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Detecting Malicious Data Injections in Wireless Sensor Networks:
A Survey
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Wireless Sensor Networks are widely advocated to monitor environmental parameters, structural integrity
of the built environment and use of urban spaces, services and utilities. However, embedded sensors are
vulnerable to compromise by external actors through malware but also through their wireless and physical
interfaces. Compromised sensors can be made to report false measurements with the aim to produce inap-
propriate and potentially dangerous responses. Such malicious data injections can be particularly difficult
to detect if multiple sensors have been compromised as they could emulate plausible sensor behaviour such
as failures or detection of events where none occur. This survey reviews the related work on malicious data
injection in wireless sensor networks, derives general principles and a classification of approaches within
this domain, compares related studies and identifies areas that require further investigation.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are an attractive solution to the problem of col-
lecting data from physical spaces, thanks to their flexibility, low cost, and ease of
deployment. Applications of WSNs include a broad variety of tasks in both shared and
personal environments. In shared environments, applications include monitoring of
infrastructures such as the water network, improvement of road traffic, monitoring
of environmental parameters and surveillance. In personal environments, applications
include monitoring homes for energy efficiency, user activity such as exercise and sleep,
and physiological parameters for health care through both wearable and implantable
sensors.

In some aspects, WSNs are similar to traditional wired and wireless networks, but
they also differ in other aspects, such as the sensors’ limited computational and power
resources. Sensors need to be cheap, be physically small, communicate wirelessly, and
have low-power consumption whether to monitor a human body or a large flood plain,
and therein lie their main advantages. But these characteristics are also their main
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limitations as they lead to more frequent failures, poor physical protection, limited de-
gree of redundancy and processing, and limited ability to carry out complex operations.

Wireless sensors carry a much higher risk of being compromised. Their deployments
are often unattended and physically accessible, and use of tamper-resistant hardware is
often too expensive. The wireless medium is difficult to secure and can be compromised
at all layers of the protocol stack. Cryptographic operations and key management
consume valuable computational and power resources and cannot provide a solution
once a node has been compromised. Yet, despite this, WSNs are increasingly used to
monitor critical infrastructures and human health where malicious attacks can lead to
significant damage and even loss of life.

Faced with the challenge of securing WSNs, researchers have proposed new security
solutions for these platforms. The literature is rich and we can only cite a few examples
[Karlof and Wagner 2003; Perrig et al. 2004; Du et al. 2005; Liu and Ning 2008; Khan
and Alghathbar 2010]. Most studies focus on proposing solutions against physical-
level and network-level threats, such as jamming attacks, attacks against the routing
protocols, confidentiality, and integrity of the data in transit. Another body of work is
that of software attestation, which assesses the node integrity and in particular checks
that the nodes run the expected software [Seshadri et al. 2004; Park and Shin 2005;
Seshadri et al. 2006; Zhang and Liu 2010].

Despite such solutions, many attacks remain possible against wireless sensor nodes.
For example, an attacker may compromise a node through its physical interfaces or
tamper with the node hardware itself in order to introduce wrong measurements in
the network. This would defeat many of the solutions presented in the literature as
the cryptographic material present on a compromised sensor would (in the absence
of trusted hardware) be available to the attacker. Even when the sensors are hard to
reach or to tamper with, an attacker may also seek to compromise the measurements by
locally manipulating the sensed environment to induce malicious readings, for example,
using a lighter to trigger a fire alarm. We refer to all these kinds of attacks as malicious
data injections. Their aim is to compromise the mission of the WSN by producing
a picture about the sensed phenomenon, which is different from the real one with
potentially devastating effects. In particular, an attacker may seek to

—elicit an inappropriate system response, for example, triggering an overload on
a power grid, leading to partial shutdown; or

—masking a desired system response, for example, silencing an intrusion alarm.

Protecting from such attacks becomes essential because of their potential impact,
and this survey focuses on solutions proposed that could address this problem. The
main challenge for detecting malicious data injections is finding sufficient evidence of
the attack. A possible approach is to look for evidence of tampering with the sensor
itself through software attestation, as mentioned earlier. However, software attesta-
tion is difficult to deploy in practice (e.g., because of timeliness constraints and device
hardware restrictions [Castelluccia et al. 2009]). Attacks that locally modify the sensed
environment are also still possible. Another approach is to look for evidence of changed
traffic patterns in the communication between the sensors, for example, through traf-
fic analysis [Buttyan and Hubaux 2008]. While effective for detecting network-level
attacks, in particular on routing, such approaches often cannot detect malicious data
injections since an attacker may modify the values reported by the sensors without
changing the traffic patterns of the communications between sensors.

For these reasons, we focus in this article on techniques that look for evidence of
compromise in the sensor measurements themselves, regardless of how they may have
been compromised. Thus, we include in the scope of this survey techniques that perform
data analyses on such measurements to detect malicious interference. In addition, we
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include papers that aim to detect generic anomalies in WSNs but that are still based
on the collected measurements. In contrast, anomaly-based techniques that operate on
network parameters such as packet transmission rate, packet drop rate, transmission
power, and so forth are beyond the scope of this survey. Indeed, a key aspect of the
detection of malicious data injections is the construction of the data expectation model,
that is, the model that allows one to define expectations about the sensors’ measure-
ments. In this context, anomalies arise in the correlation structures that are natively
present in the data itself, which cannot be found in network parameters, and may occur
without any disruption to the network parameters.

All the papers reviewed in this survey assume that the attacker aims to cause
noticeable undesired effects and injects measurements that differ in some detectable
way from the correct values that should be reported at that point in time and space.
This is the assumption that enables the use of data analysis to detect data injections.
However, note that the real value that should be reported by compromised sensors is not
observable directly. Instead, it can only be characterized from indirect information such
as values reported by other sensors, which may or may not be sufficient to detect the
compromise. The problem is even more difficult as the indirect information may itself
not be correct due to the presence of faults or naturally occurring events. Faults refer
to any kind of genuine errors, transient or not, and may be difficult to distinguish from
a malicious injection. Events refer to substantial changes in the sensed phenomenon
like a fire, an earthquake, and so forth. We refer to the problem of distinguishing
malicious data injections from events and faults as diagnosis and review the state-of-
the-art approaches to the problem. Another cause for unreliable indirect information is
the presence of colluding sensors, that is, when multiple compromised sensors produce
malicious values in a coordinated fashion. In such scenarios, the attacker’s leverage on
the system increases and opens the possibility to new and more effective attacks.

Detecting and diagnosing malicious data injections is a subset of the more general
problem of ensuring the integrity of the sensed data, which may have been corrupted
by failures or in other ways. This is reflected in the studies surveyed, where many
techniques designed, for example, for detecting faulty sensors or faulty data are also
advocated for malicious data injections. Comparatively, only a small proportion of the
papers explicitly focus on malicious data injections. However, there is a significant
difference between faults and maliciously injected data since the latter is deliberately
created in sophisticated ways to be difficult to detect. Therefore, there is a need for a
survey that (1) analyzes the achievements and shortcomings of the work targeted to
malicious data injections and (2) also reviews the state-of-the-art techniques proposed
for nonmalicious data compromise and evaluates their suitability to this problem.

Within the context of WSNs, the applicable state-of-the-art studies broadly fol-
low two types of approaches: anomaly detection techniques starting from about 2005
[Tanachaiwiwat and Helmy 2005] and trust management techniques starting from
about 2006 [Zhang et al. 2006]. We review the state of the art for both approaches and
compare the studies surveyed according to their

—adopted approach,
—ability to detect malicious data injections, and
—results and performance.

The remainder of this article is organized as follows. In Section 2, we describe existing
surveys related to the one we present here. In Section 3, we recap concepts useful for
understanding the rest of the article. In Section 4, we analyze possible ways of defining
an expected behavior for sensor measurements and analyze the different approaches
adopted in the state-of-the-art techniques. In Section 5, we analyze the state-of-the-
art detection algorithms. In Section 6, we describe two aspects that are important to
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tackle malicious data injections beyond detection: diagnosis and characterization of the
attack. In Section 7, we give comparison tables for the techniques surveyed and their
experimental results, together with a brief discussion. Finally, in Section 8, we present
our conclusions and the open issues that emerged from this study.

2. RELATED SURVEYS

To the best of our knowledge, there are no previous surveys of techniques to detect
malicious data injections in WSNs. Several surveys are, however, related, and we
discuss them in this section.

Boukerche et al. [2008] analyze techniques for secure localization algorithms in
WSNs. There are some similarities between malicious data injections and attacks on
localization systems, since the sensors’ location can be regarded as a particular phys-
ical phenomenon being sensed. However, many aspects of the techniques described in
Boukerche et al. [2008] are specific to the localization problem. In particular, con-
straints on the topology, the radio transmission power, and delay provide a clear crite-
rion to check the consistency of the information reported by the sensors. In contrast, we
focus on techniques that do not require a priori knowledge of the physical phenomena
monitored to check data consistency but examine and infer correlations from the data
itself.

Rajasegarar et al. [2008] review 11 state-of-the-art papers about anomaly detection
in WSNs. Although they focus on detecting intrusions, the survey also covers elimi-
nating erroneous readings and reducing power consumption. The detection algorithms
surveyed consider sensor measurements as well as network traffic and power con-
sumption. In contrast, we focus on a more specific target: the detection of malicious
data injections. We cover a broader spectrum of papers since we include techniques
other than anomaly detection, describe further steps for detecting malicious data, and
include a significant amount of literature published since then.

Xie et al. [2011] survey anomaly detection in WSNs, with a focus on the WSN ar-
chitecture (Hierarchical/Flat) and the detection approach (statistical, rule based, data
mining, etc.). They describe the detection procedure in a similar way to us: definition of
a “normal profile,” which we refer to as normal or expected behavior, and test to decide
whether it is an anomaly or not, and to what extent. However, our survey is structured
based on the approach to both the definition of the normal behavior and the detection
based on it, while Xie et al. [2011] focus only on the latter. This choice allows us to
pinpoint the motivation for the use of a particular detection technique, based on how
the data normally looks. Moreover, the diagnosis process that classifies an anomaly as
an attack is not analyzed in Xie et al. [2011], whereas it forms an important part of
this survey.

