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ABSTRACT
In this paper we propose a method for mapping DEVS simulation
models to BDI multi-agent systems. Our work opens the possibil-
ity of reusing BDI multi-agent frameworks for the modeling and
simulation of discrete event dynamic systems following the DEVS
formalized approach. Moreover, thanks to the key features of the
BDI architecture, we are are now able to systematically enhance
simulation models with cognitive and intelligence aspects specific
to BDI agents. Our method is demonstrated with the help of a
simple, yet illustrative example that we developed using the Jason
multi-agent systems development platform.
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1 INTRODUCTION
The aim of this paper is to introduce our proposed method for
mapping DEVS simulation models to BDI multi-agent systems. Our
results pave the way for reusing BDI-based multi-agent frameworks
for the modeling and simulation of discrete event dynamic systems
following the DEVS formalized approach [21]. In particular, thanks
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to the specific features of the BDI multi-agent architecture, we are
are now able to systematically enhance simulation models with
cognitive, intelligence and social aspects of BDI agents [10]. Our
proposal is demonstrated by considering a simple, yet illustrative
example that we developed with the help of the Jason multi-agent
systems development platform [4].

The basic paths followed for modeling and simulating of complex
dynamic systems take into account the nature of time, as well as
the nature of system variables, i.e. both can be either continuous or
discrete [19]. In this paper we are interested in the discrete event
systems specification, also known as DEVS, that has a long tradition
in the field of modeling and simulation of discrete event dynamic
systems [21].

According to DEVS, the system dynamics is defined by a set
of timed discrete internal and external events that determine the
instantaneous update of the system state. The DEVS formalism is
quite general and was applied to many problems and systems in
various domains. Moreover, this formalism has a quite strong and
rigorous background that enabled the development of provable cor-
rect simulation algorithms, currently supported by many practical
DEVS-based modeling and simulation tools [18].

A special feature of the DEVS modeling framework is that it sup-
ports a hierarchically modular decomposition of the system model
with a clean separation of the system modules from the simulation
engine. DEVS modules (also sometimes called DEVS models) are
independent, possibly autonomous entities, that communicate by
exchanging messages, similarly to autonomous agents.

This analogy between DEVS modules and autonomous agents
immediately raises the question of investigating the existing rela-
tionships between DEVS and multi-agent frameworks. In particular,
belief-desire-intention, also known as BDI agents, follow the para-
digm of practical reasoning, i.e. reasoning directed towards actions,
by employing core modeling concepts that mimic human mental at-
titudes including beliefs, desires (or goals) and intentions (or plans).
In this paper we show that these modeling artifacts can nicely cap-
ture the ingredients of the DEVS formalism, thus enabling directly
embedding of DEVS into BDI-based agent-oriented programming
frameworks.

In this paper we present our preliminary ideas about how DEVS
models and their simulations can be mapped to and enacted by
Jason multi-agent framework [4]. The presentation follows a simple
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example of a traffic light system inspired from [17]. Nevertheless,
the approach is quite general, in the sense that:

i) It can be applied to significantly more complex modeling
and simulation of discrete event dynamic systems;

ii) It can use other BDI-based multi-agent languages, frame-
works and platforms [7];

iii) It can be extended to support other variants of DEVS, in-
cluding Port-based DEVS, Parallel DEVS, Stochastic DEVS
or Cellular DEVS [19].

Our research endeavor can be motivated by the following sup-
porting elements:

i) It can expand the practical applicability of available BDI-
based multi-agent frameworks for the modeling and simula-
tion of reusable DEVS models.

ii) DEVS models mapped to BDI agents can be enhanced with
cognitive features that are specific to BDI architecture, thus
facilitating the modeling of more complex systems, possibly
involving human and/or cognitive activities and processes.

iii) It can provide theoretical results that enable the clarifica-
tion of the relationships that exist between BDI multi-agent
systems and DEVS simulation models with the goal of en-
hancing and improving both of them.

