
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/361332143

DEVS Model Construction as a Reinforcement Learning Problem

Conference Paper · June 2022

CITATIONS

0

2 authors, including:

Istvan David

Université de Montréal

23 PUBLICATIONS   157 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Istvan David on 16 June 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/361332143_DEVS_Model_Construction_as_a_Reinforcement_Learning_Problem?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/361332143_DEVS_Model_Construction_as_a_Reinforcement_Learning_Problem?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Montreal?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-37d07feb337ef4612c581489f6c41a0a-XXX&enrichSource=Y292ZXJQYWdlOzM2MTMzMjE0MztBUzoxMTY3NTU0OTQwODA5MjE3QDE2NTUzNzgxOTgzMzU%3D&el=1_x_10&_esc=publicationCoverPdf


DEVS MODEL CONSTRUCTION AS A REINFORCEMENT LEARNING PROBLEM

Istvan David
Eugene Syriani

Department of Computer Science and Operations Research (DIRO) – Université de Montréal, Canada
istvan.david@umontreal.ca, syriani@iro.umontreal.ca

ANNSIM’21, JULY 18-21, 2022, San Diego, CA, USA; ©2022 Society for Modeling & Simulation International (SCS)

ABSTRACT

Simulators are crucial components in many software-intensive systems, such as cyber-physical systems and
digital twins. The inherent complexity of such systems renders the manual construction of simulators an
error-prone and costly endeavor, and automation techniques are much sought after. However, current au-
tomation techniques are typically tailored to a particular system and cannot be easily transposed to other
settings. In this paper, we propose an approach for the automated construction of simulators that can over-
come this limitation, based on the inference of Discrete Event System Specifications (DEVS) models by
reinforcement learning. Reinforcement learning allows inferring knowledge on the construction process of
the simulator, instead of inferring the simulator itself. This, in turn, fosters reuse across different systems.
DEVS further improves the reusability of this knowledge, as the vast majority of simulation formalisms can
be efficiently translated to DEVS. We demonstrate the performance and generalizability of our approach on
an illustrative example implemented in Python and Tensorforce.

Keywords: DEVS, reinforcement learning, machine learning, automation.

1 INTRODUCTION

Nowadays, engineered systems have reached a previously unprecedented complexity. Systems are becom-
ing faster, safer, more autonomous, reliable, and durable. To cope with this complexity, engineering such
systems is best approached through modeling and simulation. However, the complexity and inherent hetero-
geneity of these systems render their manual modeling an error-prone, time-consuming, and costly endeavor.
This challenge is exacerbated by the role of simulation gradually shifting from the design phase to operation
since the early 2000s, and simulators becoming first-class components in today’s complex systems (Boschert
and Rosen 2016). Automation of model construction can significantly alleviate these problems.

To support the automation of constructing simulation models of complex systems, we propose an approach
for the automated inference of atomic discrete event system specification (DEVS) models (Zeigler et al.
2018) by reinforcement learning, outlined in our previous work (David et al. 2021).

The effort and costs associated with practical machine learning can only be justified if the inferred artificial
intelligence is versatile enough to cover a sufficiently large set of features that complex systems might pos-
sess. DEVS is an appropriate formalism for this purpose, as it allows modeling the reactive behavior of real
systems in great detail, including timing and interactions with the environment—two aspects predominantly
present in complex systems such as cyber-physical systems and digital twins (Mittal et al. 2019). In addition,
DEVS has been shown to be the common denominator of many other simulation formalisms (Vangheluwe
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2000), further improving the reusability of the inferred knowledge. Therefore, building an inference frame-
work of DEVS models is a promising solution to maximize the reusability of the approach.