Several surveys discuss trust management for security in WSNs (e.g., Lopez et al.
[2010], Özdemir and Xiao [2009], and Sang et al. [2006]). However, they focus on at-
tacks conducted through the network layer, while malicious data injections are given
little attention. Yu et al. [2012] list all the threats that can be mitigated by trust man-
agement, including “stealthy attacks”—a kind of malicious data injection—but these
are not analyzed in detail. Similarly, Zahariadis et al. [2010a] build a taxonomy of trust
metrics, which includes consistency of reported values/data, but they focus mostly on
the other network-related metrics. Also, Shen et al. [2011] survey defensive strategies
against attacks to the network layer. In particular, such strategies are derived from
game theory and take into account the strategies that can be adopted by the attacker to
balance the profit and loss of reputation coming from the attack; in our survey, instead,
we focus on techniques to assign and maintain such reputation.

The closest survey to the one presented here is Jurdak et al. [2011]. It describes
anomaly detection strategies for detecting faults due to environmental factors (e.g.,
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Fig. 1. LEACH measurements collection architecture.

obstructions near the sensor) or node hardware/software. Their description of anomaly
detection is similar to ours, but the two surveys differ notably in the nature of the
anomalies considered: attacks in our case, faults in theirs. Jurdak et al. [2011] also
claim that anomalies can be detected by spatial or temporal comparisons between
sensors, since it is unlikely that many sensors will exhibit a calibration skew or failure
at the same time (assuming there are no group failures). This assumption considers
anomalies (faults) as independent but does not hold in the presence of malicious data
injections, in particular when there is collusion between the compromised sensors.

3. PRELIMINARIES

We describe in the following how sensors measurements are generally gathered in a
WSN. We also introduce the two approaches used to detect malicious data injections so
far: anomaly detection and trust management.

3.1. Data Aggregation Schemes and Their Consequences

The typical workflow of a WSN starts with measuring a physical phenomenon through
sensing devices connected to a wireless node that propagates the measurements
through the network toward data sinks. Measurements collected and aggregated by
data sinks (e.g., basestations) can then be interpreted or transmitted to a remote
station. However, data can also be aggregated in the network by the intermediate
transmitting nodes, with many possible variations on the aggregation architecture.
The choice between the different schemes is based on criteria that optimize power ef-
ficiency, number of devices, coverage of the physical space, and so forth. Finding the
optimal architecture based on such criteria remains an important research challenge.

Early work considered that all raw measurements are collected at the basestation,
which performs data fusion and other computations [Shepard 1996; Singh et al. 1998].
Later on, especially after the introduction of the LEACH protocol [Heinzelman et al.
2000], architectures became increasingly hierarchical. LEACH applies a one-level hier-
archy where sensors are organized in clusters and communicate with the cluster-head,
which, in turn, communicates with the basestation, as shown in Figure 1. Cluster-
based protocols, and especially those where the clusters change dynamically in time
[Heinzelman et al. 2000], have proven to be more energy efficient when communication
with the basestation requires multihop transmissions [Heinzelman et al. 2000].

The one-level hierarchy introduced in LEACH can be generalized to tree-based struc-
tures as described in Fasolo et al. [2007]. Intermediate tree nodes may simply merge
the packets generated by different sources into a single packet without processing the
data. This is referred to as in-network aggregation without size reduction [Fasolo et al.
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2007]. Alternatively, they process the sensor measurements by applying aggregation
operators (e.g., mean, minimum, maximum), which is referred to as in-network aggre-
gation with size reduction [Fasolo et al. 2007]. So cluster heads assume the burden of
the additional computation in order to minimize the data transmitted. In essence, this
trades the power costs of computation for those of communication, but since in WSNs
communication consumes much more power, the trade is usually favorable.

Information about the WSN architecture and where data aggregation is carried out
is important for allocating the detection task to the WSN nodes. For instance, if in-
network aggregation with size reduction is used, the basestation cannot analyze all the
measurements and the aggregating nodes must assist the basestation in the detection
task. In this case, the integrity of the aggregation process at these nodes must also be
ascertained [Przydatek et al. 2003; Ganeriwal and Srivastava 2004; Roy et al. 2014].

3.2. Relationship to Anomaly Detection and Trust Management

Detection of malicious data injections has been addressed with two main approaches so
far: anomaly detection (e.g., Tanachaiwiwat and Helmy [2005], Liu et al. [2007], and Sun
et al. [2013]) and trust management (e.g., Atakli et al. [2008], Bao et al. [2012], and Oh
et al. [2012]). While anomaly detection defines normal behaviors to infer the presence
of anomalies, trust management evaluates the confidence level (trustworthiness) that
a sensor’s behavior is normal. Compromised sensors are then expected to get low trust
values when they deviate from their expected behavior. Although anomaly detection
is also based on the definition of an expected behavior—“anomaly detection refers
to the problem of finding abnormalities in the data that do not conform to expected
behaviour” Chandola et al. [2009]—the two approaches differ in how deviations are
interpreted. In trust management, the sensors’ measurements are analyzed with the
granularity of a sensor, and each sensor has a trust value that is incrementally updated
in time. Anomaly detection approaches, instead, can be applied with no restrictions in
granularity from the single measurement to the whole system and generally work by
defining a boundary for expected behavior such that everything outside that boundary
is abnormal.

Given the similarities and differences between the two approaches, we structure
the following two sections as follows: in the next section, we describe how to gather
information about expected data, regardless of whether it is for anomaly detection or
trust management. In Section 5, instead, we describe how to detect deviations from the
expected data, treating anomaly detection and trust management separately.

4. MODELING EXPECTED DATA

In our context, expected data refers to a set of properties characterizing the measure-
ments that are free of malicious injections. Given that no previous surveys focus on
this issue, we start by introducing a generic formulation of WSN sensing. This enables
us to analyze different models for the expected data and describe the related work with
a coherent terminology as the terms used often differ from one article to another.

4.1. A Characterization of the Problem

We focus on interpreting the data and abstract from implementation-related issues,
such as synchronization between sensors, and network-related issues, such as packet
losses or delays. We consider a deployment region D, in which a set of N sensors are
placed. Every sensor measures a physical attribute such as temperature, wind, water
quality, power, and gas flows. The sensors’ measurement process is characterized by a
degree of uncertainty, which may be due to noise, faults, and malicious data injections.
It is desirable to remove this uncertainty, so we introduce an ideal function ϕ, which
represents the value of a sensor’s reading in the absence of any source of uncertainty.
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The independent variables of such function are the point in space s and the time instant
t to which the readings correspond, as shown in Equation (1):

ϕ(s, t) s ∈ D, ∀t. (1)

We refer to this function as the physical attribute function. The reading produced at
time t by a generic sensor i, deployed at position si, is some approximation of the
physical attribute function evaluated at (si, t). A generic sensor’s reading can then be
modeled as a function Si that adds a generic measurement error ε(si, t) to the physical
attribute, which may change with time and space. Equation (2) defines the function Si
as follows:

Si(t) = ϕ(si, t) + ε(si, t) i ∈ 1, . . . , N. (2)
Note that the sensors’ readings are the only observable quantities; both the physical

attributes and the measurement errors are not observable directly. When malicious
data injections occur, some of the sensors’ readings also become unobservable, since the
attacker substitutes fabricated measurements for the real ones. There is then the need
to describe the real measurements with related information from some observable
quantities. This process is effective if such related information allows us to discriminate
injections and is itself not susceptible to injections.

Describing the unobservable real measurement in terms of observable properties
is a modeling process that makes assumptions about how data can be described. For
instance, the measurements produced by a sensor can be modeled as samples from
a normal distribution [Zhang et al. 2006]. Assuming that compromised nodes do not
produce data compliant with a normal distribution, the model can then discriminate
compromised nodes [Zhang et al. 2006].

The relation that links the problem to a model is a one-to-many relation. Different
models of the same problem are not equivalent, and choosing a good model is essen-
tial for good performance. In particular, a good model should be characterized by the
following:

—Accuracy – No model is perfect and every model is in fact an approximation. An
accurate model minimizes the approximation error.

—Adaptability – Physical attributes measured by the sensors change in time. As a
consequence, models should adapt to the dynamically changing environment.

—Flexibility – Good models should be applicable in a flexible way, regardless of the
application. Such models should abstract as many details as possible and capture
only those properties that are needed.

These desirable characteristics conflict with each other: accuracy may be better
achieved with context-specific details, which limit flexibility and compromise adapt-
ability. A particular adaptability requirement that significantly affects accuracy and
flexibility is the sensors’ mobility, as when sensor nodes migrate to new locations, pre-
vious expectations are invalidated. Indeed, sensor migrations correspond to a change
in si in Equation (2), which potentially changes all the measurements’ time series,
leaving sensor-specific noise as the only invariant.

Support for Mobility. Even though mobility is an aspect that is not directly ad-
dressed in the detection of malicious data injections, some techniques are more suited
to support mobile sensors than others. In particular, anomaly detection techniques that
compare the measurements within a neighborhood without considering past behavior
(e.g., Handschin et al. [1975], Ngai et al. [2006], Liu et al. [2007], Wu et al. [2007], and
Guo et al. [2009]) can generally accommodate mobility, since for every time instant,
new expectations are extracted. However, such techniques also need to become aware
of topology changes in the presence of mobility.
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Trust management techniques with exchanges of trust information (e.g., Bao et al.
[2012], Huang et al. [2006], Ganeriwal et al. [2003], and Momani et al. [2008]) are also
suited for mobility, since a sensor i that migrates to a new area and becomes a neighbor
of j can benefit from recommendations from sensors that have been j’s neighbors in
the past [Zahariadis et al. 2010b]. So far, exchanges of trust information have been con-
sidered without investigating the effects of mobility; therefore, sensor i will generally
maintain indirect information about sensor j only if there is interaction between i and
j, and i cannot observe j’s behavior (e.g., it is not in the wireless communication range).
When sensors are mobile instead, even if i and j never interacted, they may interact
in the future if they get closer. Only at that time, recommendations for j become of i’s
interest, and a criterion to request such recommendations is needed.

The existing studies analyzed in the remainder of this work, by and large, ignore
mobility aspects. We conclude, in light of the previous considerations, that more work
is required to deal with the problems arising from the sensors’ mobility.