The DEVS formalism was traditionally promoted by the con-
trol systems / automation community [21]. Nevertheless, several
researchers were interested in translating DEVS models to formal
specification languages specific to computer science and software
engineering communities, including logics, process algebras, and
timed automata [9, 12, 20]. Other researchers were interested in
exploiting DEVS modularity features to enhance agent-based simu-
lation models [1, 3, 8, 16, 22]. Finally, BDI agents were also proposed
as a promising approach for enhancing simulation models of con-
tinuous and discrete dynamic systems [2, 5, 6, 15].

Nevertheless, based on our literature review, we claim that our
results reported in this paper represent the first general, systematic
and practical approach for translating classic DEVS simulation
models to BDI-based multi-agent systems.

The paper is structured as follows. We start by providing a brief
background of the DEVS modeling formalism and Jason multi-
agent framework. We then outline a mapping of a simple DEVS
model to Jason. The main idea is to map each DEVS module onto a
distinct Jason agent capturing the simulation algorithm, as well as
the hierarchical structuring of the DEVS system model. Although
the underlying example system is quite simplistic, the mapping
is elaborated enough containing all the necessary ingredients to
allow its extension for capturing more complex DEVS models. The
focus of our description provided in this paper is to present the
idea of the DEVS to BDI mapping, including some details of the
agents’ architecture, their interconnection, as well as their message-
handling plans that drive the discrete-event simulation process. The
last section concludes the paper and points to future works.

2 BACKGROUND
2.1 DEVS
Note that there are many definitions and extensions of DEVS. Here
we focus on classic DEVS.

Following [17], a (classic) DEVS model is composed of atomic
models, coupled models and coordinator. The system input consists of
a sequence of time-annotated events that cause the instantaneous
transition of the system state. Events can be either external, i.e.
generated by other models, or internal, i.e. generated by the system
itself at state transitions occurring at pre-defined timeouts.

2.1.1 Atomic model. An atomic model is defined as a tuple
⟨X ,Y , S, ta,δint ,δext , λ,q0⟩ such that:

- X is the set of input events.
- Y is the set of output events.
- S is the set of states.
- ta : S → [0,+∞) is the time advance function that defines
the timeout of each state.

- δint : S → S is the internal transition function.
- δext : Q × X → S is the external transition function. Here
Q designates the set of total states defined as Q = {(s, e)|s ∈
S, e ∈ [0, ta(s)]}.

- λ : S → Y ∪ {ϕ} is the output function. Here ϕ designates
the null or void event.

- q0 = (s0, e0) such that e0 ∈ [0, ta(s0)] is the initial total state.
At each time point the system is in a state s ∈ S . Assuming

that there are no input events the system will remain in state s
until timeout ta(s) is elapsed (note that if ta(s) = +∞ then the
system will be in state s forever). When the timeout expires the
system generates the output event λ(s) ∈ Y or the null event ϕ
and then transits to state δint (s). However, if an external event x
is received at time e ∈ [0, ta(s)] since the transition to s then the
system transits to state δext ((s, e),x) ∈ S .

2.1.2 Coupled model. A coupled model can be recursively de-
fined according to the “composite” pattern as being made-up of
several atomic and coupled models. A coupled model contains all
the ingredients required for correctly linking together its member
atomic and coupled models.

A coupled model is defined as a tuple ⟨X ,Y ,D,M,I, select⟩
with the following elements:

- X is the set of input events and Y is the set of output events
of the coupled model.

- D is the set of names of member (or basic) models. Each name
d ∈ D designates a member (atomic or coupled) model.

- M = {Md |d ∈ D} is the set of basic models.
- I = {Id ⊆ D ∪ {sel f }|d ∈ D ∪ {sel f } is the set of influence
sets. This set defines the set of models influenced by each
basic model, as well as by the coupled model itself, denoted
by sel f . Direct circular references are not allowed, i.e. for
each d ∈ D ∪ {sel f } we have d < Id .

- select : 2D → D is the tie-breaking function that maps
each subset D ⊆ D of conflicting basic models to a model
select(d) ∈ D that takes priority over the other models in D.