Reinforcement learning (Sutton and Barto 2018) is a particularly appropriate machine learning approach in
engineering problems where the set of engineering actions is finite and effectively enumerable, such as in the
construction of DEVS models. As a learning approach of the unsupervised kind, reinforcement learning does
not require a priori labeled data. Instead, the learning agent is provided with the set of engineering actions,
and by trial-and-error, the agent learns to organize these actions into sequences of high utility. Relying on an
explicitly enumerated set of actions bodes well with well-defined formalisms, such as DEVS. The inferred
artificial intelligence—referred to as the policy—approximates the tacit knowledge of the domain expert
and is able to solve not only the specific problem at hand but other congruent problems as well. Therefore,
reinforcement learning can be used to learn how to solve a class of problems, rather than learning a solution
to a particular case, if provided with a problem at the appropriate level of abstraction.

The main contribution of this paper is the sound mapping of DEVS model construction onto the concepts
and mechanisms of reinforcement learning. This mapping allows for learning DEVS model features, such
as states, transitions, events, etc. The feasibility and utility of the approach are demonstrated through an
illustrative example. Finally, we discuss the main challenges and opportunities.

2 BACKGROUND

In this section, we review the two main topics our work is based on: DEVS and reinforcement learning.

2.1 Discrete Event System Specification (DEVS)

DEVS (Zeigler et al. 2018) is a formalism for specifying discrete event systems and their interactions. An
Atomic DEVS model is defined as

M = ⟨X,Y, S, qinit,∆int,∆ext, λ, ta⟩. (1)

S is the set of states in the model. ∆int ∶ S → S is the internal transition function to the next state. State
transitions can be time-based or based on the observation of external events from other models. ta ∶ S →

R+
0,+∞ is the time advance function for each state. It determines the timing of internal state transitions. The

model is initialized in the qinit ∈ Q initial state, with Q = {(s, e)∣s ∈ S, 0 ≤ e ≤ ta(s)} being the set of
total states, i.e., states with the time elapsed in them. X denotes the set of input events the model can react
to. ∆ext ∶ Q ×X → S is the external transition function to the next state when an event x ∈ X occurs. Y
denotes the set of output events other models can react to. λ ∶ S → Y is the output function.

Additionally, DEVS allows Atomic DEVS models to be recursively composed into Coupled DEVS models,
allowing arbitrarily complex hierarchies of DEVS models. Based on the notation by Van Tendeloo and
Vangheluwe (2017), a Coupled DEVS model is defined as

C = ⟨Xself , Yself , D, {M}, {I}, {Z}, select⟩. (2)

D is the set of model instances that are included in the coupled model. {M} is the set of model specifications
such that ∀d ∈ D∃Md ∶ Md = ⟨X,Y, S, qinit,∆int,∆ext, λ, ta⟩d, as defined in (1). To connect model
instances within a coupled model, {I} defines the set of model influences such that ∀d ∈ D∃Id ∶ d → D

′
⊆

D \ {d}. Similarly to Atomic DEVS models, Coupled DEVS models need to define their input and output
events to interface with other models too. Xself and Yself denote the input and output events, respectively.
Due to the independence of models D within the coupled DEVS model, events within the coupled models
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might happen in parallel. To retain the unambiguous execution semantics, the select: 2D → D tie-breaking
function defines which model to treat with priority in case of conflicting models. To foster the reuse of
DEVS models, the set of {Z} translation functions allows translating the output events of model d1 ∈ D
onto the input events of d2 ∈ D, potentially modifying their content.

2.2 Reinforcement learning

Agent Environment

action Ak

reward Rk+1

state Σk+1

Figure 1: The process of reinforcement learning

Reinforcement learning is a machine learning tech-
nique that aims at learning what actions to apply in
specific situations to maximize a numerical reward
signal (Sutton and Barto 2018). The learning agent
explores its environment sequentially, and at each
step, carries out an action, observes the change in the
environment, and receives a reward signal. (Figure 1) Through a repeated sequence of actions, the agent
learns the best actions to perform in the different states. The product of the reinforcement learning process
is the policy π that maps situations to actions. Thus, the policy is defined as π(a∣σ) of choosing action a
given the exhibited state σ. The learning process is best defined as a Markov Decision Process by:

MDP = ⟨Σ, A, P,R⟩; π ∶ Σ → A. (3)

Σ is the set of states. A the set of actions. P ∶ Pr(σ′∣σ, a) is the probability of state transitions for a
specific action. R is a reward function. The reward function is typically cumulative, rendering the behavior
of the agent congruent with a Markov chain. However, the martingale property of non-cumulative reward
functions can be utilized in uncertain environments (Vadori et al. 2020).

