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ABSTRACT
In this work we present a flexible Network Coding (NC )
module integrated within the ns-3 framework. We have
exploited it to implement an inter-flow coding protocol, in
which intermediate nodes (routers) combine packets belong-
ing to different flows, as well as an intra-flow coding scheme,
in which both the source and intermediate nodes linearly
code packets of the same flow. We assess the performance
of both approaches to provide reliable communication ser-
vices over wireless mesh networks, considering that links are
prone to cause packet drops, comparing their behavior with
the one exhibited by legacy TCP.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Simulation, Network Coding, Mesh Networks

Keywords
Network Coding; Reliable communications; Lossy Wireless
Channels

1. INTRODUCTION
Since the arrival of the 21st century, wireless technologies

have seen a continuous growth in every aspect: wholesales,
users, manufacturers, standardization, etc. This success has
promoted their constant evolution, and they stand at the
time of writing as the most widespread access alternative.
However, there is still a big challenge that has not been
properly tackled: while it is clear that the present and future
of communications are tightly related to wireless networking,
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the mainstream transport protocol nowadays, TCP, used
for countless applications (for instance, file transfers, web
browsing, etc.), is severely jeopardized when used over this
type of networks.

One alternative to overcome the aforementioned limita-
tion is the use of the Network Coding (NC) paradigm. It
is a relatively new technique (originally proposed in 2000)
that basically proposes to move away from the legacy routing
procedures, which rely on the well-known store-and-forward
paradigm, where intermediate relay nodes do not incorpo-
rate any additional processing, but they just forward the
incoming packets based on the information of their routing
tables. Opposed to this, NC follows a different approach,
where routers, taking an essential role, are able to modify
the content of the packets across the network, by means of
different coding schemes. Using this new approach, a broad
range of possibilities looms: it may reduce the number of
transmissions, thus leading to energy saving; it might bring
about a more reliable service; it also can be used to incor-
porate additional security mechanisms (the information is
somehow encrypted); it finally can be used to improve the
performance, among other features.

In this work we study the possibilities that are brought
about by NC to boost the performance for reliable com-
munications (traditionally using TCP), in particular over
Wireless Mesh Networks (WMNs). For that we follow two
different approaches, both of them based on a common NC
framework that we integrated within the ns-3 simulator [3]
(namely, ns-3.13): first, we have implemented a solution
based on the deterministic encoding of packets belonging to
different TCP connections at the intermediate routers along
the network (Inter-flow NC ); on the other hand, we also ex-
ploit the combination of UDP and a Random Linear Cod-
ing (RLC) scheme that “mixes” datagrams belonging to the
same UDP flow to promote a novel reliable communication
service. We assess the performance of these mechanisms
over two different canonical topologies and compare their
behavior to the one achieved by the legacy TCP.

This document is structured as follows: Section 2 posi-
tions this work within other contributions that tackle the
same topics. Sections 3 and 4 focus on the description of
the Intra and Inter -flow NC schemes, respectively. Section 5
depicts the implementation of the NC layer within the ns-

3 framework, as a module placed between the network and
transport layers. Section 6 depicts the simulation testbed
used to assess the performance of the presented NC mech-



anisms, discussing the achieved results. Finally, Section 7
concludes the document and advocate a number of items
that will be tackled in our future research.

2. RELATED WORK
The term “Network Coding” was originally coined by

Ahlswede et al. in [6]. They debated the suitability of the
classic store-and-forward paradigm in IP networks, suggest-
ing that the integration of additional functionalities at in-
termediate nodes might lead to significant performance en-
hancements. From that moment, several works have pro-
posed the use of these mechanisms, to get either performance
improvements or more reliable communications. Further-
more, after several years of research, the scientific commu-
nity accepts the division of NC techniques into two main
groups; the first approach is based on the combination of
packets belonging to different flows at intermediate routers,
and some of its most popular examples are COPE [13] and
Coding Applied To Wireless On Mobile Ad-Hoc Networks
(CATWOMAN) [12]. The second group fosters the use of
random linear combinations of packets belonging to the same
flow; the reader might refer to [7] and [17] for a succinct de-
scription of this approach.

Besides, there is a new trend, aimed at merging the two
aforementioned paradigms into a unique NC operation, so as
to benefit from the advantages of each of them, as proposed
by I2NC [16] and CORE [14]; they show that this approach
outperforms a standalone (either inter-flow -first group- or
intra-flow -second group-) NC scheme.