4.2. Exploiting Correlation

Since the original measurements substituted with fabricated ones cannot be observed
directly, they need to be characterized indirectly with related information. The rela-
tionship between two pieces of information is a correlation, which can be calculated
online, with historical data, or modeled a priori. In either case, coexistence of genuine
and compromised measurements may cause disruptions in the correlation, assuming
that the correlations have not changed between the moment when they are calculated
and the moment when they are used.

We refer here to correlation in a broad sense, meaning that there is some kind of
continuous dependency, as opposed to Pearson’s correlation coefficient, which is the
most commonly used correlation metric. Referring to E, μ, and σ as the expected value,
the mean, and the standard deviation, respectively, the Pearson correlation coefficient
ρXY between two random variables X and Y is given by

ρXY = cov(X, Y )
σXσY

= E[(X − μX)(Y − μY )]
σXσY

. (3)

Note that this coefficient measures only linear dependency between two variables,
while nonlinear dependencies may be missed.

In WSNs, we can generally consider correlations across three different domains:
temporal, spatial, and attribute domains [Rassam et al. 2013].

—Temporal correlation is the dependency of a sensor’s reading on its previous read-
ings. It models the coherence in time of the sensed physical process.

—Spatial correlation is the dependency in readings from different sensors at the
same time. It models the similarities in how the sensed phenomenon is perceived by
different sensors.

—Attribute correlation is the dependency in readings that are related to different
physical processes. It models physical dependencies among heterogeneous physical
quantities such as temperature and relative humidity.

Usually a combination of these different kinds of correlation is used. We now analyze
how they contribute to the definition of expected data.

4.3. Temporal Correlation

Variations in time of the sensed data can be modeled as a random process [Boukerche
2009], where the random variables at different times are correlated. As Equation (2)
shows, the variation of a sensor’s measurements in time depends on both the variations
introduced by the physical attribute and the measurements’ error. The variation of the
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physical attribute in time is subject to constraints, such as the presence of gradual
changes or the alternation of some patterns, since the phenomenon observed usually
follows the laws of physics. So, if the measurements are gathered with sufficiently high
frequency, consecutive measurements would be subject to similar constraints. This
simple observation justifies a procedure that identifies errors (including malicious
injections) when temporal variations do not respect these constraints. However, there
are two main difficulties in applying this observation to assess deviations: the time
evolution of the process is subject to uncertainty factors and the measurements are
subject to noise.

When using Kalman filters [Kalman 1960] to model time series, these two factors are
known respectively as process noise and measurement noise. The measurement noise
is typically modeled as a Gaussian process. The process noise, instead, comes from the
imperfections of the model used to describe the process dynamics. For example, when
modeling the process as a discrete Markov process, the value at time t1 can be written
as

ϕ(t1) = F(ϕ(t0)) + w(t0), (4)

where F models the expected evolution of the time process and w is the process noise.
The use of a Markovian process, modeled with a Kalman filter, forms the basis of

the Extended Kalman Filter (EKF)-based algorithm by Sun et al. [2013]. Here, each
sensor builds up a prediction for its neighbors as a function of the neighbors’ previous
reading. The difference between the predicted and the actual value forms a deviation
that is used to detect malicious data injections. However, the authors point out that
an attacker can elude the EKF algorithm by introducing changes that are sufficiently
small. To address this shortcoming, the authors apply the CUSUM GLR algorithm,
which considers the cumulative deviation across more time samples and tests it to be
zero-mean. This property makes it more difficult for attackers to introduce deviations
that achieve their goal.

Subramaniam et al. [2006] also define expected data with temporal correlation. Here,
the authors fit the Probability Density Function (PDF) of the measurements inside a
temporal window, through kernel density estimators. Given a new measurement p, the
PDF gives information about the expected number of values falling in [p − r, p + r]
(with parameter r dependent on the application).

4.4. Spatial Correlation

In the presence of sudden events, the dynamics of a physical process can change rapidly.
Often, detecting such events, such as a forest fire, a volcanic eruption, or a cardiac
attack, is the very purpose of the WSN. However, the occurrence of the event may
disrupt temporal correlations, giving rise to false anomalies. Nevertheless, different
sensor nodes generally are affected by the event and produce measurements that
are spatially correlated to the event source: as a consequence, the measurements of
different sensors are correlated during the manifestation of the event [Boukerche 2009].
This phenomenon is known as spatial correlation.

Several techniques make use of spatial correlations by relating the measurements
from different sensors in the same time interval—this is equivalent to fixing t in Equa-
tion (2) and letting the parameter i vary. The most widespread spatial correlation
model is also the simplest: it assumes that all sensors would produce the same mea-
surements in the absence of errors and noise; that is, they measure the same value,
and we refer to this model as spatially homogeneous [Zhang et al. 2006; Ngai et al.
2006; Wu et al. 2007; Liu et al. 2007; Bettencourt et al. 2007]. In terms of the physical
attribute model given in Equation (1), ϕ(s, t) is actually a function of time only. In this
scenario, the sensors’ measurements can be described by a Gaussian distribution. This
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Fig. 2. Detection of measurements that do not comply with the monotonicity assumption, from Guo et al.
[2009].

is because they are independent observations of random variables with a well-defined
expected value and well-defined variance, and according to the central limit theorem,
their values will be approximately normally distributed [Rice 2007]. Detecting sensors
with abnormal readings becomes, then, a simple matter of detecting deviations from
the spatial measurements’ distribution, and the accuracy of the distribution estimation
increases with the number of sensors.

The homogeneous model is suitable only for regions of space that are small enough
and free of obstacles. However, when the deployment topology and characteristics of
the physical phenomena violate the homogeneity assumption, the spatial propagation
rules can still induce spatial correlations. In many applications, such propagation can
be assumed monotonic [Guo et al. 2009]. This implies that the values of the physical
attribute at a point in space should either increase or decrease as the distance from
that point increases. For example, when monitoring for forest fires, the temperature
decreases monotonically as the distance from the fire increases. To ascertain whether
this property holds, Guo et al. [2009] divide the deployment space into sections, called
faces. For each face, the authors construct a “distance sequence,” corresponding to
the sequence of sensors ordered by the distance from that face. While sensing the
phenomenon, the sensors’ readings are sorted to generate the estimated sequence,
which is then compared to all possible distance sequences, as shown in Figure 2. The
sensors’ measurements are consistent with the expectation if the estimated sequence
corresponds exactly to one of the distance sequences. This condition is then relaxed to
cope with noisy measurements that degrade the validity of the monotony assumption,
but the main factor undermining its validity is the presence of multiple simultaneous
events [Guo et al. 2009].

Instead of considering a strict assumption like the monotonicity of the measurements,
it is possible to model correlations between the sensors’ readings as a function of their
spatial positions. An example of such a model is the variogram, defined as the variance
of the difference between values of a physical phenomenon at two locations. In our
notation, the variogram between two points s1 and s2 is defined as var(ϕ(s1, t)−ϕ(s2, t)).
When the physical phenomenon is assumed to be isotropic, the variogram is expressed
as a function of the distance only, and Zhang et al. [2012] have applied it to compute
an expected measurement as a function of the measurements from other sensors. Note
that in the presence of obstacles, the variogram not only is a function of the distance
but also depends on the absolute positions.

Rather than considering distances between sensors, spatial correlation can be calcu-
lated as a function of the sensor values themselves. This choice caters for sensors at the
same distance but subject to different noise or obstacles in space. However, it comes
at the price of correlation updates when sensors are mobile. For example, Sharma
et al. [2010] express a sensor’s measurement as a linear combination of the measure-
ments from the other sensors, extract the function’s parameters, and derive expected
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sensor readings. Dereszynski and Dietterich [2011], instead, derive expected readings
by fitting the joint probability distribution of the measurements from N sensors, after
assuming it is an N-variate Gaussian distribution. Note that this approach also implic-
itly assumes a linear model, as the covariance between two random variables captures
linear dependencies (we have mentioned in Section 4.2 that this is true for the Pearson
correlation coefficient, which is just a normalization of the covariance index).

Not infrequently, spatial correlation is used in conjunction with temporal correlation,
since they capture different kinds of deviations. For example, Bettencourt et al. [2007]
propose an outlier detection technique based on two kinds of differences: between
a sensor’s reading and its own previous reading (temporal correlation) and between
readings of different sensors at the same time (spatial correlation). A distribution for
both differences is used to check if data samples are statistically significant as related
to the temporal domain as well as to the spatial domain.

4.5. Attribute Correlation

In the same WSN, sensors observing different physical attributes such as light, vibra-
tions, temperature, and so forth may coexist. Some of these attributes may be correlated
because of the physical relationship between them, for example, temperature and rel-
ative humidity. Commonly, at every deployment location, si different sensors in charge
of measuring different physical processes are connected to a single sensor node. As de-
scribed by Equation (5), for a fixed point in space and time, we have a set of A physical
attributes. We define attribute correlation as the correlation between them:

ϕa(s, t) a ∈ 1, . . . , A. (5)

We expect attribute correlations to also be observable in the measurements reported
by the sensor nodes. Note, however, that attribute correlations between sensors be-
longing to the same node are not informative as an attacker who has compromised a
node may tamper with all the measurements collected on that node. However, attribute-
based expectations are very useful in conjunction with spatial correlations when spatial
redundancy is limited. For example, body sensor networks for health care have lim-
ited redundancy since it is impractical to cover the patient with several sensors. We
can then still exploit correlation among different physiological values (the attributes)
measured by different sensor nodes.

An example in the health care domain is presented by Salem et al. [2013], who
exploit spatial attribute correlations together with temporal correlations. Based on
a Discrete Wavelet transform, they decompose the attribute signals into average and
fluctuation signals. Abrupt temporal changes in the energy of the fluctuation signal are
detected by a Hampel filter, which flags outlying attributes. This technique has been
proposed for fault-tolerant event detection, based on the observation that multiple
attributes are expected to be flagged simultaneously in the presence of an event, due to
their attribute correlations. Then, if the minimum number of outlying attributes is not
reached, the sensors reporting the outlying readings are considered faulty. However, in
the context of malicious data injections, this technique would not prevent an attacker
from deliberately injecting measurements that subvert the event detection.

