
USING JDEVS FOR THE MODELING AND SIMULATION OF 
NATURAL COMPLEX SYSTEMS 

Jean-Baptiste Filippi 
Frederic Chiari 

Paul Bisgambiglia 

 UMR CNRS 6134  
University of Corsica  

B. P. 52,  20250 Corte, France. 
Web : http://spe.univ-corse.fr/filippiweb/ 

Email [filippi, chiari, bisgambi]@univ-corse.fr

ABSTRACT 

This paper describes the JDEVS modeling and simulation 
environment. JDEVS has been developed for over a year 
to serve as an experimental framework for natural systems 
modeling techniques. It enables discrete-event, general 
purpose, object-oriented, component based, GIS con-
nected, collaborative, visual simulation model develop-
ment and execution. The sample models implementation 
shows that this experimental environment can be used for 
solving any complex problems solvable by discrete-event 
simulation but is especially suited for natural system 
simulation. 

 Currently only hierarchical block and cellular models 
are modeled and simulated but the current works is the 
development of a multi-layered modeling paradigm for 
spatially distributed systems (with vector and cellular 
models) that will eventually be implemented in the 
environment. 

1 INTRODUCTION 

The research in defining and creating an object oriented 
natural system modeling and simulation environment be-
gan 9 years ago at the SPE lab of the University of Cor-
sica. 

 It has already been shown in (Delhom 1996) that the 
Object Oriented Modeling Formalism, based on DEVS 
can be used to solve any problems that can be solved by 
discrete event simulation. 

1.1 Natural system modeling specific problem 

The problematic is now to adapt the OOMS environment 
to the field of natural complex modeling. To do so, sev-
eral modules have been developed to enable a DEVS 
simulation engine to be used by an ecosystem modeler. 

The JAVA language has been chosen in that purpose. 
Several tools have been implemented around the core java 
simulation engine: A graphical modeling interface, an 
easy to use models library, a cellular simulation panel and 

a connection to a GIS (Geographic Information System). 
The Neuro-DEVS methodology is also proposed to im-
plement easily Artificial Neural Networks (ANN) into OO 
models. 

 Artificial Neural networks (ANNs) are widely used 
in the field of natural system modeling since they can 
simulate systems that are not well defined and when a 
large amount of empirical data is available.  

The paper presents the different modules, along with 
sample implementation of cellular and hierarchical block 
diagram models. The toolkit is still under development, 
the current work is the development of a topological vec-
tor based modeling and simulation formalism that will 
enable the propagation of models in a different manner 
than with cellular models (and avoid space sampling). 

1.2 OOMS environment 

The OOMS (Object Oriented Modeling and Simula-
tion) environment is based on the DEVS (discrete events 
system specification) formalism defined by B.P Ziegler 
(Ziegler 1990). To be able to give the most general de-
scription of  any system, the DEVS's description hierarchy 
has been extended with two other concepts in the OOMS 

♦ The C. Oussalah's work (Oussalah 1989), which 
introduces the abstraction hierarchy. 
♦ The J. Euzenat's work (Euzenat 1994) which 
proposes the granularity to defines a time hierarchy.  
 

Currently only the time and description hierarchy are 
implemented in JDEVS. Integration of those concepts 
allows the automatic generation of a simulator from the 
model as defined in the DEVS formalism. 

Within the formalism are specified basic models from 
which larger ones are built and the connection between 
them.  

A basic model is called an atomic model and has 
specifications for the dynamic of the model.  

A coupled model is the container for sub models 
(atomics or coupled) and links between sub models.  



2 NATURAL SYSTEM MODELING 

A natural system model is a model that intends to mimic 
the behavior of an ecosystem to study new interactions. 
The non exhaustive list of aims of such model contains 
forecasting future events, planning operations, simulating 
new scenarios with new construction and finding the equi-
librium states for a new situation. 

In the area of natural systems modeling and simula-
tion, models behaviors are complex and often subject to 
many influences. Most systems that have to be modeled 
are of two kinds: 

Hierarchical block diagram models, composed of in-
terconnected components. Such models are used to simu-
late mathematical models that are built in this way. Both 
benefits from the DEVS formalism, mathematical models 
are decomposed in several reusable components to com-
pose a hierarchical blocks system.  

