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ABSTRACT

In the Internet of Things (IoT) era, there is growing interest in wireless monitoring sensors for detection,
classification and prediction of health symptoms. The prediction of symptoms in chronic diseases such
as migraines brings new hope to improve patients’ lives. The prediction of a migraine symptomatic event
through monitoring hemodynamic variables has been previously demonstrated in our earlier work. In this
paper, a simulation-based approach for a real-time migraine prediction system is described. The simulation
has been implemented using the specifications of the formal description language Discrete EVent Systems
(DEVS). The simulation system is a proof of concept that is ready for testing in a real-world ambulatory
monitoring environment. The results obtained encourage developing a hardware/software (HW/SW) co-
simulation system that incorporates Hardware-in-the-Loop (HIL) components as prior step to the expensive
and slow hardware implementation of a complete migraine prediction device. When such a system is used
in a real-time setting, it can simulate failures in sensors and trigger alarms for active patient response.

Keywords: migraine prediction, failure detector, robust system.

1 INTRODUCTION

Recent proliferation of wireless monitoring devices has brought big opportunities to the industry of
healthcare and personal well-being. This has become a major concern in the paradigm of proactive
personal eHealth (Zheng et al. 2014) in the Internet of Things (IoT) era. Predictive models in the eHealth
scenario using wearable monitoring devices have increased rapidly—mostly oriented to activity
recognition (Barshan 2014). Unfortunately, event detection in neurological diseases and diagnosis are still
in their early stages of research and with limited commercial examples.
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Development of devices for diagnosis and detection is a time consuming process. Simulation experiments
may help speed up the engineering process, especially in the initial phase of exploration. This is the main
goal of the paper: to specify an advanced simulation framework that helps to validate the behavior of a
migraine attack predictive system.

The migraine is a neurological disease that causes strong headaches. It is considered one of the most
disabling neurological diseases and affects around 10% of population worldwide (Lipton and Scher 2001)
and 15% in Europe (Stovner and Andree 2010). The migraine causes fatigue, anxiety or cardiovascular
problems. The migraine worsens the patients’ life and their performance at work or school, which lead to
high cost for private and national health systems. On a long-term basis, it is a social problem. Estimated
direct and indirect costs reach e1,222 per patient per year in Europe (Linde et al. 2012). A migraine
prediction system with 76% accuracy and massively deployed only in 2% of European migraine sufferers
shows a potential savings of e 1272 million due to the benefits of the migraine prediction (Pagán et al.
2017).

A cascade of neurological processes precede a migraine followed by the pain for the next few hours or
days. Some migraine sufferers experience symptoms that may occur from three days to hours before the
pain starts (Giffin et al. 2003). These symptoms are called premonitory or prodromic symptoms and they
are subjective and unspecific: nausea, yawns, tearing, etc. Some patiens also suffer from auras. Auras are
objective and specific disturbances such as losing vision that occurs commonly within 30 minutes before the
onset of pain.

Pharmacokinetics defines the mechanisms of absorption and distribution of substances in an organism.
Because of the pharmacokinetics of current drugs for treatment of migraine in the accute phase, prodromic
symptoms and auras—some times—are not helpful to stop the pain—as it is difficult to estimate the onset
of pain. Most migraine sufferers wait for the interval between period pain episodes to take the specific
medication. The delayed intake reduces the effectiveness of the treatment. Thus, prediction of the onset of
a migraine attack will help the patient to stop the pain.

The Autonomous Nervous System (ANS) regulates body conditions through blood circulation (blood flow)
at adequate rate. This lead to changes in the hemodynamic variables. When a migraine occurs, changes
appear in these variables. Prediction modeling of migraines has been demonstrated by the authors in
previous works (Pagán et al. 2015, Pagán et al. 2016). In these works the predictive modeling of the
migraine symptoms was shown feasible through the analysis of the changes in four hemodynamic variables
controlled by the ANS: skin temperature (TEMP), electrodermal activity (EDA), oxygen saturation (SpO2)
and heart rate (HR). These two works addressed the problem through the use of classic modeling methods
like state-space systems in (Pagán et al. 2015) and heuristics like Grammatical Evolutionary (GE)
algorithms in (Pagán et al. 2016).

