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A Fine-Grain Time-Sharing Time Warp System

ALESSANDRO PELLEGRINI and FRANCESCO QUAGLIA, Sapienza Università di Roma

Several techniques have been proposed to improve the performance of Parallel Discrete Event Simulation
platforms relying on the Time Warp (optimistic) synchronization protocol. Among them we can mention
optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling
the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors
leading to waste of computation. However, in state-of-the-art Time Warp systems, events’ processing is
not preemptable, which may prevent the possibility to promptly react to the injection of higher priority
(say, lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher
incidence of incorrect speculation. In this article, we present the design and realization of a fine-grain time-
sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event
preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based
on a truly dual mode execution, application versus platform, which includes a timer-interrupt-based support
for bringing control back to platform mode for possible CPU reassignment according to very fine grain
periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which
we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An
experimental assessment based on the classical PHOLD benchmark and two real-world models is presented,
which shows how our proposal effectively leads to the reduction of the incidence of causality errors, especially
when running with higher degrees of parallelism.
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1. INTRODUCTION

Parallel Discrete Event Simulation (PDES) is a universally recognized methodology
for speeding up the execution of (very) large/complex discrete event models via the
exploitation of hardware parallelism [Fujimoto 1990a]. It is based on partitioning the
model into multiple simulation objects, historically referred to as Logical Processes
(LPs), whose events are concurrently dispatched for execution.

One core problem in PDES is how to ensure causally consistent (namely, timestamp
ordered) execution of the events at all the simulation objects, which is not trivial due
to the dependencies that arise when different objects schedule events for each other.
This is also known as the synchronization problem, for which different approaches and
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protocols have been presented in literature. The various proposals differ from each
other by whether they entail (or not) the possibility to speculate along the simulated
trajectory. If speculation is allowed, events are dispatched for processing at any simu-
lation object as soon as they are available (at the underlying PDES environment) with
no preliminary assessment of their safety. If causal inconsistencies arise, their effects
are undone via rollback schemes. This is the Time Warp approach introduced in the
seminal article by Jefferson [1985].

The relevance of speculative synchronization for PDES lies in that it allows for
extremely high scalability. Recent results [Barnes-Jr. et al. 2013] have indeed shown
how Time Warp systems exhibit the potential for scaling up to millions of processing
units. On the down side, building Time Warp–based PDES platforms is far from being
a trivial task because of two main reasons. One is related to the need for including the
support for reversibility of the simulation model execution trajectory, an objective that
should be pursued as transparently as possible to the overlying simulation application.
Second, the actual performance delivered by Time Warp-based PDES platforms can be
strongly affected by the rules according to which its worker threads CPU-dispatch the
events to be processed.

The common literature trend is to build Time Warp systems as user-space platforms
that are seen by the application-level code as run-time environments offering a specific
API (e.g., for cross-simulation-object scheduling of events) and, in the most advanced
cases (see, e.g., Pellegrini et al. [2015]), providing application transparent support
for reversibility of the actions performed by both the native application code and the
invoked third-party (standard) libraries. Invocations to the latter, or side effects on the
simulation state natively produced by the application code, are in fact transparently
intercepted by the platform-level code (via wrapping and/or instrumentation [Pellegrini
et al. 2015; Rönngren et al. 1996; West and Panesar 1996]), which runs reversible
versions of the corresponding tasks.

Nonetheless, another common way of implementing Time Warp systems is the one
where each CPU-dispatched simulation event is executed in non-preemptable manner.
Consequently, the platform-level software is not allowed to re-evaluate CPU assign-
ment until the completion of the last-dispatched event. This approach is not able to
promptly react to the (system wide) dynamic generation and injection of events with
higher priority, say, lower timestamps, compared to the one currently being processed by
some CPU-core. Consequently, it is not fully optimized given that the generation of roll-
backs, and the associated waste of computation, tends to increase when events are CPU-
dispatched and processed according to a rule that does not fully fit the priorities asso-
ciated with the dynamic generation of timestamped events [Quaglia and Cortellessa
2002]. We note that the reduction of rollback incidence cannot be fully tackled by solely
relying on load balancing/sharing strategies (see, e.g., Carothers and Fujimoto [2000],
Choe and Tropper [1999], Glazer and Tropper [1993], and Vitali et al. [2012]), since
they operate as long term planners for fruitful CPU usage, thus being not suited for
“prompt” response to punctual variations of the event priorities along time.

Clearly, the ideal approach to preempt the execution of a CPU-dispatched event
would be to interrupt the thread execution flow right upon the delivery of some higher
priority event (or anti-event), destined to one of the simulation objects managed by
the same thread. This would require a mechanism to reflect the arrival of a new event
(say, of a new message) into a change of the state of the CPU-core (e.g., the instruction
pointer) so the running thread can change its execution path, thus enabling the higher
priority event to be actually dispatched.1

1For the case of an incoming higher priority anti-event, the thread would dispatch the corresponding man-
agement operations, including the rollback of the target simulation object.
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Fig. 1. Thread reaction to the injection of higher priority events on a conventional system.

For the case of network-based message passing in distributed memory systems, the
arrival of a message from a network interface is reflected into a change of the operating
system state, which makes the message accessible on I/O channels (e.g., via polling).
But the thread itself does not change its execution flow, except if asynchronous sig-
naling mechanisms are adopted. However, these would operate according to the time-
granularity of conventional timer-interrupt mechanisms, say, 1 to 4ms on conventional
operating system configurations. This is a granularity level that does not allow prompt
preemption of events with common PDES workloads, where CPU requirements for
processing simulation events are well below the order of milliseconds. An example
scenario illustrating this problem is shown in Figure 1.

A similar problem still appears for the case of Time Warp systems running on top
of shared-memory platforms. In more detail, if user space shared-memory support
is used for exchanging messages across the threads, a sending thread will only post
the new message on a shared-buffer, which will be checked by the destination thread
according to a polling mechanism operating before (or after) the processing of an event.
In fact, pure shared-memory based communication provides no effective mechanism
for interrupting the event execution at some destination thread right upon the post
of the new message. Even if a signaling mechanism was being used by the source
thread, such as Posix user-defined signals, the time-granularity for the signal delivery
to the destination thread would be still bound to the conventional operating system
timer-interrupt interval configuration, thus resulting not adequate. Also, this approach
would require the whole chain of signal management mechanisms to be passed through
at the level of the operating system kernel, with consequent non-minimal overhead.

In this article, we cope with preemptive events’ processing in Time Warp systems to
be run on shared-memory multi-core machines. Also, we target C-based software and
Linux/x86-64 computing systems. Our solution overcomes the above depicted limita-
tions by enabling the platform-level software to take back control and to re-evaluate
CPU assignment with very fine grain period (on the order of tens of microseconds).
To achieve this target we designed and developed an ad-hoc timer management Linux
module, which allows for (periodical) control flow variations along any running thread
with no intervention by the chain of kernel-level mechanisms used for supporting Posix
signals, hence leading to minimal run-time overhead. This is achieved by dividing each
operating system tick assigned to the thread into sub-ticks, each one leading to an ex-
ecution flow variation that brings control to a fast priority check routine implemented
at the Time Warp platform level. The latter accesses compact data posted on shared-
memory to determine whether the currently processed event is still the highest priority
one (across those bound to the simulation objects managed by that same thread). In
the negative case, the thread preempts the execution of the current event and switches
to the execution of some higher priority task, according to a fine-grain time-sharing
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Fig. 2. Thread reaction to the injection of higher priority events in our fine-grain time-sharing system.

approach. The time-line of the execution of a thread with our approach is schematized
in Figure 2. Clearly, the higher the frequency of fine-grain ticks’ delivery, the higher
the likelihood of prompt switch to some higher priority task, if any. But the overhead
associated with the management of fine-grain ticks should be anyhow kept to a mini-
mum value. To cope with this issue, we also provide a benchmark program that can be
used to configure the frequency of fine-grain ticks in the target computing platform.