4.6. Overview of Techniques for Extracting Expected Data

In the previous sections, we have analyzed different types of correlations, the informa-
tion they capture, and variations in the exploitation of the same correlation across the
techniques proposed in literature. In Table I, we summarize this analysis.
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Table I. Correlation Types

Correlation Information
Type Captured Variations

Temporal corr(ϕa(s, t1), ϕa(s, t2))
— Time-series evolution model
— Time memory (the maximum value of W for which the

correlation is modeled)

Spatial corr(ϕa(s1, t), ϕa(s2, t))

— Spatial model, e.g., homogeneous, monotonic,
variogram, linear dependency

— Correlation variational model, e.g., distance dependent,
sensor dependent, fixed

— Neighborhood selection criterion

Attribute corr(ϕa1 (s, t), ϕa2 (s, t))
— Correlation extraction process, e.g., from physical laws,

temporal/spatial analysis, etc.

5. DETECTING DEVIATIONS FROM EXPECTED DATA

Expectations about the actual measurements can be used to calculate the deviation of
the reported measurements from them. Both anomaly detection and trust management
require an expectation, but they use different criteria to cope with abnormal data.
Specifically, anomaly detection uses the expectation to discriminate between anomalous
and normal data. Trust management instead uses a criterion to map the deviation from
expected data to a trust value. Since the two techniques differ in how they interpret
deviation, we will consider them separately in this section.

5.1. Anomaly Detection Techniques

Anomaly detection is a method to characterize data as normal or anomalous. In contrast
to Rajasegarar et al. [2008], who consider outlier detection and anomaly detection as
equivalent, we instead consider outlier detection as one of the techniques belonging
to the anomaly detection category. The reason is that outlier detection identifies the
samples that are unlikely to manifest. However, the measurements could be anomalous
with respect to other criteria that cannot be reduced to the problem of finding outliers.
Consider, for example, the case where a sensor is experiencing a stuck at fault; that is,
it always produces the same measurement. An outlier detection technique applied on
a subset of the last measurements from that sensor will detect no outlier. However, an
anomaly still exists and could be detected by considering, for instance, the low variance
in the measurements’ distribution. To clarify this aspect, we present statistical tests
for anomaly detection and highlight their differences with more traditional outlier
detection techniques. Then we delve into techniques for outlier detection, which is still
the most commonly adopted technique for anomaly detection.

5.1.1. Statistical Tests. Techniques based on statistical tests assume a probabilistic data
distribution. Real data is then checked against this distribution to verify its compliance
to it. Techniques based on statistical tests are more general than outlier detection
because they check the compliance of both outliers and nonoutliers to the distribution,
whereas outlier detection focuses on the classification of single data samples.

For example, Rezvani et al. [2013] use a technique based on statistical tests to detect
malicious colluding nodes. They assume spatial homogeneity and model sensor mea-
surements as a ground-truth value plus some noise. The ground truth is estimated
as a weighted average of measurements, and the difference between the estimated
value and each measurement is assumed to be normally distributed. This assumption
is in keeping with the application of the central limit theorem [Rice 2007]—errors are
assumed to be due to a large number of independent factors and thus to follow a nor-
mal distribution. Compliance with the normal distribution is then assessed with the
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Kolmogorov-Smirnov test, which quantifies the distance between an empirical distri-
bution (the errors distribution) and a reference distribution (the normal distribution).

5.1.2. Outlier Detection. Outlier detection methods consider as anomalous data that
lies outside of the space where most data samples lie. This technique can identify
malicious data injections reasonably effectively as long as maliciously injected values
are a minority in the dataset and deviate significantly from the other data.

Historically, outlier detection has been proposed in WSN for different purposes, some-
times with opposing goals: in some cases, the techniques aim to filter out outliers, and
in others the outliers represent the main interest. For example, outliers are filtered out
to increase data accuracy [Janakiram et al. 2006] and for energy saving [Rajasegarar
et al. 2007]. Applications where outliers are the main interest include fault detection
[Paradis and Han 2007], event detection [Bahrepour et al. 2009; Zhang et al. 2012], and
detection of malicious data. We describe next different approaches to the outlier detec-
tion problem independently of the application context, but we focus on those techniques
that can be applied to detecting malicious data injections.

Nearest-Neighbor-Based Outlier Detection. In nearest-neighbor-based outlier detec-
tion, an outlier is a data sample with a narrow neighborhood, where a neighborhood
comprises the data samples within a certain distance. Most nearest-neighbor-based
techniques in WSNs are inspired from the well-known LOCI method [Papadimitriou
et al. 2003], which calculates, for every sample, the number of neighbors in a data space
characterized by the radius αr, where α is a parameter used to reduce computational
complexity. The relative difference with the average number of neighbors, that is, the
samples within a radius r in the data space, constitutes the Multigranularity Devia-
tion Factor (MDEF). The MDEF is compared to a threshold equal to 3 times the MDEF
standard deviation to ensure that less than 1% of values are above the threshold when
the distances between data samples follow a Gaussian distribution (the percentage
increases up to 10% for other distributions). Note that this method is applicable to ma-
licious data injections by considering the sensors’ measurements as the data samples.
However, the research community seems to have lost interest somewhat in approaches
based on nearest neighbor since they have large computational overheads due to the
calculation of the neighbors for each new data sample.

Clustering-Based Outlier Detection. Clustering is another technique often used for
outlier detection. Here the outliers are the elements distant from the others, after
organizing close elements into clusters. For example, Rajasegarar et al. [2006] identify
a cluster as anomalous if its distance to other clusters is more than one standard
deviation of the distance of the cluster elements from the mean.

PCA-Based Outlier Detection. PCA [Marsland 2009] is a common data analysis tech-
nique that has also been applied to find outliers [Chatzigiannakis and Papavassiliou
2007]. PCA is based on a projection of the k-dimensional data space onto another k-
dimensional data space, where the variables describing the data samples are linearly
uncorrelated. This transformation is defined in such a way that the projected variables
are sorted with descending variance. The first p out of k variables are defined as the
principal components and can be projected back to the original data space to obtain a
prediction vector ynorm [Jackson and Mudholkar 1979], also referred to as normal data
[Chatzigiannakis and Papavassiliou 2007]. The difference between original and normal
data constitutes the residual vector yres. Residual vectors that are large in magnitude
(i.e., when the squared prediction error SPE = ‖yres‖2 of the residual vector is greater
than a threshold) are interpreted as deviations from the predicted (normal) vector and
considered as outliers [Chatzigiannakis and Papavassiliou 2007]. PCA can be applied
to k-dimensional datasets, for example, made up of the measurements’ time series of k
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Fig. 3. One-class quarter-sphere support vector machine, from Rajasegarar et al. [2007].

sensors [Chatzigiannakis and Papavassiliou 2007]. In this case, yres reflects changes in
spatial correlation, but the same idea can also be applied to the temporal or attribute
domains.

Classification-Based Outlier Detection. Traditional classification techniques learn
how to recognize samples from different classes. Anomaly detection considers two
classes: anomalous and normal; however, anomalous data samples are rarely observ-
able compared to the normal ones. Therefore, classification for anomaly detection is
generally reduced to a one-class classification problem, based on the observation of
normal samples only.

Normal and anomalous samples can be viewed as points within two different re-
gions of the data space. Finding the boundary that separates the two regions may
be infeasible, because the regions overlap and, even when a boundary exists, it may
have a complex shape. Support Vector Machine (SVM) is a classification technique that
can overcome this limitation by projecting the data samples into a higher-dimensional
space. In the projected data space, a boundary that separates normal from anomalous
points may exist even if it does not exist in the original space, or may have a simpler
shape. For example, the normal samples could be contained within a sphere in the
projected data space. When the data space contains only positive values, this problem
reduces to a special type of SVM called one-class quarter-sphere SVM [Laskov et al.
2004], which is represented in Figure 3. With this approach, the classification problem
reduces to finding the sphere’s radius. Depending on how the WSN dataset is given
in input to quarter-sphere SVM, the classification can be made across its time domain
Rajasegarar et al. [2007], attribute domain, or both Shahid et al. [2012].

Bayesian networks have also been applied in WSNs to detect outliers with a
classification-based approach. A Bayesian network defines the relations of conditional
independence between random variables through a network graph. In WSNs, the ran-
dom variables can be different values in space and time of the physical attributes.

An example of application of Bayesian networks to WSNs is given by Dereszynski and
Dietterich [2011]. The physical attribute ϕ(si, tk) is modeled as a random variable that
depends on ϕ(si, tk−1) (first-order Markov relationship) and on values at different loca-
tions ϕ(sj �=i, tk). The aim is to find the state of a sensor, modeled by a random variable
with two possible values: working and broken. The posterior probability of the mea-
surements, which depends on both the physical attribute and the sensor state variable,
is maximized with respect to the state variables to identify faulty nodes. Dereszynski
and Dietterich [2011] evaluated their approach assuming that faulty sensors have a
high increase in their measurements’ variance (by 105), motivated by the observation
that the measurements of faulty sensors appear more noisy. Though reasonable in
the case of faults, this assumption usually does not hold for data injections, where an
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Fig. 4. Statistical characterization of the sensed data for outlier detection, from Bettencourt et al. [2007].

attacker can choose the measurements’ distribution arbitrarily and wishes in most
cases to remain undetected.

Statistical Outlier Detection. Statistical outlier detection identifies outlying data
samples through statistical characterization of the tail of the samples’ probability
distribution, as shown in Figure 4.

Note that this approach differs from anomaly detection based on statistical tests,
as it does not test the samples’ compliance to their expected distribution but only
identifies the outliers that lie on the tails of the distribution. For example, outliers can
be defined as samples far from the mean. Ngai et al. [2006] have applied this idea to
measurements from different sensors, thus exploiting spatial correlation. The spatial
sample mean μ̂S of measurements from N different sensors is defined as

μ̂S = 1
N

N∑
j=1

Sj(t). (6)

Ngai et al. [2006] use it to evaluate the deviation of sensor j from the spatial mean,

compared to the magnitude of the mean itself, with the metric f ( j, t) =
√

(Sj (t)−μ̂S)2

μ̂S
.

Similarly, Tanachaiwiwat and Helmy [2005] use the metric t∗ = Si (t)−(μTi ±δ)

STi /
√

W
, where

μTi and STi are respectively i’s temporal mean and sample standard deviation in a
window of size W , and δ is an already known variation between sensor i and j due to
the observed phenomenon’s spatial propagation. Considering the model in Section 4.1,
a generic sensor j calculates its temporal sample mean in the W-wide time window
[tK−W+1, tK] as

μ̂Tj = 1
W

W−1∑
n=0

Sj(tK−n). (7)

The temporal standard deviation is instead calculated as

ST =
√√√√ 1

W − 1

W−1∑
n=0

(Sj(tK−n) − μ̂Tj ). (8)

The value of t∗ is then compared with a threshold that is set to 3 since, in normally dis-
tributed data, this accounts for approximately 99.7% of the population (the percentage
decreases to 90% for other distributions).