The semantics of coupled models can be defined by their map-
ping to atomic models through a process called “flattening” [17].
This process is quite straightforward. Firstly, the state space of the
resulting model is obtained as the parallel composition (cartesian
product) of the sets of total states of each basic model. Secondly,
the internal and external transitions of the equivalent model are
defined by identifying a single basic model inside the coupled model
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that actually must transit – the imminent model. This model is de-
termined by firstly identifying the set of all (possible more than
one) models with the minimum remaining time until a transition
and then applying the select function in case of conflicts.

Note that we kept the definition of coupled models as simple as
possible by ignoring translation functions. They allow renaming of
events entering a connection before they are passed to the terminal
point of the connection, essentially being tools for model reusability.

2.1.3 Simulation engine. The operational semantics of DEVS
models is defined with the help of an abstract simulator that is com-
posed of a collection of cooperating abstract simulation algorithms:
atomic model abstract simulator, coupled model abstract simulator
and root coordinator. These algorithms are interconnected into a
tree-like structure, following the hierarchical decomposition of the
system model. The simulators exchange information via message
passing.

The simulation proceeds as a loop controlled by the root coordi-
nator. Each pass through the loop contains two stages. In the first
stage, information is propagated bottom-up, by letting each model
to define and propagate upper in the tree the information about its
next scheduled transition. By analyzing the information obtained
from all the models, the root coordinator decides the next transition
that will be executed, by propagating this information top-down
in the tree, until the targeted model gets it and actually carries out
the transition. This process continues until a termination condition
is detected by the root coordinator.

2.2 BDI, AgentSpeak(L) and Jason
A multi-agent system is a computational system consisted of a col-
lection of loosely-coupled components called software agents that
interact to solve a given problem. The software agent paradigm
was proposed about two decades ago to capture the new model
of a “computer system situated in some environment that is ca-
pable of flexible autonomous action in order to meet its design
objectives” [11].

Historically, agent-oriented programming, here understood as
computer programming based on the agent paradigm, was firstly
proposed more than 20 years ago as “a new programming paradigm,
one based on cognitive and societal view of computation” [14].

AgentSpeak(L) is an abstract agent-oriented programming lan-
guage introduced in [13]. Jason is a Java-based implementation, as
well as an extension of AgentSpeak(L) [4].

AgentSpeak(L) follows the paradigm of practical reasoning, i.e.
reasoning directed towards actions, and it provides an implemen-
tation of the belief-desire-intention (BDI) architecture of software
agents.

According to this view an agent is a software module that (i) pro-
vides a software interface with the external world and (ii) contains
three components: belief base, plan library and reasoning engine.

The agent’s external world consists of the physical environment,
as well as possibly other agents. Consequently, the agent interface
provides three elements: sensing interface, actuation interface and
communication interface. The agent uses its sensing interface to
get percepts from its physical environment. The agent uses its
actuation interface to perform actions on its physical environment.

Finally, the agent uses its communication interface to interact by
exchanging messages with other agents.

2.2.1 Belief base. It defines what an agent “knows” or “believes”
about its environment at a certain time point. The BDI architecture
does not impose a specific structuring of the belief base other than
as a generic container of beliefs.

By default Jason uses a logical model of beliefs by structuring
the belief base as a logic program composed of facts and rules. An
atomic formula has the form p(t1, . . . , tn ) such that p is a predicate
symbol of arity n ≥ 0, and ti are logical terms for i = 1, . . . ,n. A
belief is either a fact represented by an atomic formula a or a rule
h : −b1 & . . . &bk , k ≥ 1 such that h and bj , j = 1, . . . ,k are atomic
formulas.

2.2.2 Plan library. It defines the agent’s “know-how” structured
as a set of behavioral elements called plans. A plan follows the
general pattern of event-condition-action rules and it is composed
of three elements: triggering event, context and body. Formally, a
plan has the form e : c < −b where e is the triggering event, c is a
plan context and b is a plan body.

