize, this paper differs from existing works in
several of the following ways: (1) it provides an environ-
ment modeling methodology based on international soft-
ware engineering modeling standards (UML 2.x, MARTE,
OCL) that is dedicated to black-box, RTES system testing.
The targeted RTES have complex environments and have
soft-real time constraints in the order of hundreds of mil-
liseconds pertaining to the response time of the SUT and
operations of the environment. This is the first work focus-
ing on such methodology, allowing the modeling of impor-
tant concepts for testing such as modeling non-determinism
and oracle information, while relying only on light-weight,
standard extensions of UML (i.e., by defining a UML pro-
file); (2) it provides an approach to generate simulators,
based on environment models developed using the proposed
environment modeling methodology, addressing the specific
needs of black-box system testing; (3) regarding simula-
tor generation, the paper provides extensions to the state
pattern that handle time-related features and various UML
2.x features that were not previously discussed in the lit-
erature, including handling of change events and concur-
rency; (4) Unlike most of the works reported in the literature,
this paper assesses the proposed methodology and simulator
generation on two industrial RTES, which we believe is a
requirement to assess the applicability of any test automa-
tion approach.

4 Motivating example

To motivate and explain our modeling methodology and sim-
ulator generation strategy for RTES, we take as example a
subset of one of our industrial case studies. Note that we have
sanitized the information due to confidentiality restrictions.
This example is an automated bottle recycling system devel-
oped by Tomra AS, Norway. It is representative of the type
of RTES we are targeting in this paper; it has soft real-time
constraints in the order of hundreds of milliseconds pertain-
ing to the response time of the SUT and operations of the

Fig. 1 Layout of the automated bottle recycling machine

environment (e.g., the sorting of item should be done within
a couple of minutes after an item is inserted).

The portion of the case study considered in this paper is
focused on the important functionality of sorting the recycled
items to their proper storage locations (or destinations). The
layout of this portion is shown in Fig. 1. Users insert the items
to be recycled inside the front-end of the recycling system,
called the Reverse Vending Machine (RVM). The items can
be of three different types for the subset we are discussing:
plastic bottles, cans, or glass bottles. The RVM forwards the
items to the Sorter, which is a sorting arm (we only consider
a simplified backroom with a single sorting arm). On its way
from an RVM to Sorter, an item can be lost if it is not detected
in time or if it falls from the moving belt. The Sorter can move
in three directions (each leading to a specific destination) and
its movement is controlled by a Sorting Controller.

The Sorting Controller is the system under test in our case
study. The Sorting Controller receives information of the type
of the item inserted from the RVM and when it is supposed
to reach the Sorter. The Sorting Controller is responsible for
moving the Sorter in a position that leads the items to their
appropriate destinations. There can be different destinations
based on the type of items. Plastic bottles and cans are placed
in their appropriate bins, whereas the glass bottles are placed
in the crates. The Sorting Controller should prevent certain
erroneous situations from happening. For the subset of the
case study discussed in this paper, we consider two such
situations: (i) when an item is not correctly sorted and it goes
to a wrong destination (for example, a plastic bottle going
into a bin of cans) (ii) when an item reaches the Sorter while
it is still moving.

5 Environment modeling methodology

If environment models are to be used for testing RTES, they
should not only be sufficiently detailed, but should also be
easy to understand and to modify as the environment and
RTES evolve. To handle the complexity of realistic RTES
environments, the modeling language should have provision

123

490 M. Z. Iqbal et al.

for modeling at various levels of abstraction. The modeling
language should also be well-defined for the tools to analyze
the models and for the humans to accurately understand them.
The language should also provide features (or allow possible
extensions) for modeling real world concepts, real-time fea-
tures, and other concepts, such as non-determinism, required
by the environment components. The UML, MARTE profile,
and the OCL together fulfill the important requirements of
an environment modeling language.

Even though we are using the same notations to model the
environment that are used for modeling software systems, it is
important to note that the methodology for environment mod-
eling is significantly different from system modeling. While
modeling our industrial cases, we abstracted the functional
details of the environment components to such an extent
that only the details visible to the SUT were included. An
environment of a RTES typically features a number of non-
deterministic events (e.g., breakdown of a sensor), which
must be modeled. Such events are not common when mod-
eling the internal behavior of a system.

To model RTES environments, we have developed a pro-
file that provides support for modeling various concepts
central to our methodology and highlights the subset of
UML/MARTE that is required for such modeling. For testing
the system based on its environment, the behavioral details
of the environment are as important as its structural details.
Structural details of the RTES environment are important to
understand the overall composition of the environment (e.g.,
number and configuration of sensors/actuators), the charac-
teristics of various components, and their relationships. We
choose to model these details in the form of a Domain Model
developed using UML class diagrams annotated with our
defined profile. The behavioral details of environment com-
ponents are required to specify the dynamic aspects of the
environment, for example, to determine the possible environ-
ment states, before and after its interactions with the SUT,
and to specify the possible interactions between the SUT and
its environment. For behavioral details, we used the UML
State Machines augmented with the MARTE profile and our
defined profile.

In the kind of testing this paper addresses, the focus is on
the interactions of the RTES with the components in its envi-
ronment, i.e., what are the possible inputs/outputs to/from the
RTES from/to these components at any given point in time?
How does the RTES behave in abnormal situations, such as
a hardware failure in any of the environment components? A
test case for a RTES would typically consist of a sequence of
actions from the user(s), signals from/to sensors/actuators,
and possibly hardware component breakdowns. This would
correspond, in our context, to non-deterministic events that
can happen during the environment simulations.

In the following subsections, we discuss the environment
modeling profile that we developed (Sect. 5.1) followed by

the guidelines for modeling domain (Sect. 5.2) and behav-
ioral models (Sect. 5.3) that were developed based on our
experience of modeling two large-scale industrial RTES—a
marine seismic acquisition system and an automated bottle
recycling system. Guidelines presented in Sects. 5.2 and 5.3
are explained by examples related to the motivating example.

5.1 Environment modeling profile

Our goal was to model the environment based, to the extent
possible, on the standard UML and its existing extensions.
We applied the standard notations and based on our needs
for those case studies, where required, we provided light
weight extensions to UML. UML is a general purpose, stan-
dard modeling language that is meant to cater for different
application domains and problems, and it is, as a result, quite
large. The entire language is not meant to be used to solve a
particular problem in a particular domain. Therefore, one of
the key requirements to make UML successful in industry is
to select a proper subset of the language matching the needs.
MARTE is a comprehensive UML profile covering differ-
ent aspects for modeling RTES. Similar to UML, the set of
concepts provided by MARTE is fairly large and caters to a
wide variety of analysis needs. However, it is important to
clearly identify the required subset of MARTE for a specific
problem and domain.

In this section, we will discuss the subsets of UML and
MARTE that we used and the lightweight extensions that we
have provided for environment modeling. From a practical
standpoint, it was important to identify these subsets for the
methodology, since the UML and MARTE standards are very
large and most organizations would be reluctant to adopt such
large notations.

Developing UML profiles is a way to provide lightweight
extensions to UML that do not conflict with its original
semantics. An alternate to this is extending UML seman-
tics by adding new concepts (meta-classes). Even though the
latter approach allows more customization of UML, due to
a number of reasons discussed in [63] and easier industrial
adoption, we opted for a profile. To model an RTES envi-
ronment, generate its simulator, test cases, and obtain test
oracle from these models, we need more specific notations
than what the standard UML provides. We provided exten-
sions to the standard UML class diagram and state machine
notations in the form of a profile. The profile also resolved
various semantic variation points left open by the standard
(discussed later in Sect. 6.6) to address our specific needs.
Figure 2 depicts a profile diagram for our proposed RTES
environment modeling profile. The profile defines a set of
stereotypes for modeling our methodology specific features
on UML classes and state machines. It also shows the subset
of MARTE that the profile is using, i.e., the Time package, the
concept of GaStep from the Generic Quantitative Analysis

123

Environment modeling and simulation for automated testing 491

Fig. 2 RTES environment modeling profile

Modeling (GQAM) package, and the Non-functional Proper-
ties (NFP) package. The NFP package allows selecting more
appropriate types for properties of components. The Time
package allows the software engineers to model various time
related features, such as timed events and action durations
[5]. This small subset of UML and MARTE was sufficient
for modeling our two industrial case studies for the purpose
of automated black-box testing.

5.2 Domain modeling

Our environment modeling methodology for system testing
requires the modeler to create an environment domain model
that captures relevant structural details of the environment
including the various components of the environment, their
cardinalities, characteristics, and relationships. The domain
model is developed using the UML class diagram notation.

The various components modeled in the domain model
together form the overall environment of the SUT. This
means that all these components (their instances) will run
in parallel with each other. The domain model represents
various possible forms that the environment of RTES can
take. Each component in the domain model can have a num-
ber of instances in the RTES environment. The information
about the number of possible instances of a component in
the environment is modeled as cardinalities on the associ-
ations between different components in the domain model.
Therefore, the domain model can be used to obtain a number

of potential configurations of the environment. To restrict
the possible forms an environment of an RTES can take,
OCL constraints can be specified. These constraints can for
example be used to restrict the possible combinations of
environment components or to restrict the possible values
of attributes.

The domain model for the Sorting Machine case study is
shown in Fig. 3. Sorting Controller in the domain model
is the SUT and the components RVM, User, Sorter and
Item are the environment components. All the environment
components are considered to be active objects, i.e., having
their own thread of execution, and communicate with each
other through signals. Each environment component in the
domain model can have multiple instances. For example, in
the domain model, shown in Fig. 3, Item is represented as
one environment component, but during simulation it can
have multiple instances. The number of instances to be cre-
ated, which we refer to as an ‘environment configuration’, is
determined based on the cardinality of relationships, i.e., in
this case the cardinality of the association between User and
Item with the role name itemCollection and the OCL con-
straints restricting the possible combination of environment
components. In the motivating example we have restricted
the possible number of items a user can enter to be less than
100. This is shown as an OCL constraint in Fig. 4. A valid
environment configuration for this example is a single RVM,
a single Sorter and a User with three Items. A test case in our
context is a combination of a setting of the simulator for the

123

492 M. Z. Iqbal et al.

Fig. 3 Domain model of sorting machine case study

Fig. 4 An example OCL constraint

non-determinism in the environment models (e.g., a specific
time at which a sensor stops working) (which we call ‘sim-
ulation configuration’) and an environment. A test case uses
these settings for a particular simulation run. During testing,
the selected test strategy decides the way these configura-
tions for a test case are generated by the ‘Test Framework’
(e.g., random values for simulation and environment config-
urations when using random testing).

Note that the domain model that we develop is different
from the ones commonly discussed in literature (e.g., [64]).
The components represented as classes in the environment
domain model will not necessarily relate to software classes.
They may correspond to systems, users and concepts related
to various natural phenomena. Domain modeling here is not
a starting point for software analysis. The identification of
components in the domain model, their properties, and their
relationships is also different from what is commonly done
for software analysis. Following, we further discuss various
guidelines for modeling the structural details of a RTES envi-
ronment.

5.2.1 Environment components to be included

Initially, all the environment components that are directly
interacting with the SUT are included in the domain model.

Then, each of these components is further refined to a level
where we are certain to cover the important details for sim-
ulating the environment needed to test the SUT. If at any
time the behavior of an environment component is getting
too complex, when possible, we can decompose the compo-
nent and divide its behavior into multiple concurrent state
machines. This is especially useful if a component can be
divided into components that are similar to existing compo-
nents, so that we can specialize existing state machines. Other
components interacting with already included components
can also be added in the domain model to have more control
during simulation. For example, in the motivating example,
we added User to model that items can be inserted in the RVM
periodically (e.g., after every few seconds) with a time delay.
The environment components in the domain are stereotyped
with “Context”. The environment components are modeled
as active objects and can communicate with each other and
the SUT through signals.

5.2.2 Relationships to be included

All those associations representing the physical or logical
relationships among various environment components, or
that were needed for components to communicate, should be
included. A number of components in the environment might
be similar to each other (e.g., various types of sensors). It is
useful to relate these components (and their behavior) using
the generalization/specialization relationship for simplifying
the model, as our experience shows that such domain models

123

Environment modeling and simulation for automated testing 493

get highly complex. For example, in the sorting machine case
study, we modeled the association of the SortingController
with the Sorter, which is controlled by the board.

5.2.3 Properties to be included

From all properties that may characterize environment com-
ponents, it is important to include only those properties that
are visible to the SUT (or have an impact on a component
that is visible to the SUT). These may include attributes that
have a relationship to the inputs of the SUT, that constrain
the behavior of a component with respect to the SUT, or that
contribute to the state invariant of a component that is rele-
vant to the SUT. For example, in Fig. 3, the attribute type of
Item is used by the SortingController to move the Sorter in
appropriate position before the items arrive.

By using the profile, it is also possible to leave the deci-
sion of selecting exact values for properties of the environ-
ment components till the time of testing (where it is decided
by the simulation configurations). This concept is modeled
by assigning «NonDeterministic» to the properties of envi-
ronment components. This stereotype has three properties:
an ‘upper bound’, a ‘lower bound’, a ‘valueConstraint’, and
a ‘scope’. The upper and lower bound specify the possible
range of values that an integer property of an environment
component can take during simulation. This is provided to
ease the modeling of time events’ bounds. Alternatively, an
OCL constraint can be provided as a valueConstraint that
restricts the possible values that an environment property can
take. This constraint can, for example, be used to restrict a
string property to certain specific values.

As shown in Fig. 2, the scope property can have three
possible values: ‘class’, ‘state’, or ‘dual’. If the value is
set to ‘class’, the properties of the environment component
instances are initialized with a value obtained from simu-
lation configuration only once when the instances are cre-
ated. If the value is set to ‘state’, the values are obtained
whenever there is a state change in an instance. If the value
of scope is set to ‘dual’, then a value is obtained for this
environment component’s property from the simulation con-
figuration when an instance is created and the property is
reassigned a value when there is a state change in the instance.
For example, in Fig. 3, the property type of Item is a non-
deterministic variable with the scope ‘class’ and its value
is initialized based on a simulation configuration when an
instance of Item is created.

5.2.4 Modeling the SUT

It is important to include the SUT in the environment domain
model, so that its relationship with the other environment
components can be specified. It is also useful to include the
details of signal receptions by the SUT from other environ-

ment components. The SUT is stereotyped as «System». For
example, the SortingController in Fig. 3 is the SUT. The
stereotype was used initially by Gomaa [29] to refer the
system in a context diagram. Since, our goal is software-
in-the-loop testing, the SUT modeled in the domain model
represents the SUT and its execution platform as a single
component.

5.3 Behavior modeling

For each environment component in the domain model that
has a behavior affecting the SUT, our methodology requires
to create a state machine representing this behavior. The state
machine captures such behavior at the level of abstraction
that is visible to the SUT. The state machines are developed
using UML 2.x state machine notation and concepts, MARTE
real-time extensions, and our profile to assist in modeling
the environmental aspects of RTES. The MARTE profile is
used to model the features related to time and a form of
non-determinism. As discussed earlier, during simulation,
the instances of the environment components run in parallel
to form the environment of the RTES. They can send signals
to each other and to the SUT. We can also view the environ-
ment as having one state machine with orthogonal regions,
one for each component. Figures 5, 6, 7, and 8 show the
state machines of the four environment components of our
motivating example. Note that the diagrams are developed in
IBM RSA v8.x, which adds some additional symbols to the
triggers and effects in the state machines. A change event is
not shown with a ‘when’ keyword as for example in the tran-
sition from On_Hold to No_Item in the ItemInside region
of RVM state machine shown in Fig. 6. The version does
not support value specification language of MARTE and the
time events are entered as strings with quotes. All the guards
in the state machines have the corresponding environment
components as the context for OCL constraints. Following,
we discuss the details of the methodological guidelines for
modeling behavior of the environment components.

5.3.1 Identifying stateful components

Components whose states either affect the SUT or are
affected by the SUT should be modeled with state machines.
Overall, the environment should be modeled in a way that
enables, after the initialization and provision of simula-
tion and environment configurations, the full simulation of
the interactions with the SUT. All the environment compo-
nents shown in Fig. 3 are stateful components of the sorting
machine case study. For example, the Sorter component was
modeled as stateful since it receives signals from the Sorting-
Controller and reacts differently based on its current state.