In some cases, the median is preferred to the mean, since the former has the ad-
vantage of being insensitive to outliers. Indeed, a problem in outlier detection is how
to find the general (nonoutlying) trend from data affected by outliers. The mean is
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Fig. 5. Statistical distribution in the attribute space made up by temperature and humidity. Points with
Mahalanobis distance greater than d are treated as outliers, from Rajasegarar et al. [2009].

sensitive to outliers, since it is proportional to the magnitude of each operand. The
median takes instead one element to represent all the others. Wu et al. [2007] use the
median operator to aggregate sensors’ measurements in a neighborhood. We can refer
to it as a spatial median. If we order the N sensors’ measurement at time t such that
S1(t) ≤ S2(t) ≤ · · · ≤ SN(t), the median in the spatial domain is calculated as:

μ̃S =
{

S(N+1)/2(t) if N is odd
SN/2(t) if N is even.

(9)

After calculating the difference between the median and each value, there are two
possibilities: comparing each difference to the measurements’ magnitude or comparing
it to the general distribution of the differences. Yang et al. [2006] and Wu et al. [2007]
detect outliers in the differences, assuming they are normally distributed. Instead of
relying on the assumption of a Gaussian distribution, the probability distribution can
also be estimated from the data [Bettencourt et al. 2007].

When sensing multiple physical attributes, the distribution of the measurements
across all attributes can be considered, rather than a separate distribution for each
one. This approach can potentially detect outliers that a separate approach would fail
to detect. Liu et al. [2007] combine different attributes using the Mahalanobis distance,
which is based on the interattribute correlation and defines how the data is statistically
distributed in the attribute space. This scheme is shown in Figure 5.

5.2. Trust-Management-Based Techniques

Trust management considers the trustworthiness between two classes of entities: a
trustor and a trustee. The trustor assigns each trustee a trustworthiness value, based
on how much the trustee’s behavior matches an expectation. Trustworthiness values
are usually in the range [0, 1], decreasing when the trustee exhibits deviations from the
expected behavior and increasing when the trustee’s behavior matches the expectation.

Trust management can be usefully applied in WSNs to reduce the influence of the
compromised sensor nodes that inject malicious data. Indeed, if the expected behav-
ior accurately characterizes genuine nodes, compromised nodes would be assigned a
low trustworthiness value when deviating from it. Since trust values are a continuous
metric defined inside an interval, there is no direct classification of compromised and
genuine nodes. Instead, the trust values are used to apply a penalization proportional
to the confidence that the sensor is compromised. Note that the influence of the compro-
mised nodes becomes negligible only when the confidence is sufficiently high. Filtering
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Fig. 6. Trust-weighted aggregation for event detection. FN is a forwarding node, which collects reports from
the sensor nodes SN, from Atakli et al. [2008].

all the sensors with a trustworthiness under a given threshold [Sun et al. 2012] could
help mitigate this drawback but requires a method to set the appropriate threshold.

5.2.1. Event-Based Techniques. Trust-management for sensed data was originally intro-
duced as a complement to network-level trust, that is, how much nodes can be trusted
to perform correctly network-level tasks [Ganeriwal et al. 2003; Raya et al. 2008;
Momani et al. 2008] such as communicating routes, participating in the route discov-
ery process, routing incoming packets, and so forth. The behavior with respect to each
of these tasks can be of two kinds: cooperative and uncooperative.

The first examples of trust management for sensed data use a similar binary evalu-
ation to build the trustworthiness, defined with respect to an event detection process.
Initially, a decision logic establishes the presence of the event by combining the sensed
data and the trust values. Then, the sensed data is compared to the final decision to
measure the sensor’s cooperativeness and update the trust values. This criterion is
based on the assumption that nearby sensors are expected to agree about the event
presence, which is a form of spatial correlation (see Section 4.4).

One of the first techniques to adopt this approach is described in Atakli et al. [2008].
As shown in Figure 6, the reading of a generic sensor i, Si(t), which can take the values
0 and 1 (absence/presence of an event), are relayed to a forwarding node. This node
computes

∑N
n=1 WnSn(t), where Wn : n∈1...N denote the trust weights.

The result is used to decide about the ground truth E. Afterward, weights are updated
with the following rule:

Wn =
{

Wn − θrn, if Sn(t) �= E
Wn, otherwise,

(10)

where rn is the ratio of sensors giving different outputs over the total number of sensors
and θ is a penalty weight that determines a tradeoff between the detection time and
accuracy. In summary, the trustworthiness values, which coincide with the weights,
are calculated based on the measurements’ consistency with the aggregated value. The
latter is considered more reliable than the single readings, since sensors that exhibited
inconsistent (e.g., malicious) readings in the past contribute less to the aggregation
process. Finally, malicious nodes are detected by comparing the weights to a threshold,
which the authors heuristically set to 0.4. Note that the algorithm is vulnerable to the
on-off attack: a node that performs well for a time period acquires high trustworthiness
and then suddenly starts malfunctioning [Sun et al. 2006].

To counteract the on-off attack, Oh et al. [2012] and Lim and Choi [2013] propose to
penalize Sn(t) �= E by a quantity α and reward Sn(t) = E by a quantity β with β < α.
As α

β
grows bigger, faulty and malicious nodes are filtered out faster. However, sensors

with transient faults are also filtered out, even though they may report correct mea-
surements later on. To avoid this, the ratio α

β
needs to also consider the probability of

transient faults and their duration distribution. Therefore, this operation just reduces
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the frequency with which an attacker can switch between “good” and “bad” behavior in
an on-off attack.

When the sum of all trust weights is equal to 1, the weighted sum of sensors’ reading
corresponds to a weighted mean. As described in the previous section, the mean has
the drawback of being directly proportional to extreme readings. So in trust-based
aggregation as well, the median could be used as a more robust aggregation operator. A
trust-weighted median has been applied by Wang et al. [2010] in the context of acoustic
target localization, where the median allows one to filter out faulty measurements. The
advantages of using the weighted median increase when an element with high weight
has an extreme value. Indeed, while the weighted mean would be biased toward that
value, the weighted median would still filter it out, if the other values are not extreme
and the sum of their weights is bigger than the weight of the extreme value. This
property reduces the efficacy of an on-off attack.

Another aspect to take into account is the uncertainty in the event’s presence. Raya
et al. [2008] deal with this aspect by using a decision logic based on Dempster-Shafer
Theory (DST), which expresses the belief about the event presence as a combination of
individual beliefs from sensor nodes. DST combines the sensors’ information supporting
the event with the information not refuting the event (the uncertainty margin that may
comply with the event presence).

5.2.2. Anomaly-Based Techniques. Rather than analyzing the compliance with the out-
put of an event decision logic, other trust management techniques look for anomalous
behaviors with techniques similar to anomaly detection ones.

In fact, the output of anomaly detection itself can be used to define a coopera-
tive/uncooperative behavior [Ganeriwal et al. 2003], but a more flexible approach that
does not restrict the observations to a binary value is to update trust values based on
an anomaly score. An example is given by Bankovic et al. [2010], using self-organizing
maps (SOMs). The SOM is a clustering and data representation technique that maps
the data space to a discrete 2D neuron lattice. Bankovic et al. [2010] build two SOM
lattices: one in the temporal domain and another in the spatial domain. The trust val-
ues are assigned based on two anomaly scores: the distance between the measurement
and the SOM neuron, and the distance between the neuron to which the measurement
has been assigned and other SOM neurons. The main disadvantage of this algorithm
is its computational time. For better accuracy, SOMs require many neurons, but the
computational time increases noticeably [McHugh 2000].

Another example is given by Zhang et al. [2006], who use a statistical-test approach
(see Section 5.1.1) to assign reputation values to the sensors. The measurements gath-
ered in time are assumed to approximately follow a normal distribution. The normal
and actual measurements’ distribution are compared with the Kullback-Leibler diver-
gence Dn, which evaluates the information lost when a probability distribution is used
in lieu of another. The divergence is then used to update the trust values, with the
following expression:

Wn = 1
1 + √

Dn
. (11)

5.2.3. Using Second-Hand Information. In the trust management schemes previously an-
alyzed, each sensor’s trust values are computed and updated by the device with the
trustor role, typically a forwarding node. However, when the trustor is not in the trans-
mission range of its trustee i, it may rely on information from its neighbors Ni to
calculate its trustworthiness. Bao et al. [2012] deal with this problem by introducing
two different trust update criteria:

Tij(t) =
{

(1 − α)Tij(t − δt) + αTij(t) if j ∈ Ni

avgk∈Ni {(1 − γ )Tkj(t − δt) + γ Tkj(t)} otherwise.
(12)

ACM Computing Surveys, Vol. 48, No. 2, Article 24, Publication date: October 2015.



Detecting Malicious Data Injections in Wireless Sensor Networks: A Survey 24:19

Fig. 7. Combination of direct information and recommendations, from Ganeriwal et al. [2003].

The calculations of the second case represent node j’s recommendation, that is, the
trustworthiness extracted from relayed information. Eventually, recommendations de-
pend on trustworthiness from the viewpoint of direct neighbors. However, such trust-
worthiness can be manipulated by malicious nodes to bad-mouth or good-mouth other
nodes. Bao et al. [2012] mitigate this problem by controlling the impact of recommen-
dations through parameter γ , set to βTik(t)

1+βTik(t) . Thus, if a sensor has little trust compared
to the parameter β, the contribution of its recommendation will be small. However,
sensors conducting an on-off attack can give false recommendations for a short while
and then behave correctly again without being detected.