3 DEVS CONSTRUCTION AS A REINFORCEMENT LEARNING PROBLEM

In this section, we formulate the construction of DEVS models as a reinforcement learning problem based
on structures (1) and (3). Given the Markov Decision Process MDP = ⟨Σ, A, P,R⟩ and the Atomic DEVS
specification M = ⟨X,Y, S, qinit,∆int,∆ext, λ, ta⟩, the mapping MDP → M is given as follows:

∀σ ∈ Σ ∶ σ → M ; (4)

∀a ∈ A, σk, σk+1 ∈ Σ ∶ Pa(σk, σk+1) ∈ P → Pr(σk+1∣σk, a), P r(σk+1∣σk, a) ↦ (0, 1); (5)

R ∶ Σ → R. (6)

Every state σ ∈ Σ encodes one DEVS configuration M (4). Actions a ∈ A are the elementary valid
modifications of DEVS models the learning agent can apply, bringing the agent from state σi (encoding
model Mi) to state σj (encoding model Mj) (5). The probability of applying a specific action falls in the
range (0, 1). The reward function R maps each state to a metric (6).

3.1 Actions

The actions the learning agent can apply are derived from the elements of the definitions of Atomic DEVS
(1) and Coupled DEVS (2). Each action results in a new DEVS configuration, stored as different states of
the MDP. Thus, the application of action a ∈ A to the DEVS model M apply(a,M) is defined as follows:

M
′
= a(M )

Σ ↦ Σ ∪ {σ}
σ ↦ M

′

(7)



I. David, E. Syriani

That is, first, the action is applied to the model, resulting in a new model M ′. Subsequently, a new state σ is
added to the states Σ of the MDP. Finally, the new model M ′ is embedded into the new state σ.

Table 1 lists the actions for constructing Atomic DEVS models. The execution of actions follows (7).

Table 1: Actions the learning agent can execute on Atomic DEVS models

State actions

Add DEVS state addState(M , s) ∶ M ′
= M ∣ S ∪ {s}, ta(s) = inf (8)

Remove DEVS state removeState(M , s) ∶ M ′
= M ∣ S \ {s} (9)

State transition actions

Add internal transition addIntTransition(M , δ = (si , sj )) ∶ M ′
= M ∣ ∆int ∪ {δ} (10)

Remove internal transition removeIntTransition(M , δ ∈ ∆int) ∶ M ′
= M ∣∆int \ {δ} (11)

Add external transition addExtTransition(M , δ = (si , sj )) ∶ M ′
= M ∣∆ext ∪ {δ} (12)

Remove external transition removeExtTransition(M , δ ∈ ∆ext) ∶ M ′
= M ∣∆int \ {δ} (13)

Time advance actions

Set time advance updateTa(M,s, t
′
∈ R+

0,+∞) ∶ M ′
= M ∣ ta(s) = t

′ (14)

Interacting with other models

Add output addOutput(M , y) ∶ M ′
= M ∣ Y ∪ {y} (15)

Remove output removeOutput(M , y ∈ Y ) ∶ M ′
= M ∣ Y \ {y} (16)

Add input addInput(M , x) ∶ M ′
= M ∣X ∪ {x} (17)

Remove input removeInput(M , x ∈ X ) ∶ M ′
= M ∣X \ {x} (18)

Model initialization

Set initial state setInitial(M , s ∈ S , 0 ≤ e ≤ ta(s)) ∶ M ′
= M ∣ qinit = (s, e) (19)

Additional actions for Coupled DEVS can be defined for (i) coupling, including influence relationships and
I/O translation; and (ii) refinement. Table 2 summarizes the actions for Coupled DEVS. Similarly to Atomic
DEVS, the execution of Coupled DEVS actions follows (7) as well. Invariant (24) states that applying action
(20) requires applying action (21), and applying action (23) requires applying action (22) first.