In our proposal, CPU assignment is also re-evaluated right before returning control
back to the application code after the execution of an event has trapped into a platform
level service, either explicitly or because of interception (aimed at making some action
by the application modules reversible). Overall, the return to application code from
platform level execution and the fine-grain ticks are exploited in a synergistic manner
to maximize the opportunities to preempt events if higher priority ones have been
delivered.

Our solution does not create any bias in terms of CPU assignment across threads
running in the Linux system. In fact, the fine-grain tick mechanism we adopt does not
alter the original operating system planning in terms of overall CPU time to be assigned
both to the worker threads running within the Time Warp platform and to any other
thread. This prevents impairing fairness when running our fine-grain time-sharing
Time Warp system on top of a multi-user conventional platform.

Besides the ability to optimize CPU assignment depending on the (dynamic) prior-
ity of the tasks to be performed, our proposal has also the capability to address some
specific liveness problems related to the speculative nature of Time Warp, such as
application-level infinite loops that may arise when reaching a non-admissible state be-
cause of out of order events’ execution [Nicol and Liu 1997]. These loops can be (timely)
broken thanks to our fine-grain time-sharing approach, which can be exploited for
supporting preemptive rollback operations leading to the squash of the non-admissible
state trajectory.

The fine-grain time-sharing Time Warp architecture we have developed has been
integrated within the open source ROOT-Sim package2 (Pellegrini et al. [2011] and
HPDCS Research Group [2012]) and operates in a fully transparent way to the over-
lying application code. Hence, the benefits from it come with no intervention by the
application programmer. We also report experimental data for an assessment of our
proposal, which have been collected by running three different test-bed applications—
the PHOLD benchmark, a data store model and a personal communication system
model—on top of an off-the-shelf 32-core machine.

2Available at http://github.com/HPDCS/ROOT-Sim.
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Fig. 3. Time-sharing Time Warp basics: execution contexts for an individual worker thread.

While presenting our proposal, we assume the reader is already familiar with Time
Warp concepts, and we refer the less familiar readers to, for example, Jefferson [1985]
and Jafer et al. [2013] for background information.

The remainder of this article is structured as follows. The fine-grain time-sharing
Time Warp architecture is presented in Section 2. Experimental data are provided in
Section 3. Related work is discussed in Section 4.

2. THE TIME-SHARING ARCHITECTURE

2.1. Basics

We assume the organization of the Time Warp PDES platform to adhere to the multi-
thread paradigm, which has been recently shown to offer benefits (compared to coun-
terpart implementations based on separate processes) for several aspects, such as the
avoidance of simulation object migrations for well-balanced usage of resources [Vitali
et al. 2012] and optimized data-exchange [Wang et al. 2014]. With this type of organiza-
tion, any subset S of the simulation objects is (temporarily) bound to a specific worker
thread, which is in charge of managing the corresponding event queues—each one
associated with an object—and of CPU-dispatching its bound objects for event process-
ing. Further, all the worker threads share platform level data structures, which plays
a central role in how our fine-grain time-sharing architecture handles the detection of
event priority variations at run-time, as we shall discuss.

The basic organization of our fine-grain time-sharing Time Warp system is schema-
tized in Figure 3. Each simulation object belonging to the set S managed by a given
worker thread has its own execution context (e.g., its own stack). Additionally, a plat-
form context is included, thus each worker thread operates, at any time instant, either
in the context of some simulation object or in platform context. In the real implemen-
tation these contexts, including the switch between them, are managed by relying on
context management functions inspired to classical setjump and longjump functions
provided by the Posix API, whose detailed description is provided in the appendix.

When running in platform context, the worker thread carries out housekeeping tasks,
such as the check for incoming events (anti-events) destined to the simulation objects
it is currently managing, and the actual CPU-dispatch of the simulation objects. The
latter operation takes place according to the Lowest-Timestamp-First (LTF) policy [Lin
and Lazowska 1991], which leads the worker thread to CPU-dispatch the simulation
object (belonging to its bound set S) whose next event to be processed is the one with
the minimum timestamp among the ones already delivered (those already known to
exist).

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 2, Article 10, Publication date: May 2017.



10:6 A. Pellegrini and F. Quaglia

Third-party library functions accessible by the application code (e.g., malloc, free,
and printf) are transparently intercepted via wrapping schemes, which enable run-
ning the corresponding reversible instances supported by the run-time environment,3
conforming to what suggested by a few literature works (see, e.g., Antonacci et al. [2013]
and Rönngren et al. [1996]). The same is true for the case of application transparent
code injection (say, instrumentation) aimed at intercepting memory updates by the ap-
plication code to make them reversible [Pellegrini et al. 2015; West and Panesar 1996].
The injected software brings control to platform level in a manner that is logically
equivalent to the interception of external libraries’ invocations by the application code.
As for this aspect, in our fine-grain time-sharing Time Warp system, reversibility of the
updates occurring within the (dynamically allocated) memory chunks forming the live
state image of the simulation object is achieved by relying on the checkpoint support
offered by the DyMeLoR library [Toccaceli and Quaglia 2008]. In what follows we focus
our discussion on the interception of external libraries, with the implicitly assumption
that the discussion also covers scenarios based on application level instrumentation.
In our time-sharing architecture, each time an external library function is invoked, we
say that the execution switches to platform mode, and then switches back to applica-
tion mode as soon as the function returns. Clearly, when the worker thread operates in
platform context, it also operates in platform mode. On the other hand, when it runs
within the context of some simulation object, it can switch from application to platform
mode multiple times, depending on the interactions between the application code and
the intercepted external libraries. The wrapper that in our proposal encapsulates any
intercepted function has the following structure:

return_type _function_name_wrapper (.. params ..){
return_type ret;
_enter_platform_mode();
ret = function_name_reversible (.. params ..);
_try_leave_platform_mode();
return ret;

}

where the preamble _enter_platform_mode and the tail _try_leave_platform_mode
are macros that set/unset a per-worker thread flag indicating the current running
mode. Further, as we shall discuss, the _try_leave_platform_mode macro is also used
for implementing part of the event preemption logic leading to switch the current
execution context, if needed. This is the reason for the “try” prefix in the macro.

The switch between application and platform mode (and vice versa) occurs in our
architecture not only because of synchronous invocations to intercepted external func-
tions issued by the application level software (when running in the context of some
simulation object). Rather, a timer-interrupt handler operating in user space is used to
bounce control to platform mode periodically. We refer to this handler as extra-tick-
manager given that, as hinted, the time-sharing architecture leads a single operating
system tick interval assigned to a worker thread to be partitioned into multiple fine-
grain tick intervals just leading to extra-ticks hitting that thread. Overall, the state
diagram for any worker thread operating within the fine-grain time-sharing Time Warp
system is the one depicted in Figure 4.

The execution of extra-tick-manager is triggered by the ad-hoc timer management
logic we have embedded within our Linux module, which allows delivering fine-grain

3In our view, reversibility also means that the behavior of the intercepted libraries is guaranteed to be
piece-wise-deterministic, to allow optimized state restore schemes based on infrequent checkpointing and
coasting forward.