Once the offline (e.g. in virtual, stand-alone mode) predictive modeling has been demonstrated, the next
step is to test it in real-time. The first step, prior to the expensive and slow hardware implementation of a
complete prediction and monitoring device, is the simulation of our migraine prediction system. The
simulation system, in order to be useful, must be able to raise an alarm and alert patients. The advanced
simulator presented in this work simulates a robust system against sensor failures that performs error signal
detection and signal recovery. In case that the sensors are not available, it executes a hierarchical
methodology of predictive models selection if signal recovery is not possible. A co-designed monitoring
device has been developed in collaboration with the company M2C1 but this device does not raise alarms
or performs predictions. Before an actual device is implemented in hardware, a hardware/software
(HW/SW) co-simulation that includes hardware-in-the-loop (HIL) will be used. This will ensure that the
system works in presence of actual hardware sensor failures and physical actuators, and triggers alarms

1http://www.m2csolutions.com/

http://www.m2csolutions.com/
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accurately, as predicted by the simulation system. The specification of such a HW/SW co-simulation
system is specified using the Discrete Event Systems (DEVS) formalism (Zeigler et al. 2000) that specifies
unambiguous structure and behavior of any hybrid complex system. This is an incremental design with
easy component substitution and rapid HW/SW swapping mechanism as previously shown through a
DEVS-based transparent HW/SW modeling and simulation framework in (Risco-Martín et al. 2016). In
this paper we implement a DEVS-based model that will be the basis for the aforementioned HIL system.
With this, we will be able to start clinical experiments to inform patients when to take medications in
advance followed by a study of the benefits of prediction in terms of complete or partial pain relief.

The paper is organized as follows: specifications on DEVS formalism and state of the art in simulation is
described in Section 2. The developed advanced simulation framework developed is shown in Section 3;
where simulator and its parameters are shown. Finally, Section 4 shows the evaluation of the simulator and
its validation for future analyses. Finally, the paper is concluded in Section 5.

2 BACKGROUND

What we pursue in this paper is a simulation of a Cyber-Physical System (CPS) to raise alarms for predictive
modeling of symptomatic crises in chronic diseases, specifically, the migraine. To the best of our knowledge,
this study is the first attempt to simulate a real device for the prediction of symptomatic crises.

Concerning simulation frameworks for simulations of CPSs we can find Ptolemy II (Buck et al. 1994), a
discrete-event modeling environment focused on application to cyber-physical and embedded systems; or
Simulink from MATLAB 2, that is more oriented towards engineers and has hard semantics.
Barhak et al. (2010) present a software tool for chronic diseases. Despite of the software is presented as a
tool for many different chronic diseases, models must be defined as states and transition probabilities of
Markov transition models—which is a hard constraint. Another example is Archimedes (Eddy and
Schlessinger 2003), a commercial simulator for diabetes using an object-oriented approach. Both of them
implement a Graphical User Interface (GUI) and are distributed as open source.

DEVS modeling and simulation formalism allows to simulate models under a unified modeling and
simulation theory in real time, soft-real time and virtual time, which makes DEVS a good choice for a
formal validation before the real implementation of a physical device. The absence of a formal backup like
DEVS in all of the three simulators aforementioned can be used to perform this study.

We decided to use xDEVS—published as Open Source under General Public License (GPL) in3 —because
of the nature of the different predictive models we can use (based on GE or state-space algorithms).
Furthermore, its semantics, performance, and its implementation into a hardware device is very straight
forward, due to xDEVS is coded in JAVA. Despite this simulation environment does not implement a GUI
yet, we are working on the implementation of a Unified Modeling Language (UML) executable interface as
described in (Risco-Martín et al. 2009).

DEVS is a modular and hierarchical modeling formalism, with all of the advantages and uses of simulation
systems, such as: completeness, verifiability, extensibility, and maintainability and allows execution of
Monte Carlo simulations, parallel simulation using threads or distributed using webs (Wainer et al. 2008),
as an example. In this paper we use the xDEVS open source JAVA library with the aim of making a future
implementation on a hardware device. DEVS is a general formalism for discrete event system modeling
based on a mathematical Set Theory (Zeigler et al. 2000). Over the last four decades it has been used to
implement a formally described system using an existing software/hardware library in multiple languages
(e.g. Lisp, Scheme, C++, JAVA, Python, etc.). There are two types of models in DEVS: atomic and coupled.

2MATLAB 2015. version 8.5.0.197613 (R2015a). Natick, Massachusetts, The MathWorks Inc.
3xDEVS 2016: JAVA library for DEVS. https://github.com/jlrisco/xdevs

https://github.com/jlrisco/xdevs
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An atomic model is irreducible and it specifies the behavior for any modeled entity: processes an input
event based on its state and condition, and generates an output event and changes its state. DEVS formally
represents an atomic model by three sets: input (X), output (Y ) and state (S), and five functions: time
advance (ta), external transition (δext), internal transition (δint), confluent (δcon) and output (λ ). Formally, it
is expressed as follows:

A = ⟨I,O,X ,S,Y,λ ,δint,δext,δcon, ta⟩ (1)

where:

• I is the set of input ports.
• O is the set of output ports.
• X is the set of inputs described in terms of pairs port-value: {p,v}.
• S is the state space. It includes the current state of the atomic model and also two special parameters

called σ and phase. σ is the time until the next event generation, and the phase is a description of
the current state (usually in natural language).