3.2 Reward function

The reward function is a crucial element of reinforcement learning, as it guides the learning agent in ex-
ploring and eventually finding the most appropriate configuration. The reward function must ensure that
the trial-and-error approach of the learning agent converges to the solution in a timely fashion. A lower
reward is associated with less appropriate configurations and a higher reward with more appropriate ones.
The agent aims to maximize the cumulative rewards of its sequence of actions, thus converging toward the
solution. The reward signal is provided by the environment and is generated by the reward function R.

Since our goal is to learn the DEVS model that best simulates the behavior of the system, we reward the
agent based on the similarity of the traces of the constructed DEVS model and the traces of the system.

Definition 1 (Trace). The trace of DEVS model M is a sequence of timestamped (τ ) DEVS events t(M) =
{(τ1, y1), (τ2, y2), ... (τn, yn), ...}, so that each event yi ∈ M.Y .



I. David, E. Syriani

Table 2: Actions the learning agent can execute for coupling DEVS models

Basic coupling actions

Add new model instance addModelInstance(C , d) ∶ C ′
= C ∣D ∪ {d} (20)

Add specification addModelSpecification(C ,Md) ∶ C ′
= C ∣M ∪ {Md} (21)

Remove model instance removeModelInstance(C , d ∈ D) ∶ C ′
= C ∣D \ {d} (22)

Remove specification removeModelSpecification(C ,Md ∈ {M }) ∶ C ′
= C ∣M \ {Md} (23)

Invariants
Typed model instances ∀D,Md, C ∶ D ∈ C ⇒ Md ∈ C.M (24)

Connecting models

Add influencee addInfluencee(C , di , dj ∈ D) ∶ C ′
= C ∣ Idi ∪ {dj} (25)

Remove influencee removeInfluencee(C , dj ∈ {Idi }) ∶ C
′
= C ∣ Idi \ {dj} (26)

Interacting with other models

Add output addOutput(C , y) ∶ C ′
= C ∣ Yself ∪ {y} (27)

Remove output removeOutput(C , y ∈ Y ) ∶ C ′
= C ∣ Yself \ {y} (28)

Add input addInput(C , x) ∶ C ′
= C ∣ Xself ∪ {x} (29)

Remove input removeInput(C , x ∈ X ) ∶ C ′
= C ∣ Xself \ {x} (30)

Tie-breaking

Add select condition addSelect(C ,D
′
⊆ D , d ∈ D) ∶ C ′

= C ∣ select ∶= select ∪ (D′
, d) (31)

Definition 2 (Distance metric of traces). The distance metric on the set of traces T is a non-negative real-
valued function d ∶ T × T → R, such that d(t1, t2) = 0 ⇔ t1 = t2; and d(t1, t2) = d(t2, t1).

Definition 3 (Reward function). The reward function is defined as R = −∣d(t(M), t(S))∣, i.e., the negative
distance between the trace of the model under construction M and the trace of the system to be modeled S.

4 DEMONSTRATION OF THE APPROACH: INFERRING TIME ADVANCE FUNCTIONS

In this section, we demonstrate how the formal framework of Section 3 can be used.

4.1 Demonstrative example

Our running example is loosely based on the work of Van Tendeloo and Vangheluwe (2017) and entails a
traffic light system in which an autonomous three-color traffic light and a policeman coordinate traffic. In
automatic mode, the traffic light is active, and changes its active state—its color—sequentially in a time-
based fashion. The red light is active for 60 seconds; followed by the green light, active for 50 seconds;
followed by the yellow light, active for 10 seconds before switching back to red. This sequence continues
until the policeman interrupts it and switches from automatic to manual mode. In the running example, the
policeman is idle for 200 seconds, then interrupts the traffic light, works for 100 seconds, and then gives
the control back to the traffic light and goes idle again for 200 seconds. The goal is to learn the behavior
of the system by observing its output and constructing a DEVS model that behaves as similarly as possible.
Specifically, in this demonstration, we attempt to learn the time advance function ta of the DEVS model.
We implement the example as shown in Figure 2. We first develop an appropriate simulator of the physical
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TrafficSystem0 :CoupledDEVS