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 2, Article 10, Publication date: May 2017.



A Fine-Grain Time-Sharing Time Warp System 10:7

Fig. 4. Worker thread state diagram.

ticks to any worker thread running within the time-sharing Time Warp platform.
The details of the implementation are provided in the appendix. For the abstraction
level of the discussion in the main body of this article, the important point is that a
thread that wishes to be interrupted according to fine-grain ticks needs to register itself
via an ioctl command on the dev_extra_tick device file we support with our Linux
module.

2.2. Run-Time Detection of Priority Variations and Event Preemption Logic

As well known, when CPU-dispatching of the simulation objects in S is carried out by
the worker thread according to the LTF algorithm, priority variations of the currently
executed events (say, a decrease of the priority of the last CPU-dispatched event caused
by the delivery of some event–or anti-event–with a lower timestamp destined to some
object belonging to S) may only arise due to communication between simulation objects
belonging to different subsets, say, S and S′, which are bound to different worker
threads. Consequently, the architectural organization of the communication facility
within the multi-thread Time Warp platform plays a relevant role in the run-time
determination of the priority variation (if any) of the currently processed event.

As hinted, we focus on shared-memory communication, and we consider a sce-
nario conforming to the indications in Vitali et al. [2012], where the exchange of
messages/anti-messages across different worker threads does not take place by di-
rectly incorporating the corresponding information into the destination object event
queue. Rather, messages are exchanged according to a top-half/bottom-half approach
oriented to scalability. In particular, each worker thread manages a set of bottom-half
queues (one for each simulation object belonging to the set S it is currently handling),
such that any other worker thread in the system can notify the presence of new data
to be ultimately incorporated into the destination object’s event queue via the corre-
sponding bottom-half queue. This is done via the execution of a top-half data record
(tail) insertion into the bottom-half queue. Checking whether some new data is present
into a bottom-half queue, and actual processing of the data with (timestamp-ordered)
incorporation into the destination event queue, is carried out exclusively by the worker
thread in charge of (currently) handling the destination object.

In our time-sharing Time Warp system, the above scheme has been extended along
the following lines, to support early detection of priority variations. First, each worker
thread t has been associated with a BH mint record, which represents at any time
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instant the minimum timestamp of a message/anti-message that has been recorded in
any of the bottom-half queues associated with the simulation objects that t is currently
managing, since the last flush operation of these queues. In other words, BH mint rep-
resents the minimum value among the timestamps of data in transit (if any), destined
to some simulation object belonging to the set S handled by t.

This record is initialized to a special macro INFINITE when the worker thread t
accesses its bound bottom-half queues and flushes the data into the corresponding
event queues. Whenever a different worker thread inserts a bottom-half record into
any of the bottom-half queues associated with the simulation objects managed by t, the
reduction BH mint = Min(BH mint, T ) is performed, where T represents the times-
tamp of the message/anti-message that is being placed into the destination bottom-half
queue. In our implementation, this reduction is performed via an atomic Compare-And-
Swap (CAS) instruction. This allows manipulating BH mint while not requiring worker
threads that concurrently access two distinct bottom-half queues associated with t to
execute a conflicting critical section.4

Another record, called current timet, is associated with each worker thread t. It is
used to keep track of the timestamp of the current simulation event, if any, that has
been CPU-dispatched along t—this is the lowest-timestamp event according to LTF. The
value of current timet is set to the special value −1 if thread t is not currently processing
any event, which means that it is running housekeeping operations in platform context.
The values of current timet and BH mint are used in combination to determine whether
some higher priority task (compared to the one currently processed along thread t)
needs to be CPU-dispatched. In particular, the platform level function that executes
the check and determines whether some higher priority task needs to be executed along
thread t, which needs therefore context switch between simulation object and platform
contexts (thus enabling CPU reassignment via platform level actions), is structured as
follows:

void check-and-switch()
1. if (current timet ≤ BH mint)
2. return;
3. else
4. enter platform mode();
5. switch to platform context();

The above structure allows changing the current execution flow along thread t, by
pushing it to platform-context (and also to platform mode, if not already operating with
this mode) if:

(1) The simulation object currently dispatched for event execution along t needs to
rollback, since it is the recipient of a message or an anti-message in its past—
BH mint corresponds to the timestamp of a message/anti-message destined to the
currently running simulation object. In this case the rollback operation will take
place according to a preemptive mode.

(2) Any simulation object belonging to the set S managed by t dynamically gains
a priority higher than that of the currently running one, since it becomes the
recipient of some message or anti-message with a timestamp lower than the one of
the last event that was CPU-dispatched according to LTF. The case of an incoming
anti-message is again representative of a causal inconsistent execution at the

4In fact, each of them needs to temporarily lock a different bottom-half queue for data insertion, which helps
not hampering concurrency [Vitali et al. 2012].
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destination simulation object, given the adopted LTF rule for CPU-dispatching
the events.

In either case, control must return to the Time Warp platform layer, so the higher
priority task (either a rollback operation or not) can be promptly executed. On the
other hand, if no higher priority task needs to be executed, the check-and-switch
function simply returns control back to its caller. Clearly, if the simulation object that
is context-switched off the CPU still runs on a consistent path, the preempted event
will be resumed (with no loss of already performed work) when LTF will again find it
as the highest priority one.

The last aspect to discuss is related to how the check-and-switch function is inte-
grated with the _try_leave_platform_mode macro and with the extra-tick-manager
module. The integration with _try_leave_platform_mode takes place as follows:

try leave platform mode()
1. check-and-switch();
2. leave platform mode(); //reset of the flag indicating platform mode execution
3. return; //regular return from an intercepted function

By the above pseudo-code, the check-and-switch function—which possibly leads
to context-switch off the CPU the currently running simulation object—is invoked
upon the finalization of any external library function that has been intercepted by
the corresponding wrapper and is then executed in platform mode. If the invocation
to check-and-switch in line 1 leads to no switch to platform context, then the flag
indicating whether we are running in application or platform mode is correctly aligned
with the return to application mode.

As for the integration between check-and-switch and the timer-interrupt handling
function extra-tick-manager, we have the following structure:

void extra-tick-manager()
1. if(platform mode)
2. return; //already platform mode running - no control flow variation
3. else
4. check-and-switch(); // do we need an execution flow variation?

If the timer-interrupt handler is activated while already running in platform mode,
then no control flow variation needs to take place. In fact, if platform mode is currently
associated with simulation object context, it means that the check on whether some
higher priority task needs to be CPU-dispatched will be carried out right before re-
turning to application mode via the _try_leave_platform_mode macro. If the current
mode is not the platform one, then the handler triggers check-and-switch to verify
whether higher priority tasks need to be carried out. This may lead to context-switch
the currently processed event (say, the running simulation object) off the CPU.

The check in line 1 and the avoidance of the variation of the current execution flow if
the worker thread is already in platform mode guarantee that whichever platform level
block of code is executed along any worker thread as a non-preemptable action, which is
a fundamental prerequisite. In fact, locks on data structures or memory regions might
be acquired by some worker thread once the application has trapped into platform
mode along that thread, which might be necessary to correctly manage the triggered
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Fig. 5. Management of extra-ticks in the interleave between application and platform code blocks within
an event processing wall-clock-time window.

service (see, e.g., Pellegrini and Quaglia [2015]). Hence, the in place critical section
cannot be context-switched off the CPU.5

A schematization of the behavior of our fine-grain time-sharing Time Warp system in
relation to the delivery of timer-interrupts while already running in platform mode is
provided in Figure 5, where we show the arrival of an extra-tick at wall-clock-time T1,
with consequent activation of the extra-tick-manager. In this scenario, the interrupt
handler simply returns given that at the same time instant the thread was already
running a platform-level reversible version of the printf function, via interception.
However, the check on whether higher priority tasks would need to be dispatched by
preempting the current event is anyhow carried out in our architecture as soon as the
interrupted platform level function will attempt to return to application mode, which
is done via the _try_leave_platfrom_mode macro.