However, there are not so many works addressing the use
of NC to improve the poor performance shown by TCP over
lossy wireless networks, since they usually do not pay atten-
tion to the transport level, focusing on the behavior of the
NC mechanisms by themselves. The few works that have
dealt with such analysis (see e.g. [13]) agree that the inter-
play between the NC schemes and the congestion control
algorithms used by TCP is rather harmful.

On the other hand, the popularity that the ns-3 simulator
has recently gained, fosters the spring of different works that
study the interaction between NC and WMNs using this
particular platform. For instance, Yang Chi et al. proposed
Yet Another Network Coding Implementation (YANCI) [5],
a simplified version of the COPE [13] inter-flow NC. How-
ever, the authors did not consider the presence of packet era-
sures within the network. In addition, it is also worth high-
lighting the existence of different independent open-source
frameworks that allow the possibility of linking ns-3 as an
external library to simulate the use of NC over different
network environments, such as NECO [8] or Kodo [15].

Regarding our previous work, we introduced in [10] an
Inter-flow NC protocol, which we integrated within the ns-

2 simulator, plugging the NC layer between the Medium
Access Control (MAC) and IP levels; we thoroughly ana-
lyzed the impact of the operational parameters of interme-
diate coding nodes (buffer size and timeout), focusing as
well on the synchronization issues between TCP flows that
appeared when we introduced packet losses within the var-
ious wireless links. In [9] we presented the NC implemen-
tation over ns-3, which we discuss in this paper. Unlike
in [10], we have placed the NC layer between the network
and transport levels, addressing a direct interaction with
the upper-layer protocols (TCP or UDP). This NC entity
exploits the framework to encapsulate TCP acknowledge-

ment traffic together with the coded data flow. However,
those management segments are actually off-coding, since if
there arose any encapsulation probability at coding nodes,
the ACK would just be appended at the end of the NC
header. Hence, these ACKs would be extracted at their cor-
responding destinations. Through this naive solution, we
achieved an throughput improvement of 40%, compared to
TCP over simple topologies, as the one which will be shown
in Section 6.

3. INTER-FLOW NETWORK CODING
Based on a simplified version of COPE [13], our proposed

Inter-flow NC protocol aims at improving the performance
of TCP over wireless mesh topologies by combining the var-
ious flows that are present along the network. Besides, we
can find a deeper description about the implementation and
results in our previous work, i.e. [9, 10].

The cornerstone of this protocol lies on the intermedi-
ate nodes, which keep track of all TCP segments to be for-
warded1. They use a coding buffer (named input packet
pool) with a maximum capacity of N ≥ 1 segments, whose
size is mapped through the parameter BS. A coding buffer
timeout (BTO) is associated to each segment in the buffer, so
as to limit the sojourn time of a packet in such buffer (oth-
erwise, coding could add an unacceptable long latency for
some particular arrival patterns). This buffer will group the
stored packets according to their so-called Flow ID, which
consists on a 16-bit hash of the tuple Source IP address-
Source TCP port-Destination IP address-Destination TCP
port, obtained with the popular MD5 hashing function, using
the Open SSL Library [4]. All the required information is
serialized into a proprietary header (i.e. global information,
individual info about the native packets that are encoded
within the packet, etc.), whose detailed description can be
found in [9].

Whenever an intermediate node receives a new segment,
it checks whether another one, belonging to a different flow
(i.e. having a different Flow ID), is already stored in its
buffer. In such a case, both packets are coded together and
then delivered to the lower layer. Otherwise, the segment
is stored in the input packet pool, waiting for an eventual
coding opportunity. If no new coding opportunity happens
within the BTO interval, the corresponding original segment
will be transmitted. Given that the coding buffer has a finite
size, if a new packet arrives and the buffer is full, the oldest
packet will be sent (without being coded) to the MAC layer
and deleted from the buffer, so as to keep the most recent
one.

It is worth mentioning the relevance of appropriately se-
lecting the nodes that will take the role of coding entities.
A good choice would certainly improve the efficiency of the
coding combinations, increasing the number of packets that
are encoded. This would also help to reduce the failure rate
at the destination node, being the event in which a coded
packet is received, but the native segment cannot be re-
trieved, leading to a packet drop. This aspect has a key
relevance for the performance of the Inter-flow NC scheme,
but it is out of the scope of this work.