INTERRUPTOUT

Policeman
:AtomicDEVS

TrafficLight
:AtomicDEVS

trace0

Real system

tracek

Modeling the system Learning

Model system 
in DEVS

DEVS_modelGenerate 
reference trace

Simulate model

Execute action

DEVS model0

Compute 
reward

Reward

Update policy

tracek

Application

DEVS_model

Simulate model

Execute action

Compute 
reward

Reward

ActionsActions

Policy

Figure 2: Overview of the approach.

system via DEVS and generate a reference trace (Section 4.2). Subsequently, we use this reference trace in
the learning process (Section 4.3). Finally, we evaluate the approach by applying the policy (Section 4.4).

4.2 Modeling the system

We rely on a simulated system (Matulis and Harvey 2021) for the agent to interact with the system to be
modeled. This is a convenient choice to avoid costly physical prototyping. To this end, as shown in Figure 2,
we first model the system in DEVS. The resulting model is a Coupled DEVS model with two Atomic DEVS
components: the Policeman and the TrafficLight, with the former being able to interrupt the latter and take
over control. For modeling purposes, we rely on the PythonPDEVS library1. We generate the reference
trace by executing the model with an appropriate tracer. The resulting trace0 will be used in the learning
phase as the input to the learning agent to compare the trace of the candidate model .

4.3 Learning phase

As shown in Figure 2, the learning agent iteratively chooses actions and executes them, thereby updating
the candidate DEVS model. The learning environment contains an instance of a PythonPDEVS simulator to
simulate the candidate model. The output of the simulation in iteration k is tracek, which is used to compute
the reward for the latest action. This cycle is repeated multiple times, ensuring enough time for the agent to
infer a well-performing policy by continuously updating it.

We use the Tensorforce deep reinforcement learning framework to implement our example2. Table 3 lists
the main parameters and hyperparameters of our setting.

Agent. We use a proximal policy optimization (PPO) agent (Schulman et al. 2017). PPO is a fam-
ily of policy gradient methods that alternate between interacting with the environment and optimizing
an objective function by stochastic gradient ascent or descent. PPO allows for multiple gradient up-
dates of the objective function in each epoch of batches (i.e., one forward and one backward pass of
the training examples in the batch), sufficiently improving the performance of standard policy gradi-
ent methods while being easier to tune. The number of updates is defined by the multi_step param-
eter, set to 10 in our experiments. The gradient ascent or descent update is performed on batches of
action trajectories defined by the batch size. We use a batch size of 10 in our experiments. A cru-
cial element of policy update is the update step. If the policy is updated in too large steps, the pol-
icy performance can deteriorate. We use a conservative likelihood ratio clipping of 0.2 that removes
the incentive for changing the objective function beyond the [0.8, 1.2] interval. To allow the agent to

1http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS
2https://github.com/tensorforce/tensorforce

http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS
https://github.com/tensorforce/tensorforce
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Table 3: Agent settings

Parameter Value

Agent
agent PPO

multi_step 10

batch_size 10
likelihood_ratio_clipping 0.2

discount 1.0
exploration 0.01

subsampling_fraction 0.33

learning rate 1e-3

l2_regularization 0.0

entropy_regularization 0.0

states

type=’float’,

shape=(3,),

min_value=0,
min_value=120

actions

type=’int’

shape=(3,)

num_values=5

Training
episodes 2500-10000

max_episode_timesteps 100

sim. events generated 50

collect trajectories up to the horizon without degrading the weight
of later decisions, we set the discount factor of the reward func-
tion to 1.0. To allow some flexibility to randomly explore, the
exploration parameter is set to 0.01. That is, the agent can de-
viate from the policy in 1% of the cases. We keep the subsam-
pling fraction, i.e., the ratio of steps used for computing back-
propagation within a batch at the default 0.33. We do not use L2
and entropy regularizations. L2 regularization adds random noise
to the loss to prevent overfitting, but we have not experienced
such problems. Entropy regularization would help balance the
probabilities of the policy to keep the entropy at maximum, but
we assume equally likely actions at the beginning of the training.
The neural network storing the policy is composed of five layers:
three dense layers with two register layers in between them, as
suggested for Tensorforce settings with multiple actions3.