Cellular models (Wainer and Giambiasi 2001) can be 
simulated on continuous time based thus saving a lot of 
computational cost. Cellular models can also be stored in 
models libraries because of the genericity of description 
of DEVS models.  

2.1 Hybrid methodology, coupling neural networks, 
OOMS and GIS 

The complexity of natural systems raises some problems 
into the modeling process. Models have to be simplified 
and cannot match real systems. In fact, the lack of under-
standing in the system dynamic can lead to a model that is 
not realistic enough to be validated.  

The ability of Neural Networks to generalize from 
empirical data often provides a better alternative than OO 
models because they can handle this lack of knowledge in 
the system dynamics.  

Starting from these observations, an hybrid method-
ology has been developed, encapsulating ANN in OO 
Models to benefit from the two modeling techniques. 
Based on OOMS formalism, the hybrid methodology de-
fine interactions between OO and ANN's models. Full 
description of the methodology will be found in (Filippi et 
al. 2001).  

Upon possible applications, three important uses of 
hybrid systems can be highlighted.  

The concurrent simulation where outputs of an ANN 
model are compared with results of another kind of 
model. 

ANN as sub-components of a global model allows a 
partial lack of the model understanding. 

Adaptive models, that would be able to adapt runtime 
to situations that hasn't been taken into account (D'Alch-
Buc and Patillon 1999).  

Data is needed to feed our natural system models. 
GIS seems to be a perfect data source since data that con-
cerns the studied environment is stored at the same place 
using a geographic reference. It is the perfect information 
system to perform the "data fusion" (Clark and Yuille 
1990) that will compose the "natural model" database . 

3 THE JAVA DEVS TOOLKIT 

These thoughts about an OOMS ecosystem oriented mod-
eling environment ended up in the construction of a tool-
kit, where ecosystems oriented tools are extending an 
OOMS modeling and simulation engine. JDEVS will not 
be compared to other environments such as MOOSE (Lee 
and Fishwick 1999), Devsjava (Sarjoughian and Zeigler 
1998), CD++ (Wainer and Giambiasi 2001)  or the VSE 
(Balci et al., 1998), although those environments can be 
used for the same application than JDEVS the aim is dif-
ferent here as the focus is on natural systems modeling. 

JDEVS toolkit is composed of five independent mod-
ules. They can interact with other modules that are already 
developed and some elements, including the java simula-
tion kernel might be changed. The toolkit is public do-
main and freely available, with source code from the pro-
ject website at “http://spe.univ-corse.fr/filippiweb/appli/”. 
It has been developed by the first author. 

3.1 Modeling and simulation kernel 

The modeling and simulation kernel is a simple java im-
plementation of the DEVS formalism (Ziegler 1990). 
Atomics and coupled models are described as follow. 

3.1.1 Atomic DEVS models definition in JDEVS 

Starting from the assumption that a modeler that made the 
effort to understand the DEVS formalism knows some-
thing about programming, the definition for the dynamic 
of atomic models is made directly in JAVA. To help him 
in this task, the GUI generates a java skeleton, stores it in 
a database and compiles it.   

An atomic model can be formally described as: 
M=<X,Y,S,δint,δext,λ,ta>, to be easily understood the 
java description should be as close as possible from this 
description. 

The following code is a generated java skeleton for a 
DevsAtom1 =<X{in1},Y{out1},S{first},δint,δext,λ,ta> 

public class DevsAtom1 extends AtomicModel { 
 // ports  
  Port in1 = new Port(this,"in1","IN");  
  Port out1 = new Port(this,"out1","OUT");  
public DevsAtom1 () { 
  super("DevsAtom1");  
  states.setProperty("first",""); //S set   
} 
 public EventVector outFunction(Message m) { 
        //@todo output function 
        return new EventVector(); 
     } 
 public void intTransition() { 
       //@todo internal transition function 
     } 
 public EventVector extTransition(Message m){ 
       //@todo input function 
       return new EventVector(); 
     } 
 public int advanceTime() { 
 //@todo time advance function 
      return integer.MAXVALUE; 
    }  
} 



 

The output and external transition functions are re-
turning event vectors that will be appended to the job list. 