• Y is the set of outputs, also described in terms of pairs port-value: {p,v}.
• λ : S → Y is the output function. When the time elapsed since the last output function is equal to σ ,

then λ is automatically executed.
• δint : S → S is the internal transition function. It is used to change the state S, phase and σ , and it is

executed right after the output function (λ ).
• δext : Q ·Xb → S is the external transition function. It is automatically executed when an external

event arrives to one of the input ports, changing the current state if needed.
– Q = (s,e),s ∈ S,0 ≤ e ≤ ta(s) is the total state set, where e is the time elapsed since the last

transition.
– Xb is a bag of elements of X .

• δcon : Q ·Xb → S is the confluent function, subject to δcon(s, /0) = δint(s). This transition is selected
if δext and δint must be executed at the same instant.

• ta(s) : S → ℜ
+
0 ∪∞ is the time advance function.

A coupled model aggregates and interconnects two or more atomic or coupled models. And it is formally
described as:

M = ⟨I,O,X ,Y,Ci,EIC,EOC, IC⟩ (2)

where:

• I, O are the set of external (not coupled) input and output ports.
• X is the set of external input events.
• Y is the set of output events.
• Ci is a set of DEVS component models (atomic or coupled). Note that Ci makes this definition

recursive.
• EIC is the external input coupling relation.
• EOC is the external output coupling relation.
• IC is the internal coupling relation.

Due to the definition in Eq. 2, a coupled model can itself be a part of a component in a larger coupled model
system giving rise to a hierarchical DEVS model construction.
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Figure 1: Conceptual system diagram. The dotted block represents the system.

The earlier developed GE models in (Pagán et al. 2016) was extended to validate the proof of concept of
migraine prediction modeling using the DEVS-based approach in our other work (Pagán et al. 2016). A
top-down view of the simulator is drawn.

3 ADVANCED MIGRAINE PREDICTION SYSTEM

In this section, a top-down view of the migraine prediction system is described.

3.1 Conceptual model

In the basic version (Pagán et al. 2016), we demonstrated that GE algorithms can be used to predict a
migraine using simulation by raising an alarm. The mechanism was based on a simple threshold monitoring
agent. In this work, we used state-space algorithms using the formal specifications as required in a DEVS-
based simulator. This brings formal rigor to the modeling effort.

In the current version of our migraine prediction simulator which is based on our earlier developed
simulator (Pagán et al. 2015), we aim to demonstrate a robust methodology against sensor failures. We
showed that if the monitoring and prediction systems detects anomalies in sensors, a Sensor Dependant
Model Selection System (SDMS2) can choose an appropriate set of models that avoids the use of a
damaged sensor and maintain an accuracy level for a given prediction horizon. Prior to changing the set of
models, the system computes statistical averages to estimate lost sensor’s values. If the failure in sensor
exceeds a pre-defined wall clock interval, the SDMS2 will choose a different set of models. Figure 1
represents a conceptual diagram of the current approach. Hemodynamic variables and Migraine alarm
represent sensors and a reactive device respectively, and can be easily replaced for HIL implementation.
The Sensor Status Detector monitors the sensors operations and makes decisions if operations are below a
specified threshold. Model Selection selects the set of operational sensors that continue to meet the
operational requirements.

Figure 2 represents the top view of the advanced migraine predictor simulator system. Most blocks are
described in detail in our previous works (Pagán et al. 2015) and (Pagán et al. 2016). A detailed explanation
is not necessary for a comprehensive understanding of our current research, but main specifications are
shown in sections ahead. Shadowed boxes in Figure 2 represent coupled models, and there are seven of
them divided into five types. Atomic models are represented with uncoloured boxes, and there are twenty-
five top-level atomic models divided into seven different types. Models surrounded by dotted lines are not
part of the migraine prediction system, but they are required in the simulation framework. These will be
removed in a real implementation of the system.

3.2 DEVS formalization of the conceptual model

We now describe the detailed migraine prediction system using the DEVS formalism.
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3.2.1 Coupled models

The five different types of coupled models in the system are the EFsys, the EFgt, the SSD, the
Predictor and the Graphs. As the RootCoupled is the actual system, it is the entire Figure 2 itself.
The coupled model RootCoupled is the simulator frame and interconnects the models that simulate the
hardware modules, with the prediction system model in EFsys.