Even when direct information is available, recommendations can be used as second-
hand information and combined with direct information to obtain a reputation. Second-
hand information speeds up the convergence of trust values but adds network traffic
overhead and introduces new problems, such as the weighting criterion for recommen-
dations and the recommendation exchange frequency [Huang et al. 2006]. Ganeriwal
et al. [2003] follow this approach and treat reputation as a probability distribution, up-
dated as a combination of direct and indirect reputation. Direct reputation is updated
based on a watchdog module, while indirect reputation is updated with recommen-
dations, that is, reputation from other nodes. The framework’s scheme is shown in
Figure 7. Note that such definition of reputation introduces a loop: indirect reputations
come from reputations given by other sensors, which in turn depend on indirect rep-
utations. To avoid the information loop, the recommendations need to be taken only
from direct observers.

Modeling the reputation as a single value does not consider the uncertainty that
a sensor has in trusting another sensor. This information is particularly useful with
recommendations, as recommendations from sensors with high uncertainty should con-
tribute less. To consider uncertainty, the reputation can be modeled with a probability
distribution, whose choice is dictated mainly from the trust evaluation and update
criteria. For example, Ganeriwal et al. [2003] use the beta distribution since it is the
posterior distribution when the binary interactions between nodes are modeled with a
binomial distribution. Momani et al. [2008] apply a normal distribution to model the
differences between the measurements of two sensors (spatial homogeneity is assumed;
see Section 4.4).

6. DIAGNOSIS AND CHARACTERIZATION OF MALICIOUS DATA INJECTIONS

Detecting the deviation of the measurements from the expected behavior is usually
not sufficient to infer the presence of a data injection attack. In the case of outlier
detection, for example, we have seen that measurements are only classified as outlying
or nonoutlying, but malicious data injection is only one of the possible causes for
outlying data. In general, regardless of the technique that detects the deviation from
an expected behavior, the cause for that deviation needs to be found. We refer to this
task as diagnosis. Generally, it is not a trivial task, because different causes such as
faults or genuine events may have similar effects.

ACM Computing Surveys, Vol. 48, No. 2, Article 24, Publication date: October 2015.



24:20 V. P. Illiano and E. C. Lupu

Additionally, even when the presence of an attack can be ascertained with confi-
dence, further information is needed to determine the course of action to be taken. For
example, there is the need to know the attack’s effects and the system area (nodes)
affected by the attack. We refer to this other task as the characterization of the attack.

In the following, we analyze the state of the art for diagnosis and characterization of
malicious data injections in WSNs.

6.1. Diagnosis

Diagnosis of malicious data injections in WSNs consists of distinguishing them from
two main phenomena that can produce similar deviations from expected behavior:
faults and events of interest. Faults represent generic unintentional errors introduced,
for example, by obstacles in the environment, sensors’ battery depletion, pollution, and
fouling. Events of interest represent environmental conditions that seldom manifest
but are interesting as they can reveal an alarm scenario, for example, heart attacks,
fires, and volcanic eruptions.

Information about the cause of an anomaly or of an untrustworthy sensor can be
precious. With fine-grained knowledge about the nature of the problem, an appropri-
ate response can be initiated to address it. Unfortunately, in the papers analyzed so
far, an exhaustive diagnosis phase is still lacking. Most of the attention has focused
on diagnosing events as opposed to faults. The general assumption used to distin-
guish between them is that faults are likely to be stochastically unrelated, while event
measurements are likely to be spatially correlated [Luo et al. 2006; Shahid et al.
2012]. Note that this assumption excludes common-mode failures from the analyses.
Based on this assumption, after detecting deviations from expected data with temporal
[Bettencourt et al. 2007; Shahid et al. 2012] or attribute [Shahid et al. 2012] correla-
tions, it is possible to diagnose whether the deviation was caused by a fault or an event
by exploiting spatial correlation. When there is a consensus among a set of sensors
about the presence of an event, discording sensors are considered faulty [Luo et al.
2006; Shahid et al. 2012; Bettencourt et al. 2007]. Similarly, some sensed attributes
(e.g., human vital signs, such as glucose level, blood pressure, etc.) can be assumed
heavily correlated in the absence of faults, which instead disrupt attribute correla-
tions. Then, if we further assume that events would cause a minimum number of
outlying attributes, faults can be identified when the minimum is not reached [Salem
et al. 2013].

Fewer advances have been made toward diagnosing malicious interference as op-
posed to faults and events. We summarize them in the following sections.

6.1.1. Distinguishing Malicious Interference from Events. In the literature, malicious inter-
ference is distinguished from events through an agreement-based strategy [Liu et al.
2007; Atakli et al. 2008; Wang et al. 2010; Oh et al. 2012; Lim and Choi 2013; Sun et al.
2013]; that is, the sensor’s information is first used to decide about the presence of an
event and then sensors that did not support the final decision are identified as mali-
cious. This approach is based on the assumption that sensors are sufficiently spatially
correlated to correctly detect events. However, multiple compromised nodes can also
collude in the attack to keep the spatial correlations consistent between themselves.
This complicates discriminating between genuine events and malicious data injections
and allows an attacker to fabricate false events or to mask genuine ones. This aspect
is discussed in more detail in Section 6.2.

6.1.2. Distinguishing Malicious Interference from Faults. Criteria to distinguish malicious
data injections from faults are less remarked on. Two main approaches can be iden-
tified: delegating the diagnosis to intrusion detection techniques and leveraging fault
statistics.
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Intrusion Detection. One of the main challenges in detecting attacks with anomaly-
based techniques is that such techniques abstract the means through which an attack is
conducted. This choice comes from their objective to detect new attacks with unknown
patterns, as opposed to intrusion detection techniques, which are based on recognizing
known attack signatures. The framework proposed by Ngai et al. [2006] is a tradeoff
between an anomaly detection technique and an intrusion detection system, since
the detection is carried out through anomaly detection achieving a high detection
rate, while the diagnosis is carried out with intrusion detection. Clearly this approach
provides diagnosis only for known attacks and cannot distinguish between an unknown
attack and a fault.

Fault Statistics. The statistical characterization of faults can also be used to dis-
tinguish them from malicious interference. Oh et al. [2012] and Lim and Choi [2013]
use the expected frequency of transient faults to avoid excluding from the system
sensors subject to transient faults. Indeed, their trust management algorithm allows
such sensors to recover trustworthiness by allowing temporary misbehavior. Only sen-
sors misbehaving with higher frequency, including malicious sensors and sensors with
permanent faults, will then be excluded.

6.2. Characterization

If detection and diagnosis of malicious data injections answer the question “Is there
an attack?”, characterisation answers questions such as “Which are the compromised
sensors?” and “How is the attack performed?” The difference is perhaps more evident in
event detection tasks. For example, after detecting the presence of an event, the event’s
spatial boundary can be characterized using the methodology proposed in Wu et al.
[2007], which finds the areas where the difference between the measurements from
different sensors is high, indicating a discontinuity introduced by the event boundary.
In this case, characterization is triggered by detection but is a separate task.

6.2.1. Collusion and Its Effects. In malicious data injections, detection, diagnosis, and
characterization are often addressed simultaneously, since the information character-
izing the attack can be precious to improve the detection. In particular, when multiple
sensors have been compromised and collude in the attack, they act in concert to change
the measurements while evading, if possible, any anomaly detection applied. There-
fore, identifying which sensors are more likely genuine and which sensors are more
likely compromised becomes an integral part of detecting the attack itself.

In collusion attacks, compromised sensors follow a joint strategy that reduces the ad-
vantages of spatial correlation, since the compromised nodes cooperate to form credible
spatially correlated data [Tanachaiwiwat and Helmy 2005]. In the presence of collusion,
diagnosis is also significantly more complex. Tanachaiwiwat and Helmy [2005] point
out that when a genuine outlier (e.g., related to an event) occurs, extreme readings from
the colluding nodes could be hidden. The problem becomes increasingly difficult as the
percentage of (colluding) compromised sensors increases. Ultimately, when the number
of colluding sensors increases to the point of exceeding genuine sensors, the attack may
still be detectable, but it may be impossible to distinguish which nodes are genuine
and which nodes are compromised. Tanachaiwiwat and Helmy [2005] evaluate their
anomaly detection algorithm against colluding nodes and find that performance no-
ticeably decreases when more than 30% of the nodes are colluding. A similar result is
reported by Chatzigiannakis and Papavassiliou [2007].

Bertino et al. [2014] describe a new attack scenario applicable when the trustwor-
thiness is calculated through an iterative filtering algorithm. While in generic (non-
iterative) trust evaluation techniques trust weights are updated based on data from
the current time instant and the weights calculated at the previous time instant, in
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iterative filtering, the weights are iteratively updated with data of the same time in-
stant until a convergence criterion is satisfied. In this context, the authors introduce a
new attack scenario where all colluding nodes but one produce noticeable deviations in
their readings. The remainding compromised node reports, instead, values close to the
aggregated value of all the readings (including malicious ones). Eventually, this node
acquires a high trust value, while all the others acquire low trust values. The aggre-
gated value, in turn, quickly converges to a value far from that of the genuine nodes.
The authors show that this attack is successful when the sensors are assigned equal
initial trustworthiness. They therefore propose to calculate the initial trustworthiness
as a function that decreases as the error variance increases. The error is defined as
the distance from an estimated physical attribute value ϕ(t) and is the same for all the
sensors.

Rezvani et al. [2013] proposed another technique that detects collusion rather than
counteracting it. This technique is based on the assumption that deviations from the
aggregated values are normally distributed for genuine nodes. This assumption comes
from the observation that the deviations of noncompromised nodes, even if large, come
from a large number of independent factors, and thus must roughly have a Gaussian
distribution. For colluding nodes, instead, they assume that this condition does not
hold. Then, by running the Kolmogorov-Smirnov test to check compliance to the normal
distribution, they discriminate colluding nodes from genuine nodes.

In summary, while many studies propose new anomaly detection algorithms to cater
to a broad range of scenarios, comparatively fewer address specifically malicious data
injections in a way that can cater to more sophisticated attacks involving collusion
between sensors. Such scenarios will need to be explored further in the future.

6.2.2. Characterization Architectures: Centralized Versus Distributed. To detect, diagnose, and
characterize the nodes injecting malicious measurements, different architectures can
be employed with different degrees of distribution. We discuss the properties of different
solutions next.

In WSNs, there is always at least one entity that eventually collects the measure-
ments for the analyses, decisions, and actions that the system needs to carry out: the
basestation. The basestation is usually assumed free of compromise and therefore can
be used to characterize the compromised nodes. In this case, we have a centralized
architecture such as in Chatzigiannakis and Papavassiliou [2007], Atakli et al. [2008],
Oh et al. [2012], Lim and Choi [2013], and Rezvani et al. [2013].