States. We encode the system under study in a 3×1 tensor of
decimal numbers (floats) as follows: [tared , tagreen , tayellow ].
We set the following meaningful constraints to keep the demon-
strative example feasibly solvable for the purposes of this paper:
0 ≤ tared, tagreen, tayellow ≤ 120.

Actions. For each ta, we define five actions by Rule (14). Micro-
increase (decrease) actions increase (decrease) the specific ta by
1; macro-increase (decrease) actions increase (decrease) the ta
by 5; and the fifth action leaves the ta value intact. The actions
are encoded as a 3×5 tensor, which allows the agent to choose
one action for each ta in each step and execute these actions in
parallel. Action tensors are masked in a way that the agent’s ac-
tions cannot bring the ta values outside the [0, 120] interval.

Reward. By Definition (3), the reward function is formulated as the distance between the trace of the
candidate model and the reference trace. Formally, following the notations of Figure 2, the reward in step
k is defined as rk = −∣d(tracek, trace0)∣. The goal of the agent is to maximize the expected cumulative
reward, i.e., max{E{∑H

k=0 akrk}}, where H denotes the horizon of the action trajectory, ak denotes the
kth action, and rk denotes the kth reward. To ensure faster convergence to the learning objective, we used
−r2 in our experiments. The distance metric is the Euclidean distance between the traces. Accordingly, we

use the 2-norm (or Euclidean norm) of the trace vectors in our calculations, i.e., rk = (∑∣tracek∣
n=1 ∣xn∣2)

1
2 −

(∑∣trace0∣
m=1 ∣xm∣2)

1
2 , where ∣ ⋅ ∣ denotes length with vector arguments tracek and trace0, and absolute with

scalar arguments xn and xm.

Training. In our experiments, we used 2 500−10 000 episodes to train the agent. Each training episode runs
for 100 timesteps. In each timestep, the agent simulates the candidate DEVS model for 50 output events.
The best performing agent was trained for 5 000 iterations.

3https://tensorforce.readthedocs.io/en/latest/modules/networks.html

https://tensorforce.readthedocs.io/en/latest/modules/networks.html
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4.4 Application and results

To evaluate the performance of the agent, we sample elements from the [0, 120]3 state-space as initial
values and observe how the trained agent performs with these initial values. Specifically, we observe how
the stepwise reward function evolves and whether it converges to the desired value of 0. We sample a few
thousand initial value vectors and calculate their mean and standard deviation at each step. We compare the
performance of the agent to the performance of a similarly trained random agent—one that returns random
action values—on the same problem and same random sample of initial values.
Figure 3 shows the results of our experiments. As shown in Figure 3a, the performance of the random agent
earns consistently worst mean rewards than the performance of the PPO agent. A Mann-Whitney U-test of
the reward vectors produced by the two agents reveals a significant difference (α = 0.05) between them
at every timestep. Figure 3b shows that the rewards are rapidly improving in timesteps 1–9, and the PPO
agent’s performance becomes steady after timestep 20, remaining close to the ideal reward. Although the
moment statistics of these reward vectors do not carry absolute information (e.g., a negative reward does not
always mean worst performance), we still report them in Table 4 for relative comparison. We calculate the
mean (µ) and standard deviation (σ) of the two reward vectors for the full interval; and specifically for the
PPO agent, we additionally calculate (i) for the interval after timestep 9, (ii) for the interval after timestep 20,
and (iii) for the last 10 timesteps to show how the agent converges to the solution. As shown by the figures
in the table, the PPO agent gradually improves its rewards as the mean and standard deviation improve.