123

494 M. Z. Iqbal et al.

Fig. 5 State machine for the sorter component

Fig. 6 State machine of the RVM component

5.3.2 States to be included

It is important to determine the right level of abstraction for a
component state machine. If we want to precisely model the
behavior of an environment component, this might lead to a
large number of states. We are, however, only interested in
state changes that have an impact on the SUT. A single state
in an environment model state machine may correspond to

a large number of concrete or physical states. For example,
in the sorting machine, the states of Item that we modeled
were all related to its movement through the sorting machine
whereas its other possible states were not of interest as an
environment component of the SortingController.

A state in a UML state machine can be a simple state, a
composite state (i.e., containing substates) or it can be a sub-
machine state. UML state machines can also have multiple

123

Environment modeling and simulation for automated testing 495

Fig. 7 State machine of Item environment component

Fig. 8 State machine of User

orthogonal regions. The concept of orthogonal regions is
particularly useful in environment modeling as one envi-
ronment component can in reality be composed of multi-
ple sub-components. For example, RVM in our motivating
example is composed of two sub-components: an item feeder
that handles item insertion and a conveyer that is responsi-
ble for routing the items. From the perspective of the SUT
(Sorting Controller) it is not important to distinguish these
two components as it sees RVM as a single component. For
the RVM, to completely simulate the behavior visible to the
Sorting Controller, it must manage the movement of items
on the conveyer in parallel to handling items in the feeder.
From the RVM point of view, functionality must be pro-
vided for both of these components, conveyer and feeder.
Therefore this information is modeled as two orthogonal
regions of the RVM (named ItemInside and Routing) in the
state machine shown in Fig. 6. In addition, according to
our modeling methodology, failure behavior of a compo-
nent that is independent of its nominal behavior can also
be modeled as a separate orthogonal region (see Sect. 5.3.6
for details).

5.3.3 Modeling users in the environment

Generally, for software system modeling, users are only mod-
eled as sources of inputs and data. In the environment model-
ing methodology, it is useful to model the behavior of users in
the environment to have a control over the inputs/outputs of
the various components or the SUT. If a user participates in
multiple roles, it is useful to model each role a user plays as a
separate component. In the motivating example, we modeled
the persons who enter the items for sorting as a User environ-
ment component (state machine shown in Fig. 8). In certain
cases it can be interesting to model both the expected and
unexpected behavior of users using the proposed methodol-
ogy. Overall, the behavior of a user in an RTES environment
is modeled using the same notations as any other environment
component.

5.3.4 Modeling events

When using UML 2.x state machines [4] for environment
modeling, only three types of events are required to be

123

496 M. Z. Iqbal et al.

modeled: signal events, time events, and change events. Call
events are not required since the components in the environ-
ment represent active objects and communicate asynchro-
nously. OCL is used to model guards on transitions and
conditions in the change events. For example, Fig. 5 shows
the state machine of the Sorter component. As discussed ear-
lier, a Sorter can be at three different positions. This is repre-
sented by the three states, Left, Centre, and Right. Movement
between these states is represented by the outgoing transi-
tions from these states to the two movement related states:
MovingLeftCentre and MovingCentreRight. For the Sorter
to move from Left to Center it needs to transition first from
Left to MovingLeftCentre, which is triggered on receiving a
signal event POSITION_CENTRE() from the SUT (Sorting
Controller). A transition from MovingLeftCentre to Centre
state is triggered by the time event after “movingArmTimeLC,
ms”, where movingArmTimeLC is the name of a non-
deterministic property of Sorter and ms is the unit of time,
milliseconds. This transition is only triggered if the guard on
the transition, written in OCL (self.destination = “centre”),
is true. An example of a change event can be seen in the state
machine of the RVM component (Fig. 6) in the ItemInside
region on a transition from On_Hold to No_Item. The tran-
sition has an effect ˆthis.user.rvm_sends_item()
written in Java, which we chose as the action language as
further discussed later.

The MARTE TimedEvent concept is used to model
all timeout transitions, so that it is possible for them to
explicitly specify a clock (if needed). Each environment com-
ponent may have its own clock or multiple components may
share the same clock for absolute timing. The clocks are
modeled using the MARTE’s concept of clocks. If no clock
is specified (as in the case of motivating example), then by
default the notion of time is considered to be according to
the physical time. Specifying a threshold time for an action
execution or for a component to remain in a state is pos-
sible using the MARTE TimedProcessing concept. This is
also a useful concept and can be used, for example, to model
the behavior of an environment component when the RTES
expects a response from it within a time threshold.

The proposed environment modeling profile allows the
modeler to apply three stereotypes to transitions in the
state machines: «Lazy», «TimeProbability», and «gaStep»
(defined by MARTE profile). Following, we discuss the
stereotype «Lazy», whereas the other two stereotypes are
related to non-determinism and will be discussed later
(Sect. 5.3.7).

By default whenever a component transitions from one
state to another (i.e., transitions that are not internal), its
event queue is emptied. To control the effect of a transition
on the event queue and timers of the context component, we
defined the stereotype «Lazy». In other words, this stereotype
is a way to give more control to the modeler over the inter-

nal handling of the queues and timers. The stereotype has
a property called ‘sideEffect’, which can have three possi-
ble values: (1) ‘Internal’, to denote that the transition should
have no side effects on the source state. A transition with
this stereotype will result in no alteration of the event queue
and the various timers in the environment component; (2)
‘ResetTimers’, which will result in no alteration of the event
queue, but will reset the timers; (3) ‘ClearQueue’ where the
queue is emptied, but does not reset the timers.

5.3.5 Modeling actions and action durations

In our methodology, we chose Java as the action language
for writing actions. The decision to choose Java as the action
language at the model level is due to the current lack of tool
support for the UML action language (ALF) [65] at the time
of our tool development. Moreover, the testers of the SUT are
expected to be more familiar with Java (consistent with our
experience of applying the approach in two industrial con-
texts), rather than with a newly accepted standard language.

In the environment models, actions can be written in two
places. Simple actions can be written inside the models, e.g.,
in the RVM state machine (Fig. 6), the simple assignment
action of the transition from ItemInside::No_Item to ItemIn-
side::On_Hold (i.e., this.currentItem = item) is
placed directly as an effect. Relatively complex actions and
communication related details are written in a separate source
file and are referred to as the external action code.

External action code is the code that is to be written man-
ually by the tester in a separate source code file, to com-
municate with the SUT (i.e., the test adapter) and compute
complex effects. An example for the type of external action
code is signals transmitted to the SUT over a UDP/TCP com-
munication layer. If certain environment state parameters can
only be computed by modeling continuous phenomena, then
external action code can be used to invoke the corresponding
code of other modeling and simulation tools, such as code
generated from Simulink [18] using Simulink Coder [66]. As
discussed earlier in Sect. 3.1, the code of other modeling and
simulation languages does not support the testing constructs
required by our methodology (e.g., error states). Excessive
use of action code for this purpose can reduce the perfor-
mance of the testing algorithms. For example, in the case
of search-based testing, the search will not get any guidance
from such code and therefore it may not be able to effec-
tively guide the environment towards the error states. In both
our industrial case studies, we did not need to model such
continuous phenomena, therefore, we have not evaluated the
practical implications of integrating our simulation code with
such languages.

The classes containing the action code are stereotyped
as «ExternalActionCode» and the path to the actual Java
class containing the action code is provided with the path

123

Environment modeling and simulation for automated testing 497

Fig. 9 Excerpt of ExternalActionCode for the sorter component

property of the stereotype. Figure 3 shows an example of
this where two action classes for Sorter and RVM are mod-
eled. For the other two environment components, no action
class was required. An object of this class is accessed in the
models by using the role name of the association between the
action class and context class. Calls to methods of external
action code classes are simply made by using the role name,
as shown in Fig. 5 in the transition action of the initial tran-
sition (with the role name action). An excerpt of the external
action code for the Sorter component is shown in Fig. 9 (line
13 and line # 19). The action code for the two messages sent
to the action object in the state machine of Sorter (Fig. 5)—
openConnection() and triggerSensor()—can be
seen in the excerpt shown. Class TCPConnection is part
of the communication library that we used. The method
triggerSensor() simply forwards the signal to the SUT
over the TCP connection. The decision to keep such action
code separate was made to avoid cluttering the models with
unnecessary details and to allow developers to write this
code in a familiar programming tool. It was also important
to keep the communication related information separate to
avoid changing the models in case of changes in the commu-
nication mechanism. For example, if we want to change the
communication from TCP to UDP, the only change will be
in the external action code classes. Given a communication
layer, even if the simulator is generated in Java, there is no
particular restriction on the programming language in which
the SUT is implemented.

Specifying a time threshold for an action execution or for a
component to remain in a state is possible using the MARTE
TimedProcessing concept. This is also a useful concept and
can be used, for example, to model the behavior of an envi-
ronment component when the RTES expects a response from
it within a time threshold. Though in our case studies we did
not face a situation where we needed to model action dura-
tions, the methodology supports this feature.

5.3.6 Modeling error and failure states

Two of the important features that are modeled in the state
machines of environment components are the Error and Fail-
ure states. Failure states represent possible failures in the
environment of SUT, e.g., hardware failure in the compo-
nents. These states are required to test the robustness of
the SUT when confronted to failures in the environment
components. The failure states are modeled with the “Fail-
ure” stereotype. Failures that are independent of any specific
aspect of an environment component’s behavior (e.g., a hard-
ware failure that can occur in any component state) are typi-
cally modeled using separate parallel regions within the state
machine of the environment component.

Error states are the states of the environment that can only
be reached due to faulty behavior of the SUT. These states
are conditions that should never happen in the environment,
otherwise indicating that the SUT is faulty. For example, a
Sorter should never receive an item while it is moving and

123

498 M. Z. Iqbal et al.

when there are no simulated failures in the hardware of the
environment components, all items should always be deliv-
ered to the correct destinations based on their types. It is the
responsibility of the Sorting Controller (SUT) to make the
Sorter reach the appropriate position before an item reaches
it. Otherwise, this would mean that there is a fault in the
implementation of the Sorting Controller. This behavior of
Sorter is modeled in the state machine shown in Fig. 5 as
an error state, which is labeled with “Error”. Error states are
key oracle information that is used during the test execution
of the SUT. By modeling erroneous situations as states, the
methodology allows modeling of erroneous situations due
to violation of temporal constraint (modeled as time tran-
sitions leading to error states), due to illegal change in the
state of the environment (modeled as transitions leading to
error states triggered by change events), and due to erroneous
signal receptions (modeled as a transitions leading to error
states triggered by signal events). Note that the error states
are abstract states and not concrete states, because we are
only interested in conditions that should never happen. One
error state can in fact capture many concrete error states. In
a large realistic system, we cannot possibly address all con-
crete error states, and we therefore only focus on the most
important and hazardous situations according to what is pos-
sible with given test budgets. For both our industrial partners,
we modeled error states referring to hazardous situations in
a way that each of them could cover multiple concrete error
states.

5.3.7 Modeling non-determinism

Non-determinism is a particularly important concept for
environment modeling and is one of the fundamental dif-
ferences between models for system modeling and models
for environment modeling. In the following, we discuss dif-
ferent types of non-determinism that we have modeled for
our case studies.

For a number of RTES environment components, speci-
fying the exact values for timeout transitions is not always
possible. To model their behavior in a realistic way, it is often
more appropriate to specify a range of values for a possible
timeout, rather than an exact value. Moreover, the behav-
ior of humans interacting with the RTES is by definition
non-deterministic. Similarly, there can be properties of the
environment components whose values can be between a spe-
cific range of possible values (e.g., items can be of different
types). The modeler may require that the exact value for such
properties is decided by the testing framework during testing
because of their possible impact on testing (e.g., the position
of sorter varies based on the type of item). For modeling these
behaviors, the modeler can add an attribute in the environ-
ment component and label it with the stereotype «NonDe-
terministic». One option to specify the range of values is by

providing upper and lower bound values for the correspond-
ing properties of the stereotype. Another option is to write an
OCL constraint as the ‘valueConstraint’ of the stereotype. In
the latter case, the properties’ upper and lower bounds will not
be evaluated. If the properties being modeled are only used
for non-deterministic time transitions, then another way of
modeling is to set the type of the non-deterministic property
to NFP_Duration and specify the ‘best’ and ‘worst’ proper-
ties of the NFP. The non-deterministic property can then be
used as a parameter of a time event. If the type of a «NonDe-
terministic» attribute is NFP_Duration, then other properties
will not be evaluated and the range will be obtained from
the best and worst properties of NFP_Duration. In the state
machine of the User (Fig. 8), the transition between the state
Idle and RVM_Busy is modeling the behavior that this transi-
tion is non-deterministic and that the user can insert the next
item with a delay ranging from 1 to 10,000 ms. The informa-
tion constraining the values is provided in the domain model
by applying the stereotype «NonDeterministic» on the inser-
tionTime attribute (see Fig. 3). The attribute is then used as a
parameter to the time event on the transition. The actual value
(between the range specified) to be used during simulation is
obtained from the simulation configuration. Since the scope
property of the stereotype is set to ‘state’, the value for this
attribute will be obtained from the simulation configuration
every time the User enters Idle state, i.e., every time a new
item is inserted.

There can be situations in which the modeler wants to
restrict that a non-deterministic value is either only obtained
once for each instance (i.e., assigned at the time of instan-
tiation) or is obtained at the time of instance creation and
every state change. As discussed earlier, these restrictions
can be modeled by setting the property scope of the stereo-
type «NonDeterministic» to ‘class’ or ‘dual’ respectively.
For example, The attribute type for an Item (see Fig. 3) on
the basis of which the Item is sorted is modeled as «NonDe-
terministic» with scope set to ‘class’ and values constrained
between 0 and 2 representing different types of items. This
means that for each instance of Item, the attribute type is
given a value by a simulation configuration when an instance
of Item is created.

Another important form of non-determinism is to assign
probabilities to the transitions of state machines. In an RTES
environment, we sometimes only know the probability of a
component to go into a particular state over time and we
are not sure about the exact occurrence of such conditions.
For example, we can say that the probability of a car engine
to overheat after running continuously for 10 hours is 0.05,
but we cannot be certain about the exact instance in time
when this situation will happen. We can model this in the
engine state machine with a transition going from Normal
Temperature state to Overheated state, during an interval of
10 hours, with probability of 0.05.

123

Environment modeling and simulation for automated testing 499

For modeling these scenarios, we can assign a prob-
ability on the transitions using the property prob of the
MARTE GaStep concept. Whenever a timeout transition has
the gaStep stereotype applied with a non-zero value of prob,
the combination will be comprehended as the probability of
taking the transition over time of the test case execution. In
the sorting machine case study, a Sorter can get stuck in a
position (e.g., because of a bottle blocking it or the arm jam-
ming) for example with a probability 0.02 in a minute if it is
not moving and a higher probability when it is moving. The
sending of non-deterministic signals can also be modeled
using this type of transitions, by placing them in the actions
of such transitions.

If the goal is validation, for example based on reliability
estimation, then these probability values can be used as a sort
of operational profile of the SUT [67]. On the other hand,
if the goal of testing is the verification of the SUT, then the
actual values of these probabilities are not important (test
framework decides if an event happens, as long as its prob-
ability is not zero). For example, if the goal was validation,
the above discussed scenario of a Sorter getting stuck could
have been modeled with the gaStep stereotype to provide an
exact value, range, or a probability distribution of occurrence
of this failure.

For verification purposes, typically we only require mod-
eling of such situations without specifying an exact probabil-
ity value or distribution and leave the decision of exact value
to the test framework. The stereotype «TimeProbability» on
a transition is used to model such a non-deterministic trig-
ger, whose occurrence is decided by the test framework and
obtained from the simulation configuration. Such a transition
is very useful to represent failures in environment compo-
nents. For example, in the Sorting machine case study, an
item can fall of the belt and be lost at any time while it is
moving inside the machine. This is modeled as a transition
from On_Belt state to a failure state named Lost in the Item
state machine shown in Fig. 7. An alternate way of model-
ing this is by using unconstrained clocks. Whenever there is
a time event that refers to an unconstrained clock, its value
(i.e., when the event is going to be triggered) will be decided
by the test framework.

Another type of non-determinism that we modeled in our
case studies is for the situations where one event can lead
to multiple possible scenarios, but all of them are mutu-
ally exclusive. For example, we might want to represent the
fact that during the communication with the SUT there is
a chance that signals are received with or without distor-
tion. For modeling such scenarios in UML state machines,
we can use choice nodes. Whenever, there is a choice node
with multiple outgoing transitions without any guards, the
decision of taking one of the outgoing transitions from such
a choice node is made at the time of execution by the test
framework.