One of the ecosystem modeling  domain specific 
problem is the lack of understanding of some natural sys-
tems. This leads to the situation where self learning mod-
els such as neural networks are offering better results than 
physical models. Neuro-Devs (Filippi et al 2001) is a 
proposition for an implementation of Neural Networks in 
the DEVS formalism. 

3.1.2 Neuro-DEVS, neural net model definition in 
JDEVS  

An interface is created to separate the ANN construction 
from the modeling process to allow the neural network to 
be manipulated as a stand-alone object.  

3.1.2.1 Neuro-DEVS applications 

The concurrent simulation can be used to avoid an unex-
pected behavior of a neural network by comparing the 
neural network output with the output of a simple model 
to validate the result.  

Adaptive models can be used to modify the neural 
network runtime according to an error feedback (Differ-
ence between the model's forecast and the real world data 
collected afterwards) (D'Alch-Buc and Patillon 1999).  

ANN as a sub-component can be used if Neural Net-
works provides better results for only a piece of the whole 
system (like battery in an energetic system (Jungst et al. 
2000)), this is also the application that is implemented in 
this paper.  

3.1.2.2 Neuro-DEVS definition 

ANN (Hecht-Nielsen, 1989) has input ports and output 
ports (X, Y) corresponding to its input and output neu-
rons.  

Inputs and outputs are arrays of values differently 
bounded, thus values for minimum and maximum of each 
arrays must also be stored to scale down the inputs and 
scale up the outputs (as natural systems perform opera-
tions in R).  

Three characteristic functions are needed to perform 
operation : the activation function, the propagation func-
tion, and the learning function.  The neuro atomic model 
is a subclass of the atomic model, it can be formally de-
scribed as :  

NAM=<X,Y,S,NN,ta,init,δint,δext,λ,learn,act,prop> 
With NN = link to neural network object. The use of 

an interface authorizes to manipulate objects trough an 
object broker (such as CORBA), thus separating the ANN 
construction from the modeling process.  

It is then up to the modeler to use these function in its 
code to define how and where the neural network should 
be used. 

If the ANN object is not used as an adaptive model, it 
should have already "learned" the patterns, as initial 
weights must be defined before the simulation starts.  

 

 

Figure 1 : Class hierarchy and interface definition 

In the DEVS formalism, the structure is described in 
the coupled models. Coupled models have no definitions 
for the dynamics of the models, but define the links be-
tween its atomics and sub-coupled models.  

3.1.3 Coupled models description in JDEVS 

If the user wants to interact directly with the simulation 
engine, the coupling between models can be made directly 
in a java class. However, with the use of the GUI, it is 
possible to graphically define interactions between mod-
els. The structure is then saved in the XML format (Ber-
nardi et al. 2001).   

Coupled model can be formally defined as 
CM=<X,Y,CHILD,EIC,EOC,IC,SELECT> 

Part of the resulted XML document type definition 
for a coupled model is: 

<!ELEMENT MODEL (TYPE, NAME, BOUNDS?, INPUT*, 
OUTPUT*, CHILD*, EIC?, EOC?, IC?)> 

 With TYPE defining the kind of coupled model (Cel-
lular, kernel, coupled...), NAME the name of the model, 
BOUNDS the position of the model on the screen (used 
only by the GUI for a representation), INPUT the set of 
input ports, OUTPUT the set of output ports, CHILD the 
index for the components of the coupled model (in the 
priority order), EIC is the external input coupling, EOC 
the external output coupling and IC the internal coupling. 

Each coupled model is stored in a different XML file 
and, when loaded, the parser automatically instantiates the 
models and creates the links between them.  

3.2 Graphical user interface 

The graphical user interface is the modeling front-end of 
the toolkit, using this front end, the user can graphically 
create, compile, link and store atomic and coupled mod-
els, debug the resulting model and perform the simulation.  