The EFsys (in Figure 2) hosts the remaining coupled models detailed in Figures 3a through 3c. The
EFsys contains the intelligence of the system, which cannot be replaced by hardware. It also performs
the processing from data of the single-output atomic models TEMP, EDA, HR and SpO2 after data pass
through the error sources ErrorInductor. The system also has as inputs other single-output atomic
models named as Manual Status for each sensor, and gives an output to the single-input atomic models
Actuator, and Status for each sensor as well.

The EFgt model (Figure 3a) contains two atomic models to control the data flow through model G, and
to show simulation statistics through model T. If the simulator runs in simulated time, T activates the stop
signal to finish the simulation after the simulation’s observation time has elapsed.

Our simulator also has a coupled model (Graphs) that does not appear in Figure 2 for the sake of
simplicity. Graphs has been included to improve the user experience. This model is only suitable for
software simulation and plots the input data, the migraine predictions, the status of sensors, the manual
resets of sensors and, the alarm event if it occurs.

SSD is the acronym of Sensor Status Detector (see Figure 3b). This coupled model is able to detect three
types of abnormal behaviors in signals: noisy signal, disconnection of a sensor (fall) and saturation. When an
anomaly is detected, the Anomaly Detector raises an alarm signal detect<bool>. This alarm will
indicate that the sensor has a problem and the GPML atomic model gets activated to recover the signal based
on recent buffered data. The GPML model performs a Gaussian Process Machine Learning (Rasmussen and
Williams 2005) as explained in (Pagán et al. 2015). If the anomaly takes too much time to be removed,
the GPML would not have enough recent data to estimate new values. In this case, when a predefined time
is exceeded, the ete<bool> signal gets activated and the data from the sensor is not used for migraine
prediction until a signal coming form the Manual Status indicates that the sensor has been restored.
Then all alarms signals are disabled and SSD relays the data from the sensor without errors.

The Predictor (in Figure 3c) is the last type of coupled model and contains the migraine prediction
models trained, and holds several atomic models. The SDMS2 atomic model selects, subject to availability,
the group of state-space models to perform the prediction. Each one of the atomic models
Predictors_*—where ’*’ indicates the set of available sensors—computes several predictions (three
in our case) and sends them to the atomic model Linear Combiner, which performs a linear
combination of the three results. In our research we have developed state-space models and GE models for
the migraine prediction; any of them, or others, can be used in the system. The SDMS2 applies a hierarchy
of models according to the availability of sensors to maintain prediction accuracy. In our future work, we
aim to provide an advanced feature of the system that will allow the injection of re-trained migraine
prediction models (Predictors_*) in real time. Then, the behavior of the system will be shown using
variable structure DEVS (Hu et al. 2005).

3.2.2 Atomic models

Among the twenty-five top-level atomic models, we distinguish seven different types: sensors and stimulus
(TEMP, EDA, HR, SpO2 and Pain), statistical error inductors (ErrorInductor), manual reset model for
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Figure 3: Three of the coupled models that the EFsys hosts.
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sensors (Manual Status), sensor drivers (Sensor Driver), signal synchronizer (Sync), an alarm
evaluator (Decider) and the migraine alarm Actuator. All atomic models in the EFsysmodel represent
HW modules that can be replaced by real HW components in a future HIL implementation.

• The atomic models: TEMP, EDA, HR and SpO2 pre-process biometric variables in their current
implementation. In the future release of the prediction system, these models will provide the raw
data from sensors, and will also incorporate real-time processing models (in the Sensor Driver
models after the ErrorInductor models). Atomic models for hemodynamic variables remain
outside of the EFsys coupled model so that they can be substituted easily for hardware devices
facilitating the execution of HIL experiments. Pain is the symptomatic pain curve modeled from
pain mark levels indicated by patients as shown in (Pagán et al. 2015). This atomic model does
not belong to the system and has been added to compute statistics when the framework is used with
known migraine events.

• The error inductor modules {TEMP-EDA-HR-SpO2} ErrorInductor are atomic models that
do not belong to the system but are useful in the simulation system to induce random errors. These
models generate three types of errors: noise, saturation and disconnections (or falls). Errors are
generated based on signals’ error statistics, and these statistics are used in SSD coupled models to
detect the errors.

• The driver {TEMP-EDA-HR-SpO2} Sensor Driver adds a timestamp to the data from the
RootCoupled’s clock. In the current implementation, these models do not perform any action. In
the future release, they might include the signal processing of raw data coming from sensors.