If the modeler wants to provide precise probabilities for
such scenarios, she can assign the MARTE gaStep stereo-
type to each of the multiple possible outgoing transitions.
The example of communication with the SUT can be mod-
eled by having two transitions going out of the environment
component state on receiving of a signal, one labeled with a
probability that the signal was corrupted and the other with
the probability that the signal was fine. As mentioned ear-
lier, modeling the distribution of event arrivals and timeout
transitions can be useful for validation purposes, but is out
of the scope of this paper, since our goal is verification of the
SUT.

5.4 Summary

For the purpose of modeling the environment to support
black-box and automated RTES testing, we have defined a
UML profile and a detailed modeling methodology. One of
the major aims while developing the profile was to keep it
as simple as possible to facilitate industrial adoption. The
methodology describes guidelines for modeling both the
structural and behavioral details of the environment. The
structural details are modeled as an environment domain
model, which captures the information of various environ-
ment components, their properties, and their relationships.
For the domain model, we used the UML class diagram
notation and annotated class diagram elements with the pro-
posed profile. We define guidelines for identifying various
components of the environment, their properties, and rela-
tionships. The behavioral details of the environment were
modeled using the state machine notation annotated with
once again with the proposed profile. Each environment
component has one associated state machine. We defined
guidelines for identifying states, modeling events, modeling
non-determinism, and modeling error and failure states. Such
state machines contain information of the nominal behav-
ior of the components, their robustness behavior (e.g., break
down of a sensor), and error states that should never be
reached (e.g., hazardous situations). If any of these error
states is reached, then it implies a faulty RTES. Error states
act as the oracle of the test cases, i.e., a test case is success-
ful in triggering a fault in the RTES if an error state of the
environment is reached during testing.

6 Simulator generation

The environment models, comprising a domain model (UML
class diagram) and behavioral models (UML state machines),
are converted into a Java-based simulator using model to text
transformations. The transformations are based on an exten-
sion of the state pattern [7], which is a well-known way of
implementing state machines. The transformations proposed

123

500 M. Z. Iqbal et al.

Fig. 10 Architecture diagram of simulation framework

here are defined to address the specific requirements for envi-
ronment simulation and RTES system testing. In this section,
we first provide an overview of the overall simulation frame-
work (Sect. 6.1). Then we discuss our extended state pattern
(Sect. 6.2) followed by a discussion on detailed transforma-
tion rules for domain model (Sect. 6.3) and behavior models
(Sect. 6.4) to simulator code, thus providing a more thor-
ough description of the pattern. This is followed by a discus-
sion on the various important design decisions that we made
for the transformation in Sect. 6.5. Section 6.6 discusses the
resolution of all the related UML semantic variation points,
whereas Sect. 6.7 discusses the tool support for the transfor-
mations.

6.1 Simulation framework

Figure 10 shows the architecture of the simulation frame-
work. Components marked with the stereotype «artifact»
represent the artifacts that are provided by the software testers
to use the framework. The only input is the Environment
Models that are developed according to the methodology dis-
cussed in Sect. 5.

The package named Simulator Generator con-
tains the core components required for simulator generation.
The sub-package TransformationDrivers contains
driver classes provided with the framework that are respon-
sible for configuring and running the model transformations.
The MofscriptTransformations package contains
the transformations we wrote in MOFscript [68] to trans-
late the environment models to Java classes representing
the environment simulator. Class EnvironmentConfig
uration Generator is responsible for generating an
environment configuration representing one possible setting
of the environment. The class OCLToJavaTranslator

is used by the MOFScript transformations to translate the
OCL expressions in the model representing guards and
change events to their Java equivalent. More details on
how the simulator generator handles change events are pro-
vided later in Sect. 6.4.2. The components inside the Sim-
ulator Generator package generate a set of classes in Java
corresponding to the environment models given as input.
This is represented as a Simulator package in Fig. 10.
The generated simulator is statically linked to classes from
two packages: the Simulator Helper Library and
the Non-Deterministic Engine which we discuss
below.

The Simulator Helper Library is developed to
support a number of features required by the generated sim-
ulator. The library is independent of the case studies and
hence is developed as a separate library. The library con-
tains generic features required by active objects (event queue,
event handling mechanism, etc.), time related functionalities
(including features for handling clocks and timed events),
collection classes (providing facility for sending broadcast
signals to all elements in the collection), and support for
implementing the defined extension of the state pattern,
as discussed further in Sect. 6. The core package of the
library is shown in Fig. 11. The class ActiveObject
represents the UML concept of an active object. The
class provides an event queue for the active objects in
the form of ajava.util.PriorityBlockingQueue.
The queue is a blocking queue and enables setting the pri-
ority of elements in the queue. The queue holds instances
of class EventInvocation. An EventInvocation
instance represents an event that is ready to be executed
and is placed in the event queue of an ActiveObject.
EventInvocation has an attribute methodToInvoke
that is of type Method from the Java reflections package

123

Environment modeling and simulation for automated testing 501

Fig. 11 Important classes in the SimulatorHelperLibrary

and contains the method of the ActiveObject to be
invoked along with its parameter types, an attribute
parameterValues containing the values for the parame-
ters of the method to be invoked, an attributetriggerType
representing the type of the trigger (signal event, change
event, or time event), and an attribute isTimeProbable
that indicates whether the method to be invoked represents
a time probability trigger. The class ActiveObject is an
abstract class containing the generic behavior of an active
object. The behavior provided by the class is used both for
the environment components (extending the further gener-
alized class SimulatedObject) and implementation of
parallel regions (since each region has its own thread of exe-
cution and an event queue). The interface IState is imple-
mented by all the classes representing UML states. The class
SimulatorList is used to implement relationships hav-
ing a multiplicity greater than 1. The class provides facility
to broadcast events to all the elements it contains at any given
time. For example SimulatorList is used to implement
the relationship (itemCollection, Fig. 3) between Item and
User for the Sorting Machine case study, so that signals to
items can be easily broadcasted.

The Non-Deterministic Engine is responsible to
provide a link between the simulator and various simula-
tion configurations produced by the test framework. The
Non-Deterministic Engine is called by the sim-
ulator each time a non-deterministic occurrence needs to
be produced, which in turn queries the current simulation
configuration and returns the value generated by the test

framework corresponding to the non-deterministic occur-
rence. This is handled by assigning a unique id to each
non-deterministic occurrence during the entire simulation,
based on the formula: <NDID> = <INSTANCE_ID>

* <MAX_ND_COUNT> + <LOCAL_ND_ID>, where
NDID is the non-deterministic occurrence id to be calculated,
INSTANCE_ID is the unique id assigned to instances of envi-
ronment components, MAX_ND_COUNT is the maximum
number of non-deterministic occurrences that any compo-
nent in the domain model can have, and LOCAL_ND_ID is
the unique id for the occurrence for each environment com-
ponent. For example, in the Item component state machine
(Fig. 7), the transition from On_Belt to Lost is stereo-
typed as «TimeProbability», which is a non-deterministic
event. The actual value for the time when this transition
is to be taken is obtained by the simulator through the
Non-Deterministic Engine. As discussed earlier in
Sect. 5.3.7, non-determinism can be of multiple types. An
excerpt of generated code in Fig. 12 shows a call to the
Non-deterministic Engine in order to initialize the
value of the attribute type of the Item environment compo-
nent. The statement instanceId * 3 + 0 will result in a
unique id for this non-deterministic occurrence during sim-
ulation.

6.2 An extended state pattern for environment simulation

The original state pattern, discussed in [7], provides a
design pattern to implement state-driven behavior in an

123

502 M. Z. Iqbal et al.

Fig. 12 Code snippet showing
call to non-deterministic engine

Fig. 13 Extended state pattern meta-model

object-oriented programming language. The idea of the pat-
tern was to provide a clean way to implement state-based
behavior and make it easy to add new states or transitions
by confining the code related to states in separate classes
and by providing a mechanism to change the state class at
runtime. The original state pattern did not, however, spec-
ify a number of important features present in UML 2.x state
machines, such as concurrency, time events, change events,
and effects. A number of works have provided extensions
to the basic state-pattern for various purposes. We discuss
these extensions in the related work section and explain why
these extensions do not entirely match our needs. In this
section, we describe how we extend the basic state pattern
for various features required by our environment modeling
methodology.

Figure 13 shows the meta-model of the proposed exten-
sions to the state pattern. The meta-model is included
here for ease of understanding. The actual transforma-
tion is from UML models directly to Java code (without
an explicit target meta-model). The abstract meta-classes
Active, IState and SimulatedObject represent
the classes with the same names in the Simulator
Helper Library. The core package of Simulator
Helper Library is shown in Fig. 11. These classes were
required for the environment simulation and are not defined
in the original state pattern.

The concept of Active is similar to the notion of an active
object in UML. Instances of this class hold an event queue
and run as a separate thread. All state classes extend the
IState class. The class is implemented as a Java interface
in Simulator Helper Library. SimulatedObject holds a
list of threads that have been created so far for the instance
of an environment component and whether or not the sim-
ulation has resulted in reaching an error state. The classes
Context, ContextState (called State in state pat-

tern), and ConcreteState perform similar roles as in the
state pattern. The classContext corresponds to a «Context»
component of the environment. It holds a reference to all the
states and to the current state of the environment component
instance and forwards the incoming events to the current state
object. A ContextState can be a ConcreteState or
a CompositeState. The ConcreteState class rep-
resents the simple states where actual implementations of
triggers are defined. According to the modeling method-
ology, all events that are not explicitly defined on a state
are ignored (Sect. 6.4). To implement this behavior, the
ContextState class provides an empty implementation
of all the operations that correspond to signals defined for the
Context class. The operations have the same signature (i.e.,
the same name and the same parameters) as the signal. Since
all the concrete state classes extend the ContextState
class, if a signal is not accepted in a state, then its implementa-
tion is not provided in the corresponding ConcreteState
class. This results in executing the empty implementation and
the event is ignored. Since the original state pattern does not
handle parallel regions or composite states, we have added
the CompositeState and RegionContext classes for
this purpose. An instance of CompositeState class is
created for each composite state in the state machine. A
CompositeState holds substates that can be either a
ConcreteState or CompositeState (implemented
as composite pattern [7] in the meta-model). Instances of
RegionContext are generated for each parallel region in
the state machines. All the states within a region are created
as instances of ContextState. A RegionContext can
have further links with other RegionContext objects in
case of further parallel regions within a region.

Further extensions to the state pattern are related to han-
dling the required simulation details for RTES system testing.
These extensions include the support of non-determinism
that is a common feature in RTES environments. We also pro-
vide support for change events, time events modeled using
the MARTE profile, and handling actions written in Java. We
also provide a generic way to develop and integrate a commu-
nication layer in the generated code for communication with
the SUT (via the external action code as discussed earlier in
Sect. 5.3.5). The generated code also supports the genera-
tion of code for error and failure states and various heuristics
necessary to apply search-based testing techniques (e.g., for
calculation of branch distances [44]).

123

Environment modeling and simulation for automated testing 503

The overall event processing in the simulator for active
environment components is based on run to completion
processing as defined by UML semantics. The active object
waits on the event queue, performs a dequeue operation,
processes the received events, and waits on the event queue
again if the queue is empty.

6.3 Transformation of the domain model

The domain model is used to obtain information regard-
ing various environment components, their relationships
and possible cardinalities of associations, attributes, non-
deterministic attributes, signals, and signal receptions. This
information is used throughout the transformation process
and is also included in the generated simulator classes.
Since the transformation rules are based on an extension
of the state pattern, a number of Java classes are gener-
ated for every stateful component in the domain model, e.g.,
RVM, User. As discussed earlier, every environment com-
ponent is translated into a Java class which is an instance
of the Context meta-class. A list of the important auto-
generated methods in such context classes along with their
descriptions is provided in Table 1 and a list of gener-
ated attributes is given in Table 6 of Appendix. The var-
ious methods listed in the table are further discussed in
Sect. 6.4 (since most of them relate to the behavior mod-
els). Every context class instance for each environment com-
ponent will be assigned a unique id, called instanceId,
during simulation. TheinstanceId is decided by the envi-
ronment configuration and is passed to the constructor of
context classes when the instances are created, as shown in
Table 1. Each environment component holds a reference to
instance of a state object that represents the current state of
the component. A method oclInState(stateName) is
provided for every component that returns true if the com-
ponent is in a state with name equal to stateName. The
method corresponds to the oclInState method defined
by the OCL specifications and is called during evaluation
of various OCL expressions that need to check the state
of a component. Whenever a component changes its state,
the method changeState(fromState, toState)
is called, which updates the state object referring the current
state. The method startExecution() is called when
the simulation is started and stopExecution() is called
when the simulation is stopped. These methods call methods
with the same name in the external action code (shown in
line # 22 and line # 29 in Fig. 9). Code related to acquiring or
releasing resources can be placed in these methods. Effects
defined on transitions where either the constructor of the envi-
ronment component is the trigger or the transitions are ini-
tial transitions (i.e., their source is the initial pseudo-state)
are implemented in the startExecution()method. For
example in the Sorter state machine (Fig. 5), the effect of ini-

tial transition (action.openConnection()is imple-
mented in the startExecution() method of context
class Sorter).

Relationships are implemented following the standard
class diagram conversion rules [69]. Signal receptions are
translated into Java methods in the context class. The asso-
ciations with an environment component at the naviga-
ble end, with a multiplicity above one, are implemented
using a SimulatorList collection from theSimulator
Helper Library (Fig. 11). If, in the action code, a signal
is sent to a role name having multiplicity more than one, then
it is sent to all the elements of the collection. The attributes
of classes that are stereotyped as «NonDeterministic» (e.g.,
moveArmTimeLC in Sorter) are used to generate an out-
put file, called NonDeterministicOccurrences that
contains the range of values specified in the model for these
attributes. This file is used by the test framework to identify
the domain of valid test cases. Initial values for the envi-
ronment configuration are randomly generated based on the
OCL constraints defined on the attributes.

6.4 Transformation of behavioral models

In this section, we will discuss some of the important
rules for transformation of environment behavioral models
(i.e., UML/MARTE state machines). As discussed earlier,
depending on the type of the states in state machines of envi-
ronment components (i.e., simple, orthogonal, and composite
states), instances of corresponding sub-classes of meta-class
ContextState are generated. Various methods that are
generated for the instances of meta-class ContextState
and its subclasses are discussed in following sections. A sum-
marized list is provided in Table 7 in Appendix.

6.4.1 Handling hierarchical state machines

We have already discussed how a simple state is handled by
the code generator (in Sect. 6.2). Since a submachine state
is semantically equivalent to a composite state [4, p. 566]),
both of them are treated in the same way for code generation.
In the remainder of the section, we describe in detail how the
code generator handles orthogonal regions and composite
states.

To translate parallel regions into code, we introduced the
concept of a RegionContext class (Fig. 13). The class
acts as the state pattern context class for various states in
that region (i.e., it holds the current state object and for-
wards the messages to it). The Context class in these
cases has a reference to this RegionContext class. Each
RegionContext class extends the Active class and thus
holds a queue of events. This was important for simulation in
order to allow each region for separate processing and execu-
tion of events in its queue. Figure 14 shows the static structure

123

504 M. Z. Iqbal et al.

Table 1 Automatically generated methods in instances of the context meta-class

Method name Description

«Constructor» (int instanceId) The constructor is passed with the unique instanceId for this instance
during the simulation. Actions of constructor are included in
startExecution()

startExecution This method is called at the start of execution and all the initialization of
attributes, regions, and states is done here. Threads for concurrent
regions are started in this method

stopExecution This method is called at the end of execution. Various threads are
stopped, and resources are released in this method. For example in the
sorter case, a call to action code to close the opened sockets is sent from
this method

evaluateChangeEvents This method is called from setter methods to evaluate whether any of the
change events is affected by the current change

executeChangeEvent(condition) This method is called when the condition of a change event has been
satisfied. The call is forwarded to executeChangeEvent() of the
current state object

Setter methods Setter methods are generated for every attribute and association of the
environment components

Getter methods Getter methods are generated for every attribute and association of the
environment components

oclInState(stateName) Evaluates whether the component is in the specified state. The Semantics
is similar to OCL method oclInState, except that the parameter
stateName is of type String

timeout Called whenever a timeout has occurred (i.e., a timer of a time event has
expired). The method calls the timeout method in the current state
object

Signal methods These methods are generated for every signal that is accepted. The
method forwards the call to the method implementing the signal in the
current state

State getters A getter method is generated for every ContextState class

executeCompletionEvent This method is executed when the entry actions of the current state object
have been executed. The call is forwarded to current state object

changeState(fromState: IState, toState:IState) The fromState object refers to the source state and the toState
refers to the target state. onStateExit() in fromState and
onStateEntry() in toState are called. Current state is changed
to toState

of the code (without operations and attributes) produced by
the code generator for the RVM state machine shown in
Fig. 6. Classes name ItemInsideStateContext and
RoutingStateContext are the two RegionContext
classes corresponding to the two regions of the state machine.
Both these classes have an association to their correspond-
ing ContextState object, ItemInsideState and
RoutingState, respectively. These ContextState
classes are specialized by the ConcreteState classes,
for example, in the case of RVM, RVMIdleState and
RVMRouting_ItemState are instances of meta-class
ConcreteState (for the states Idle and Routing_Item
in Fig. 6 respectively) and specialize the RoutingState
class, which is an instance of the ContextState meta-
class.