Even when the basestation is the only trusted entity in the network, distributed
characterization is possible. Indeed, as proposed in Bao et al. [2012], the sensor nodes
can be assessed in a hierarchical structure, where each node assesses the trustworthi-
ness of nodes below it in the hierarchy. The basestation thus trusts nodes when a chain
of trust can be established from that node to the basestation.

When the distribution principle is taken to the extreme, each node acts as a watch-
dog for all its neighbors and reports alerts to the basestation (or the next node in the
hierarchy) [Ganeriwal et al. 2003; Tanachaiwiwat and Helmy 2005; Liu et al. 2007].
After all the reports are collected, a decision is taken based on algorithms such as
majority voting [Hinds 2009]. The drawbacks of this approach are that it lacks global
knowledge and for this reason is less robust to collusion attacks, and that it intro-
duces significant network overhead given by the watchdog reports. Tanachaiwiwat
and Helmy [2005] propose to overcome these problems by deploying multiple reli-
able tamper-resistant sensor nodes that probe suspicious nodes. This solution, how-
ever, requires additional expensive hardware, which undermines the cost advantages
of WSNs.
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7. DISCUSSION

In the previous sections, we have seen how different techniques can be applied to
detect malicious data injections, how they leverage measurements’ correlations, and
the assumptions on which such correlations are based. We have examined the different
detection techniques and how they find deviations from the expected behavior. We have
highlighted the importance of distinguishing between different sources of deviations
and presented the main directions of work toward this objective so far.

We now combine these analyses by building direct comparison tables, which sum-
marize their main characteristics. A summary of the results reported by each of the
techniques mentioned is provided in the following section.

7.1. Comparison of Approaches

We divide our comparison of the approaches analyzed so far into Tables II and III,
containing the anomaly detection and trust management techniques, respectively. The
content of the columns from left to right is as follows: technique name and reference;
correlation used to define expected data; assumptions about the spatial model if any;
detection criterion used; possible sources of anomalies (as mentioned in their paper);
and for which of them diagnosis criteria are given—for example, {Event},{Malicious or
Faulty} means that the authors give a criterion to discern between anomalies arising
from events and from malicious or faulty sensors.

We observe that spatial correlation is most often exploited, and this under the fre-
quent assumption of a homogeneous space. The situation is particularly evident for
papers considering the presence of malicious data injections and probably a conse-
quence of the fact that, generally, only a minor subset of sensors is assumed to be
compromised. Therefore, in the spatial domain, there is always a significant set of
genuine measurements that can be exploited to detect the malicious ones.

Assuming spatial homogeneity makes the calculations significantly simpler, since the
sensors are considered to measure the same value. However, it also significantly re-
stricts the applicability of the techniques in real cases. When the physical phenomenon
is observed with low precision, for example, overall temperature across a large open-
space area, this assumption is still valid if the spatial variations are absorbed by the
error term in Equation (2). However, this allows an attacker to introduce malicious
data that is within the error bounds yet still deviates significantly from the real val-
ues. While this assumption is generally appropriate in small areas, small areas also
typically include fewer sensors that have a higher risk of an attacker compromising
them all.

When multiple types of correlation are considered, temporal correlations are gen-
erally exploited along spatial ones. Use of attribute correlations is rather infrequent,
probably because understanding them requires knowledge about their physical sig-
nificance and this is application specific. The tables highlight even more the lack
of diagnosis and characterization (see Section 6.1). Few papers consider specifically
malicious injections with collusion, and even fewer papers deal with the problem of
distinguishing them from other causes of deviations. While distinguishing events from
faults is the diagnosis more frequently considered, distinguishing attacks from faults
is undoubtedly more challenging and still rather rare.

7.2. Comparing Reported Evaluation Results

In the previous sections, we have considered techniques that could be applied to the
problem of detecting, diagnosing, and characterizing malicious data injections. For
those techniques that focus specifically on malicious data injections, we now present
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Table II. Anomaly Detection Techniques

Work
Correlation
Exploited Spatial Model

Detection
Method

Classes
Considered

Interclass
Discrimination

EKF, CUSUM
GLR [Sun et al.
2013]

Temporal None Change in the
distribution of
error from
estimate

Event,
Malicious,
Faulty

{Event},
{Malicious or
faulty}

MGDD
[Subramaniam
et al. 2006]

Temporal None Measurement
probability

Event, Fault None

Ngai et al.
[2006]

Spatial Homogeneous Difference with
neighbors

Suspicious of
Sinkhole
Attack

None

Wu et al. [2007] Spatial Homogeneous Difference with
neighbors

Event None

FIND [Guo et al.
2009]

Spatial Monotonic
WRT event
source

Spatial
monotonicity
disruptions

Fault None

Salem et al.
[2013]

Attribute-
temporal

None Energy of
fluctuations

Event, Fault {Event} {Faulty}

STIOD [Zhang
et al. 2012]

Spatio-
temporal

Variogram Difference with
estimate

Event, Error {Event} {Error}

MAP+HBST [Ni
and Pottie 2012]

Spatio-
temporal

Linear spatial
trend

Difference with
estimate

Fault None

Liu et al. [2007] Spatial Homogeneous Difference with
neighbors

Malicious,
Event

{Malicious},
{Event}

ART
[Tanachaiwiwat
and Helmy
2005]

Spatial Homogeneous Difference with
neighbors

Compromised,
Uncalibrated
Sybil

{Compromised
or Faulty},
{Uncalibrated},
{Sybil}

Rajasegarar
et al. [2007]

Spatio-
temporal

Homogeneous Values outside a
quarter-sphere

None None

STA-QS-SVM
[Shahid et al.
2012]

Spatio-
temporal
and spatio-
attribute

Homogeneous Values outside a
quarter-sphere

None None

Chatzigiannakis
and
Papavassiliou
[2007]

Spatial High Pearson
correlation

Changes in
correlation

Fault,
Malicious

{Point failure or
malicious
node}, {Group
failure or
Collusion}

Bettencourt
et al. [2007]

Spatio-
temporal

Homogeneous Distribution of
temporal and
spatial
differences

Event, Fault {Event}, {Point
failure}

Handschin et al.
[1975]

Spatial Linear
combination
of state
variables

Difference with
estimate

Fault None

Robust IF
[Rezvani et al.
2013]

Spatial Homogeneous Distribution of
distance from
estimation

Fault,
Malicious

None

the experimental evaluation setup used by the authors and compare the reported
results. None of these techniques has been tested on real attack scenarios. This is not
surprising as finding real attack data in existing WSN deployments is difficult. In fact,
two approaches have been broadly adopted to evaluate the algorithms for detection of
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Table III. Trust-Based Detection Techniques

Work
Correlation
Exploited Spatial Model

Detection
Method

Classes
Considered

Interclass
Discrimination

Zhang et al.
[2006]

Spatio-
temporal

Homogeneous Distance from
mean of
top-trust
sensors

Malicious None

WTE [Atakli
et al. 2008]

Spatial Homogeneous Trust under a
threshold

Malicious None

Momani et al.
[2008]

Spatial Homogeneous Trust under a
threshold

Faulty,
Malicious

None

Wang et al.
[2010]

Spatial Homogeneous Difference
with
aggregated
value

Faulty, Event {Faulty}, {Event}

Bankovic
et al. [2010]

Spatio-
temporal

Heterogeneous Difference
with learned
pattern

Malicious None

Trust-based
IDS [Bao
et al. 2012]

Spatial Homogeneous Trust under a
threshold

Malicious,
Event

{Malicious},
{Event}

DWE [Oh
et al. 2012]

Spatial Homogeneous Trust under a
threshold

Malicious,
Permanent
Fault,
Transient
Fault, Event

{Malicious or
Permanent
Fault}, {Event}

Dual
threshold
[Lim and
Choi 2013]

Spatial Homogeneous Trust under a
threshold

Malicious,
Permanent
Fault,
Transient
Fault, Event

{Malicious or
Permanent
Fault}, {Event}

malicious data injections: simulation [Sun et al. 2013; Liu et al. 2007; Rezvani et al.
2013; Atakli et al. 2008; Bankovic et al. 2010; Oh et al. 2012; Bao et al. 2012; Lim and
Choi 2013] and injection of attacks in real datasets [Tanachaiwiwat and Helmy 2005;
Chatzigiannakis and Papavassiliou 2007].

Table IV summarizes all the results achieved, together with all the relevant simu-
lation parameters. The last three columns express the false-positive rate (FPR) when
the detection rate (DR) is respectively 0.90, 0.95, and 0.99. DR is, by definition, the
number of attack instances that are correctly detected divided by the total number
of attack instances. FPR is, by definition, the number of times normal data instances
are misclassified as attacks divided by the total number of normal data instances.
The relationship between DR and FPR is known as the Receiver Operating Charac-
teristic (ROC). Column 2 reports information about the size of the dataset used in the
experiments. Column 3 reports the percentage of either malicious nodes or malicious
measurements. Column 4 reports the input size for the algorithm; for example, in an
experiment with 100 nodes, where the nodes are clustered in groups of 10 and the
algorithm is run on clusters, the algorithm input size is 10.