Table 4: Moment statistics of the reward vectors of the Random and PPO agents

Random PPO PPO, τ ≥ 9 PPO, τ ≥ 20 PPO, τ ∈ [90, 100]

µ −406 077.38 −14 867.40 −5 598.93 −4 351.62 −3 644.23

σ 700 702.78 24 577.17 3 041.47 9 418.41 1 601.49

4.5 Generalizability of the approach

To test the generalizability of the approach, we have tested it on different systems, introducing a change to
the time advance functions of DEVS model0 in Figure 2. In System A, we change the ta values to [50, 40, 15],
which is an average of 28.9% of change compared to the original [60, 50, 10]. In System B, we change the
ta values to [30, 20, 15], an average change of 46.7%. Subsequently, we train two agents—PPO-A and
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Figure 3: Random agent vs. PPO agent
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PPO-B—with the same settings shown in Table 3, and the same reward function defined in Definition (3).
Figure 4 shows how the two agents perform on their respective systems with randomly sampled initial
conditions. Table 5 shows how the mean and standard deviation statistics change as the underlying system
changes. The overall means and standard deviations of the reward vectors generated by PPO-A and PPO-B
agents are comparable. In the last 10 timesteps, the two agents behave almost similarly.
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Figure 4: Performance of the approach on alternative underlying systems

Table 5: Moment statistics of the reward vectors of agents trained on alternative underlying systems

PPO-A PPO-A, τ > 9 PPO-A, τ ∈ [90, 100] PPO-B PPO-B, τ > 9 PPO-B, τ ∈ [90, 100]

µ −18 385.64 −2 468.84 −1 834.81 −34 904.21 −3 276.26 −2 033.27

σ 124 080.44 18 932.22 1 496.93 184 644.55 14 879.08 1 398.03

5 DISCUSSION

As demonstrated in Section 4, our approach (i) performs well on the original problem (Section 4.4); and (ii)
the configuration (Table 3) and general reward function (Definition (3)) generalizes appropriately to a class
of similar problems (Section 4.5). This class is characterized by changes in the time advance function ta of
the original system’s DEVS model. Since the definition of the reward function is generic and does not rely
on model-specific or system-specific information, this result promises potential generalizability to classes
of systems wider than shown here, such as systems with different states and internal transition functions.
These directions will be explored in future work.

While the eventually inferred modeled indeed behaves similarly to the system to be modeled, some threats
to validity apply. First, it is not always obvious whether learning a similarly behaving model is sufficient,
or structural constraints should be respected as well. This is a threat to construct validity. We took mul-
tiple steps that mitigate this threat, namely: (i) approximating the similarity of models by their behavior,
(ii) encoding the behavior as traces, and (iii) using a Euclidean distance for measuring the similarity of
traces. We mitigated the threats to validity by ensuring that behavioral congruence is indeed sufficient in our
demonstrative example, by defining the trace information appropriately, and by verifying that the learning
agents run with appropriate parameters. Alternative distance measures can be considered to further improve
the reward function in our approach, such as dynamic time warping and various kernel methods. In many
practical settings, ensuring behavioral congruence is sufficient and this threat to validity may not apply.

We opted for learning DEVS models because by choosing DEVS, a wide range of systems can be naturally
modeled by our approach. While this choice makes our approach fairly generic, the approach is reusable
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only if appropriate congruence is ensured between applications. This is a threat to external validity. Our
paper showed the settings of the agent and the reward function are reusable for a class of models with
varying time advance functions. However, we do not claim generalizability of the policy, as our approach
might be limited to structurally similar models. Transposing the originally inferred policy to other problems
without retraining the agent is a challenge to be investigated in future work. One of the main directions to
explore is the ability of validity frames (Van Mierlo et al. 2020) to capture the contextual information of the
physical asset and its environment. By that, the conditions under which the policy π is transferable to other
problems could be expressed in a formal way.