For every composite state, at least two classes are added to
the state hierarchy. If a composite state does not contain par-
allel regions, then an instance of CompositeState class
is added and, for all the sub-states of this composite state,

instances of ConcreteState are added. If there are par-
allel regions, then an instance of a RegionContext class
is added and the CompositeState class has an associa-
tion with it (Fig. 13). The rest of the handling is similar to
other states as defined by the UML semantics (e.g., when a
sub-state is entered, the entry actions of composite states are
executed first followed by the entry actions of the sub-state).

6.4.2 Event handling

As discussed earlier (in Sect. 5.3.4), the environment model-
ing methodology allows three types of events to be modeled:
signal events, change events, and time events. Since envi-
ronment components represent active objects, each of them
contains an event queue that holds the events that have been
dispatched, but have not been executed yet. An environment
component instance is considered to be busy when it is exe-
cuting behavior corresponding to an event. When an event is
triggered on a busy instance, the event is kept in the event

123

Environment modeling and simulation for automated testing 505

Fig. 14 Generated code structure for RVM environment component

queue and is processed after the current execution is finished.
To avoid race conditions and to make environment simulation
repeatable, each event is assigned a unique id in the context
of an environment component at the time of code genera-
tion. For time events, the time expression and the guard of an
event are used to identify a time event. For change events, the
change condition is used to identify a change event uniquely,
and signal events, are uniquely identified by using the name
of the signal and the constraint of the guard. In the following,
we discuss how the events of different types are translated
into simulator code.

Handling Signals The rules for handling signals are
defined according to UML semantics. Here, we discuss how
they are realized using the proposed extensions of the state
pattern. Sending of a signal from one component to another
is done in the generated code by calling a receiveSignal
method of the target context instance, which extends the
Active class in Simulator Helper Library where
receiveSignal is defined. The name of the signal being
sent (a Java String) and the arguments with which the signal
is to be invoked (an array of Java Object) are passed as para-
meters of thereceiveSignalmethod. The method places
the received signal in the queue as an EventInvocation,
which represents the method to be invoked and the para-
meters. This behavior is shown as a sequence diagram in
Fig. 15. When the context object is ready to process the sig-
nal, then the method of the EventInvocation is invoked
on the context object using Java Reflection API. Whenever
an instance exits a state, its event queue is emptied (except
for «TimeProbability» events, discussed later).

Signals to a SUT are sent through the action code. All
the signals towards the SUT are first forwarded to a cor-
responding method (with the same signature) of the action
code. For the reasons discussed earlier (in Sect. 5.3.5), the
low level details for sending the signal to the SUT over a
communication medium are written in the external action
code manually by the developer. For example, in the state
machine of Sorter shown in Fig. 5, as a result of receiv-
ing a signal trigger_sensor(), the Sorter sends a sig-
nal to the SUT. This is modeled as a signal to the action

class action.triggerSensor(). The implementation
of the action class corresponding to the Sorter is shown in
Fig. 9. The action class contains triggerSensor() (line
19 in Fig. 9) which implementation is to forward this sig-
nal to the SUT over the TCP connection (implemented as
sendMessage(..)). Similarly, it is the responsibility of
an action code developer to define a mechanism by which
the signals are received from the SUT and are forwarded to
the context objects. For this purpose, every action class has
an access to its corresponding context object. For example,
in the external action code of the Sorter shown in Fig. 9,
an object of type Sorter is passed as an IActiveObject
to the method startExecution() (line # 22 in Fig. 9).
This method is called at the start of environment simulation
and is a way to allow the action code writer to provide ini-
tializations required at the start of execution (e.g., opening
of sockets). As shown in the implementation of the action
code in the figure, the reference of the instance is kept in a
local variable of the class (line # 23), which is then used to
send messages to the Sorter component (see line # 19 in Fig.
9) by invoking message sorter.receiveSignal().
In the state machine of Sorter shown in Fig. 5, the
signals position_left(), position_centre(),
and position_right() are sent by the SUT to the
Sorter and are handled in the above mentioned way.

Handling Change Events A special mechanism was
implemented for handling change events. In the generated
code, setter methods are generated for the attributes of
environment components. All action code statements that
are assigning values to attributes are converted to corre-
sponding setter calls of state machines. Within the code
of the setter method of every attribute there is a call to
evaluateChangeEvents() in the context object. The
method forwards the call to the current state object. Within
the state object, evaluateChangeEvents() evaluates
whether the change in the attribute value has an impact on
any of the possible change events. If this is the case, then
the corresponding condition which was evaluated to true is
returned by the method. In the case where multiple change
events are true, the condition corresponding to the event that
has a minimum corresponding id value will be selected (see
details on calculation of id values for events in Sect. 6.6.1). In
the context object’s setter method, if the condition returned
is not null, then a call to executeChangeEvent() with
the condition as parameter is placed in the event queue of
the context object. This mechanism is similar to handling
signals in the queue. The only difference is that the change
events have a higher priority than the signal events (rea-
sons discussed later in Sect. 6.6.1). The mechanism was
adopted in order to execute change events asynchronously for
active objects. As an example, the behavior of what happens
when a setter method is called for the notRoutingFlag
attribute of the RVM component is shown in Fig. 16.

123

506 M. Z. Iqbal et al.

Fig. 15 Sequence of message calls on receiving a signal

Fig. 16 Sequence diagram showing the behavior for evaluating change events

A change event depending on the value of this attribute
is shown in Fig. 6 (i.e., self.notRoutingFlag and
oclInState(Routing::Idle)). When the execute

ChangeEvent method is executed, it forwards the call to
the current state object, which in turn evaluates the condition
again and executes the transition corresponding to the change

123

Environment modeling and simulation for automated testing 507

event. If the condition is not satisfied, then nothing happens
and the event will be considered as lost.

Handling Time Events Another non-trivial transformation
is for the time events in state machines. We have created
a TimeService Library, as part of Simulator Helper
Library that is responsible for managing time-related opera-
tions (e.g., clock handling, event scheduling). In every state
class that has an outgoing transition with time trigger(s), an
object of type TimeService is added, which is respon-
sible for handling time-related operations. For each time
event, a corresponding TimeInstance object is included
that is initialized to the value of the time event. A method
afterT<i> is also included for every time event, where
<i> is the unique index associated with each time event.
For such state classes, a timeout() method is also imple-
mented, which has the logic of forwarding the call to the
correct afterT<i> method.

The time events are scheduled according to their corre-
sponding clock. If no specific clock is associated, then they
are scheduled on first entry into the state class and are reset on
every next entry into the state. Non-deterministic time events
(where times of occurrence are determined by the simulation
configuration) are handled as discussed in a specific section
below (Sect. 6.4.5). When a timer associated with a sched-
uled time event expires, a signal timeout() is sent to the
context object with the information of the time instance. The
context object forwards the call to the timeout method of its
current state.

6.4.3 Handling guards and actions

Since the environment models are translated to Java code, the
OCL guards on the models also need to be translated to Java.
For search-based testing we need to evaluate the OCL guards
and the corresponding branch distance [44]. Therefore, the
OCL guards are translated to their Java equivalent along with
instrumentation code to support testing heuristics at run time
[44].

As mentioned earlier (in Sect. 5.3.5), we have used Java
as an action language. Complex action code and the code
related to the communication with the SUT (e.g., handling
UDP/TCP sockets, writing to the file system) are written in
a separate action code file developed as part of the model-
ing activity as discussed in Sect. 5.3.5. Recall that the map-
ping between the Context class and its action code class is
provided using the stereotype «ExternalActionCode». The
actions on the transitions are placed inside the body of the
corresponding events in the instance of ConcreteState
class corresponding to the state from which the transi-
tion is outgoing (e.g., the action discussed above is placed
in the method for the signal user_inserts_item()
in the class RVMNo_ItemState). Internal state activi-
ties (entry, do, and exit) are handled as defined by the

UML semantics. Their implementation is provided in the
onStateEntry()method of the state classes. On comple-
tion of the do activity,executeCompletionEvent() in
the state class is called.

6.4.4 Handling Oracle information

As discussed earlier (in Sect. 5.3), error states represent the
states of the environment that are reached due to a faulty
implementation of the SUT. For example, in the Sorting
machine case study, there are two possible errors: the items
are not sorted correctly according to their type or an item
reaches the Sorter while it is moving. The first error scenario
is modeled in the state machine of Item (Fig. 7) and the sec-
ond scenario is modeled in the state machine of the Sorter
(Fig. 5). For the purpose of verification, the testing that we
performed in [44] aimed at reaching the error states of the
SUT. Note that the approach does not require any sophis-
ticated technique for oracle generation. The error states are
modeled with similar syntax as the regular states and rep-
resent the test oracle in our context. The oracle consists in
checking that any environment component instances do not
traverse any of the error states during test execution. Each
error state for each instance of the environment components
is assigned a unique id during the simulation and the search
heuristics (to help the generation of test cases, discussed in
Sect. 7.1) use this id to report information relevant to the
selected test heuristic, e.g., the distance from the error state
for search-based testing.

During the simulation, a number of components in the
environment might fail, but with a correct SUT, the environ-
ment should never enter in an error state, although the SUT
would likely operate with degraded functionalities. In terms
of code generation, the execution is stopped once an error
state is reached, a complete log showing the execution trace
is generated, and a JUnit test case is generated correspond-
ing to the values used in the simulation in order to enable the
re-execution of the test case.

6.4.5 Handling non-determinism

Non-determinism can be of five types in the environment
models, as discussed in Sect. 5.3.7. In the following, we
discuss how each of the five types of non-determinism are
handled for simulating the environment. Note that, as dis-
cussed earlier in Sect. 6.1, a unique id is assigned to each
non-deterministic occurrence during the entire simulation,
which is used by the Non-deterministic Engine to
select an appropriate value for this occurrence from the sim-
ulation configuration.

The first form of non-deterministic occurrence is due to a
trigger accessing a class attribute that has a «NonDeterminis-
tic»stereotype. On entering a state, when one of the outgoing

123

508 M. Z. Iqbal et al.

transitions contains a trigger with such an attribute, the gener-
ated code passes the unique id of the non-deterministic occur-
rence to the Non-deterministic Engine and obtains
an appropriate attribute value from the simulation configura-
tion. Handling of time events accessing such variables was
discussed earlier in Sect. 6.4.2.

The second form of non-determinism is when a variable of
an environment component (modeled by assigning a stereo-
type «NonDeterministic») needs to be initialized at the time
of instance creation during simulation. This information will
be implemented by having the component constructor query
for a value from theNon-deterministic Engine. For
example, for the domain model in Fig. 3, the code that ini-
tializes the value for the attribute type of Item is shown
in Fig. 12.

The third form of non-determinism is the explicit rep-
resentation of the probability to take a transition, which is
specified by the «gaStep» MARTE stereotype. During sim-
ulation whenever the code corresponding to such transitions
is reached, based on the probability it is decided whether or
not to take the transition.

The fourth type of non-determinism can be due to the
«TimeProbability» stereotype on a transition. The time value
specifying the delay in taking the transition is obtained from
the Non-deterministic Engine when the state is entered for
the first time or when the instance is reentering the state after
this transition has been executed.

The fifth type of non-determinism is possible when
we have a choice node with multiple outgoing transi-
tions without a trigger. During simulation, whenever the
code corresponding to such a choice node is reached,
the option of which branch to select is obtained from the
Non-deterministic Engine (again, by passing the id
of this occurrence).

6.5 Important design decisions and their rationale

In the following, we discuss the two important design deci-
sions regarding the concurrency model and time semantics
of simulation being followed.

6.5.1 Object concurrency model

We used the Active object model [4] to handle the concept
of a concurrent object. In our case, most of the environment
components are considered as active objects. This is because
they operate independently in the RTES environment and
can communicate asynchronously with each other and the
SUT. These objects have their own thread of execution and
receive asynchronous messages that are handled using an
event queue. For example, Sorter shown in Fig. 3 is imple-
mented as an active object and executes independently from
the other environment components, such as RVM and Item.

An active object simulating an environment compo-
nent can have multiple internal threads associated with it.
These threads correspond to the parallel regions of the state
machines. In our motivating example, RVM (Fig. 6) has two
internal threads, each for a parallel region (ItemInside, Rout-
ing). This was required to simulate the behavior of an RVM
when routing and handling item insertion at the same time. In
other cases, the parallel regions were used for modeling com-
ponent failures that could happen at any time independently
of the current state of the component.

6.5.2 Time semantics

Typically, in simulation approaches, the aim is to simulate
and analyze the behavior of a system or environment before
it is actually built. For the type of simulator that we have
developed, the aim is to simulate the environment in order to
test the RTES in diverse situations, without involving actual
hardware or people. The SUT in our case is always the actual
executable production code and is seen as a black-box. We
have no control over the SUT behavior and its definition
of time. Therefore, there is no point in simulating the SUT
clock, unlike the case in typical simulation approaches such
as SystemC.4 From its point of view, the SUT interacts with
the simulator as it would interact with the actual environ-
ment. The time it takes for SUT to process a message will be
same in both cases. The notion of time for the environment is
therefore based on the software implementation of the phys-
ical time. In our case, we used the implementation provided
by Java time semantics which are based on the CPU clock.

A typical issue in using the CPU clock is the jitter that
might be introduced because of computation overhead on
the processor (e.g., garbage collector, other operating sys-
tem processes). This jitter can range up to a few milliseconds.
Fortunately, for the type of environments for the systems that
we tested, as in many embedded applications, a delay of few
milliseconds was not a major issue as the time events were
generally in the magnitude of seconds (for example the time
of a bottle traveling on a conveyor). To be on the safe side,
we explicitly executed the Java garbage collector before and
after the simulation. Moreover, for the experiments that we
conducted, the garbage collector never executed during sim-
ulation and we never faced synchronization issues due to jit-
ter. For the type of industrial systems that we were focusing
on (see Sect. 2), using Java was sufficient. Figure 17 shows
the plot for the jitter (difference between actual value of time
event with the simulated value) corresponding to 16,000 time
events obtained after a number of simulator executions of an
artificial problem (details about the various artificial prob-
lems are discussed in Sect. 8.1). The time events are plotted
on x-axis, whereas the y-axis shows the jitter in terms of

4 http://www.systemc.org/, accessed on 04/01/2012.

123

http://www.systemc.org/

Environment modeling and simulation for automated testing 509

Fig. 17 Jitter in microseconds for time events during simulation

microseconds. The values of the time events were selected
randomly. The graph shows that the jitter is less than 4.5 ms
(4,500 µs) at most and less than 1 millisecond on average.
For this experiment we used a Dell Precision M4600 with
Intel Core I7 (2.50 GHz, 8 MB cache, Quad Core), 16 GB
RAM, and running Ubuntu Linux 10.0.4. This is the same
machine that we used for testing one of our industrial RTES.

For the environments which have hard time constraints
from the system, for magnitudes of milliseconds or less, the
jitter can be a critical problem. A possible solution to address
this problem is to use real-time Java virtual machines (e.g.
Sun Java Real-Time System [70]) running over a real-time
operating system (e.g. SUSE Linux Enterprise Real Time
Extension [71]), which will result in nanosecond level accu-
racy. The code that our tool generates is in theory compatible
to run with real-time Java virtual machines since this is one
of the requirements of such virtual machines. Though, the
practical implications of doing this for testing hard real time
systems still remain to be investigated.