A plan body specifies a sequence of agent activities
a1 ; . . . ;am . Each ai , 1 ≤ i ≤ m, designates an agent activity.
AgentSpeak(L) provides three types of activities: actions, goals, and
belief updates. Actions define primitive tasks performed by the
agent either on the environment (external actions) or internally
(internal actions). Goals represent complex tasks. AgentSpeak(L)
distinguishes between test goals, represented as ?a and achieve-
ment goals, represented as !a, where a is an atomic formula. Belief
updates represent the assertion +b or the retraction −b of a belief
b from the belief base.

A plan context is represented by a conjunction of conditions, such
that each condition is either an atomic formulaa or a negated atomic
formula nota. The operator not is interpreted as “negation as
failure” according to the standard semantics of logic programming.

A triggering event specifies a situation that can trigger the selec-
tion of a plan execution. An event can represent i) an assertion +b
or a retraction −b of a belief b from the belief base or ii) an adoption
+д or dropping −д of a goal д.

A plan will be actually selected for execution if and only if its
context logically follows from the belief base. If B is the current
belief base then this condition can be formally expressed as B |= c .

2.2.3 Reasoning engine. Each Jason agent contains a component
called “reasoning engine” or “agent interpreter” that controls the
agent execution by “interpreting” the Jason code. The reasoning
engine performs a reasoning cycle that consists of a fixed sequence
of steps. Basically, each agent performs the following steps during
the reasoning cycle: perceives the environment, updates its belief
base, receives communication from other agents, selects an event,
selects an applicable plan and adds it to its agenda, selects an item
(called intention) for execution from the agenda, and finally exe-
cutes the next step of the partially instantiated plan that represents
the top of the currently selected intention.

The agent agenda is structured as a list of intentions. We can
think of each intention as a stack of partially instantiated plans
(somehow similar to a call stack in imperative programming) that
represents an agent execution thread. So each stack represents



WIMS ’18, June 25–27, 2018, Novi Sad, Serbia A. Bădică et al.

one focus of attention of the agent. Using this approach an agent
can execute concurrent activities by managing multiple focuses of
attention [4].

Note that a partially instantiated plan that was created by invok-
ing an achievement goal with !д is stacked on top of the intention
that invoked it. This means that this plan will be executed in the
focus of attention corresponding to the invoking intention. Alter-
natively, an invocation with !!д will create a new focus of attention
for it, thus increasing the number of tasks that are executed con-
currently by the agent.

3 MAPPING DEVS TO BDI USING JASON
3.1 A DEVS Example
We consider a simple traffic light system inspired from [17] that
it is interruptible, i.e. it can be temporarily switched to manual
mode when a policeman is pressing a button. This system can be
described by a coupled model of the whole system, composed of
two atomic models that describe the traffic light and the policeman.

The traffic light atomic model is described by the following
elements:

- X = {button_pressed}
- Y = {show_дreen, show_yellow, show_red, show_black}
- S = {дreen,yellow, red, to_manual , to_automatic,manual}
- ta(дreen) = 57, ta(yellow) = 3, ta(red) = 60, ta(manual) =
+∞, and ta(to_manual) = ta(to_automatic) = 0

- δint (дreen) = yellow ,δint (yellow) = red ,δint (red) = дreen,
δint (to_manual) =manual , and δint (to_automatic) = red

- δext ((s, e),button_pressed) = to_manual for all s ∈ {дreen,
yellow, red}, and e ∈ [0, ta(s)]
δext ((manual , e),button_pressed) = to_automatic for all 0 ≤

e
- λ(дreen) = show_yellow , λ(yellow) = show_red , λ(red) =
show_дreen, λ(to_manual) = show_black , λ(to_automatic) =
show_red

- q0 = (дreen, 20)

Note that дreen, yellow and red are the traffic light states in
automatic mode, to_manual and to_automatic are temporary in-
stantaneous states needed for transiting from automatic to manual
mode, whilemanual describes the traffic light state in manual mode.

The traffic light outputs events when it is switching the light
color in automatic mode or when it switches off light when it is
transiting to manual mode.