This particular approach to Inter-flow NC is based on the
capacity of nodes to overhear packets that are being trans-

1For the sake of simplicity, only segments with user informa-
tion would be considered to be coded under this NC scheme.
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Figure 1: Inter-flow NC canonical scenario

mitted within their coverage area (this procedure was named
in [13] as opportunistic listening), and therefore it does not
require any further NC management scheme. When a node
overhears a packet, it stores it in its Decoding buffer, even
if it is not the real destination of such packet, considering
that such segment might be eventually useful afterwards,
for decoding purposes. In general, to recover the ith orig-
inal packet from a coded packet of m segments (m ≥ 2),
the destination needs to have the other m − 1 original seg-
ments. In the work that is being presented herewith, as we
are considering just two TCP flows, the intermediate node
can encode only two original segments to generate a coded
packet. As a consequence, when a destination node receives
a coded packet, it can decode it only and only if its decoding
buffer holds the other original segment contained in the re-
ceived packet. A XOR operation between the coded packet
and one of the two original segments allows extracting the
remaining original segment.

As an illustrative example, Figure 1 represents the inher-
ent behavior of the Inter-flow NC protocol over the
widespread X topology. In a nutshell, two TCP connec-
tions will be established: one between S1 and D1 and the
other one between S2 and D2. The distance between nodes
is chosen so that Di is out of the range of Si, but within the
range of Sj , with i, j ∈ [1, 2] and i 6= j. This configuration
allows Di to overhear the packets coming from Sj to Dj

for decoding purposes. In this very particular configuration,
node R1 clearly stands up as the coding router, since it is
the clear articulation point of the network, and all the traffic
would traverse it (four different flows in this case: two per
TCP connection, one for the data segments and another one
for the corresponding backwards TCP acknowledgements).
Hence, R1 will be the node in charge of combining the infor-
mation belonging to the two data flows (recall that in this
work we only consider the encoding of data segments).

4. INTRA-FLOW NETWORK CODING
The approach is in this case rather different from the pre-

vious one. The baseline is still the legacy TCP, but just
because we want to have a reliable communication, since we
are using UDP and carrying out random linear combinations
over the corresponding datagrams before their delivery, tak-
ing as a reference the work carried out by Chachulski et al.
in [7]. It is worth mentioning that other existing proposals
do not properly address the interaction with the transport
level layer [7, 14] or combine the coding scheme with TCP,
thus not avoiding the problems that it shows over lossy wire-
less channels [17].

Unlike the Inter-flow NC scheme, source nodes have an
essential functionality, since they are in charge of carrying
out the first coding process. The NC entity at the source

node receives the information from the upper UDP layer
and stores the datagrams at its transmission buffer. As was
discussed for the Inter-flow NC protocol, packets will be
grouped in different sub-buffers, according to the flow they
belong to (those sharing the same Flow ID will be stored
together). When K native packets of the same flow have
been stored, a random linear combination of them is cre-
ated (from now on, the combinations carried out over the
same group of native packets will be referred to as “block”),

and a coded packet p′ =
∑K−1

i=0 ci · pi is created, where
the c′is are random coefficients generated from a finite field
GF (Q) = GF (2q) and the pis are the so-called native pack-
ets. These random coefficients can also be represented as
−→c = (c0, c1, · · · , cK−1), where −→c is the packet’s code vec-
tor. The NC entity will periodically send coded packets2,
until the destination node confirms the successful decoding
and reception of the current block. In order not to overflow
the lower layer buffers (at the MAC level), the NC dynam-
ically injects packets downwards according to the physical
output rate, that is likely to be the actual bottleneck in a
transmission; by means of a cross-layer technique, the NC
entity (upper layer) is able to be aware whenever a packet
of a particular flow is sent to the physical channel, and can
then proceed to deliver downwards a new one, when there
are no packets waiting at the MAC level buffer.