6.6 Resolution of UML semantic variation points

A number of decisions regarding the semantics of implemen-
tations in UML are kept open to interpretation by tool devel-
opers, and are referred to as semantic variation points (SVP).
In this section, we discuss how we resolved the explicitly
mentioned UML SVPs (in the UML specification document
[4]) in our context. These include the SVPs corresponding to
state machines, classes, and behavior modeling.

6.6.1 Execution semantics and order of events in queue

The state machines of environment components are imple-
mented using the run-to-completion semantics as specified
by the standard UML [4]. For handling asynchronous mes-
sages, active objects need to implement event pools. The
implementation of such event pools is a UML SVP. In our

context, we used the PriorityBlockingQueue Java
class to implement these queues. They are priority queues
and hold various events during the life cycle of an environ-
ment component.

The decision of ordering of events in the event queue is
also a SVP in UML (see the discussion on Behaviored
Classifier in UML specifications [4, p. 449]). In our
context, we resolved this by assigning the time events in the
queue the highest priority, change events the second highest,
and the signal events the lowest priority. Time events have the
highest priority since the behavior that they trigger is explic-
itly related to time, so it should be executed as close to the
event occurrence time as possible. Change events have higher
priority than the signal events since it is important to execute
the corresponding behavior at the earliest opportunity once
the change condition turns to true, as it may become false
again. For the events of the same type, the order in the event
queue is determined based on the ids assigned to each event
(discussed in Sect. 6.4.2).

6.6.2 Default entry and handling conflicting triggers

Another UML semantic variation point is the decision about
the default behavior of state machines when there is no
explicit initial pseudo state defined in an enclosed region
(e.g., in sub states) (see the discussion on State in UML spec-
ifications [4, p. 566]). Our environment modeling method-
ology requires the modeler to put at least one initial pseudo
state in every enclosed region. A region without an explicit
initial transition will be considered ill-formed.

There can be situations during simulation when one out-
standing event satisfies multiple triggers in an environment
component. This issue is left as a semantic variation point in
UML (see the discussion on BehavioredClassifier in UML
specifications [4, p. 449]). For our methodology, when such a
case arises, the event that has the minimum id (calculated as
discussed in Sect. 6.4.2) among the satisfied events is selected

123

510 M. Z. Iqbal et al.

and triggered. Our environment modeling methodology rec-
ommends avoiding such situations as they indicate imprecise
or incomplete environment models.

6.6.3 Event not satisfying any trigger

The behavior in the cases when the occurring events do not
specify triggers on active states are left as semantic varia-
tion points in UML (see the discussion on Behaviored
Classifier in UML specifications [4, p. 449]). In our
case, all the events that do not satisfy any trigger are simply
ignored. The modeling methodology requires the modeler to
only model those triggers that have a significant behavior,
e.g., they have a corresponding effect. If accepting a signal
coming from the SUT in some state represents a faulty behav-
ior (i.e., that signal should not have been sent), then it should
be modeled with a transition leading to an «Error»state. For
example, in the sorting machine, a Sorter should never accept
a signal item_at_destination()when it is in Movin-
gLeftCentre, and so we modeled this with a transition from
the moving state to an error state, as shown in Fig. 5.

6.6.4 Event evaluation time

In UML semantics, the time it should take for a component
to dispatch an event after it was received is not defined and
is left as a semantic variation point to be decided by specific
methodologies (see section on Triggers on p. 472 of UML
specifications [4]). In our methodology, this time is depen-
dent on the event queue size of the receiver, the priority of
the event, and the time to enqueue and dequeue the events
before consumptions.

For the specific case of time events (corresponding seman-
tic variation point discussed in TimeEvent, UML specifi-
cations [4, p. 468]), as discussed earlier (Sect. 6.4.2), when
a time event is received by the environment component, it
is placed in the event queue. If there are more time events
ready to be dispatched in the queue, then the event received
may never be executed. If a time event already at the front of
the queue is executed, it will result in a time transition and
hence, the queue will be emptied from all its events, unless
for specific cases already mentioned in Sect. 5.3.4 (e.g., for
transitions with «Lazy»). If the time event belongs to a par-
allel region (or a substate of a parallel region) then it will
again be placed in the region’s queue (see Sect. 6.4.2). Thus,
the dispatch time of a time event depends on the time events
that are already in the queue(s) and the time to enqueue and
dequeue in the queue(s), and the number of internal orthog-
onal regions. Overall this time will only be within a few
milliseconds, which is not a major obstacle for the type of
system testing that we deal with and for many embedded
applications (as discussed in Sect. 6.5.2).

6.6.5 Signal transmission

The mechanism of how a signal is transmitted from the source
to target component is also left as a SVP in UML (See pp. 437,
447, 466 of UML specifications [4]). As discussed earlier, in
our context, signals are transmitted from the source to the
target by calling the target’s receiveSignal() method
with the signal parameters. The receiveSignal method
creates an instance of EventInvocation and puts it in
the event queue of the target component. The sender and
receiver will be running on the same process since all the
environment components run on a single process. This deci-
sion was made because intra-process communication is eas-
ier and faster than inter-process communication. Since SUT
is a black-box in our testing approach, the SUT runs on a
separate process (or even a separate machine) and the com-
munication between environment components and SUT is
handled through the external action code.

6.6.6 Other variation points

In this subsection, we discuss the remaining important
semantic variation points, which have already been resolved
as a result of our extension of the state pattern and have
already been discussed in that context. The decision of how
and when change events are to be evaluated is a SVP (see
Change Events, p. 452 of UML Specifications). We have
already discussed this in Sect. 6.4.2. Another SVP related
to change events is what to do with them in cases where
between the time of dispatch and execution, the condition
of the change event becomes false again (Change Events
[4, p. 452]) . As discussed in Sect. 6.4.2, such events will be
considered as lost events and will be ignored.

The details on how the run-to-completion semantics are
implemented are also left open as SVP in UML [4, p. 452].
The discussion of the state pattern extensions in 6.2 and the
discussion in Sect. 6.4 regarding code generation for various
state machines, elaborate how these semantics are imple-
mented in our context.

The mechanism by which a mapping between a signal
and corresponding operation is performed is also a SVP
[4, p. 447]. In our context, we generate operations with the
same signature (i.e., same name and parameter types) for
the signals (as discussed in Sect. 6.2). The sender of a signal
sends the name of the signal to be invoked as a String value to
the receiver. As discussed in Sect. 6.2, the receiver object uses
Java Reflections to identify the operation to be invoked. This
resolves another UML SVP about how to identify the invo-
cation corresponding to an event [4, p. 438]. The decision
of whether to pass the arguments by reference or value
[4, p. 438] is also resolved as we pass the arguments of the
signal as Java Objects, which are passed by reference in Java.

123

Environment modeling and simulation for automated testing 511

Fig. 18 MOFscript transformations used for generating simulators

6.7 Automation

We implemented the rules mentioned earlier in Sect. 6
by using MOFScript model to text transformations [68].
Figure 18 shows various MOFScript transformations that we
developed for transformation from environment models to
Java code. These transformations are contained in the pack-
age named MOFScript Transformations shown in
Sect. 6.1. Stereotype «MOFScript»denotes the MOFscript
m2t files containing the transformation rules.

The control of transformations is handled by
Controller. The ContextClassGenerator trans-
formation is responsible for transforming the domain model
with the help of ClassHelper. ContextClass
Generator also calls StateClassesGenerator,
which is responsible for transforming the state machine
of an environment components to Java code with the help
of StateHelper. JavaHelper contains the rules spe-
cific to Java and are used by various other transforma-
tions; OCLHelper uses the OCLToJavaTranslator
class discussed in Sect. 6.1 to convert OCL expressions
to their equivalent Java code. ActionLanguageHelper
is responsible for modifying the action language code
in the models according to the generated code structure.
SimulatorConfigReader reads the configuration file
given as input and the TestConfigGenerator gener-
ates a configuration file that is read by the test framework.

The tool requires models exported as standard EMF for-
mat for UML (.uml file). This is a widely accepted format for
interchanging UML models and is supported by a number of
modeling tools, including Rational Software Architect and
Papyrus. Our tool reads the .uml file and generates a simula-
tor corresponding to the models. The software engineer then
needs to provide a test driver that specifies the testing strate-
gies to be used and that initializes the SUT and the generated
environment simulator.

7 Interaction with test framework

In this section, we first discuss the details about how the envi-
ronment simulator interacts with the framework, which is fol-

lowed by discussions on how the information from the mod-
els is used for search-based testing (Sect. 7.1), more details
on simulator configuration (Sect. 7.2), the OCL constraints
solver that we used (Sect. 7.3), and finally details about test
drivers and JUnit test cases (Sect. 7.4).

The test framework queries the simulator to obtain infor-
mation required to generate the simulation configuration
(e.g., number of non-deterministic variables and their value
domain and type). The test framework then generates valid
simulation configurations based on the testing strategy in
use (e.g., at random for random testing) and uses the Test
Driver to run the SUT with the environment simulator. The
test framework uses a set of heuristics based on the previ-
ous test case executions (e.g., rewarding test case diversity
and Genetic Algorithms) to choose new test cases to run and
evaluate (for details see Sect. 7.1 and [7]).

The goal of the test framework is to find a simulation
configuration for which, once executed with the simulator,
an error state is reached (if any fault is present in the SUT).
Once such a configuration is found, it automatically generates
a JUnit test case. In [7], we show how the models developed
using the methodology described above can be used for auto-
mated system testing of RTES. A test case is used to define
two important components of the simulation: (1) the config-
uration of the environment, e.g., number of sensors/actuators
and their initialization; (2) the non-deterministic events in the
simulation, e.g., variance in time-related events such as phys-
ical movements of hardware components, occurrence and
type of hardware failures and actions of the user(s). In [7], we
investigate three strategies to automate these choices: Ran-
dom Testing, Adaptive Random Testing and Search-Based
Testing (using a Genetic Algorithm). The results of the exper-
iments (on three artificial problems and one large industrial
RTES) showed that environment model-based testing is able
to automatically find faults in all the considered case studies.
In particular, previously uncaught critical faults were auto-
matically found in the industrial RTES [44].

Test data generation can be reformulated as a search prob-
lem [72,73], in which for example the goal can be to find test
data for which failures are triggered (if any fault is present
in the SUT). To achieve such goal, it is important to have
a heuristic to evaluate how good test data are, even if they

123

512 M. Z. Iqbal et al.

do not trigger any failure. For example, test data that lead to
execute most of the code of the SUT would a priori be more
useful than test data for which the computation finishes very
quickly after executing few lines of code. A search algorithm
would use such information to focus on areas of the search
space (i.e., test data) that are more likely to contain test data
for which the SUT fails. Since it is not feasible to evaluate
and run all possible test data, a search algorithm has to focus
only on some promising areas. Such type of test data genera-
tion is referred to as search-based software testing [72], and
there are many search algorithms and fitness functions (i.e.,
functions to evaluate how good the test data are). For details
regarding how to use search algorithms to system testing of
RTES, see [44].

However, to use such search algorithms, it is important to
obtain information on the execution of test cases after they
are run (e.g., which parts of the SUT code they execute). Such
information would be used to compute the fitness function.
Which type of information is needed depends on the selected
testing strategy.

Typically, in white-box testing, when information regard-
ing source code execution is needed for the heuristics, the
code of the SUT needs to be instrumented. Instrumentation
means that the code is augmented with probes to collect exe-
cution data (e.g., to check which branches of “if” statements
are executed). Since our system testing approach is based on
environment models where the SUT is treated as a black-box,
the probes are inserted only in the code of the environment
simulator. The models contain valuable information to guide
search-based testing, and such information would be lost or
difficult to reverse-engineer after the simulator is generated.
For practical reasons, the probes are automatically inserted
when the code is generated from the models. This is another
advantage of using simulators generated from models rather
than manually coding a simulator, as manually inserting those
probes would be likely tedious and time consuming. The rest
of the section is organized as follows: Sect. 7.1 discusses
various search heuristics that are used to guide search-based
testing strategies, which is followed by a discussion on sim-
ulation configuration (a fundamental part of a test case in
our context) in Sect. 7.2. Section 7.3 discusses the OCL con-
straint solver that is used by the test framework, whereas
Sect. 7.4 discusses test driver (an input of the test framework)
and JUnit test cases (the key output of the test framework).

7.1 Search heuristics

In the following, we discuss four types of instrumentation to
collect test case execution information used in fitness func-
tions in the context of environment-based system testing for
RTES [44], namely approach level, branch distance, time
distance, and risky states. Because the goal of such type of
testing is to find simulation configurations for which error

states are reached, we collect information regarding how
close the execution was from reaching any of these error
states.

The approach level is a common heuristic [72] in white-
box, search-based software testing, where executions that
get close to the testing target (e.g., branches in branch cov-
erage) are rewarded. When a test case is run, several states
in the environment state machines are reached, while others
are not. The approach level calculates the minimum num-
ber of transitions required to reach any error state from any
visited state of the environment component. To obtain this
value, we consider the state machine as a graph and per-
form a breadth first search on each state to obtain the min-
imum distance (in number of transitions) to reach the error
states. This calculation is done only once, when the sim-
ulator code is generated, and then hard-coded directly in
the simulator code to ease fitness computations during sim-
ulation. When a test case is executed, the approach level
for all reachable error states is calculated and reported. For
example, consider the environment component Sorter (Fig.
5): the distance for the Sorting::Working::Error state from
Sorter::Working::Left state is two whereas such distance
is one from Sorter::Working::MovingCentreRight. If both
these two non-error states are reached during test case exe-
cution, then the approach level would be the minimum value
among those two values (i.e, 1).

The second piece of information used in the fitness func-
tions is the branch distance. To reach an error state, it is
necessary to follow some specific paths in the state machine.
A path would be a sequence of state transitions, driven by
triggers. However, state transitions often have guards (e.g.,
logical predicates expressed in OCL), which need to be satis-
fied (i.e., their predicates need to be evaluated to true) to take
such transitions. The predicates in these guards depend on
variables, which values cannot be directly manipulated [73]
by the test framework and depend on the entire test case exe-
cution carried out so far until the guard is evaluated. Some
guards can be difficult to satisfy (i.e., only few simulation
configurations lead to it) and, because the variables in the
guards cannot be directly manipulated, it is not possible to use
external constraint solvers to satisfy them. The branch dis-
tance is a heuristic to reward simulation configurations that
brings the guards closer to satisfaction. Consider for example
the guard “x==0”, and two test cases for which “x=1” and
“x=100”. None of the test cases satisfy that guard but the case
“x=1” is heuristically closer. The branch distance is a com-
mon and effective heuristic in search-based software testing
for structural coverage [72]. In previous work, we have devel-
oped a search based constraint solver, in which we extended
the branch distance functions for white-box testing to sup-
port all the constructs of OCL constraints [73]. In this paper,
when we generate Java code to represent the OCL guards, we
instrument such predicates to calculate their branch distance

123

Environment modeling and simulation for automated testing 513

each time they are evaluated. For the details of how these
branch distances are calculated, see [73].

The third type of information used in the fitness functions
is the time distance. In some cases, a transition is taken only
after a timeout, and this type of transitions can appear on the
paths that lead to the error states. For example, assume that,
in a particular state, the environment expects a signal from
the SUT within one second.

If such a signal is not received, then an error state is
reached. In a state machine, this would be modeled as a
transition to an error state with trigger after (1, s), whereas
receiving the signal from the SUT would trigger a transi-
tion toward another state. The time distance calculates how
much longer it would have taken to get a given time trig-
ger fired. Taking the example above, if we receive the signal
after one millisecond, it would be worse than receiving the
signal after 900 ms, although in neither of the cases the error
state is reached. Each time there is a time transition, during
code generation such transition is instrumented to calculate
its time distance.

The fourth type of information used in the fitness func-
tions to guide the search is about risky states. The states
that have a direct transition to error states are consid-
ered to be risky states. For the search, this information
is important as these are the closest states to the error
states. For example, in the Sorter component, the state
Sorter::Working::MovingCentreRight is a risky state. How
often a risky state has been reached, and for how long the
environment was in such risky states, can be used by the
search algorithms to reward test cases that keep the environ-
ment in these risky states as long as possible.