2.3. Overall Configuration of the Time-Sharing Support

By the architectural organization of the event preemption support described in
Section 2.2, in our Time Warp system the platform level software has two different
triggers for context-switching a simulation object off the CPU: (a) timer-interrupts and
(b) returns from platform mode. However, while the returns from platform mode are
intrinsically related to the activities of the application level software (since they are
triggered depending on the interaction between application level modules and the in-
tercepted external libraries), timer-interrupts (and the cost/benefit they induce) depend
on the configuration of the extra-tick interval. The shorter the length of the extra-tick
period, which we denote as �ET , the higher the expected overhead caused by timer-
interrupts. However, shorter �ET values can provide more opportunities for event
preemption and prompt CPU reassignment to higher priority events/tasks, thus likely
improving the effectiveness of the fine-grain time-sharing approach in reducing the
amount of rollback.

To cope with the selection of �ET and to optimize the synergy between the above two
triggers for event preemption, we devise the following scheme. We denote with ̂�ET
the minimum length of the extra-tick interval, which still induces negligible overhead
due to extra-tick delivery. As we shall discuss in Section 3, the value of ̂�ET can be
determined by running an ad-hoc benchmark in the early phase of the installation
of our fine-grain time-sharing Time Warp system. Once determined ̂�ET , synergistic
exploitation of the two different triggers for event preemption is based on the run-time
estimation of (i) the average event granularity for the specific application, which we

5A way to cope with the interruption of platform level code blocks would be to design the platform level
software according to the concept of “safe places,” which characterizes preemptable, for example, real-time,
operating system kernels. However, this type of design is aside of the core focus of our time-sharing proposal.
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refer to as �e, and (ii) the average number of switches to (and then back from) platform
mode while processing an individual event. We recall that these switches (if any) take
place while running in simulation object context (see the state diagram in Figure 4).
We denote such an average number of switches as APMS (Application/Platform Mode
Switches), hence the expression

T = �e

APMS
(1)

represents the average wall-clock-time interval after which the application software
spontaneously provides control back to the platform software while an event processing
phase is in place. In our implementation, the computation of �e and APMS has been
based on the exponential mean of samples. The samples for computing �e are taken
by monitoring, via gettimeofday, the CPU time spent for processing individual events.
The samples for computing APMS are taken by counting the number of times the macro
_leave_platform_mode is executed while processing any individual event.6 Given that,
according to the rules specified in Section 2.2, this already provides opportunities for
CPU reassignment, the combination of the two different triggers for event preemption is
based, in our design, on the relation between T and ̂�ET . Specifically, we dynamically
switch on/off the extra-tick delivery along a thread depending on whether the following
inequality is verified (or not):

T
̂�ET

≥ (1 + α), (2)

where α is a tunable parameter whose value falls in the interval [−1,∞]. If α is
set to the minimum value −1, then the Time Warp worker thread registers itself on
the dev_extra_tick device file, thus being interrupted by the timer each ̂�ET time
units, independently of the simulation objects’ run-time behavior (in terms of switches
between application and platform modes). For α → ∞, Equation (2) would not be
satisfied—except for ̂�ET tending to zero, which is not realistic—leading the Time
Warp worker thread to deregister itself from the dev_extra_tick device file, thus fully
renouncing to be periodically interrupted for possible CPU reassignment.

A baseline setting for α could be represented by the value zero, leading the Time
Warp thread to register itself as one to be extra-ticked with period ̂�ET if the frequency
according to which the execution of an event (taking place in simulation object context)
switches to/from platform mode does not overstep the one of the extra-tick delivery.
However, this setting would lead to reduced opportunities for event preemption if the
switches to/from platform mode were not uniformly distributed along the lifetime of a
simulation event. More conservative values of α, say, in the interval [−1,−0.1], would
likely avoid this phenomenon. With these settings, even if T is less than ̂�ET , meaning
that the execution in simulation object context spontaneously and frequently switches
to platform mode, thus providing opportunity for event preemption, we still retain the
possibility to achieve the same objective via the timer-interrupt scheme, which is done
to avoid having a portion of the event processing interval uncovered by switches to
platform mode.

As a last note, the quantity T in Equation (1) can be estimated at run-time on a
per worker thread basis, so each worker thread can operate its decision on whether
to dynamically register or deregister itself as one to be extra-ticked (depending on
Equation (2)) independently of the other ones. This would allow coping with scenarios

6In the implementation the counter is directly updated by the macro upon its execution.
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Fig. 6. Extra-tick overhead vs. variations of both the extra-tick period and the number of threads.

with simulation objects exhibiting different (heterogeneous) execution profiles, possibly
giving rise to different �e and/or APMS values across the simulation objects’ sets
managed by the different threads.

3. EXPERIMENTAL RESULTS

3.1. Determining ̂�ET

To determine the value of ̂�ET , an ad-hoc benchmark can be run in the early phase
of installation of our fine-gain time-sharing Time Warp system on the target comput-
ing platform. Since PDES engines based on Time Warp are CPU-bound applications
(given the absence of wait/block phases, at least in the presence of tasks/events to
be actually carried out), our ad-hoc benchmark is simply made up by a multi-thread
application, where each thread executes a busy loop of a given duration. We initially
run this benchmark in a baseline configuration with no registration of the threads on
dev_extra_tick, which leads to no extra-tick delivery. Then we run the benchmark
again by registering the threads on dev_extra_tick, thus leading them to be periodi-
cally interrupted by the extra-tick logic. In our case, the target computing platform is
a 32-core 64-bit HP ProLiant NUMA server, equipped with four 2GHz AMD Opteron
6128 processors (each one equipped with 8 CPU-cores) and 64GB of RAM. The operat-
ing system is Linux SUSE, kernel version 3.16.7. We used this same platform for all
the experiments whose outcomes are reported in this section.

In the original configuration of the Linux kernel, the timer was set to issue an inter-
rupt (a tick) each 1ms. When running our benchmark, we experimented with different
values of the extra-tick interval achieved by scaling the original tick by a factor between
2 and 20, leading to experiment with extra-tick periods in the interval between 500 and
50μs. This allowed us to observe how the extra-tick overhead scales versus the length
of the extra-tick period. In our benchmark, the extra-tick handler only increments a
counter of delivered extra-ticks, and then returns control to the interrupted execution
flow. This is aligned with the objectives of this benchmarking phase given that we only
aim at evaluating the cost for delivering extra-ticks, independently of the usefulness
of the delivery (hence independently of any real action to be taken upon extra-tick
arrival). We also varied the number of running threads between 1 and 32, thus study-
ing how the overhead varies versus the amount of threads managed according to the
extra-tick logic.