On the other hand, destination nodes employ two differ-
ent storage entities: first, a matrix C (K×K) that keeps the
coded vectors (rows of such matrix), and a reception buffer
able to keep up to K coded packets. Upon the arrival of
a arbitrary coded packet p′i, its coefficient vector −→c will be
added to the jth row of the C matrix. If this last received
vector (−→c ) is linearly independent from the previous ones
(we can assert this using a rank check operation), the corre-
sponding coded packet will be considered as innovative. In
such case the coded vector will be kept at C, and the coded
packet will be appended to the reception buffer, at the jth

position. On the other hand, if the coded vector is linearly
dependent, it will be deleted from C and the packet will be
discarded. As can be seen, the value (information-wise) of
every innovative packet will be the same ( 1

K
). However, each

of them is meaningless in its own, since the receiver needs
to store K innovative packets to decode the corresponding
block. This means that when a coded packet gets lost, it is
indirectly replaced by the following (and innovative) one.

Upon the reception of the Kth innovative packet, the co-
efficient matrix C is of rank K, and therefore we can calcu-
late its inverse C−1 to decode the coded packets (in matrix
notation, P = C−1 · P ′), recovering the original informa-
tion. Afterwards, the K native packets belonging to the
same block are simultaneously delivered to the upper layer,
which receives the data in the appropriate order. It is worth
mentioning that this operation will not introduce any de-
lay (in terms of ns-3’s simulation time), since there do not
exist any scheduled events in the corresponding forwarding
process. All the datagrams will therefore reach the UDP
entity at exactly the same time; likewise, the application at
the receiver node gets the K packets altogether, after the
NC entity has decoded the corresponding block. We can de-
fine the application latency as the time interval between the
successful decoding of two consecutive blocks. There is a

2In order to avoid useless transmissions, the null vector is
discarded and never transmitted.
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Figure 2: Intra-flow NC canonical scenario (RLNC)

trade-off between the size of the block (K) and the system
performance, since higher K values lead to longer latencies
(at least K transmissions are needed to decode the block).
On the other hand, the amount of information delivered to
the upper layers after each successful decoding event is pro-
portional to K. These particular characteristics might pre-
vent the use of this approach for highly sensitive real time
traffic.

After the matrix inversion, and once the data is deliv-
ered to the upper layer, the receiver node generates an ACK
message confirming the successful block reception and de-
coding. Upon receiving the ACK, the transmitter deletes
the packets belonging to that block from the transmission
buffer and moves forward, starting the transmission of the
next one. Besides, the NC layer sends a signal to the MAC
level to remove all the frames belonging to that particular
Flow ID, which might be still queued at the IEEE 802.11
MAC transmission buffer (a cross layer solution to avoid
the transmission of useless frames).

It is worth highlighting that all the GF -related tasks (i.e.
vector multiplication, matrix rank and inverse calculation,
etc.) are carried out by means of two external libraries:
whilst the generic GF (2q) calculations use the FFLAS -
FFPACK library [1], which works with slow modulo meth-
ods, the simpler finite field GF (2) operations use the IT++
library [2], whose GF2Mat class is much faster. Its main draw-
back is that is does not allow working with extended finite
fields.

Along the paths, intermediate nodes can take two different
roles: in the naive solution, they use the classic store-and-
forward scheme, in which all the coding tasks stay within the
source nodes. From now on, this solution will be referred to
as Random Linear Source Coding (RLSC). On the other
hand, we can exploit the NC concept, where relay nodes are
able to re-code the previously stored packets, thus coding the
information (belonging to the same flow) as it traverses the
network. In this case, this technique will be known as Ran-
dom Linear Network Coding (RLNC). They use a scheme
akin to the one employed by the source coding process, a re-
lay node stores all the coded and innovative packets (a rank
calculation is used to discard linearly dependent coefficient
vectors) at another temporary buffer (we still have one dif-
ferent buffer per flow), whose size, in this case, will never
be greater than K. When this buffer has stored a certain
number of coded packets (in this work we have used a fixed

value of 2), a new coded packet p′′ =
∑T−1

i=0 c′i · p′i will be
generated and delivered to the lower layer, being T the num-
ber of stored packets at a particular relay node, T ≥ 2. This
new combination, as shown in [7], can be represented as a
linear combination of the original native packets. Last, the
aforementioned cross-layer mechanisms are also used by the
intermediate nodes to dynamically re-inject the packets to
be forwarded and, after receiving an ACK (which is also pro-
cessed by those intermediate nodes that carry out the RLNC

Ipv4L4Protocol

NetworkCodingL4Protocol

InterFlowNetworkCodingProtocol IntraFlowNetworkCodingProtocol

Figure 3: Network Coding class inheritance diagram

scheme), selectively flush the packets (those which belong to
the acknowledged block) from the lower level buffers.