7.2 Simulation configuration

The simulation configuration is generated by the Test Frame-
work. During the simulation, the simulator queries the simu-
lation configuration to obtain the values of non-deterministic
occurrences, e.g., exact time in time event. For this pur-
pose each non-deterministic occurrence is assigned a unique
id during the simulation. Notice that, once a configura-
tion is defined, the simulation becomes deterministic. In
other words, executing again the simulator environment
with the same simulation configuration should result in the
same behavior. However, this latter point is not strictly cor-
rect, because a simulation would still be affected by non-
deterministic components such as the thread scheduler and
other operating system resources. Fortunately, this is not a
serious problem for the type of system level testing done
here where, for most environments, variances of few mil-
liseconds in the interactions between the environment and
SUT are simply negligible as they have no impact on the
resulting states of the environment and SUT. When this is
not the case, as further discussed in Sect. 6.5.2, the modeling

methodology and code generated are still valid but a real-
time operating system and Java RT would need to be used.
Therefore, for all practical purposes, a test case is uniquely
characterized by a simulation configuration.

As an example consider Table 2 that shows a random gen-
erated simulation configuration. The simulation configura-
tion shown is based on an environment configuration having
1 RVM instance, 1 Sorter instance, 1 User instance, and 3
Item instances. This environment configuration results in a
total of twelve non-deterministic occurrences, 2 for Sorter, 1
for User, and 3 for each of the three instances of Item. Each
instance has a unique id during the simulation (“Instance Id”).
Each of the non-deterministic occurrences has a unique id
during simulation as shown by the “Nondeterministic Occur-
rence Id” column. The “Related Property” column in the
table shows properties of the environment components that
are related to the non-deterministic occurrences. When a
non-deterministic occurrence is based on a transition with
«TimeProbability», the stereotype is mentioned in the col-
umn. The values for these occurrences selected by the test
framework are shown in the column labeled “Value”. In
the case of «TimeProbability», each value pair specifies the
choice of value as 1 or 0 referring to whether or not to take
the transition and the time in milliseconds at which the tran-
sition is to be triggered (irrelevant when the transition is
not to be taken). Other values in the column are assigned
by the test-engine based on the ranges (e.g., the upper and
lower bounds) of «NonDeterministic» environment compo-
nent properties. The ranges are shown in the domain model
as stereotype properties of the environment component prop-
erties (Fig. 3). For example the lower and upper bounds for
moveArmTimeLC are 280 and 320. The value in the simula-
tion configuration decided by the test framework is 292.

7.3 OCL constraint solver

According to the modeling methodology, the domain model
captures the different forms the SUT environment can take
(see Sect. 5.2). For a given test execution, we need to select
one possible environment configuration. We use an OCL con-
straint solver to generate a possible configuration from the
domain model. This consists of selecting appropriate initial
values for the association multiplicities and attributes that are
not labeled with the «NonDeterministic» stereotype, as the
latter are determined by the simulation configuration. Figure
4 shows an example of OCL constraint on the User com-
ponent of the domain model of the Sorting machine case
study (Fig. 3). The constraint specifies that a User instance
is always associated with a non-empty collection of items.
To obtain an appropriate value of an instance according to
such constraints, we have developed a search-based OCL
constraint solver [73], since current OCL solvers in the lit-
erature do not scale up to the complexity of real constraints

123

514 M. Z. Iqbal et al.

Table 2 A simulation
configuration for the sorting
machine

Environment component Instance id Nondeterministic
occurrence id

Related property Value

User 0 0 insertionTime 500

RVM 1 None None N/A

Sorter 2 6 moveArmTimeLC 292

Sorter 2 7 moveArmTimeCR 303

Item 3 9 type 1

Item 3 10 timeToNode 1,062

Item 3 11 «TimeProbability» 0, 0

Item 4 12 type 0

Item 4 13 timeToNode 970

Item 4 14 «TimeProbability» 1,300

Item 5 15 type 0

Item 5 16 timeToNode 1,011

Item 5 17 «TimeProbability» 0, 0

found in industrial systems. The generated simulator code
calls this solver to generate values for which the OCL con-
straints are satisfied.

7.4 Test driver and JUnit test case

A Test Driver needs to be written by the tester, which is
used to start the execution of the simulator and SUT, and
to stop them after a timeout (a set of predefined libraries
are provided to help the tester in this task, wrapper by the
SimulaVerdeDriver). In the case studies for this paper,
the environment simulator and the SUT are run on different
processes on the same machine. Figure 19 shows an exam-
ple of a test driver for the SortingMachine case study. The
SimulaVerdeDriver class provides a number of meth-
ods for configuring various testing options.

Whenever the test framework leads the simulation to an
error state, this is due to a faulty implementation of the SUT.
The specific simulation configuration of the simulator at that
time is embedded in a JUnit test case and a source file rep-
resenting the test case is generated by the Test Framework.
This is done so that the simulation configuration is saved
and can be executed later for debugging purposes. The JUnit
test case calls the Test Driver based on a simulation config-
uration. Assert statements are automatically added to check
whether any error state has been reached during the simula-
tion. Once generated, these JUnit test cases do not need the
test framework for their execution. Figure 20 shows an auto
generated test case for the Sorting Machine case study. The
test case is based on the simulation configuration shown in
Table 2. The classProblemData used in the JUnit test case
holds information of various non-deterministic occurrences.

The method getTestCaseData() creates and returns
an object of class named TestCase based on a simu-
lation configuration decided by the Test Framework. The
implementation of the method shows the various val-
ues being assigned to non-deterministic occurrences. Class
ProblemData used in the JUnit test case (see line number
9 in Fig. 20) is supposed to hold information related to vari-
ous settings of the Test Framework, such as the environment
configuration and the total time for simulation. Objects of
class Environment represent environment configurations
for the simulator. The execution trace for the test case along
with its comments can help guide the testers to the source of
the problem.

8 Case study

In this section, we discuss the case study we conducted to
evaluate the proposed modeling methodology and simulator
generation. Note that we followed the guidelines of reporting
case studies in software engineering presented by Runeson
et al. [74,75]. First we discuss the design of the case study
in Sect. 8.1, which is followed by case study procedure (in
Sect. 8.2) and results (in Sect. 8.3).

8.1 Case study design

In this section, we discuss the design of the case study, which
includes the objectives of the case study and a description of
various cases used.

The objective of the case study is to evaluate whether (1)
the transformation rules are sufficient to convert environ-
ment models of different complexity levels, and belonging

123

Environment modeling and simulation for automated testing 515

Fig. 19 An example of a test driver for sorting machine case study

Fig. 20 An auto generated JUnit test case for sorting machine case study

123

516 M. Z. Iqbal et al.

Table 3 Environment models for artificial problems and industrial cases

Case EC States Trans Guards Signal events Time events Change events Profile elements

Simple Orth Comp NDV TP Error Failure

AP1 1 3 0 0 5 4 2 1 0 1 1 1 1

AP2 1 6 2 0 7 0 0 3 1 1 1 1 1

AP3 2 9 0 0 13 2 7 6 0 6 0 1 0

IC-A 4 20 2 1 38 11 16 5 1 5 1 2 1

IC-B 3 23 3 1 46 8 20 7 3 3 7 3 4

EC environment components, Orth orthogonal, Comp composite, Trans transition, NDV non-deterministic variables, TP time probability

to various domains, to simulator code (completeness of the
transformation rules), (2) the automated generation of sim-
ulators is likely to significantly reduce development effort
(effect on development effort), (3) the generated simulators
enables the detection of failures in RTES system testing
(effectiveness in test automation), and (4) the transforma-
tions implemented are correct (correctness of transforma-
tions). Note that we are not providing a proof of correctness
or completeness; rather we are just reporting empirical data
to increase the confidence in correctness and completeness of
transformation.

We selected five different RTES as part of our study.
Two of the cases were industrial RTES. One industrial
RTES, Industrial Case A (IC-A) is the sorting machine
system that we have discussed as a motivating exam-
ple throughout the paper.5 As mentioned earlier, in this
paper, we are only considering a subset of the case study
focusing on the sorting functionality, having four envi-
ronment components and an average of five states per
component.

The second industrial system, Industrial Case B (IC-B), is
a marine seismic acquisition system, which has five environ-
ment components with an average of 12 states per compo-
nent. Even though only looking at the number of components,
this may suggest that the case studies are simple, at the time
of testing, there can be hundreds of instances of each com-
ponent, as it was the case with IC-B where hundreds of sen-
sors were communicating with the SUT at run time. The aim
was to select two industrial systems that belong to different
domains, with different functionalities, to study diverse envi-
ronment models. We also developed three artificial problems
of varying complexity that also belong to different domains.
Two of the artificial problems (AP1 and AP2) were inspired
by one of our industrial case studies and deal with RTES
interacting with multiple sensors in different situations. The
third artificial problem (AP3) is inspired by a train control
gate system discussed in [76]. The RTES for these artifi-

5 Notice that in [1] we considered the entire sorting machine case study.
In this paper, we only discuss the subset of the case study that we used
for testing and simulator generation. Therefore, the data presented in
this paper is not exactly the same as in [1].

cial problems were developed in Java. For the industrial case
(IC-A), a hardware interface layer was not separated from
rest of the code while the RTES was being developed (as it
was for IC-B). As a refactoring task to improve the testing
processes, the software engineers are currently working on
separating out the code that deals with hardware components
and providing a standard mechanism of communication for
the SUT. Since the adapter was not yet available at the time
of writing, we manually developed the portions of SUT that
are related to the subset of the case being used in this paper.
However, this has no effect on the code generation discussed
in this paper, as the environment models would be exactly
the same for the actual SUT. To develop the environment
models for the two industrial case studies, we conducted
several interactive sessions with our industry partners. More
details on lessons learned regarding the industrial applica-
tion of the methodology are provided in [77]. Table 3 shows
the statistics of various modeling elements used in the five
cases.

To evaluate completeness and correctness of the transfor-
mation rules, we also created several test models. The mod-
els were not linked to any SUT and were only developed in
order to cover different sets of modeling elements according
to our environment modeling profile. In total the test mod-
els comprised of 50 components, with each component hav-
ing on average of 4 states and 12 transitions. They covered
various state machine and class diagram constructs, and all
the modeling features defined by the environment modeling
methodology.

8.2 Case study procedure

This section describes how the case study was conducted and
data was collected for each of the four evaluation criteria.

8.2.1 Completeness of the transformation rules

Evaluating the completeness of model transformations is still
an open research question [78]. Note that in this paper, we
have only discussed the most important rules for simulator
generation. To evaluate completeness, we generated simula-

123

Environment modeling and simulation for automated testing 517

Table 4 Summary of procedure to evaluate the correctness of transformations

Artifacts Property

Syntact
correctness

Semantic
correctness

Conformance
to models

Heuristics
reporting

Failure
detection

Input Test models,
AP1–AP3, IC-A,
IC-B

Test models Test models, models
for AP1, AP2,
AP3, and IC-A

Test models, models
for AP1, AP2,
AP3, and IC-A

Models for AP1,
AP2, AP3, and
IC-A

Execution
procedure

Manual drivers Manual inspection Manual test cases Manual test cases Manual test cases

SUT None None None for test
models, stubs for
artificial problems
and IC-A

None for test
models, stubs for
artificial problems
and IC-A

Buggy and Correct
versions for AP1,
AP2, AP3, and
IC-A

Oracle Java compiler Checking compliance
with extended state
pattern

Comparison with
source models

Manually added in
the test cases based
on source models

Failure reporting
mechanism during
simulation

tors for the five cases, each having different level of com-
plexity and modeling different concepts. We also generated
simulators for the different test models that covered different
sets of modeling elements.

8.2.2 Effect on development effort

To evaluate this, we generated simulators for the five cases
and obtained size and complexity information about the gen-
erated code. When compared to the size of the models, such
data can help assess the potential amount of effort saved
by generating simulators from models rather than develop-
ing the simulators manually. Of course, we can only provide
quantitative insights because the qualitative results depend
on the skills of developers with respect to modeling and cod-
ing.

8.2.3 Effectiveness in test automation

To assess this, we manually seeded non-trivial faults in the
three artificial problems and industrial case A (one fault for
each SUT). We could have rather seeded those faults in a
systematic way, for example by using a mutation testing [79]
tool. We did not follow such procedure because the SUTs
are highly multi-threaded and use a high number of network
features (e.g., opening and reading/writing from TCP sock-
ets), which could be a problem for current mutation testing
tools. Furthermore, our testing is taking place at the sys-
tem level, and though small modifications made by a muta-
tion testing tool might be representative of faults at the unit
level, it is unlikely to be the case at the system level for
RTES. For the SUT of Case B, a previously uncaught crit-
ical fault was found with our test framework [44] and used
to assess the effectiveness of the simulator for test automa-
tion. We ran the simulators generated for the five cases (i.e.,
the three artificial problems and two industrial cases) with
various testing strategies to evaluate whether the test cases

that were expected to fail did and whether no other test cases
failed.

8.2.4 Correctness of transformations

Correctness of the transformation rules is about how cor-
rect are the transformation rules in generating simulators
that behave as expected according to the environment mod-
els. Evaluating the correctness of model transformations is
still an open research question [78] and no standard mech-
anism or appropriate tool is available for testing them. To
evaluate the correctness of our transformations, we focused
on both structural correctness (the code is what it is sup-
posed to be) and behavioral correctness (the code works as
it is supposed to work) of the generated code. We evalu-
ated the structural correctness of the code keeping in mind
two properties: syntactic correctness (the generated simula-
tors are syntactically correct, i.e., no compilation errors) and
semantic correctness (the generated code is what it should
be according to the extended state pattern). To evaluate that
the behavior of the generated simulators is correct, we man-
ually developed test cases keeping in mind three properties:
(1) behavior of the generated simulators conform to what is
specified in their environment models, (2) the simulators cor-
rectly report the information required to guide test heuristics,
and (3) the simulators correctly detect and report failures in
SUT.

To evaluate the transformation rules, we adopted a
procedure that is summarized in Table 4. To evaluate
syntactic correctness, we created a number of test mod-
els that contained different set of modeling elements for
state machines and class diagrams, generated simulators
for them, and used the Java compiler to compile the
generated simulator code. For semantic correctness, we
inspected the generated code for the developed test mod-
els to see if the code was conforming to the extended state
pattern.

123

518 M. Z. Iqbal et al.

To evaluate the effectiveness of simulators to correctly
detect and report failures in SUTs, we created two versions
of SUTs for the three artificial problems and industrial case
A: one version was a bug free version and for the other one
we seeded a fault manually (same as we did for evaluating
effectiveness in test automation). We created two test cases
for each artificial problem and industrial case A, one test case
was supposed to detect and report the failure corresponding
to the seeded fault. The other test case was not expected to
detect the fault. We ran the two test cases on the two versions
of the SUT and observed their behavior. Our assumption was
that a faulty simulator might lead to falsely reporting a bug
in the correct SUT or prevent the triggering of an expected
failure in the faulty SUT.

The above strategy was iteratively applied to check cor-
rectness and achieve a stable version of the tool. At any
rate, testing cannot prove the absence of defects, although
it increases our confidence.

8.3 Results

In the following, we present the results of the case study for
each evaluation criterion.

8.3.1 Completeness of the transformation rules

As far as generating simulators from environment models
for the five cases and test models presented above, the trans-
formation rules are complete. These test models along with
the three artificial problems and two industrial cases cov-
ered all the modeling elements defined in the methodol-
ogy. The MOFScript transformations developed were able
to generate Java code for all of the UML/MARTE/OCL
model constructs used in the case study artifacts and the test
models.

8.3.2 Effect on development effort

When using our methodology, the only significant effort
required by the software engineers is to create environment
models for the environment of RTES. Once developed, these
models are used for generating the simulator, executable test
cases, and automated oracles. Table 3 shows relevant size
data for the various environmental models and Table 5 sum-

marizes the details for corresponding generated simulators
for the five cases (three artificial problems and two industrial
case studies) in terms of the total number of generated classes,
number of methods, threads, and lines of code. The first three
rows of the tables show data about the three artificial prob-
lems (AP) and the last two rows about the two industrial
cases. Note that, even though the number of components in
each case is small, during the simulator execution a number
of instances are generated for each environment component.
As discussed earlier the number of instances to be generated
is decided based on the OCL constraints on the domain model
and is specified in an environment configuration. For exam-
ple, in industrial case B, as shown Table 3 the total number of
environment components is three, but for one of the compo-
nents, hundreds of instances were created for simulating the
environment.