Although this paper focused on machine learning based inference of simulation models, we foresee our
approach to be best employed in combination with a human in the loop. A human expert can provide the
machine with meaningful approximate solutions, oversee the activities of the agent, and guide it by hints.
While humans perform poorly in specifying optimal models, they perform considerably well in specifying
reasonable ones (Wiering and Van Otterlo 2012). Despite the high costs of human reward function in naive
reinforcement learning approaches, learning from the human has been shown to be feasible in numerous
settings (Knox and Stone 2012, Loftin et al. 2016).

Potential applications of the approach include the development of simulation models for cyber-physical
systems and digital twins (Cronrath et al. 2019), and approaches with operational semantics modeled in
DEVS, such as process optimization (David et al. 2018), programmed graph transformations (Syriani and
Vangheluwe 2010), and service interactions in software toolchains (Van Mierlo et al. 2018).

6 RELATED WORK

The complexity of constructing valid and sound simulators tends to increase rapidly with the growth of the
underlying system. Spiegel et al. (2005) showed that identifying assumptions in simple models such as
Newton’s second law might be infeasible. Page and Opper (1999) identify various sources of complexity
that hinder simulator composability and component reusability and might offset their benefits. Such sources
of complexity include horizontal challenges, stemming from models situated at different levels of abstrac-
tion; vertical challenges, stemming from inappropriate abstraction mechanisms; and scalability challenges,
stemming from the increased search friction due to the abundance of information. Our approach manages
these challenges by automating the abstraction steps required to build a faithful model of the real system.
By that, the limitations of human reasoning can be effectively bypassed.

Cronrath et al. (2019) use contextual bandits—a special form of reinforcement learning—to fine-tune digital
twins used for control of manufacturing processes. Digital twin settings typically entail high-performance
simulators for the automated optimization of the physical asset. The tuning of such simulation models is
crucial in achieving appropriate precision and performance. However, the approach focuses on the run-time
adaptation of simulation models and does not address their design phase. In contrast, our approach supports
the full lifecycle of simulations models, from their construction to their run-time adaptation.

Floyd and Wainer (2010) use machine learning to learn the behavior of DEVS models. The approach is sim-
ilar to ours as its learning approach is based on behavioral information based on the output of the observed
system. However, while our approach relies on reinforcement learning and infers the DEVS model by trial
and error without human intervention, the approach of Floyd and Wainer (2010) uses transfer learning, a
special form of supervised learning. This necessitates a human in the loop to provide feedback upon the
learning artifacts. The approaches are complementary to each other and their utility depends on the problem
at hand. Reinforcement learning aligns better with learning DEVS models of autonomous systems, while
transfer learning might perform better in learning human behavior and eventually replacing the human.
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Choi and Kim (2002) provide means for extracting DEVS models from trained neural networks. The ex-
plainability of learning artifacts is a challenge in the latest incarnation of machine learning techniques,
especially in complex ones, such as deep neural networks. Explainability of the learning artifacts allows
the proper validation, verification, and modification of the learned artifacts. Such learning architectures are
tailored to the specific simulation problem at hand and do not aim at the generality our approach aims at.

7 CONCLUSION

In this paper, we have presented an approach for the automated construction of DEVS models by reinforce-
ment learning. The approach primarily aids the design phase of simulators and is of a particular utility in the
context of systems that are challenging to model due to their complexity. To ensure the formal soundness
of the approach, we have provided a mapping of DEVS models to reinforcement learning, which allowed
us to exhaustively list the model construction actions the learning agent can employ while traversing the
design space through a trial-and-error Markov Decision Process. We have evaluated our approach through
an illustrative example and demonstrated its promising performance and generalizability properties.

Future work will primarily focus on the reusability of policies in wider classes of problems. Additional
lines of research will focus on augmenting our approach with transfer learning techniques for incorporating
a human in the loop, and on evaluating our theoretical framework on larger problems. Finally, we plan to
generalize our current machinery4 into a flexible framework for the benefit of the larger DEVS community.
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