We show in Figure 6 the inverse ratio between the execution time of the baseline
configuration (no extra-tick), which we roughly report to be on the order of 30s, and
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the execution time achieved with extra-ticks delivered to the application according to
the selected scaling factor. Each sample has been computed as the average over five
different runs of a same configuration; nonetheless, very minimal variation has been
observed among the different sampled values. By the plot we see that the overhead
induced by the extra-tick operating mode is less than 4% even when the scaling factor
of the original tick interval (which we recall is of 1 millisecond) is set to the value 20,
meaning that the extra-tick is delivered with granularity of 50μs. Another interesting
trend is that the overhead appears to be slightly higher when running the benchmark
with larger number of threads. This is due to the slightly increased interference by
common kernel level threads automatically started up by the operating systems (e.g.,
kworker threads), which is naturally induced when the benchmark runs by exploiting
more CPU-cores. In fact, kernel level threads, although not being CPU-bound, lead
anyhow to periodic operating system context switches, which in turn force our extra-
tick management logic to more frequently interact with the timer, in terms of setting
the requested interrupt period (depending on whether a dev_extra_tick registered
thread, or not, is CPU-dispatched by the kernel).

Scaling factors of the original tick lower than the maximum value 20 lead the over-
head by extra-tick delivery to be further reduced, at the expense of reduced opportuni-
ties for timer-interrupt based preemptions in the time-sharing Time Warp systems in
case of adoption of such lower scaling factors. Also, extra-tick interval length of 50μs,
beyond still providing minimal overhead, looks a suited value—in terms of opportu-
nities for preempting an event currently being processed—when considering complex
PDES workloads characterized by event granularity well above the order of a few (or
a few tens of) microseconds. These workloads can be considered as typical targets for
Time Warp synchronization, and more generally for classical PDES methodologies. We
intrinsically target this category of workloads with our fine-grain time-sharing Time
Warp proposal, at least for what concerns timer-interrupt triggered preemptions. On
the other hand, discrete event models with (very) fine grain events spontaneously bring
control back to platform mode (after the CPU-dispatch of some event) in a prompt man-
ner. Hence, they naturally allow the platform to promptly react to priority variations
even when events are processed in non-preemptable manner. Still, for these workloads,
our time-sharing Time Warp system offers the possibility to preempt a CPU-dispatched
simulation object by relying on switches back from platform mode.

Finally, the overhead determined via this benchmark can be considered a worst-case
reference value, since the busy loop run by the threads is not interfered by factors such
as memory access latency (and its variation as a function of locality of the accesses),
which would tend to reduce the relative per-instruction cost of extra-tick delivery.

3.2. Performance Results with the PHOLD Benchmark

In this section, we provide performance data collected by relying on the well-known
PHOLD benchmark [Fujimoto 1990b]. The relevance of using PHOLD lies in that
it entails events that are loosely coupled with the underling Time Warp platform.
In fact, they are simple CPU busy loops, which lead to no invocation of application-
external libraries intercepted by the underlying platform.7 This kind of workload allows
assessing the benefits from our fine-grain time-sharing Time Warp system in scenarios
where preemptions can essentially be triggered by fine-grain timer-interrupts.

In order to improve the representativeness of this study, the PHOLD benchmark
configuration we selected entails three different execution phases having the same
virtual time duration, which we refer to as A, B and C. PHASE-A is lightweight, being
it characterized by event duration of the order of 30μs. PHASE-B is middleweight,

7The only exception is the usage of pseudo-random generators.
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Fig. 7. Results with the PHOLD benchmark.

being it characterized by event granularity of the order of 150μs. Finally, PHASE-C is
heavyweight, since the events have granularity of the order of 300μs. We configured
the benchmark with 2025 simulation objects connected as a bi-dimensional mesh,
which have been equally distributed among 32 worker threads operating in the Time
Warp system. Five events (say, jobs) per simulation object have been inserted in the
system. The jobs are routed randomly among neighbors by scheduling new events
with exponential timestamp increment. This configuration of PHOLD (coupled with
the selected level of parallelism in the underlying platform, say, 32 threads) gave
rise to a speculative execution pattern characterized by infrequent rollbacks undoing
large numbers of events. The overall efficiency (say, the ratio between the number of
committed events, and the total number of processed events, say, committed plus rolled
back) that has been observed in executions with the traditional configuration of the
Time Warp system was on the order of 50%, with minor variations in the different
execution phases.

In Figure 7 we show the execution time of the different phases of the PHOLD bench-
mark for the case of both traditional Time Warp and the time-sharing version.8 Both
these configurations rely on the same core PDES engine, namely ROOT-Sim, within
which the time-sharing support has been integrated. The runs have been carried out
by setting the extra-tick period to 50μs. Also, the parameter α in Equation (2) has
been set to the baseline value zero. This led time-sharing executions to have worker
threads (dynamically) registered on the dev_extra_tick device file along PHASE-B
and PHASE-C, but not along the lightweight PHASE-A. On the other hand, the two
different platform configurations, time-sharing and traditional, were run with either
the dev_extra_tick device file active or not, respectively. Therefore, the execution time
of PHASE-A can help assessing the overhead by the device file logic, in relation to
checking whether a thread that has been CPU-dispatched by the operating system
kernel is a registered one or not, plus the overhead for managing simulation object
contexts.

By the results we see that the time-sharing Time Warp version introduces about
4% overhead during PHASE-A, along which it provides no advantage due to scarce
impact of preemptions, since extra-ticks are not delivered in this phase. However, when
switching to PHASE-B and then to PHASE-C, the time-sharing version allows growing
reduction of the execution time. In particular, the time-sharing Time Warp system

8All the reported samples have been computed as the average over 10 runs.
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Table I. Ratio Between the Efficiency of Traditional Execution
and the Efficiency of Time-sharing Execution

execution phase efficiency of traditional Time Warp
efficiency of time−sharing Time Warp

PHASE-A 1.003
PHASE-B 0.935
PHASE-C 0.917

is between 9% and 11% faster than the traditional one. This happens thanks to the
delivery of extra-ticks during both PHASE-B and PHASE-C, possibly triggering CPU
reassignment to higher priority events/tasks, which leads the time-sharing version to
reduce the amount of wasted computation. In particular, we show in Table I the ratio
between the efficiency of the traditional execution, and the efficiency of the time-sharing
execution in the different phases. By the data, time-sharing Time Warp provides about
7% better efficiency along PHASE-B and about 8% better efficiency along PHASE-C.
This result, in combination with the particular rollback pattern with unfrequent but
long rollbacks, allows for boosting the final performance gain. Such a gain is not only
originated by the reduction of the number of events that are eventually undone but
also by the reduction of rollback management costs, such as the cost for managing
anti-messages, which may not scale linearly, for example, for locality reasons.9

3.3. Performance Results with a Data Store Model

As an alternative workload to PHOLD, in this section we consider a real-world discrete
event model of an in-memory key/value data store system. This type of models has
recently become attractive (e.g., for capacity planning purposes), since real platforms
based on this data storing paradigm have become a first-class technology in modern
(e.g., cloud-based) infrastructures.