 

 

Figure 2 : JDEVS Hierarchical block modeling and simu-
lation interface 

The GUI also allows distributed modeling, if different 
modelers works on sub-coupled models and store them in 
the same library, it is possible to federate those models in 
another graphical modeling client. (Figure 2) shows the 
modeling and simulation interface. At the left stands the 
library of models (with atomic and coupled models), with 
a mouse click the selected model is added to the selected 
coupled model. 

 In the center stands the hierarchical block diagram 
representation of the model, all components can be moved 
with the mouse, the linking between models is performed 
by a click from the origin port to the destination port.  

On the right stand the properties of the selected com-
ponent, if it is an atomic model, the user can edit and 
compile it from this properties panel.  

At the bottom of  (Figure 2 ) stands the simulation 
panel, here the user can load the input event lists and run 
the simulation to the screen or to a file.  

To debug the model, it is possible to track the simula-
tion. In this mode, a chosen delay is put between the proc-
essing of each event. The diagram representation of the 
models is then showing the job queue at any time as well 
as the states for all properties of all models. 

3.3 DEVS models library 

A complete description of the library can be found in 
(Bernardi et al. 2001). The implementation of the library 
description in JDEVS is resulting in a module in the GUI. 
This module presents models according to its domain and 
sub-domain, all classified in a tree like architecture.  

3.4 GIS interconnection 

To create cellular models that will reproduce some 
piece of land for propagation models, we needed to define 

a way to export data from the GIS and a procedure that 
will initialize the cells according to the spatial data col-
lected in the GIS. 

Since no open standards like (openGIS 2001) or 
(SEDRIS 2001) have yet been became standards, the 
choice has been made to use simple ASCII files to transfer 
data from the database to the simulation engine and back. 
Nevertheless part of the current  work in JDEVS is con-
cerning data interchange format for multimodels (Lee and 
Fiswwick 1999) simulation results. To perform the cou-
pling, the user has to select a zone in a GIS, then rasterize 
the zone and export the resulting map in an ASCII file. 

To enable a 3d visualization of the model, the same 
cut has to be made in and elevation grid map (at any 
resolution) then exported aside as an ASCII elevation 
grid. As the simulation will eventually be displayed and 
imported back in a GIS, the ASCII map can be refined 
with a link to a background image, the cell size and the 
absolute coordinates of the map; those data are simply 
stored in the header of the file and are not used by the 
simulation engine. The interconnection module rasterize 
the selected map in the GIS according to the cell size and 
then generates a set matrix that is used by the simulation 
panel to initialize the model. 

3.5 Cellular simulation panels 

This module allows the user to perform (and debug) simu-
lation of a cellular model. The user can directly interact 
with the simulation, as he can send events using the 
mouse. The outputs of the cellular simulation panel are 
timed maps that are imported back into the GIS.  

A general architecture shown in (Figure 3) has been 
adopted to model cellular systems. 

 

 

Figure 3 : Cellular models architecture 

It is composed of a distributor and cells in a cellular 
coupled model. The general inputs are connected to the 
inputs of the distributor, then the distributor will send 
them to either all the cell or to the cell that would have 
been selected by an event in its “Select” port. 

All cells are connected to the general output. During 
the initialization, the cellular coupled model is loading the 
GIS generated file, calculates the number of cells needed 
(width*height) and then instantiates and performs the 
coupling for every cell. 

The simulation result is a set of discrete events, the 
cellular coordinator is logging changes in states that oc-
curs for all cells. This discrete events set is then converted 



to a discrete time, two dimensional states maps that are 
imported back in the GIS.  

(Figure 4) shows the propagation of bugs in an or-
chard in the JDEVS 2D simulation Panel. Using this tool, 
the user can interact runtime with the simulation, with a 
click on the map it is possible to select a cell and send a 
specific event. A 3D simulation panel (Figure 5) has also 
been developed to enable a better visualization of phe-
nomena. This tool is especially useful to visualize water 
flows (as in Figure 5) or 3 dimensional cellular models. 