An illustrative example of both operations is depicted in
Figure 2, where a source node S1 sends application data to
a receiver D1, while a relay node R1 forwards (or re-codes
and forwards) the packets, since they cannot (from a routing
protocol point of view) reach their destination by means of a
single hop. However, due to the intrinsic broadcast nature of
the wireless medium, D1 might overhear a packet p′i directly
transmitted from S1, likely with a low probability, since the
distance between these nodes is long. In these cases, if R1

just forwards pi to D1, this would need to discard it, since
it bears the same information than p′i. On the other hand,
if R1 combines the coded packets it had previously stored,
producing a new packet p′′i , there is a higher probability for
it to be innovative at the receiver entity.

In order to exchange the information required to perform
the coding and decoding operations, the proposed protocol
needs to include a proprietary header. It is composed by
two parts: the first one, with a fixed 9-byte length, contains
all the information that must be shared between the source
and destination nodes (i.e. the type of message, the number
of combined packets3, K, the block number and the corre-
sponding UDP ports). On the other hand, the second part
of the header is of variable length, proportional to the co-
efficient vector, and bounded by the K parameter and the
size of the finite field GF (Q), being q = log2 Q the number
of bits required for each coefficient ci. Therefore, the whole
header size will be 9 +

⌈
K·log2Q

8

⌉
bytes.

5. NETWORK CODING ON NS-3
One of the most challenging issues in this paper is the

design of a common framework for the two different NC
strategies that are addressed. To appropriately tackle that,
we have designed and implemented an NC entity that lies
between the network and transport layers. This module will
be in charge of the coding and decoding operations. In terms
of implementation, Figure 3 depicts the class inheritance di-
agram that defines the location of the protocol within the
source tree. We can see a base (abstract) class, Network-

CodingL4Protocol, which holds all the methods that belong
to the two derived classes, i.e. callbacks, essential func-
tion members, a pointer to the node that will aggregate
the protocol, etc. Although the studied solutions do not
have a clear placement within the stack (they might lie any-
where between 3-4 layers), they might be referred to, ns-3
terminology, as transport level protocols, since they (indi-

3The field size of this parameter is 1 byte, since the im-
plemented solution supports linear combinations of [2, 255]
packets.
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Figure 4: Transmission and reception/forwarding flow
charts of an arbitrary packet through the ns-3 protocol stack

rectly) depend on the mainstream L4 abstract base class:
Ipv4L4Protocol.

In the scope of this work, coding operations can be per-
formed by different entities: whilst in the Inter-flow NC
scheme only the defined coding relay nodes would actually
perform the combination of packets across the network, the
Intra-flow alternative puts the main coding functionality
on source nodes, which will be the responsible of storing
and coding all the segments stored at its buffer. Besides,
if the RLNC mode is enabled, the intermediate nodes will
act as “re-coding” entities, since they will combine the re-
ceived packets (by means of another buffer which temporary
stores them), creating new random linear combinations. As
a consequence, the probability of receiving innovative pack-
ets might be increased. On the other hand, all decoding
tasks are carried out by the receiver nodes (they are the ac-
tual destination, and thus they need to retrieve the original
information) in both solutions.

Figure 4 provides a more thorough description of the pro-
tocols; we can see the transmission (Figure 4a) and recep-
tion (Figure 4b) flow charts of an arbitrary packet across
the ns-3’s protocol stack (we intentionally did not include
those levels that do not have any interaction with the NC
mechanisms). Both schemes are briefly described below.

In transmission, the NetworkCodingL4Protocol instance
intercepts the downstream UDP/TCP flow, originally
headed to the Ipv4L3Protocol::Receive() function. The
NC entity handles the packet and decides4 whether it will
be encoded before being forwarded downwards, or otherwise
it will silently pass through the module. The rest of the
flow remains unchanged, until the outgoing packet leaves
the transmitter node. It is worth mentioning a particular
event, which only applies to the Intra-flow NC scheme: we
have added a cross-layer interaction between the NC entity
and the physical level transmission (we use a hook to the
YansWifiPhy::PhyTxBegin trace source), allowing us to dy-
namically inject (coded) data traffic from the Intra-flow

4These decision mechanisms depend on the particular NC
protocol currently in use.