The traffic light consumes a button_pressed input event that
determines (i) the transition from whatever light color in automatic
workingmode to manual working mode, as well as (ii) the transition
from the manual working mode to the red light color in automatic
working mode.

The policeman is described by the following elements:

- X = ∅

- Y = {button_pressed}
- S = {do_job}
- ta(do_job) = 105
- δint (do_job) = do_job
- λ(do_job) = button_pressed ,
- q0 = (do_job, 8)

The policeman has a single do_job state that describes his job of
enabling / disabling the manual mode of the traffic light by pressing
a button. This atomic DEVS component has no input events and it
produces a single output event button_pressed when the policeman
presses the button. The policeman has a periodic behavior with the
period given by the timeout for pressing the button.

3.2 DEVS Example in Jason
3.2.1 Multi-agent organization of a DEVS model. Each DEVS

atomic or coupled model is mapped to a Jason agent. The agent
contains two parts:

- The model definition part that is captured using the agent’s
belief base. There is a specific belief base for each atomic or
coupled model of the system.

- The abstract algorithm part that is captured by the agent’s
plan base. There is one plan base capturing the atomic model
abstract simulator, as well as one plan base capturing the
coupled model simulator. These two plan bases are reused
by each agent that implements either an atomic model or a
coupled model.

Separately, the root coordinator is mapped to a root agent that
controls the coordination of the set of model agents. It is directly
linked to the agent representing the top-level coupled (or atomic)
model of the system. Recursively, each coupled model agent is
directly linked downwards to eachmember atomic of coupledmodel
agent.

Figure 1 captures the hierarchical organization of the agents rep-
resenting the traffic light and policeman system. In particular, the
figure shows that the topmost node of this hierarchy is represented
by the root agent that coordinates the progress of the simulation.
Immediately below the root there is the policeman_tra f f ic_liдht
agent, representing a coupled DEVS model responsible for cor-
rectly linking together the componentpoliceman and tra f f ic_liдht
agents. They represent atomic DEVS models capturing the behav-
iors of the policeman, as well as of the traffic light device.

Note also that thepoliceman and tra f f ic_liдht agents will share
the same plan base that describes the behavior of an atomic DEVS
model, while the component policeman and tra f f ic_liдht agent
will include a different plan base, capturing the dynamics of a
coupled DEVS model. Finally, the root agent will incorporate a plan
base defining the behavior of the DEVS root simulation coordinator.

root

policeman_tra f f ic_liдht

policeman tra f f ic_liдht

Figure 1: Traffic light and policeman system captured using
Jason agents interconnected in a hierarchically structured
organization
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Listing 1: Belief base for configuring the tra f f ic_liдht atomic
model agent.
parent(policeman_traffic_light).

initial_total_state(green,20.0).

internal_transition(green,yellow).

internal_transition(yellow,red).

internal_transition(red,green).

internal_transition(to_manual,manual).

internal_transition(to_automatic,red).

external_transition(CurrentState,T,button_pressed,to_manual) :-

.member(CurrentState,[green,yellow,red]).

external_transition(manual,T,button_pressed,to_automatic).

time_advance(green,57.0).

time_advance(yellow,3.0).

time_advance(red,60.0).

time_advance(manual,6000.0).

time_advance(to_manual,0.0).

time_advance(to_automatic,0.0).

output(green,show_yellow).

output(yellow,show_red).

output(red,show_green).

output(to_manual,show_black).

output(to_automatic,show_red).

compute_output(State,Output) :- output(State,Output).

compute_output(State,nil) :- not output(State,_).

3.2.2 Jason belief base of atomic and coupled models. Listing 1
presents the belief base of the tra f f ic_liдht atomic model agent.
This agent is linked up to the policeman_tra f f ic_liдht agent that
captures the representation of the top level coupled model of the
system, using predicate parent(ParentAдent).

The initial total state of an atomic model is defined using predi-
cate initial_total_state(State,ElapsedTime). For example, the ini-
tial state of the tra f f ic_liдht agent is defined using the fact
initial_total_state(дreen, 20.0) (see Listing 1).