One of the reasons for the large number of generated
classes, methods, and lines of code is the use of the state pat-
tern, which requires a separate class for each state. For exam-
ple, industrial case A has only four environment components,
but because of 23 simple, 3 orthogonal, and 1 composite state
over 5,000 lines of simulator code were generated with 35
classes and 386 methods. Even if the code were manually
written, we would expect developers to follow a similar pat-
tern (extension of state pattern) in order to facilitate changes,
which would have resulted in a similar number of lines of
code. This conjecture is supported by the fact that, in one
of the industrial case studies, an existing, manually writ-
ten simulator was of similar complexity. The simulator is
a complex, multithreaded application and various compo-
nents run in parallel. If the simulator were to be manually
written, the developers would have had to resolve synchro-
nization issues related to concurrency. For example, in IC-B,
the generated simulator included 20 threads to handle active
objects and various timers. With a large number of possi-
ble instances running during an environment simulation (as
hundreds of instances for IC-B) the overall behavior of the
environment is quite complex. In our approach, the simulator
generator takes care of these issues and the software engi-
neers only have to develop the environment models, which
are expressed at a higher level of abstraction than the source
code.

The statistics about the generated code are only used to
provide an estimation of the complexity of the simulators.

Table 5 Details of generated
simulators Case Classes Methods LOC Threads Manually written LOC

AP-1 8 67 975 3 123

AP-2 13 133 1,871 6 79

AP-3 16 174 2,396 8 137

IC-A 35 386 5,545 12 181

IC-B 37 573 9,209 20 360

123

Environment modeling and simulation for automated testing 519

The reason is that, the objective of our tool was on generating
simulators that are correct and are usable for environment-
based system level testing by utilizing reasonable level of
computing resources. The generated simulator is given to
the end-user as an executable archive so we did not focus
on optimizing the code for better understanding or cleaner
code generation. Therefore, there is room for further opti-
mizations to reduce the number of lines of code, classes, and
methods.

The column in Table 5 labeled ‘Manually written lines of
code’ show the lines of code that the developers had to write
by hand. These were mostly written for external action code
dealing with communication. It is worth noting that, even if
the simulator were manually developed, this communication-
related code would have to be written in any case and would
have been very similar to the code written using our method-
ology (as we have experienced in one of the industrial case
studies). Therefore, the effort required to develop such com-
munication layers is not something specific to our approach,
rather it is required whenever environment-based simulations
are run.

Overall, the automated generation of the simulator code
can be expected to save significant effort to the developers.
Though there is a considerable effort involved in develop-
ing environment models, given the amount and complexity
of the source code generated, it is expected to be less than
the effort required for manually developing and maintaining
environment simulator code with concurrency and complex
synchronization issues. However, to ascertain this claim with
confidence, controlled empirical studies in industrial con-
texts are required.

8.3.3 Effectiveness in test automation

As discussed earlier, to evaluate the effectiveness of the gen-
erated simulator to help in test automation, we ran the simu-
lator with various testing strategies on all the five cases, i.e.,
the three artificial problems and two industrial cases.

Overall, the testing framework was able to trigger sys-
tem failures corresponding to all the seeded faults for these
cases. For IC-B, we ran the testing framework for three dif-
ferent testing strategies: Random Testing, Adaptive Random
Testing, and Genetic Algorithms and we were able to find
a critical fault in the production code. The detailed results
for the experiment conducted on the three artificial problems
and this industrial case are presented in [44]. Taken together,
the results of these experiments increased our confidence that
the generated simulators are effective in detecting faults in
the SUT when used in combination with various test automa-
tion strategies.

8.3.4 Correctness of the transformation rules

On the stable release of the transformations, we did not find
any compilation errors for the test models. Inspecting the
code generated revealed that the code was generated accord-
ing to the extended state pattern. For conformance correct-
ness, the transitions in the models were triggered correctly in
the code and all the events that were not defined were ignored
(as defined in the methodology). The heuristics reported also
matched the desired results, except that the time distance
had a jitter of 2 – 4 milliseconds due to the possible noise in
timers. To evaluate failure reporting, for the sixteen test cases
that we executed, the four that were supposed to trigger the
failure in the buggy SUT reported the failure and the rest did
not report any failure. This increases our confidence that the
generated simulators report failures correctly.

9 Limitations

The focus of the work presented here was only on RTES
with soft time deadlines in the order of hundreds of millisec-
onds, with an accepted jitter of a few milliseconds. However,
the modeling methodology proposed in this paper is inde-
pendent of this limitation and can be used to model systems
with stricter deadlines. This limitation is due to the choice
of Java as a target language for simulation. The choice of
Java was made based on the needs of our industry partners
but may obviously not be appropriate in other environments.
To use the approach in the presence of stricter deadlines, a
possible option is to use a virtual machine supporting Real
Time Java (Java RT) (e.g., [70]) on a real-time operating sys-
tem (e.g., [71]). We have not currently evaluated the prac-
tical implications of using Java RT, but the specifications
claim that the standard java code is completely portable to a
Java RT machine, which provides a precision in the order of
nanoseconds.

One of the limitations of the proposed simulator generator
is that we still cannot be completely sure about its correct-
ness. As discussed earlier, to test the simulator generator, we
wrote a number of test cases by hand. We also ran the gen-
erated simulator with the testing engine to test faulty RTES
(artificial problems and industrial cases) and were able to
trigger failures on test cases revealing seeded faults without
triggering failures that were unwarranted. This increased our
confidence in the correctness of the transformation rules. The
evaluation of such transformations is still an open research
question [78] and no suitable tool for testing model to text
transformation is available yet.

Based on the experiments that we ran [44] to test different
types of RTES (artificial problems and industrial cases), and
as discussed above, the generated simulator seems effective
in supporting test automation for fault detection. Because

123

520 M. Z. Iqbal et al.

this is very time consuming, we however did so only on
five RTES. One important question is whether our sim-
ulation rules are complete enough to simulate the envi-
ronment of any RTES. To address this possible limitation,
the industrial cases and artificial problems that we selected
were from diverse domains. One case was of an automated
bottle recycling system and the other was a marine seis-
mic acquisition system. Both the case studies involve con-
trol oriented, embedded software, which we believe are the
most suitable target applications of our methodology. Two
of the artificial problems that we developed depicted the
common scenarios of RTES interactions with sensors in
the environment. The third artificial problem was selected
from the domain of train control systems. The diversity
of the domains of these RTES, which environment was
simulated, increased our confidence in the completeness
of the transformation rules and the simulation framework
for the RTES developed using our modeling methodol-
ogy.

We evaluated correctness and completeness of the trans-
formation rules by generating simulators for several test
models, three artificial problems, and two industrial cases.
Though it cannot be guaranteed that the implemented trans-
formation rules are complete and correct, note that this does
not affect the general validity and applicability of the simu-
lation generation approach based on environment modeling
using extensions of UML. Such rules will be refined and
augmented over time.

10 Conclusion

Black-box system testing of real-time embedded systems
(RTES) on their development platforms is required to ver-
ify the correctness of these systems without involving the
deployed hardware and other physical components of their
environments. This approach typically involves simulations
of the behavior of environment components in a way that is
transparent to the RTES. Such a strategy allows early and
fully automated system testing, even when the hardware is
not yet available. It is also helpful in situations where test-
ing RTES for critical failures in their actual environments
is either not feasible, too costly, or might have catastrophic
consequences.

This paper reported on a model-driven automated
approach for such black-box system testing strategy based
on environment simulation. We purposefully took a practi-
cal angle and our approach does not require software engi-
neers to use additional, specific notations for simulation
and testing purposes, but only involve slight extensions of
existing software modeling standards and a specific mod-
eling methodology. This paper focuses on environment
modeling and rules for simulator generation to enable

automated black-box system testing and only briefly dis-
cusses the test generation strategies, which are reported
elsewhere.

As mentioned above, to facilitate its adoption, the method-
ology is based on standards: UML, MARTE profile and OCL
for modeling the structure, behavior, and constraints of the
environment. We, and this is part of our methodology, made
a conscious effort to minimize the notation subset used from
these standards. Our modeling methodology entails the use
of constructs (e.g., non-determinism, error states, and fail-
ure states), which are essential to enable fully automated
system testing (i.e., choice, execution and evaluation of the
test cases). We modeled the environment of three artificial
problems and two industrial RTES in order to investigate
whether our methodology and the notation subsets selected
were sufficient to fully address the need for automated
software testing. Our experience showed that this was the
case.

Based on a careful analysis of the literature, we con-
cluded that none of the existing code generation approaches
in the literature supports the constructs required to support
the testing of RTES through environment simulation. We
implemented the code generation rules for the simulator
using model-to-text transformations with MOFScript, thus
producing a set of Java classes. Our empirical evaluation
based on our five case studies shows that the developed
rules are sufficient and that they are correct as far as fault
detection is concerned. The automated simulator genera-
tion is expected to save a significant amount of effort,
although controlled empirical studies in industrial contexts
will be necessary to support such a claim with increased
confidence. By using our environment models and the gen-
erated simulators, it was possible to automatically find
new, critical faults in one of the industrial case studies
using fully automated, large scale random and search-based
testing.

Acknowledgments The work presented in this paper was supported
by Norwegian Research Council and was produced as part of the ITEA
2 VERDE project. Lionel Briand was partly supported by a PEARL
grant from the National Research Fund, Luxembourg (FNR/P10/03 -
Validation and Verification Laboratory). We are thankful to Christine
Husa, Tor Sjøwall, John Roger Johansen, Erling Marhussen, Dag Kris-
tensen, and Anders Emil Olsen, all from Tomra and Bjørn Nordmoen,
Petter Eide, Tore Andre Nilsen, and Sofia Wegger from WesternGeco
for their technical support.

Appendix

The appendix provides a description of auto-generated
attributes for instances of Context meta-class in Table 6
and a description of auto-generated methods for instances of
ContextStatemeta-class of the extended state pattern in
Table 7.

123

Environment modeling and simulation for automated testing 521

Table 6 Auto generated attributes in the context class

Attribute name Description

instanceId: int Refers to a unique id for every instance in the
simulation

action: ? extends ExternalCode The reference contains an object of action class
associated with the context class

states:IState[*] An array of possible states the environment
component can be in

stateContext[*]:Region The array has object(s) when the class has an
orthogonal state machine associated with it.

currentState:IState [0.. 1] Refers to the state object that the context object is
currently in

Table 7 Auto generated methods in the state class

Method name Description

Constructor Generally empty unless the state has outgoing time
events. In that case TimeService object is
initialized

evaluateChangeEvents Returns the condition corresponding to any of the
change triggers of the outgoing transition from the
state that is satisfied

executeChangeEvents The condition that is satisfied is compared and
actions corresponding to the change event that the
condition relates to are executed.

executeCompletionEvent If the only outgoing transition from the state is
without a trigger, then that transition is taken (in
this case changeState method is executed)

getStateName Returns the name of the current state

onStateEntry Timers corresponding to time events are initialized.
For non-deterministic time events, a value for the
timer is obtained from test-engine. Timers
associated with «TimeProbability»transition are
only initialized/reset if this is the first entry into the
state after instance creation or the transition has
been taken. Entry activity is executed, do activity is
executed in a parallel thread, and completion event
is triggered.

onStateExit Exit activity of the state is executed

stopExecution Stops the current thread

afterT<i> methods An afterT<i> method is generated for every time
event and is called by the timeout method if the
corresponding time event is triggered. <i> is the
automatically assigned id of the time event.

Signal methods A signal method is generated for every signal that is
defined to be accepted for the state. Action code
corresponding to the transition is placed in this
method along with a call to changeState
method

timeout() Calls the afterT<i> method whose time event has
been triggered

References

1. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment modeling with
UML/MARTE to support Black-Box system testing for real-time
embedded systems: methodology and industrial case studies. In:
Model Driven Engineering Languages and Systems, pp. 286–300.
Springer, Berlin (2010)

2. Artemis: (2011) Artemis Joint Undertaking—The public private
partnership for R & D Embedded Systems (June 13, 2011). http://
artemis-ju.eu/embedded_systems

3. Broekman, B.M., Notenboom, E.: Testing Embedded Software.
Addison-Wesley, Boston (2003)

4. OMG: Unified Modeling Language Superstructure, Version 2.3
(2010). http://www.omg.org/spec/UML/2.3/

123

http://artemis-ju.eu/embedded_systems
http://artemis-ju.eu/embedded_systems
http://www.omg.org/spec/UML/2.3/

522 M. Z. Iqbal et al.

5. OMG: Modeling and Analysis of Real-time and Embedded sys-
tems (MARTE), Version 1.0 (2009). http://www.omg.org/spec/
MARTE/1.0/

6. OMG: Object Constraint Language Specification, Version 2.2.
Object Management Group Inc. (2010). http://www.omg.org/spec/
OCL/2.2/

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns:
elements of reusable object-oriented software (1995)

8. Cheddar: (2011) http://beru.univ-brest.fr/singhoff/cheddar/
9. Wainer, G.A.: Discrete-Event Modeling and Simulation: A Practi-

tioner’s Approach: CRC, Boca Raton (2009)
10. Fritzson, P., Engelson, V.: Modelica–a unified object-oriented lan-

guage for system modeling and simulation. In: ECOOP’98–Object-
Oriented Programming, p. 67. Springer, Berlin (1998)

11. Schamai, W., Fritzson, P., Paredis, C., Pop, A.: Towards unified
system modeling and simulation with ModelicaML: modeling of
executable behavior using graphical notations. Presented at the 7th
International Modelica Conference. Como, Italy (2009)

12. Mooney, J., Sarjoughian, H.: A framework for executable UML
models. Presented at the Proceedings of the 2009 Spring Simulation
Multiconference. San Diego, California (2009)

13. Kruse, P.M., Wegener, J., Wappler, S.: A highly configurable test
system for evolutionary black-box testing of embedded systems.
Presented at the Proceedings of the 11th Annual conference on
Genetic and evolutionary computation. Montreal, Canada (2009)

14. Lindlar, F., Windisch, A., Wegener, J.: Integrating Model-Based
Testing with Evolutionary Functional Testing. Presented at the Pro-
ceedings of the 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops (2010)

15. Lindlar, F., Windisch, A.: A search-based approach to functional
hardware-in-the-loop testing. Presented at the Proceedings of the
2nd International Symposium on Search Based, Software Engi-
neering (2010)

16. Short, M., Pont, M.J.: Assessment of high-integrity embedded auto-
motive control systems using hardware in the loop simulation. J.
Syst. Softw. 81, 1163–1183 (2008)

17. Francis, G., Burgos, R., Rodriguez, P., Wang, F., Boroyevich, D.,
Liu, R. Monti, A.: Virtual Prototyping of Universal Control Archi-
tecture Systems by means of Processor in the Loop Technology.
Presented at the Twenty Second Annual IEEE Applied Power Elec-
tronics Conference, APEC 2007 (2007)

18. Simulink. http://www.mathworks.se/products/simulink/
19. Mason. http://cs.gmu.edu/eclab/projects/mason/
20. SimJava. http://www.dcs.ed.ac.uk/home/hase/simjava/
21. Kishi, T., Noda, N.: Aspect-oriented context modeling for embed-

ded systems. Aspect-Oriented Requirements Engineering and
Architecture Design, Presented at the Workshop on Early Aspects
(2004)

22. Karsai, G., Neema, S., Sharp, D.: Model-driven architecture for
embedded software: a synopsis and an example. Sci. Comput.
Progr. 73, 26–38 (2008)

23. Choi, K.S., Jung, S.C., Kim, H.J., Bae, D.H., Lee, D.H.: UML-
based Modeling and Simulation Method for Mission-Critical Real-
Time Embedded System Development. Presented at the IASTED
International Conference Proceedings (2006)

24. Kreiner, C., Steger, C., Weiss, R.: Improvement of control software
for automatic logistic systems using executable environment mod-
els. Presented at the EUROMICRO ’98: Proceedings of the 24th
Conference on EUROMICRO, 1998

25. Burmeister, C.: Real-time environment modeling. In: IEEE (ed.)
IEEE Workshop on Real-Time Applications, pp. 142–146. New
York (1993)

26. Ubayashi, N., Seto, T., Kanagawa, H., Taniguchi, S., Yoshida, J.,
Sumi, T., Hirayama, M.: A context analysis method for constructing
reliable embedded systems. In: Proceedings of the International