We simulated a distributed data store with 64 nodes, each one modeled by a sepa-
rate simulation object, where data are partitioned and the partitions are distributed
across the nodes. Batches of transactional data access requests are delivered to each
node by proper simulation events that are self-generated by the same simulation ob-
ject modeling the node, which are scheduled following an exponential distribution of
their timestamps. The transactions may entail accessing the local partition or remote
partitions, and the access to remote data partitions leads to cross-simulation-object
exchange of simulation events, carrying as payload the set of transactional requests
that require access to the remote partition. The batching factor determines the actual
workload to be simulated, hence the resource requirements for executing the simu-
lation. We have considered two different configurations of this model, a lightweight
configuration characterized by batching factor set to 10 and a heavy one characterized
by batching factor set to 20. The transactional requests within each batch are processed
(in the simulation) by having them managed via a round-robin scheme, resembling the
assignment of real CPU resources in a multi-thread data management system. For the
lightweight configuration, the average CPU requirement for simulating the event deliv-
ering the batch of transactions is of the order of 300μs. Instead, the heavy configuration
has CPU requirement of the order of slightly less than 500μs. One primary objective
of this type of simulation is the determination of the data store performance (e.g., its

9In the configuration of PHOLD we have used, each undone event by a rollback operation requires sending
a corresponding anti-message, which leads to costs for both send and receive tasks, including the cost for
scanning output/input queues of the simulation objects, operations that lead to reduced locality, especially
for longer rollbacks. On the other hand, as the PHOLD benchmark is an application with almost no state,
the checkpoint/restore cost for the data structure representing the state of the simulation objects does not
influence performance significantly vs. variations of the amount of rollback.
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Fig. 8. Results with the data store model.

throughput), while varying the size of data partitions, the transaction access pattern
(which may give rise to aborts depending on the materialization of data conflicts), and
the locality of the accesses to the partitions.

In this study, we still set the extra-tick interval to the value 50μs, while selecting the
most conservative value for the parameter α, which has been set to −1. This choice is
motivated by the fact that this simulation model makes use of dynamic memory allo-
cation/deallocation services for keeping the meta-data representing the transactional
requests. Therefore, it generates a non-negligible amount of interactions with the un-
derlying Time Warp platform, since the dynamic memory services are intercepted to
make them reversible (as hinted, via the DyMeLoR library [Toccaceli and Quaglia
2008]). Since this already gives rise to switches to/from platform mode while process-
ing the events, which provide opportunities for event preemptions, setting α to such
a conservative value allows us to still exploit opportunities for preemptions thanks to
timer-interrupts. In fact, according to Equation (2), with such a conservative value the
worker threads operating in the time-sharing configuration of the Time Warp system
register themselves on the dev_extra_tick device file.

Beyond being focused on a real-world simulation model, this study complements the
one with PHOLD for a few additional aspects. First, this time we varied the degree of
execution parallelism by varying the number of worker threads between 4 and 32. This
has been done to compare traditional and time-sharing executions of the Time Warp
system with different concurrency degrees, which in turn give rise to different amounts
of rollback. Second, the type of interactions among the simulation objects in the data
store model gives rise to a rollback pattern that is opposite to the one observed with
PHOLD. In fact, it is made up by frequent rollback occurrences, each one undoing a
reduced number of events.

We report in Figure 8 (left side) the variation of the efficiency of the simulation run10

while varying the number of worker threads for both traditional and time-sharing
Time Warp systems. When running with low parallelism degree (say, four worker
threads), both the systems show relatively high efficiency, which is slightly less than
70%. The traditional version gives rise to a bit reduced efficiency limited to the case
of the heavy model configuration. However, while scaling up the degree of parallelism,
the efficiency provided by the traditional Time Warp system rapidly degrades, falling
just below 50% when running with 32 worker threads in both heavy and lightweight
model configurations. Instead, the time-sharing version allows keeping the efficiency
value significantly higher, leading to the order of 57% efficiency for the case of 32

10Also for this study we report average values over 10 different samples.
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Fig. 9. Frequency of event preemptions for the heavy data store model—original (left) and varied (right)
memory allocation patterns.

worker threads in both model configurations. Overall, the efficiency provided by the
time-sharing Time Warp system stands up to 14% better than the one provided by
the traditional Time Warp system. This advantage is reflected into a reduction of the
simulation model execution time, as shown in Figure 8 (right side), which improves
when increasing the degree of parallelism. Particularly, when relying on 32 worker
threads the performance gain by the time-sharing Time Warp system is of the order
of 15% for the heavy model configuration and of the order of 11% for the lightweight
model configuration. As compared to PHOLD, this time the advantage provided by the
time-sharing configuration on the side of efficiency does not further boost in terms of
final performance, which is due to the different rollback pattern. With more frequent
rollback occurrences, the time-sharing Time Warp system has improved chances for
early detection of (potential) causality violations. However, the gain by reducing the
overall amount of rollback is essentially due to the avoidance of processing events
that would be eventually undone, rather than to significant reductions of the cost for
managing rollback phases (given that the rollback length is very short). Still, the gain
by the time-sharing version, at the point of maximum parallelism, is significant. Also,
the maximum speedup by the time-sharing Time Warp system compared to sequential
executions of the same data store models has been observed to be of the order of 20.

In Figure 9 we analyze the run-time dynamics of the time-sharing Time Warp system
from a finer grain perspective. In particular, we report the number of event preemp-
tions per wall-clock-time unit triggered either by timer-interrupts or by switches back
from platform mode and the sum of the two (marked as “total” in the plots). On the
left side, we show these data for the case of the original version of the data store model
(heavy configuration), while on the right side we show the values achieved by running
a modified version that is functionally equivalent, but where the instantiation of the
meta-data for simulating the transactional requests does not take place following the
round-robin scheme according to which the advancement of transactions execution is
simulated. Rather, we instantiate these meta-data right upon starting the simulation
phase of the whole batch of transactions. This variant only anticipates the instantiation
operation at the begin of the event that delivers the batch of transactions to be simu-
lated. Hence, differently from the original version, the interaction with the underlying
platform, which intercepts the dynamic memory management requests for instantiat-
ing the meta-data, are much more clustered along the execution phase of simulation
events. By the data in Figure 9, we can see that the amount of preemptions triggered
by timer-interrupts definitely increases in the second configuration, which also shows
a reduction of the incidence of preemptions originated by switches back from platform
mode. However, the important indication that is conveyed by these data is that the total
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Table II. Ratio Between the Execution Times of the Two Tested Configurations
of the Heavy Data Store Model with Time-sharing Time Warp

number of used threads execution time of the original configuration
execution time of the varied configuration

4 0.989
8 0.985

16 0.979
32 0.976

amount of preemptions per wall-clock-time unit is very similar in the two scenarios,
independently of the number of used worker threads. This points out the robustness ac-
cording to which timer-interrupts and switches to/from platform mode can be combined
in complex workloads especially when relying on conservative values of the parameter
α. In fact, by these results we see that the fine-grain time-sharing Time Warp system
does not degrade its ability to early detect priority variations independently of the ac-
tual pattern of interaction between application and platform level software. Also, the
version of the data store model with clustered allocation of meta-data for simulating
the transactional requests has shown execution times very close to the ones observed
for the case of the original version with either traditional or time-sharing configura-
tions of the Time Warp system, which is somehow expected given that no relevant
change in the actual run-time dynamics were induced. Relative performance values
of the two versions of the data store model for the case of time-sharing executions
are shown in Table II. Overall, the ability of our fine-grain time-sharing Time Warp
system to robustly provide opportunities for event preemptions (as shown in Figure 9)
is reflected into performance improvements independently of the interaction pattern
between application and platform software.