NC ’s transmission buffer only when the WifiMacQueue does
not have any more packets to be sent.

As for the reception process, the operation becomes more
complicated, since the NC entity captures the packets from
a number of points:

1. The default reception keeps its traditional operation
until the network level, where the Ipv4L3Protocol::

LocalDeliver() function will be hooked to the NC
stack (we modified the callback that legacy connects it
to the Ipv4L4Protocol), which will decode (if needed)
the received information, delivering it to the upper
layer.

2. In a standard reception scheme, a packet would not
reach the transport layer unless its IP header desti-
nation address belongs to the particular node that is
parsing it. In such a case, it is the routing protocol (i.e.
derived from the base class Ipv4RoutingProtocol) the
one that takes the decision of whether forwarding or
dropping the packet. When NC is active, intermediate
nodes have a key role, since they need to process the
information within those packets for coding/re-coding.
This led us to tamper the legacy Ipv4L3Protocol::

IpForward() function source code, in order to allow
the NC layer to decide what to do with the NC -protocol
packets, either storing/coding them or forwarding them
downwards.

3. Due to the broadcast nature of the wireless medium,
a node might overhear packets that are not directly
addressed to it. However, these receptions might be
useful for decoding procedures. Hence, intermediate
nodes shall enable a promiscuous reception mode that
allows the NC layer to get these packets from the
WifiNetDevice entity.

Besides, as described in Section 4, the Intra-flow NC proto-
col needs two additional connections to the lower layer:

4. As mentioned earlier, intermediate nodes’ NC level
take care of forwarding packets (previously stored and
handled at the NC ’s buffer, see step 2 above). The
NC entity is notified whenever a packet is about to be
sent (via YansWifiPhy::PhyTxBegin trace source con-
nection), and therefore it can control the injection rate
at the NC layer.

5. In this case, once the transmitter entity (source or re-
lay node) receives an ACK from the destination entity,
it removes all the useless packets that it has previ-
ously stored from the NC ’s buffer and shifts to the
following new block. Besides, it would be also interest-
ing being able to flush every “deprecated” packet that
might be still stored at WifiMacQueue. For this reason,
we have included a new member function (i.e. Wifi-

MacQueue::SelectiveFlush()), which recursively re-
moves all packets corresponding to a particular tuple
Flow ID-Old block number.

6. SIMULATION AND RESULTS
After the description of the protocols’ functionality and

how they have been integrated within the ns-3 framework,
we discuss in this section a number of representative results



Table 1: Common testbed parameters

Feature Value
Physical link IEEE 802.11b (11 Mbps)
Error model RateErrorModel (modified)
FER values [0: 0.1 : 0.8]
RTS/CTS Disabled
IEEE 802.11 RTX 3
Transport level UDP / TCP “New Reno”
Aplication OnOffApplication (20 MB)
App. data rate CBR (11 Mbps)
Packet length Max size allowed (MTU 1500B)
Traffic Unicast
Simulations 50 independent runs/point

that have been obtained after a simulation campaign, using
the modules described earlier.

Before showing the results, Table 1 summarizes the most
relevant parameters of the simulation setup that is used for
both testbeds. In a nutshell, the IEEE 802.11b recommen-
dation (through the ns3::YansWifiPhy default model pro-
vided by the simulator) is used to configure the physical
and MAC levels, using a modified ns3::RateErrorModel to
establish the Frame Error Rate (FER) between links5. Re-
garding the application traffic at the source nodes, a Con-
stant Bit Rate (CBR) (using the ns3::OnOffApplication)
flow is sent downwards, ensuring that there will always be at
least a packet waiting to be transmitted at the lower layer
buffers (i.e. ns3::WifiMacQueue), leading to a saturated
scenario, where the system bottleneck can be placed at the
wireless channel.

Last, but not least, we show two different performance
metrics to illustrate the behavior of the NC protocol:
• Throughput. This reflects the performance from the re-

ceiver’s point of view. We define it as the total number
of information bytes correctly received at the destina-
tion node’s application layer, divided by the transmis-
sion time. The value that is represented in the figures
correspond to the average throughput per flow.
• Coding Rate (Inter-Flow NC exclusive). It represents

the ratio between the number of coded packets trans-
mitted over the total number of packets sent by the
encoding node R1. This parameter reflects the num-
ber of coding opportunities that were actually taken
by R1 to encode packets.