The internal transition function of an atomic model is defined
using predicate internal_transition(CurrentState,NextState). For
example, the next state yellow of the current state дreen of the
tra f f ic_liдht agent is defined using fact internal_transition(дreen,
yellow) (see Listing 1). Similarly, the external transition function is
defined using predicate external_transition(CurrentState,Time,
InputEvent ,NextState).

The time advance function of an atomic model is defined us-
ing predicate time_advance(State,Timeout). For example, the time
advance of state red of the of the tra f f ic_liдht agent is defined
using fact time_advance(red, 57.0). Note that +∞ is mapped to a
real number larger than the total simulation time, for example
time_advance(manual , 6000.0) (see Listing 1). This specification
model can be easily extended to support stochastic time advance-
ment, as it is typically required by the modeling and simulation of
stochastic systems and processes.

The output function of an atomic model is defined using predi-
cate output(State,OutputEvent). For example, the output event of

state yellow of the of the tra f f ic_liдht agent is defined using fact
output(yellow, show_red) (see Listing 1).

Listing 2: Belief base for configuring the
policeman_tra f f ic_liдht coupled model agent.
parent(root).

child(policeman).

child(traffic_light).

select([X],X).

select([policeman,traffic_light],policeman).

influences(policeman,traffic_light).

Listing 2 presents the belief base of the ploceman_tra f f ic_liдht
coupledmodel agent. Membermodels are recorded in the belief base
as facts defined using predicate child(aдent). Influence sets are de-
fined using predicate in f luences(Aдent , In f luencedAдent). Finally,
conflict resolution is defined using predicate select(ListO f Aдents,
Aдent).

For example, according to the facts shown in Listing 2, (i) the
coupled model agent policeman_tra f f ic_liдht has two children
model agents polceman and tra f f ic_liдht , (ii) agent policeman in-
fluences agent tra f f ic_liдht , and (iii) agent policeman has higher
priority than agent tra f f ic_liдht .

3.2.3 Jason plan base of abstract simulator. The plan base of
Jason agents follows the abstract simulator algorithm for atomic,
respectively coupled model, presented in [17].

The plan base for the atomic model abstract simulator is used by
agentspoliceman and tra f f ic_liдhts . The plan base for the coupled
model abstract simulator is defined in a similar way1 and it is used
by agent policeman_tra f f ic_aдent .

Note that after carrying out an internal or external transaction
by plans trans and input the atomic model agent issues a done
message with the next scheduled transition time to its parent agent.

Abstract simulator agents communicate by exchanging messages
structured asmes(Messaдe,Aдent ,Time). HereMessaдe indicates
the type and content of the message, Aдent indicates the agent
that emitted the message (with the exception of trans messages
where it represents the target agent that must carry out the current
transition), while Time represents a time moment with semantics
dependent on the type of the message.

The abstract simulator is using several types of messages.
The conf iдure message is initially emitted by atomic model

agents during the initialization process, and sent up by each model
(either by emitter or receiver of the message) to the parent agent.
The message is used to configure initial elapsed times for each agent
of the system. The Time argument represents the initial elapsed
time, extracted from the initial total state of the atomic model. The
message is processed by each coupled model to determine: i) the
last transaction time of a member model, that is recorded internally
in the coupled model agent belief base as a fact using predicate
last_component_time(Aдent ,Time), ii) the last transaction time of
the coupled model (maximum of the times recorded at previous
point) that is recorded internally in the coupled model agent belief

1The complete Jason code that represents the policeman and traffic light system can
be downloaded from http://software.ucv.ro/~cbadica/devs2bdi.zip.

http://software.ucv.ro/~cbadica/devs2bdi.zip
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base using predicate last_time(Time). The message is processed by
the root agent to determine the moment for initiating the simula-
tion.

The init message is initially emitted by the root agent to indicate
the start of the simulation. The Time parameter contains the initial
value of the simulation time, usually equal to 0.0. Each agent (either
emitter or coupled model receiver) propagates the message to its
children, so the simulation initiation event is spread to all the agents
of the system.