4 IMPLEMENTATION OF A 2D CELLULAR 
MODEL: BUGS PROPAGATION IN AN 
ORCHARD. 

Bugs are devastating 25% of the Corsican fruit production 
each year, to minimize their effect it is necessary to study 
their propagation. Using a DEVS description of a bugs 
colony behavior according to the fruits maturity, the tem-
perature and the kind of fruits a simulation of bugs. 

The conceptual model along with the complete study 
can be found in (Faure 2001). Propagation has been made 
in an orchard with 7 kind of fruits that has different matu-
ration dates. A cellular model representing a bug colony 
has been developed based on observations made by ento-
mologists. There is no interest here to explain the model 
dynamics, but the use of JDEVS shown a very high inter-
est for the entomologists as they were able to visualize 
easily the  state of the bugs colony of the studied zone 
during the simulation (Figure 4). 

The model is now being validated using comparisons 
with some real-life observation. Afterwards the software 
can be used for any other orchards providing that the in-
formation exists in the GIS. 
 

 
Figure 4 : Bugs colony propagation during a simulation in 
JDEVS 

5 VISUALISATION OF A 3D CELLULAR 
MODEL: HYDROLOGICAL MODELING  AND 
NATURAL RESSOURCE MANAGEMENT. 

To manage natural resources such as water, it is necessary 
to model the phenomena that will alter those natural re-

sources in order to quantify and qualify them. Some mod-
els, like pollution dispersion models or water flow models 
(Figure 5) require 3d visualization since they represent 3d 
data. The 3d simulation panel serves for the visualization 
of the simulation of these phenomena, it uses Java3d in 
order to paint the outputs of 2d or 3d cellular models.  It is 
using the height matrix exported from the GIS to recon-
struct a 3d world that the user can move.   

(Figure 5) shows a model that is currently tested to 
quantify the pollution by phosphates that goes into the 
sea. The model is using  the pollution data collected into 
the GIS, then perform the simulation using  the rain data. 
The 3d panel enables here the visualizations of the un-
touched fresh water reserves. 
 

 
Figure 5 : 3D cellular simulation of a pollution model in 
south west of Corsica 

6 IMPLEMENTATION OF A HIERARCHICAL 
BLOCK DIAGRAM MODEL WITH NEURAL 
NETWORK: A PHOTOVOLTAIC SYSTEM. 

The solar energetic farm also known as PV system, is a 
solar power plant (Figure 6). It is composed of solar 
power cells, a battery and a switch (Jungst et al. 2000).  
Solar power cell behavior is well known, thus it is mod-
eled using the physical description provided. The battery 
is modeled like an electric power tank, with charge and 
throughput efficiency. The neural network damage model 
is decreasing the battery maximum capacity runtime. 
 

 
Figure 6 : PV System 

The benefits of JDEVS for the modeling of this 
model is clear, the structure of the model is quickly cre-
ated without writing a line of code. The neural network is 
directly included in the atomic damage model and data 
(for the solar radiation) is imported from the GIS.  

(Figure 7) shows the experiment results by JDEVS. 
For every experiment with any initial states, an HTML 
page is generated showing graphs and analysis of the 



simulation results.  This model can be used as it is to per-
form cost viability studies for PV system in any place in 
the world, with any battery. Simulation time for 3 years of 
hourly solar data and consumption is about 30 seconds on 
a Pentium 4 1.5 Ghz. 

 

 
Figure 7 : JDEVS generated experiment results (HTML ) 

7 CONCLUSION 

All the features already implemented in the JDEVS toolkit 
have been introduced. The tool saves modeling and simu-
lation time in the field of ecosystem and natural system 
modeling and simulation. It has been used in different 
applications showing its versatility, and the flexibility of 
the toolkit. One of the concerns was also to perform the 
data fusion, with the simulation results into the GIS, and it 
is possible using the tool. The current work being made on 
this tool is the development of polygonal models propaga-
tion methodology, that will describe models using dy-
namically generated points and vectors rather than with 
cells. We hope that this kind of models will be a better 
alternative than cellular DEVS for some application since 
they would avoid the rasterization of the topological vec-
tor GIS data. 