6.1 Inter-flow NC performance
First, we assessed the capability of intermediate nodes to

“mix” the information belonging to different flows. For that
purpose, we deployed an X topology (Figure 1), which was
described as the canonical scenario for an Inter-Flow NC
communication (see Section 3).

Figure 5 shows the performance that was obtained over a
lossless scenario, in which there is not any packet loss due
to the propagation impairments, being the collision between
transmitting stations events the only error cause. In order to
study the impact of the NC’s buffer operational parameters
over the overall system, we modified both the BS and BTO

values, so as to establish the best configuration. As can be
seen in Figure 5a, as long as we increase the buffer capac-
ity, the number of coding opportunities gets greater, ranging

5This feature allows us to arbitrarily modify the FER be-
tween each pair of nodes.
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Figure 5: Inter flow network coding behavior as a function
of the coding buffer setup
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Figure 6: Throughput evolution as a function of FER on an
“X” topology (Inter-flow NC)

from values of ≈ 60% (i.e. BS = 2 and BTO = 20 msec) to
≈ 97% (with BS = 8 and BTO = 1600 msec); in the latter
configuration, most of the data packets delivered from R1

simultaneously carry information belonging to the two TCP
connections, thus saving a large number of transmissions.
Regarding the achieved throughput, we can see in Figure 5b
that the use of this NC scheme yields a remarkable per-
formance enhancement (≈ 22%). However, there is a point
from which both the Coding Rate and the throughput do not
increase any more. We can therefore conclude that there is a
particular configuration that leads to the best performance,
and there is not any additional gain if we further increase
the buffer size and timeout interval. We can even see that
there is a small throughput reduction for the largest buffer
timeout values (i.e. BTO ≥ 800).

Once we have assessed that encoding within the network
can actually improve the performance of TCP over WMNs
characterized by ideal (without errors) links, Figure 6 shows
the throughput that was obtained over lossy links (in this
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particular configuration, all links are configured with the
same FER value). The results are not very “promising”,
since the performance of the NC scheme is heavily jeopar-
dized by the lossy channels, due to the packet losses. In fact,
the throughput that was obtained for the legacy TCP was
even higher. Besides, it can also be observed that a higher
BTO leads to a lower throughput, probably due to the fact
that segments stay for too long at the coding buffer’s input
packet pool, and this might trigger TCP retransmissions, due
to the RTO expiration.

We can therefore conclude that the Inter-flow NC scheme
shows a good potential to improve TCP performance over
wireless mesh networks, but only if the quality of the cor-
responding links is high. When the conditions of the links
become worse and the loss rate starts to be relevant, the
performance of the proposed scheme is heavily jeopardized,
making it unsuitable for such type of scenarios.

6.2 Intra-flow NC performance
The second simulation study corresponds to a three-node

topology, as depicted in Figure 2, which was selected to il-
lustrate the performance brought about by the combination
of UDP and an Intra-flow NC scheme. In this very partic-
ular setup, opposed to the previous case, we only use one
UDP flow (S1 → D1). The main objective of this study
was to compare the performance of this combination to the
one exhibited by a legacy TCP connection, since it aims to
provide a reliable communication service.

The first group of results corresponds to an ideal scenario,
where the FER over the existing wireless links can be con-
sidered as negligible (straight line in Figure 2), and the non-
direct link (dashed) has a FER = 0.6; this link is the one
over which the destination node overhears the transmitted
packets. Figure 7 shows the throughput as a function of K
and the size of the finite field GF (Q), where Q = 2q, for the
two different relaying strategies, showing as well the perfor-
mance obtained by the legacy TCP (the TCP connection
uses the two-hop route, since the quality direct link is too
low to properly bear it), that is constant for any value of K
and GF (Q). As expected, a greater Q yields a better be-
havior when the size of the coding vector −→c is small, since
the number of random combinations that are non-linear gets
lower as Q increases. However, there is a point from which
the overhead introduced by high Qs over large blocks (i.e.
q > 4 and K > 64) actually jeopardizes the transmission
performance, since the improvement brought about by the
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Figure 8: Throughput evolution as a function of FER on a
three-node line topology (Intra-flow NC, with K = 64 and
Q = 3)