3.4. Performance Results with a Personal Communication System Model

As a third alternative workload, in this section we consider a personal communication
system model, namely a real-world application that has already been used in a number
of studies assessing optimizations in PDES platforms (see, e.g., Cingolani et al. [2015]).
In this application, each simulation object models a wireless cell. We selected a total
number of 1,024 cells organized into a hexagonal grid, each one managing 1,000 wire-
less channels, which provide coverage to mobile devices in a squared region. Cells are
modeled in high fidelity, taking into account both interference across different channels
within a same cell and power management upon call setup/handoff according to the re-
sults in Kandukuri and Boyd [2002]. Depending on the selected setup, this application
allows recalculating fading coefficients and actual Signal-to-Interference Ratio (SIR)
on the occurrence of specific events (e.g., the startup of a call) and also periodically (to
account for, for example, changes of weather conditions in the coverage area). Also, the
inter-arrival of calls to mobile devices residing in the coverage area can be configured,
thus leading to different values for the wireless channels’ utilization factor. This, in
its turn, affects both memory and CPU demand by the simulation given that higher
utilization factors lead to the need for keeping more records (stored on dynamically
allocated buffers) for simulating the concurrently active calls in any cell, and also to
more costly operations for scanning and (possibly) updating these records. As a final
preliminary note, the interaction across the different simulation objects takes place
upon the occurrence of a handoff of a mobile device involved in an ongoing communi-
cation, in which case the wireless channel at the source cell is released, and a new one
is attempted to be reserved at the destination cell.

In our experimentation we set the average residual residence time in the current
cell for a mobile device involved in an on-going call to 5min, while the average call
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duration was set to 2min. Both these parameters have been set to follow exponential
distributions. Also, we run this model with three different settings for the channel uti-
lization factor, namely 25%, 50%, and 75%, determined by different call inter-arrival
rates, with balanced workload on all the simulation objects, and with periodic recalcu-
lations of the fading coefficients of active channels. These settings give rise to variations
of the average CPU requirement for simulation events from about 70/80μs to about
150μs.

For this study we still set the extra-tick interval to 50μs and α to the value −1, say,
to its lower bound. With these settings the worker threads operating within the time-
sharing Time Warp system keep on being registered on the dev_extra_tick device file
for the whole lifetime of the simulation in all the tested configurations (say, for any value
of the channel utilization factor). This leads to maximal exploitation of timer-interrupts
for event preemptions. This choice is motivated by the fact that, unlike the data store
model, the processing of an event in the personal communication system model leads
to reduced interactions with platform level reversible implementations of memory
allocation/deallocation services (since the number of buffer allocations/deallocations
per event is much lower than the one characterizing the data store model). Hence,
returns from platform mode can play a reduced role in triggering preemptions. On the
other hand, compared to the data store model, the event processing routine shows a
very different profile, much more based on floating point operations.

For this test-bed application we initially run a modified version, with the aim to
assess the overhead imposed by the core facilities offered by the fine-grain time-sharing
Time-Warp system. These facilities are (i) the support for managing contexts, and
(ii) the delivery of extra-ticks to the PDES platform. This overhead study is someway
complementary to the one associated with PHASE-A of the execution of the PHOLD
benchmark, since in that phase we only assessed the cost for managing contexts. In
fact, during that phase of the execution of PHOLD, the worker threads did not register
themselves on the dev_extra_tick device file, hence no extra-ticks were delivered.

In order to assess the overhead by the aforementioned two facilities we run the
personal communication system model by always enforcing a call to complete with
the same wireless cell where it was originated. In this way, no interaction at all by
the different simulation objects is ever generated, and events are processes by the
worker threads always according to non-decreasing values of their timestamps. In
such a scenario, the delivery of extra-ticks provides no revenue (since the event being
processes will always represent the one with the highest priority bound to a given
worker thread), just like the management of separate simulation object contexts (since
no simulation object will be ever context-switched off the CPU while processing an
event). Also, the absence of rollback in such scenarios allows us to assess the overhead
by the two facilities with no interference by rollback management operations (which
might lead to, e.g., changes in the locality of the execution due to the access to both
checkpoints of the simulation object states and already processed event buffers). In
Figure 10 we report the execution time values11—achieved with 32 worker threads—
when excluding both the management of contexts and the delivery of extra-ticks, or
when including these facilities. The former settings represent the common ones for
Time Warp systems not embedding the support for fine-grain time-sharing execution of
the simulation objects. The reported data show how the overhead by the core facilities
enabling fine-grain time-sharing is very limited, except for 25% channel utilization
factor, case in which it reaches 7%. In fact, as soon as the event granularity (say, the
channel utilization factor) increases, we observe a decrease of the overhead, especially
in relation to the management of contexts. This is somehow expected given that longer

11Still based on the average over 10 runs.
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Fig. 10. Execution time with no cross-simulation-object event scheduling.

Fig. 11. Results with the personal communication system model.

running events lead to reduced frequency of context-switch operations across different
simulation objects over time in scenarios with no preemptions.

In Figure 11 we show execution time results when reintroducing handoff events
across cells, say, cross-simulation-object scheduling of events. With these settings,
the performance gain provided by the fine-grain time-sharing Time Warp system,
compared to the traditional Time Warp execution, increases when increasing the
channel utilization factor. The gain is of the order of 7% for the case of utilization factor
set to 50%, and of the order of 13% when the utilization factor is further increased
up to 75%. For channel utilization factor set to 25% we observe no relevant gain
from time-sharing, just because of the reduced potentiality of extra-ticks exploitation
(given the reduced wall-clock-time required for processing events in this configuration).
This trend is confirmed by data we report in Figure 12, showing the variation of the
amount of event preemptions per execution time unit achieved while running in time-
sharing mode for the different configurations of the channel utilization factor.

For completeness, we also report in Table III the corresponding execution times for
the case of a serial execution of the same identical application code on top of a sequential
scheduler based on the Calendar-Queue data structure [Brown 1988], which allows
determining the speedup of the parallel runs—hence whether the reported data refer
to competitive parallel performance.
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Fig. 12. Number of preemptions per wall-clock-time unit.

Table III. Performance of the Serial Simulator

Channel
Utilization Factor

25% 50% 75%
execution time (sec) 3500 5145 7610

4. RELATED WORK

Approaches Focusing on Performance versus Timer-interrupt Trade-offs. In the wide
area of High Performance Computing (HPC), some literature studies exist on the rela-
tion between performance and timer-interrupt frequency. The common idea underlying
most of the performance optimization proposals is that the lower the timer-interrupt
frequency, the better the final delivered performance [De et al. 2007; Ferreira et al.
2008; Seelam et al. 2010]. The extremism of this approach led to defining tick-less
operating systems—characterized by extremely reduced timer-interrupt frequency—
as the best configuration for hosting HPC applications. However, these studies have
been tailored to the case of non-speculative processing, where the work carried out by
any thread running on whichever CPU-core is ever useful. In this context there is no
need to change the thread execution flow (e.g., periodically) to optimize synchroniza-
tion dynamics in terms of reduction of wasted computation, which is instead a major
objective when dealing with speculative Time Warp systems. Also, the above studies
have been tailored to evaluate the effects of the variation of the timer-interrupt fre-
quency in scenarios where the management of the timer-interrupt is still based on the
native rules applied by the operating system kernel. In other words, the above propos-
als have been aimed at simply configuring the timer-interrupt behavior—limited to its
frequency—in HPC applications, not at introducing ad-hoc software modules for ex-
ploiting timer events, which is instead the approach we followed. In fact, our proposal
puts in place a special (and lightweight) mechanism for handling timer-interrupts.
Overall, our approach is completely different from the one dealt with by those litera-
ture studies, in terms of both reference scenario (speculative versus non-speculative
processing) and architectural impact on the system organization.