Workshop on Models in Software Engineering, Leipzig, pp. 57–62
(2008)

27. Pettit IV, R.G., Street, J.A.: Lessons learned applying UML in the
design of mission critical software. In: UML: satellite activities.
Lecture Notes in Computer Science. Springer, Berlin, pp. 129–137
(2004)

28. Axelsson, J.: Unified modeling of real-time control systems and
their physical environments using UML. Presented at the Eighth
Annual IEEE International Conference and Workshop on the Engi-
neering of Computer Based Systems (ECBS ’01) (2001)

29. Gomaa, H.: Designing Concurrent. Distributed and Real-Time
Applications with UML. Addison-Wesley Educational Publishers
Inc, Boston (2000)

30. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to
SysML: The Systems Modeling Language. Elsevier, Amsterdam
(2008)

31. Auguston, M., Michael, J.B., Shing, M.: Environment behavior
models for automation of testing and assessment of system safety.
Inf. Softw. Technol. 48, 971–980 (2006)

32. Heisel, M., Hatebur, D., Santen, T., Seifert, D.: Testing against
requirements using UML environment models. In: Fachgruppentr-
effen Requirements Engineering und Test, Analyse & Verifikation,
pp. 28–31 (2008)

33. Adjir, N., Saqui-Sannes, P., Rahmouni, K.M.: Testing real-time sys-
tems using TINA. In: Testing of software and communication sys-
tems. Lecture Notes in Computer Science. Springer, Berlin (2009)

34. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-
time systems using Uppaal. In: Formal Approaches to Software
Testing. Lecture Notes in Computer Science, Springer, Berlin
(2005)

35. Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B., Pettersson,
P., Skou, A.: Testing real-time systems using uppaal. In: Formal
Methods and Testing, pp. 77–117 (2008)

36. Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-
time embedded software using UPPAAL-TRON: an industrial case
study. In: Proceedings of the 5th ACM International Conference on
Embedded Software, pp. 299–306 (2005)

37. Krichen, M., Tripakis, S.: Conformance testing for real-time sys-
tems. Formal Methods Syst. Design 34, 238–304 (2009)

38. Du Bousquet, L., Ouabdesselam, F., Richier, J.L., Zuanon, N.:
Lutess: a specification-driven testing environment for synchronous
software. Presented at the ICSE ’99: Proceedings of the 21st Inter-
national Conference on Software Engineering, Los Angeles (1999)

39. Peleska, J., Lapschies, F., Vorobev, E., Loeding, H., Smuda, P.,
Schmid, H., Zahlten, C.: A real-world benchmark model for testing
concurrent real-time systems in the automotive domain. In: Testing
Software and Systems. Springer, Berlin, pp. 146–161 (2011)

40. Peleska, J., Vorobev, E., Lapschies, F., Zahlten, C.: Automated
Model-Based Testing with RT-Tester, University of Bremen
(2011)

41. David, A., Larsen, K.G., Li, S., Nielsen, B.: Timed testing under
partial observability. In: International Conference on Software
Testing Verification and Validation, ICST’09, pp. 61–70 (2009)

42. MaTeLo Tool. http://www.all4tec.net/index.php/All4tec/matelo-
product.html

43. Iqbal, M.Z., Arcuri, A., Briand, L.: Empirical investigation of
search algorithms for environment model-based testing of real-
time embedded software. In: International Symposium on Software
Testing and Analysis (ISSTA) (2012)

44. Arcuri, A., Iqbal, M., Briand, L.: Black-Box system testing of real-
time embedded systems using random and search-based testing.
In: Testing Software and Systems, pp. 95–110. Springer, Berlin
(2010)

45. Iqbal, M.Z., Arcuri, A., Briand, L.: Combining search-based and
adaptive random testing strategies for environment model-based

123

http://www.omg.org/spec/MARTE/1.0/
http://www.omg.org/spec/MARTE/1.0/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
http://beru.univ-brest.fr/singhoff/cheddar/
http://www.mathworks.se/products/simulink/
http://cs.gmu.edu/eclab/projects/mason/
http://www.dcs.ed.ac.uk/home/hase/simjava/
http://www.all4tec.net/index.php/All4tec/matelo-product.html
http://www.all4tec.net/index.php/All4tec/matelo-product.html

Environment modeling and simulation for automated testing 523

testing of real-time embedded systems. In: Symposium on Search-
based, Software Engineering (2012)

46. Pilitowski, R., Dereziñska, A.: Code generation and execution
framework for UML 2.0 classes and state machines. In: Innovations
and Advanced Techniques in Computer and Information Sciences
and Engineering, pp. 421–427. Springer, Netherlands (2007)

47. Chauvel, F., Jézéquel, J.-M.: Code generation from UML mod-
els with semantic variation points. In: Model Driven Engineering
Languages and Systems, pp. 54–68. Springer, Berlin (2005)

48. SmartState: SmartState–UML statemachine code generation tool
(2011). http://www.smartstatestudio.com/

49. IBM: IBM Rational Rhapsody (2011). http://www.ibm.com/
software/awdtools/rhapsody/

50. Samek, M.: Practical UML statecharts in C/C++: event-driven pro-
gramming for embedded systems: Newnes (2009)

51. Ferreira, L., Rubira, C.: The reflective state pattern. Presented at the
Proceedings of the Pattern Languages of Program Design, Monti-
cello, IL, USA (1998)

52. Chin, B., Millstein, T.: An extensible state machine pattern for inter-
active applications. In: ECOOP–Object-Oriented Programming,
pp. 566–591. Springer, Berlin (2008)

53. Holt, N., Anda, B., Asskildt, K., Briand, L., Endresen, J., Frøys-
tein, S.: Experiences with precise state modeling in an industrial
safety critical system. Presented at the Critical Systems Develop-
ment Using Modeling Lanuguages, CSDUML’06 (2006)

54. Palfinger, G.: State Action Mapper. Presented at the 4th Pattern
Languages of Programming. PLoP), USA (1997)

55. Niaz, I.A., Tanaka, J.: An object-oriented approach to generate
Java code from UML Statecharts. Int. J. Comput. Inf. Sci. 6, 83–98
(2005)

56. Quadri, I.R., Meftali, S., Dekeyser, J.L.: Designing dynamically
reconfigurable SoCs: From UML MARTE models to automatic
code generation. In: Conference on design and architectures for
signal and image processing (DASIP), pp. 68–75 (2010)

57. Rodrigues, W., Guyomarc’h, F., Dekeyser, J.L.: An MDE approach
for automatic code generation from UML/MARTE to OpenCL.
Comput. Sci. Eng. (2012)

58. Piel É., Atitallah R.B., Marquet P., Meftali S., Niar S., Etien A.,
Dekeyser J.L., Boulet P., Europe I.L.N.: Gaspard2: from MARTE
to SystemC simulation. In: Modeling and Analysis of Real-Time
and Embedded Systems with the MARTE UML profile DATE, vol.
8, p. 65 (2008)

59. Peñil, P., Medina, J., Posadas, H., Villar, E.: Generating heteroge-
neous executable specifications in SystemC from UML/MARTE
models. Innov. Syst. Softw. Eng. 6, 65–71 (2010)

60. Vidal, J., De Lamotte, F., Gogniat, G., Soulard, P., Diguet, J. P.:
A co-design approach for embedded system modeling and code
generation with UML and MARTE. In: Design, Automation and
Test in Europe Conference and Exhibition (DATE ’09), pp. 226–
231 (2009)

61. Mraidha, C., Tanguy, Y., Jouvray, C., Terrier, F., Gérard, S.: An
execution framework for MARTE-based models. In: 13th IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 222–227 (2008)

62. Yu, H., Talpin, J.P., Besnard, L., Gautier, T., Marchand, H., Le Guer-
nic, P.: Polychronous controller synthesis from MARTE CCSL tim-
ing specifications. In: 9th IEEE/ACM International Conference on
Formal Methods and Models for Codesign (MEMOCODE), pp.
21–30 (2011)

63. Selic, B.: A systematic approach to domain-specific language
design using UML. In: 10th IEEE International Symposium on
Object and Component-Oriented Real-Time, Distributed Comput-
ing, 2007. ISORC’07, pp. 2–9 (2007)

64. Larman, C.: Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process.
Prentice Hall PTR, Upper Saddle River (2001)

65. OMG: Concrete Syntax for UML Action Language (Action Lan-
guage for Foundational UML–ALF), Version 1.0–Beta 1 (2010).
http://www.omg.org/spec/ALF/

66. Simulink Coder. http://www.mathworks.se/products/simulink-
coder/index.html

67. Musa, J.D.: The operational profile in software reliability engineer-
ing: an overview. Presented at the Third International Symposium
on Software, Reliability Engineering (1992)

68. Oldevik, J.: MOFScript user guide. Version 0.6 (MOFScript v 1.1.
11) (2006)

69. Bruegge, B., Dutoit, A.: Object-Oriented Software Engineering
Using UML, Patterns, and Java. Prentice Hall, Upper Saddle River
(2009)

70. Sun Java Real-Time System. http://java.sun.com/javase/
technologies/realtime/index.jsp. Accessed on 09/02/2012

71. SUSE Linux Enterprise Real Time Extension. http://www.novell.
com/products/realtime/. Accessed on 09/02/2012

72. McMinn, P.: Search based software test data generation: a survey.
Softw. Test. Verif. Reliab. 14, 105–156 (2004)

73. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A Search-based OCL
constraint solver for model-based test data generation. Presented
at the 11th International Conference on Quality Software (2011)

74. Runeson, P., Rainer, A., Höst, M., Regnell, B.: Case Study Research
in Software Engineering: Guidelines and Examples. Wiley, New
York (2012)

75. Runeson, P., Höst, M.: Guidelines for conducting and reporting
case study research in software engineering. Empir. Softw. Eng.
14(2), 131–164 (2009)

76. Zheng, M., Alagar, V., Ormandjieva, O.: Automated generation of
test suites from formal specifications of real-time reactive systems.
J. Syst. Softw. 81, 286–304 (2008)

77. Iqbal, M., Ali, S., Yue, T., Briand, L.: Experiences of applying
UML/MARTE on three industrial projects. In: Model driven engi-
neering languages and systems, pp. 642–658 (2012)

78. Fiorentini, C., Momigliano, A., Ornaghi, M., Poernomo, I.: A con-
structive approach to testing model transformations. In: Theory and
Practice of Model Transformations, pp. 77–92 (2010)

79. Andrews, J., Briand, L., Labiche, Y., Namin, A.: Using muta-
tion analysis for assessing and comparing testing coverage criteria.
IEEE Trans. Softw. Eng. 32, 608–624 (2006)

Author Biographies

Muhammad Zohaib Iqbal is
currently an Assistant Professor
at the Department of Computer
Science, National University of
Computer and Emerging Sci-
ences (Fast-NU), Islamabad, Pak-
istan. He received his PhD degree
in software engineering from
University of Oslo, Norway in
2012. Before joining Fast-NU, he
was a research fellow at Sim-
ula Research Laboratory, Nor-
way. He has also worked as a
lecturer at the Department of
Computer Science, International

Islamic University, Islamabad, Pakistan and Department of Computer
Science, Mohammad Ali Jinnah University, Pakistan. His research inter-
ests include model-driven engineering, software testing, and empirical
software engineering. He has been involved in research projects in these
areas since 2004.

123

http://www.smartstatestudio.com/
http://www.ibm.com/software/awdtools/rhapsody/
http://www.ibm.com/software/awdtools/rhapsody/
http://www.omg.org/spec/ALF/
http://www.mathworks.se/products/simulink-coder/index.html
http://www.mathworks.se/products/simulink-coder/index.html
http://java.sun.com/javase/technologies/realtime/index.jsp
http://java.sun.com/javase/technologies/realtime/index.jsp
http://www.novell.com/products/realtime/
http://www.novell.com/products/realtime/

524 M. Z. Iqbal et al.

Andrea Arcuri received a B.Sc.
and a M.Sc. degree in computer
science from the University of
Pisa, Italy, in 2004 and 2006,
respectively. He received a PhD
in computer science from the
University of Birmingham, Eng-
land, in 2009. He works as a
Senior Software Engineer in the
gas and oil industry, while hav-
ing a small part time position
as Adjunct Research Scientist
at Simula Research Laboratory,
Norway. His research interests
include search-based software

testing and randomized algorithms.

Lionel Briand is professor and
FNR PEARL chair in software
verification and validation at the
SnT centre for Security, Relia-
bility, and Trust, University of
Luxembourg. Lionel started his
career as a software engineer
in France (CS Communications
& Systems) and has conducted
applied research in collabora-
tion with industry for more than
20 years. Until moving to Lux-
embourg in January 2012, he
founded and was heading the
Certus center for software veri-

fication and validation at Simula Research Laboratory, where he was
leading applied research projects in collaboration with industrial part-
ners.Before that, he was on the faculty of the department of Systems and

Computer Engineering, Carleton University, Ottawa, Canada, where he
was full professor and held the Canada Research Chair (Tier I) in Soft-
ware Quality Engineering. He has also been the software quality engi-
neering department head at the Fraunhofer Institute for Experimental
Software Engineering, Germany, and worked as a research scientist for
the Software Engineering Laboratory, a consortium of the NASA God-
dard Space Flight Center, CSC, and the University of Maryland, USA.
Lionel has been on the program, steering, or organization committees
of many international, IEEE and ACM conferences. He is the coeditor-
in-chief of Empirical Software Engineering (Springer) and is a member
of the editorial boards of Systems and Software Modeling (Springer)
and Software Testing, Verification, and Reliability (Wiley). He was on
the board of IEEE Transactions on Software Engineering from 2000 to
2004. Lionel was elevated to the grade of IEEE Fellow for his work on
the testing of object-oriented systems. He was recently granted the IEEE
Computer Society Harlan Mills award for his work on model-based
verification and testing. His research interests include: model-driven
development, testing and verification, search-based software engineer-
ing, and empirical software engineering.

123

	Environment modeling and simulation for automated testing of soft real-time embedded software
	Abstract
	1 Introduction
	2 Practical aspects
	3 Related work
	3.1 Modeling and simulation for RTES testing
	3.2 Environment modeling and environment model-based testing
	3.2.1 Environment modeling
	3.2.2 Environment model-based testing

	3.3 Code generation from UML classes and state machines
	3.4 Summary

	4 Motivating example
	5 Environment modeling methodology
	5.1 Environment modeling profile
	5.2 Domain modeling
	5.2.1 Environment components to be included
	5.2.2 Relationships to be included
	5.2.3 Properties to be included
	5.2.4 Modeling the SUT

	5.3 Behavior modeling
	5.3.1 Identifying stateful components
	5.3.2 States to be included
	5.3.3 Modeling users in the environment
	5.3.4 Modeling events
	5.3.5 Modeling actions and action durations
	5.3.6 Modeling error and failure states
	5.3.7 Modeling non-determinism

	5.4 Summary

	6 Simulator generation
	6.1 Simulation framework
	6.2 An extended state pattern for environment simulation
	6.3 Transformation of the domain model
	6.4 Transformation of behavioral models
	6.4.1 Handling hierarchical state machines
	6.4.2 Event handling
	6.4.3 Handling guards and actions
	6.4.4 Handling Oracle information
	6.4.5 Handling non-determinism

	6.5 Important design decisions and their rationale
	6.5.1 Object concurrency model
	6.5.2 Time semantics

	6.6 Resolution of UML semantic variation points
	6.6.1 Execution semantics and order of events in queue
	6.6.2 Default entry and handling conflicting triggers
	6.6.3 Event not satisfying any trigger
	6.6.4 Event evaluation time
	6.6.5 Signal transmission
	6.6.6 Other variation points

	6.7 Automation

	7 Interaction with test framework
	7.1 Search heuristics
	7.2 Simulation configuration
	7.3 OCL constraint solver
	7.4 Test driver and JUnit test case

	8 Case study
	8.1 Case study design
	8.2 Case study procedure
	8.2.1 Completeness of the transformation rules
	8.2.2 Effect on development effort
	8.2.3 Effectiveness in test automation
	8.2.4 Correctness of transformations

	8.3 Results
	8.3.1 Completeness of the transformation rules
	8.3.2 Effect on development effort
	8.3.3 Effectiveness in test automation
	8.3.4 Correctness of the transformation rules

	9 Limitations
	10 Conclusion
	Acknowledgments
	Appendix
	Appendix
	References