transmission of a high rate of linearly independent vectors,
is overcome by the amount of useful information that can
be carried within each coded packet (for instance, a coded
packet with K = 255 and q = 6 would require to a 201
bytes header). Besides, as hinted in Section 4, we can ob-
serve a much better performance with a RLNC scheme, since
through RLSC, all the packets that have been previously
overheard over the direct link S1 → D1 would be dropped
at the receiver node, since they have the same vector −→c .
This enhancement provided by the fact that the interme-
diate node re-codes the packets is ≈ 20% in the best case
(K = 64, q = 3).

It is also worth highlighting that TCP provides a higher
throughput than the proposed Intra-flow solution when low-
efficiency configurations are used (i.e. K < 16); in these
cases the penalty factors associated to the packets discarded
due to linear combinations and the backward ACK trans-
mission have a harmful effect over the overall performance;
on the other hand, for the rest of the combinations the re-
sults show a clear improvement of the TCP performance,
which is ≈ 73% with K = 64 and q = 3.

Finally, we can see in Figure 8 how the throughput changes
as the FER gets higher6, showing that the performance
achieved by the two Intra-flow NC schemes7 clearly out-
perform the one exhibited by the legacy TCP, as was also
the case over the ideal channels; the results also yield that
the encoding process at the intermediate routers leads to a
notable throughput enhancement. The achieved gain gets
even higher when the channel is worse (i.e. FER ≥ 0.4),
situations that bring about a rather poor TCP behavior.

7. CONCLUSIONS AND FUTURE WORK
In this work we have presented two different NC schemes,

discussing their integration within a single module that we
implemented within the ns-3 framework. Their main goal
is to provide a reliable transport solution for WMNs to com-
plement (or even substitute) TCP, whose behavior is well-
known to be rather poor over such networks.

By means of a thorough simulation campaign, we have
assessed the performance offered by both solutions over two
canonical scenarios, comparing the achieved results with the

6Only in links S1 → R1 and R1 → D1, remaining the other
one (S1 → D1) with a constant FER = 0.6.
7These measurements have been carried out using the con-
figuration which led to the best performance over the previ-
ous scenario, i.e. K = 64 and q = 3.



behavior of a traditional TCP transmission. On the first
hand, the Intra-flow NC protocol is able to yield a substan-
tial performance gain by exploiting the combination of UDP
and a linear coding procedure, compared with the tradi-
tional TCP performance. We have shown the enhancement
(≈ 73%, compared to TCP) that is brought about by al-
lowing intermediate routers to re-code the packets. On the
other hand, the Inter-flow scheme, based on the combination
of TCP segments belonging to different flows at particular
intermediate nodes, provided a certain enhancement of the
overall throughput (≈ 22%) over ideal wireless links (with-
out errors). However, for worse conditions (wireless links
prone to cause packet losses), the interaction between TCP
and the NC scheme shows a rather poor response, leading
to a notable performance decrease.

By exploiting the framework we have implemented, there
are a number of aspects that we will tackle in our future re-
search; some of the most relevant ones are briefly introduced
below.
• By adding new features to the Inter-Flow NC scheme,

we would aim to improve its performance over packet
erasure channels. One particular mechanism, the en-
capsulation of backwards TCP acknowledgements
within the data flow has already been added in [9].
We are currently implementing a proprietary retrans-
mission scheme that works at the NC layer, and helps
to reduce the long idle times caused by the legacy TCP
congestion and control mechanisms.
• With regards to the Intra-flow NC scheme, a first step

to be taken is to assess its performance over more com-
plex (i.e. random) topologies and to reduce the math-
ematical complexity of the decoding processes.
• Another sensible step to be taken is to leverage to com-

bined use of both schemes by means of a single hybrid
solution that exploits the advantages inherent to each
one. The fact that both protocols share the same ns-3

framework would certainly help to tackle this.
Finally, it is also worth highlighting that all the NC proto-

cols’ source code is completely open-source and can be found
in [11]. We strongly encourage other interested researchers
to get the code and use it, since this would certainly help
us to enhance it. We would also welcome people interested
in joining this effort with contributions along some of the
aforementioned open issues.
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