Generally, in each paper, the tests are conducted in scenarios with different as-
sumptions. For instance, Liu et al. [2007] generate data with a normal distribution for
normal sensors and another normal distribution for malicious sensors. The results are
excellent but depend a lot on the difference between the two distributions. Another
important assumption, which has a noticeable impact on the results, is the spatial
model. As pointed out in Section 4.4, most papers assume that the sensors’ readings
are homogeneous in the space; in other words, the measurements are expected to be
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Table IV. Detection Performances, Independent Attacks

Work Dataset Size

Dataset
Malicious

Percentage

Input Size
for Each

Algorithm
Execution

FPR for
DR=0.90

FPR for
DR=0.95

FPR for
DR=0.99

EKF [Sun et al.
2013]

10,000 samples 50% samples,
same node

6 0.22 0.42 0.7

Liu et al. [2007] 4,096 nodes 10%–25%
nodes

10 0.01 0.01 0.07

ART
[Tanachaiwiwat
and Helmy
2005]

100 nodes 30%–50%
samples,
random

selection of
malicious

nodes

100 0.25 0.22 0.21

Chatzigiannakis
and
Papavassiliou
[2007]

40 nodes 10% nodes 40 0.67 0.69 0.7

Chatzigiannakis
and
Papavassiliou
[2007]

40 nodes 40% nodes 40 0.48 0.5 0.6

WTE [Atakli
et al. 2008]

100 nodes * 200
samples

0%–25% nodes 100 0.03 0.41 0.78

WTE [Atakli
et al. 2008]

400 nodes * 200
samples

0%–25% nodes 400 0.10 0.44 0.78

Bankovic et al.
[2010]

2,000 nodes *
2,500 samples
(1,000 are used

for training)

5% nodes 2,000 0.5 0.5 0.5

Trust-based IDS
[Bao et al. 2012]

900 nodes N/A N/A 0.001 0.05 N/A

DWE [Oh et al.
2012]

200 samples 20% nodes 20 0.01 0.01 0.02

Dual threshold
[Lim and Choi
2013]

100 samples 10% nodes 12 N/A N/A 0.001

Dual threshold
[Lim and Choi
2013]

100 samples 20% nodes 12 0.18 0.14 0.10

equal to each other, apart from noise and errors. The consequence of this assump-
tion is that, by increasing the number of sensors, the information redundancy also
increases and the number of sensors taken into account is decisive. Recall from Sec-
tion 4.4 that the sensing space can be approximately homogeneous only if we consider a
small portion of space where there are no obstacles. In works like Chatzigiannakis and
Papavassiliou [2007] and Bankovic et al. [2010], where this assumption is not present,
the FPR is higher, but the algorithm has wider applicability. Tanachaiwiwat and Helmy
[2005] rely on the spatial homogeneity assumption and apply their technique to a large
neighborhood (100 nodes). The FPR is better but still not negligible (more than 20%).
Atakli et al. [2008] also rely on this assumption and apply their algorithm on very large
neighborhoods. With 100 nodes, the FPR for DR = 0.90 is 3%, but for DR = 95 and
DR = 99, the FPR increases by an order of magnitude. In contrast, Oh et al. [2012], Bao
et al. [2012], and Lim and Choi [2013] are successful in keeping the FPR low even for
high DR. Note that with a larger number of nodes the FPR of the technique described
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Table V. Detection Performances, Colluding Attacks

Work Dataset Size
Colluding

Percentage

Input Size
for Each

Algorithm
Execution

FPR for
DR=0.90

FPR for
DR=0.95

FPR for
DR=0.99

ART
[Tanachaiwiwat
and Helmy 2005]

100 nodes 30%–50%
samples

100 0.25 0.22 0.21

Chatzigiannakis
and Papavassiliou
[2007]

40 nodes 10% nodes 40 0.67 0.69 0.7

Chatzigiannakis
and Papavassiliou
[2007]

40 nodes 40% nodes 40 0.76 0.78 0.8

Robust IF
[Rezvani et al.
2013]

20 nodes per
400 samples

40% nodes 20 N/A 0.021 0.021

in Atakli et al. [2008] increases. This result contrasts with the consideration that we
made about the the spatial homogeneity assumption. The reason behind that lies prob-
ably in the inaccuracy of the empirical ROC curve calculation. Another possible cause
is that the algorithm is sensitive to the absolute number of compromised nodes rather
than to its ratio to total nodes. For example, 80 out 400 compromised nodes may be
harder to detect than 20 out of 100, even though the percentage of malicious nodes is
20% in both cases.

In Table V, we report the results for the cases considering collusion. The results
reported in Chatzigiannakis and Papavassiliou [2007] show nonnegligible FPR values
(above 60%). The results reported in Tanachaiwiwat and Helmy [2005] have a better
FPR (around 20%). Rezvani et al. [2013], instead, achieve very good results (FPR less
than 5%). Nevertheless, recall that this technique is applicable only when the spatial
homogeneity assumption among the 20 sensors is reasonable. In scenarios where the
sensor readings cannot be assumed to share the same physical attribute function, the
results may degrade substantially. This is the case for physical attributes like vibration,
light, wind, and so forth, where the correlation of the attribute measured at different
locations rapidly decreases with the event propagation.

7.3. Comparing Techniques’ Overhead

The applicability of a technique to a real WSN depends not only on the relation-
ship between the detection rate and the false-positive rate but also on the overhead
introduced. We analyze computational and communication overhead for the tech-
niques discussed in the previous section and summarize their asymptotic complexity in
Table VI. As usual, N is the number of sensors, Nn is the average number of neighbors,
and W is the temporal memory, that is, the number of past samples used.

From Table VI, we note that anomaly detection techniques generally introduce more
computational overhead than trust management techniques. The reason behind this
result is that trust management iteratively refines its confidence about a sensor’s
trustworthiness, whereas anomaly detection builds such confidence from scratch at
each iteration. On the other hand, this is also the main reason that trust management
algorithms are vulnerable to on-off attacks (see Section 5.2).

Another noticeable result is that communication overhead is always kept lower
than computational overhead—this result is to be expected since network commu-
nication is more expensive in terms of energy and leads to faster battery deple-
tion. In anomaly detection techniques, the communication overhead comes from the

ACM Computing Surveys, Vol. 48, No. 2, Article 24, Publication date: October 2015.



24:28 V. P. Illiano and E. C. Lupu

Table VI. Techniques’ Overhead

Computational Communication
Class Work Overhead Overhead

ART [Tanachaiwiwat and Helmy 2005] O(W ∗ Nn) O(1)
Liu et al. [2007] O(N2

n ) O(Nn)
Anomaly detection Chatzigiannakis and Papavassiliou [2007] O(W N2

n + N3
n ) 0

EKF [Sun et al. 2013] O(1) O(Nn)
Robust IF [Rezvani et al. 2013] O(W N2) 0
WTE [Atakli et al. 2008] O(Nn) 0
Bankovic et al. [2010] O(N2

n ) + O(W2) 0
Trust management Trust-based IDS [Bao et al. 2012] O(Nn) O(Nn)

DWE [Oh et al. 2012] O(Nn) 0
Dual threshold [Lim and Choi 2013] O(Nn) 0

execution of consensus-like protocols that decide about the maliciousness of nodes
after anomalies are detected. Trust management techniques instead delegate such de-
cisions to the nodes that are higher in a WSN hierarchy (e.g., the forwarding nodes,
cluster heads, basestation). Thus, communication overhead is introduced in trust man-
agement techniques only when recommendations are enabled (such as in Bao et al.
[2012]).

8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Malicious data injections are a considerable threat for WSNs. We reviewed state-of-
the-art techniques that can detect malicious data injections by defining an expected
behavior and then detecting deviations from it. We classified these approaches into two
main families: anomaly detection and trust management. They differ in the assessment
of an anomalous condition, but both rely on the definition of an expected behavior. We
analyzed and compared the techniques by their definition of expected behavior and
noted that expectations can come from the following correlations: (1) in time: different
time, same sensor, same attribute; (2) in space: same time, different sensors, same
attribute; (3) across different physical attributes: same time, same sensor, different
attributes; or (4) their combination.

While many techniques can be applied, comparatively few target explicitly malicious
data injections, especially when collusion between compromised sensors is considered.
Most techniques aim to detect erroneous measurements, either to improve the quality of
the measuring process (e.g., Subramaniam et al. [2006] and Bettencourt et al. [2007])
or to reduce the power associated with the transmission of the measurements (e.g.,
Wang et al. [2010] and Salem et al. [2013]).

Work aimed at detecting malicious data injections generally uses spatial correla-
tion in constructing the expectations (e.g., Zhang et al. [2006], Liu et al. [2007], and
Chatzigiannakis and Papavassiliou [2007]), in keeping with a general assumption that
only a subset of sensors has been compromised. In this case, a nonvoid set of genuine
measurements is always present in the spatial domain.

We discussed the different assumptions that characterize the spatial domain and
analyzed how they impact the performance of the detection algorithms. More precisely,
we observed a substantial decrease in performance when moving away from a homo-
geneous space model, where all sensors perceive similar measurements, to heteroge-
neous space models, where different measurements are expected at different locations.
This result is visible, for example, in the difference between the results achieved in
Tanachaiwiwat and Helmy [2005] and Rezvani et al. [2013], who assume a homoge-
neous space, and those achieved by Chatzigiannakis and Papavassiliou [2007], who
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only assume some degree of correlation between the sensors. The results in the latter
case show noticeable higher false-positive rates. We conclude that more research is
needed to achieve better results when the spatial domain is heterogeneous. This will
also improve the general applicability of the algorithms in real-life deployments.

We explored different approaches to the detection phase, where the deviation from the
expected behavior is assessed, and noted a clear preference in the literature for outlier
detection techniques (e.g., Ngai et al. [2006], Liu et al. [2007], and Sun et al. [2013]).
In this case, the expectation of a measurement is compliant with a generalization
of the measurement’s behavior. This approach is independent from the context and is
preferred to more context-specific techniques based on model checking (e.g., Handschin
et al. [1975]).

Finally, to complete the detection of malicious data injections, we identified two main
aspects that need to be addressed: diagnosis and characterization. These are, by and
large, insufficiently studied in the literature.

Diagnosis consists of identifying the cause of the detected anomaly, which, besides
malicious data injections, may lie in faults or events of interest. Both these phenomena
can produce deviations from expected behavior similar to malicious injections. While
partial diagnosis is investigated in, for example, Tanachaiwiwat and Helmy [2005],
Bettencourt et al. [2007], Chatzigiannakis and Papavassiliou [2007], and Oh et al.
[2012], an exhaustive diagnosis phase is still lacking. Fault-related anomalies may be
handled separately from malicious data injections, as fault models are relatively well
categorized and understood. However, event-related anomalies cannot be considered
separately (as in Liu et al. [2007]), since an attacker may inject malicious measure-
ments that depict a fabricated event or conceal a real event. Therefore, in WSNs that
monitor the occurrence of events, malicious injections and events should be addressed
together, to produce a compromise-resistant detection and characterization of events.

Similarly, further investigation of the attack characterization is needed, in particular
to identify the compromised sensors in the presence of collusion. This aspect adds more
complexity to the problem since colluding sensors can reduce data inconsistencies
introduced in the attack, especially in the spatial domain.

Across all of the aspects, a good model of expected system behavior plays a central
role and determines both the applicability of the algorithms for detecting malicious
data injections and their performance.
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