The done message is sent by each atomic or coupled model agent
to indicate that the computation of a transition was finished for the
current model. The Time argument indicates the next scheduled
transaction time of the model. This message is always sent to the
parent agent. The message is processed by coupled model agents
to record the next scheduled transaction of each member model as
a fact using predicate next_component_time(Aдent ,Time), as well
as for updating the last transaction time of each member model and
of the whole coupled model.

The trans message triggers a transition in the model. The mes-
sage is processed by atomic model agents by carrying out the
transaction. The end of this processing is signaled by the issue
of a done message. Optionally, carrying out the transaction can
issue an output message. The last and next transaction time of an
atomic model are recorded internally in the belief base of the atomic
model agent as facts composed with predicates last_time(Time)
and next_time . The trans message is also processed by coupled
model agents. The processing assumes: (i) the propagation of the
message to the imminent model agent (this is determined among
the children of the coupled model agent), as well as (ii) the record-
ing of the imminent model agent as an “active child” using a belief
active_child(Aдent).

The output(X ) message is emitted by atomic model agents, just
before the occurrence of a timeout that generates an internal state
transition. Moreover, the message is processed by coupled model
agents by either (i) mapping it to an input(X ) message that is prop-
agated as input to an influenced agent (in this case the In f luencedA-
дent is recorded as “active” using a belief defined by a fact
active_aдent(In f luencedAдent), or (ii) by propagating it as an out-
put of the coupled model agent itself, if the set of influenced agents
contains sel f .

The input(X ) message is emitted when an output event is prop-
agated to an influenced agent in a coupled model. The message
is processed by atomic model agents by carrying out an external
transaction. The message is also propagated to the member agents
that are influenced by sel f , thus enabling its further processing by
the coupled model agents.

For example, Listing 3 presents two plans used by atomic model
agents to carry out internal and external transitions.

Plan trans has the responsibility for carrying out an internal
transition of the atomic model. If the current state specifies an
output event then an output message is sent to the parent agent,
just before the internal transaction is carried out.

Plan input has the responsibility for processing an input received
by an atomic model. The effect of receiving an input at a time
moment within the time interval defined for the current state is to
carry out the corresponding external transition.

Note that agent plans are using the atomic annotation that en-
forces the atomic execution of their actions. This is required for the
consistent update of the state of each DEVS component.

Listing 3: Plans used by atomic model agents for carrying
out internal and external transitions.
@trans[atomic] +mes(trans,From,Time) : next_time(Time) <-

-mes(trans,From,Time)[source(From)];

.print("Received: ",mes(trans,From,Time));

?parent(Parent);

.my_name(This);

?current_state(State);

?compute_output(State,Output);

.print("Time: ",Time," Output: ",Output);

if (Output \== nil) {

.send(Parent,tell,mes(output(Output),This,Time));

.print("Sent: ",mes(output(Output),This,Time)," to ",Parent);

}

?internal_transition(State,NextState);

?time_advance(NextState,TimeAdvance);

NextTime = Time+TimeAdvance;

-+current_state(NextState);

-+last_time(Time);

-+next_time(NextTime);

.send(Parent,tell,mes(done,This,NextTime));

.print("Sent: ",mes(done,This,NextTime)," to ",Parent).

@input[atomic] +mes(input(X),From,Time) :

last_time(LastTime) & LastTime <= Time &

next_time(NextTime) & Time <= NextTime <-

-mes(input(X),From,Time)[source(From)];

.print("Received: ",mes(input(X),From,Time));

?parent(Parent);

.my_name(This);

ElapsedTime = Time - LastTime;

?current_state(State);

?external_transition(State,ElapsedTime,X,NextState);

?time_advance(NextState,TimeAdvance);

NewNextTime = Time+TimeAdvance;

-+last_time(Time);

-+next_time(NewNextTime);

-+current_state(NextState);

.send(Parent,tell,mes(done,This,NewNextTime));

.print("Sent: ",mes(done,This,NewNextTime)," to ",Parent).