REFERENCES 

Bernardi, F.De Gentili, E. Santucci, JF. “Reusable models inte-
gration in a devs-based modeling and simulation environ-
ment.” In Proceedings of the SCS ESS 2002 conference on 
simulation in industry, vol 1, p 644. 

Balci, Osman, Anders I. Bertelrud, Charles M. Esterbrook, and 
Richard E. Nance, "Visual Simulation Environment," Pro-
ceedings of the 1998 Winter Simulation Conference, Wash-
ington, DC, 13-16 December, pp. 279-287. 

Clark J.J. and Yuille A.L., “Data Fusion for Sensory Information 
Processing Systems”. Kluwer Academic Publishers, 1990 

Delhom, M. 1996. “Modélisation et Simulation Orientées Ob-
jets” Ph.D. thesis.  

D'Alch-Buc, F. Patillon, J-N. 1999. "Discharge prediction of 
rechargeable batteries with neural networks" Journal of Sys-
tems Architecture, no. 6, pp. 41-53.  

Euzénat, J. 1994. "Granularité dans les représentations spatio-
temporelles" Tech. Rep. 2242, INRIA Rhône-Alpes. 

Faure, X. 2001. Modélisation et simulation de la dispersion de la 
mouche méditerranéenne des fruits (Ceratis capitata) en 
Corse . Technical report UMR CNRS 6134 Lab. 

Filippi, JB. Bisgambiglia, P. Delhom, M. 2001 “Neuro-DEVS, 
an hybrid methodology to describe complex systems” In 
Proceedings of the SCS ESS 2002 conference on simulation 
in industry, vol 1, p 646. 

Hecht-Nielsen, R. 1989.  "Neural network primer: part I" AI 
Expert. 

Jungst, RG. Urbina, A. L.Paez, T. 2000. "Stochastic modeling of 
rechargeable battery life in a photovoltaic power system" 
Tech. Rep. 1541C, Sandia national laboratories. 

Lee, Kangsun and P. A. Fishwick 1999. OOPM/RT: A Multi-
modeling Methodology for Real-Time Simulation, ACM 
Transactions on Modeling and Computer Simulation, Vol-
ume 9, Number 2, April 1999, pp. 141-170. 

OpenGIS 2001, Open Geographic information system project 
consortium, http://www.opengis.org/. 

Oussalah, C. 1989. "A framework for modeling and linking the 
structure and the behavior of a system" Artificial Intelligence 
in Scientific Computation. 

Sarjoughian, H.S. and Zeigler, B.P. 1998. "Devsjava: Basis for a 
devs-based collaborative M&S environment" in Proceedings 
of the SCS International Conference on Web-Based Model-
ing and Simulation,  vol. 5, pp. 29-36, San Diego, CA. 

SEDRIS, 2001, Synthetic Environment Data Representation and 
Interchange Specification project http://www.sedris.org/. 

Wainer, G. A., Giambiasi , N. 2001, “Application of the Cell-
DEVS paradigm for cell spaces modelling and simulation”. 
In Simulation, January 2001. 

Zeigler, B.P. 1990. “Object-Oriented Simulation with Hierarchi-
cal, Modular Models”, Academic Press. 

AUTHOR BIOGRAPHIES 

Jean Baptiste Filippi. Obtained a Ba in Communication 
from the University of Coventry in England, graduated 
from Högskolan i Boras, Sweden, and obtained his Msc 
with “best honnours” in computer science in Corti, Cor-
sica (FR) in 2000. He’s entering now his 2nd year of PhD 
in the UMR CNRS 6134 lab of the university of Corsica. 
He is also working as a researcher under contract with the 
French Ministry of Finance and the European Union. He 
is the developer of several software for data mining and 
computer simulation. His email and web addresses are : 
<filippi@univ-corse.fr> 
<http://spe.univ-corse.fr/filippiweb>.  

Frederic Chiari. Obtained his Msc with "best honours" in 
computer science in Corti, Corsica (FR) in 1997. He's 
entering now his 4th year of PhD in the UMR CNRS 6134 
lab of the university of Corsica. He worked also as System 
& Network Administrator for 4 years at the UC. His email 
address is:<chiari@univ-corse.fr>. 