• The model {TEMP-EDA-HR-SpO2} Manual Status represents hardware that raises
notifications when a damaged sensor has been repaired. The generated signal resets the alarms.
This leads the SDMS2 model to again select the set of prediction models using all the sensors. In an
HIL implementation they will be replaced by buttons or something similar.

• The Sync atomic model synchronizes and buffers the data for simultaneously supplying the values
for the four biometric variables (Pain, if possible) to the coupled model EFgt.

• The Decider is an atomic model that determines if prediction results in a migraine event or not.
The Decider is implemented as a threshold crossing model with a single level only. The numerical
threshold value is 32 (normalized units) in the normalized objective symptomatic pain curve and this
represents 50% probability of the maximum pain level (Pagán et al. 2015).

• The Actuator is an atomic model that can be substituted by a hardware device, most likely an
acoustic alarm. In the simulation system, this is a dummy model and it does not perform any action.

• The models {TEMP-EDA-HR-SpO2} Status indicate when sensors have data errors. In the
simulation system, these are dummy models and they do not perform any action. They will be
substitued by stimulus such as LED diodes.

4 EVALUATION

In this section we describe the behavior of the system against sensor failures. Actual implemented migraine
prediction models only support one sensor failure at a time. Migraine prediction using less that three sensors
leads to low accurate predictions, which makes the system not useful (Pagán et al. 2015). When all sensors
fail the system is not able to compute predictions and alarms will not be generated. All kind of failures can
be tested, however, the complete sensor failure and the statistical study of accuracy and improvement as a
result of that failure is out of the scope of this paper and will be presented in our future work. To demonstrate
the fundamental concept, errors have been induced in only one sensor (temperature sensor).

In Figure 4a, three different types of errors have been randomly induced to the TEMP signal: disconnection,
saturation and noise. In normal conditions, the Predictors_TEMP-EDA-HR-SpO2 model in Figure 3c
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Figure 4: Error induction in the temperature sensor and behavior of the system against the failures.

computes migraine predictions. When the TEMP SSDmodel detects an error, it activates the signal recovery
through the GPML (red circles), and after a pre-specified duration (defined as 10 minutes in this example)
the SDMS2 switches the migraine predictor model to Predictors_EDA-HR-SpO2, which does not use
the information from the TEMP sensor. The gray bands represent the 95% confidence level of the GPML,
which is tight (better) when data are not missing and it is spread (worse) when the GPML algorithm recovers
data. Despite being represented all along the signal, the gray bands really exist only when the GPML model
works (red circles). In a real HIL implementation, when the TEMP sensor has been replaced or repaired,
the Predictors_TEMP-EDA-HR-SpO2 model will be used again. In the example shown in Figure 4a,
two manual resets were simulated.

In Figure 4b, we can see how these errors affect the prediction (green curve). Recovering values through
the prediction simulation system avoids destabilization of the migraine system despite an apparent drop in
accuracy. In this example, the normalized root mean squared error (NRMSE) between the prediction with
noise (red curve) and the prediction without noise (green curve) is only 12.2%.

With this simple example we have demonstrated how intermittent sensor failures can be replaced by
predicted values to stabilize the entire system and keep it within an acceptable operating range. Certainly, a
deeper evaluation is required in real-life conditions for ambulatory monitoring (not having to stay in bed).
This would also required advanced behavior in the Decider model.
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5 DISCUSSION

This paper describes an advanced approach for the development of a simulation system for a migraine
prediction system. The migraine disease is one of the most disabling neurological diseases. The prediction
of an incoming symptomatic event allows the patient to take painkillers in advance and thus stop the pain.
Migraine prediction models have been developed in our previous work. A first step prior to the expensive
and slow physical implementation of a complete prediction and monitoring device is to evaluate the system
using modeling and simulation. Consequently, this paper provides an overview of the simulation of the
migraine prediction system that raises an alarm at appropriate times and alerts the patient.

The simulator has been developed using the DEVS formalism and has been validated using state-space
predictive models. This work allows testing the system’s behavior under real conditions for ambulatory
monitoring. The system has been demonstrated as a tool to raise alarms when sensor errors occur. It
performs decision-making using the migraine predictive models to maintain the quality of the prediction.
This work provides a proof-of-concept. The next step of this project will be an implementation in a portable
device for an HIL system. This will then be followed by system design refinement leading to the final
design of a migraine prediction device. This HW/SW co-simulation including HIL components is a useful
method to evaluate failures in physical devices and the resulting consequences. Such approaches contribute
to resilient cyber-physical systems engineering practices.
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