Finally, the root agent coordinates the simulation. Its belief base
defines the top-level agent of the model –policeman_tra f f ic_liдht ,
as well as the initial and final simulation times.

The definition of the root agent is shown in Listing 4. It is a
proactive agent directed by the !next_event achievement goal. This
goal is triggered by conf iдure plan, as soon as the configuration of
the system was finished.

3.3 Discussion
The retrospective analysis of our implementation reveals certain
advantages of using Jason agents for capturing DEVS simulation
models.

Firstly, each DEVS module is naturally mapped to a Jason agent.
The simulation is driven by the message-handling plans that are
contained by each agent. In fact, we can see that each DEVS model
can be captured using only three types of agents (atomic model
agent, coupledmodel agent and coordinator agent), while the agents
of each type share the same plan base.
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Listing 4: Definition of the root agent that coordinates the
simulation.
top(policeman_traffic_light).

initial_time(0.0).

final_time(3000.0).

@configure[atomic] +mes(configure,From,Time) : true <-

!start.

@start[atomic] +!start : true <-

.my_name(RootAgent);

?top(TopAgent);

?initial_time(InitialTime);

.send(TopAgent,tell,mes(init,RootAgent,InitialTime));

.print("Sent: ",mes(init,RootAgent,InitialTime)," to ",TopAgent);

!next_event.

@next[atomic] +!next_event : top(Top) & mes(done,Top,Time) <-

-mes(done,Top,Time)[source(Top)];

.print("Received: ",mes(done,Top,Time));

.my_name(RootAgent);

?final_time(FinalTime);

if (Time <= FinalTime) {

.send(Top,tell,mes(trans,RootAgent,Time));

.print("Sent: ",mes(trans,RootAgent,Time)," to ",Top);

}.

-!next_event : true.

@activate[atomic] +X : true <- !next_event.

Secondly, the hierarchical interconnection of the agents is nicely
captured by the logical facts incorporated into the belief base of
each agent.

Thirdly, the other elements of the DEVS model (time advance,
transition and output functions) are explicitly captured as logical
facts included into the belief base of each agent. Moreover, depen-
dencies between the agents capturing basic models of a coupled
DEVS model are also represented as logical facts incorporated into
the belief base of coupled model agents.

Fourthly, the tie-breaking function is represented as conflict
resolution logic rules that define the predicate select/2. Basically,
the full flexibility of the Prolog interpreter that is available to a Jason
agent can be reused to define very complex tie-breaking functions.

Fifthly, translation functions [17], currently not included in our
models, and thus not supported by our prototype implementation,
can be also easily captured using logic facts stored into the agents’
belief bases.

Finally the reasoning cycle of BDI agents, controlled by the
agents’ message-handling plans, automatically drives the selection
of events and the correct advancement of the simulation time.

Before closing our discussion is noteworthy to mention that al-
though the Jason multi-agent platform naturally supports the paral-
lel and distributed execution of agents, the current implementation
is still based on the standard semantics of classic DEVS, thus being
inherently sequential. This means that events triggering proceeds
strictly in a sequential order. We plan to address this restriction
in the near future by considering suitable parallel extensions of
DEVS that allow the parallel triggering of events, thus naturally

supporting the inherent parallelism that is present in many DEVS
simulation models.

4 CONCLUSION
In this paper we proposed an approach for capturing classic DEVS
simulationmodels using Jason agents. The approachwas introduced
by considering a simple DEVSmodel comprising two atomic models
and one coupledmodel. EachDEVSmodel (either atomic or coupled)
is mapped to a distinct Jason agent. The simulation is managed
by a root coordinator agent that is responsible with advancing
the simulation time by triggering the next scheduled event. Each
coupled and atomic model agent is driven by a separate plan base.
The initial results reported in this paper can be extended in many
directions, including: i) modeling and simulation of more complex
and realistic systems; ii) extending the approach to support other
variants of DEVS (cellular, parallel, stochastic); iii) applying the
approach to other BDI-based multi-agent platforms.
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