In the context of speculative PDES systems, the only work we are aware of that
deals with the relation between performance and timer-interrupt configuration is the
one by Carothers [2002]. Here, the author proposes an approach, which is opposite to
ours, where Time Warp threads are allowed to take CPU control for longer periods
(thus being not interrupted for a while) to be able to fully execute a simulation model
with no interference by other workloads, and to deliver the output in real-time. This
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solution is still along the path of tick-less operating systems, with the difference that
the tick-less behavior is triggered on-demand (namely whenever a time-critical parallel
simulation needs to be executed), hence it is not a static configuration of the underlying
operating system. Our approach is fully orthogonal to this one, because our target is
the reduction of wasted computation, thanks to an appropriate periodic variation of the
control flow along Time Warp threads. Also, while the proposal by Carothers [2002] is
based on reserving the computing capacity for Time Warp programs—thus excluding
the possibility for other tasks to be run on the system for a while—in our approach we
do not create any bias in the usage of the computing system by Time Warp threads and
other kinds of threads. We only allow the Time Warp threads to see their own ticks as
partitioned into sub-intervals (with proper control flow management at the end of each
sub-interval).

Approaches Targeting Preemptive Rollback. Our time-sharing Time Warp proposal
supports preemptive rollback, a topic that has been somehow studied in literature,
mainly in Das et al. [1994] and Santoro and Quaglia [2005]. The solution in Das et al.
[1994] targets parallel simulation on shared-memory machines, and is based on direct
manipulation of the event list of the recipient simulation object by the thread along
which the generation of a new event is handled. With this solution, the sender thread
is able to determine the current simulation time of the recipient simulation object and
whether any message/anti-message being sent to that object violates causality. If this
is the case, then the sender thread notifies the violation to the thread handling the
recipient object, which is done to timely interrupt any in-progress activity to execute
rollback operations. Our solution is different, since it does not rely on cross-thread
signaling. Also, in our approach, any Time Warp thread is allowed to change its cur-
rent flow (and dynamically dispatch a different simulation event, or simulation object,
after preempting the last dispatched one) independently of the materialization of a
causality violation, but rather when any need arises to process a higher priority task,
bound to a simulation object possibly different from the currently running one. This
is done to reduce the likelihood of future rollback generation, not only to react via
preemption to an already materialized causality violation. This is basically due to the
fact that our fine-grain time-sharing Time Warp system is not limited to the support
for preemptive rollback.

As for the preemptive rollback approach in Santoro and Quaglia [2005], it is suited
for distributed memory systems while we deal with shared memory multi-core ma-
chines. Also, it is based on polling, and the polling code to periodically verify causal
consistency of the current event needs to be nested in the application code by the pro-
grammer. Instead, our proposal is fully transparent, and exploits back from platform
mode and timer-interrupt events, rather than polling. Finally, similar to Das et al.
[1994], the solution in Santoro and Quaglia [2005] does not cope with control flow vari-
ations associated with the dynamic generation of higher priority events (namely with
timestamps lower than that of the event being executed along the thread) that do not
directly give rise to a causality violation.

Approaches Based on Operating Systems Concepts. Dual-mode execution in Time
Warp systems, which we exploit in our proposal, has been also investigated in Pellegrini
and Quaglia [2014]. In this proposal, when the worker thread runs in application
mode, only a sub-portion of the whole address space is made accessible, namely the
sub-portion keeping the memory layout of the CPU-dispatched simulation object. Any
access to the state of another object generates a trap that gives control back to the
platform code, which actuates proper thread synchronization mechanisms to allow
cross-state processing of the events. Unlike Pellegrini and Quaglia [2014], the solution
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we present is tailored to variations of the control flow to react to the generation of
higher priority simulation events or tasks (such as rollbacks to be processed). Still, we
retain application transparency just like [Pellegrini and Quaglia 2014].

Our proposal is clearly related to the work in Jefferson et al. [1987], where Time Warp
is instantiated as a special-purpose operating system destined to host discrete event
applications to be executed according to the speculative processing paradigm. The core
difference between what we are presenting and the proposal in Jefferson et al. [1987]
lies in that such an approach uses preemption only in case of causality errors affecting
the currently-dispatched simulation event. Rather, we exploit preemption anytime a
higher priority task needs to be processes, independently of the actual materialization
of causality errors. Thus our solution also tends to anticipate the generation of causality
errors.

Our proposal has also relations with recent approaches based on operating system
scheduling to support virtual time synchronized advancement in emulation/simulation
scenarios (see, e.g., Lamps et al. [2015, 2014] and Yoginath et al. [2012]). These solutions
provide scheduling policies of Linux Containers (LXCs) or Virtual Machines (VMs)
allowing the emulated components to adjust their speed of operation to align it to the
advancement of simulation time. This is typically achieved by scaling up/down the
CPU capacity assigned to the different LXCs or VMs. Our solution is orthogonal to
these approaches, since we do not work at the level of the operating system scheduling
policy. Rather, we customize the operating system management of timer-interrupts—to
deliver them with fine granularity and at low cost to the speculative PDES platform—
in order to enable optimized CPU assignment to multiple simulation objects run on top
of a same thread within a fine-grain time-sharing scheme.

Approaches Directly Targeting the Reduction of Rollback. Given that our core target
is the reduction of the incidence of causality errors, our proposal is naturally related to
literature solutions directly targeting rollback reduction in speculative PDES. We can
roughly classify these works in two main categories: (a) the ones based on balanced
resource usage (see, e.g., Carothers and Fujimoto [2000], Choe and Tropper [1999],
Glazer and Tropper [1993], and Vitali et al. [2012]) and (b) the ones based on bounded
optimism (see, e.g., Dickens et al. [1996] and Srinivasan and Reynolds [1998]). In the
former case, the target is the one of reducing the skew in the advancement of simulation
time at the different simulation objects, which is typically achieved via simulation
objects’ periodical migration (for balanced execution) across the Time Warp worker
threads. These proposals act as long term planners for CPU usage, and do not entail
capabilities of reacting to punctual variations of the priority of the events, as instead
we do via preemptive CPU reassignment. Overall, we can see the two approaches as
orthogonal to each other, hence being ideally combinable. Finally, the solutions based
on bounded optimism opt for artificially delaying the execution of events within the
speculative processing scheme with the aim at increasing the likelihood of performing
useful (not eventually rolled back) work. Some proposal (see, e.g., Srinivasan and
Reynolds [1998]) can even dynamically select per-event delays, thus attempting to
reduce the incidence of rollback on a fine grain basis. We retain this same capability,
but we still fully exploit the available computing power, since we admit truly speculative
preemptive event processing, with no artificial delay. Although different in spirit, we
can still think of these two approaches as orthogonal and potentially usable in synergy.

5. CONCLUSIONS

It is typical that PDES platforms process simulation events in non-preemptive manner.
For the case of Time Warp PDES systems, which exploit speculative processing and
rollback techniques for causality maintenance, a preemptive approach would provide
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the possibility to dynamically reassign the CPU to events (or tasks, such as rollback
operations) standing in the past logical time of the currently processed event. This
would allow for reducing the incidence of causality errors along the speculated execu-
tion path and to more promptly react to the actual generation of the errors. To cope with
this issue, we have presented a fine-grain time-sharing version of a Time Warp system,
which makes systematic use of event preemption just for the purpose of making the
system run, at any time, those events/tasks that are dynamically determined to have
the highest priority—they refer to past logical time values compared to the last CPU-
dispatched ones. Our proposal is targeted at multi-core machines and Linux/x86-64
platforms. We integrated the fine-grain time-sharing Time Warp architecture, includ-
ing the ad-hoc Linux module supporting timer-interrupt based preemptions, within
an open source speculative PDES platform. Further, we have reported experimental
data supporting the effectiveness of our proposal. Indications on how to configure the
presented fine-grain time-sharing Time Warp system, in relation to core parameters
driving its internal logic, have also been provided, which should favor fruitful usage of
our solution with workloads aside the ones used in our experiments.
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