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ABSTRACT

The adoption of cloud computing has increased over the years due to its pay-as-you-go model. The other im-
portant feature that cloud provides is scalability achieved through virtualization. The dynamic burst of users
is served through virtual machines. The cloud data center comprises of pool of commodity hardware sys-
tems used to provide computing capacity on request. The use of commodity hardware increases the failure
rate. Therefore, the execution of Parallel Discrete Event Simulation (PDES) over fragile cloud environment
can lead to erroneous simulation results. Moreover, simply replacing faulty VMs is not the possible solution
for PDES. In this paper, we exploit the execution of PDES codes over cloud environment and propose a
fault resilient framework that dynamically handles the VM failure without restarting the entire simulation.
Our benchmarking results demonstrate the effectiveness of the proposed protocol, compared with the widely
used and traditional PDES protocol i.e. Time Warp.
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1 INTRODUCTION

Cloud computing enhances the concept of utility computing by providing services over the network. The
cloud computing adoption has increased very rapidly, IBM created first cloud computing center at WuXi,
China (Shuai, Shufen, Xuebin, and Xiuzhen 2010). The on demand provisioning of resources, attracts var-
ious applications especially computing intensive internet applications such as Facebook and Twitter (Lin-
quan, Chuan, Zongpeng, Chuanxiong, C, and M 2013) (Pandey, Linlin, Guru, and Buyya 2010). However,
the execution of Parallel Discrete Event Simulation (PDES) over a cloud environment has relatively been
less explored. Inside a cloud, the workloads are handled through Virtual Machines (VMs). The cloud infras-
tructure dynamically manages users request and scales the resources accordingly through VMs. The VMs
are prone to fail during execution (Jielong, Jian, Kwait, Weiyi, and Guoliang 2012). Although VMs are
copies of each other but under certain circumstances VM can crash, reboot or hardware/ software failure can
occur. In general, the cloud provides computing utility. Therefore, cloud users expect smooth and reliable
execution of their tasks irrespective of fluctuating workloads or any other failures within the clouds.

Typically, cloud manages VM failures by keeping spare VMs that are then added to facilitate users. However,
such a solution does not favor the execution of the PDES codes. The typical design of a PDES comprises
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of thousands of processes executing over number of systems (Jafer, Liu, and Wainer 2012). The processes
communicate with each other through messages. The messages are time stamped, and must be processed
in increasing timestamp order. Therefore, each of the process maintains a local data structure to handle
out of order execution. As a result, simply replacing faulty VMs with the new VMs are not desirable.
Alternatively, running the PDES codes over a cloud environment can lead to a restart of entire simulation
model. Therefore, such a mechanism would increase the execution time and add to the utility to be paid by
the cloud end users (Begum and Khan 2011). As per our literature review, limited work exists that focuses
on the execution of PDES over a cloud environment, but no work has been done to cover the VM failures.
This paper presents a fault resilient protocol that handles the VM failure during execution of discrete event
simulation over a cloud environment.

The reminder of the paper is organized as follows: Section 2 provides the necessary background information
on PDES. The related work is discussed in Section 3. This is followed by our proposed framework in Section
4. In Section 5, we present the in-depth analysis of the proposed framework and compared with traditional
Time Warp. Finally, we concluded the work in Section 6.

2 PARALLEL DISCRETE EVENT SIMULATION

In the simulation domain, the term simulation is categorized into continuous and discrete event simulations
(Fujimoto 2000). In continuous event simulation, the processes states are changed over the span of time;
whereas the discrete event simulation is based on events generated at random intervals of time. The PDES
paradigm is getting popularity among researchers due to its computational model that reduces the execution
time as compared to the traditional sequential simulations. The PDES runs simulation in parallel over
distributed systems (Fujimoto 2000). In the PDES, the tasks are divided into small units that are assigned to
various processes executing on different or the same nodes. These processes are termed as Logical Processes
(LPs). Each of the nodes holds multiple LPs to improve the system utilization and performance (Malik, Park,
and Fujimoto 2010). The LPs communicate with each other by exchanging small size, time stamped Event
Messages (Mg). The PDES is a collection of the logical processes distributed across network to efficiently
utilize parallel execution. The typical execution of the PDES requires that each of the LP to store the receive
events in its Input Queue (Ip) for execution.

These events are executed based on the receive or timestamp order. In the receive order execution, events
are executed in the order they are received; whereas, in the timestamp order, messages are executed in non-
decreasing timestamp order. In the time stamped execution, messages are stored at the destination LP from
where the smallest timestamp event is processed. Traditionally, there is a one to one relationship between
the LP and the computing node. That is to say that, only a single LP resides on a machine; however, to
utilize the parallel execution, a number of LPs are mapped to a single system and the outgoing messages
are aggregated (Park and Fujimoto 2006). The LPs mapped on a single node, shares the Ip; whereas the
other data structures along with local time are managed locally at each of the LP. The main objective of the
PDES is to utilize the parallel computing power to execute the LPs. In the PDES, the most challenging task
is to produce the same results as produced by a sequential execution of the model. Therefore to achieve
accurate results, higher synchronization is required among the LPs. In parallel simulation, synchronization
is violated, if an LP received a message with timestamp smaller than its logical time. Therefore, to produce
correct results, each of the LP must follow the Local Causality Constraint (LCC), where LCC is defined as
processing of events in non-decreasing time stamp order (Wentong and Turner 2003).

Over the years, different techniques have been proposed to meet the LCC requirement. These techniques
falls in two major classes: conservative or optimistic. The conservative approach, avoids the processing of
the events until it is declared safe; whereas, optimistic simulation allows the LCC violation. However, a
rollback mechanism is provided for recovery (Chandy and Misra 1981)(Jefferson 1985).
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3 LITERATURE REVIEW

As discussed in section 1, no work exists that address the issues of VM failure while optimistic simulation
is being executed over cloud environment. In recent efforts (Mancini, Wainer, Al-Zoubi, and Dalle 2012)
(Al-Zoubi and Wainer 2010), cloud is used to host services that are responsible for the distributing tasks
among smart phone nodes. The approach is adopted to simulate the master worker paradigm and utilizes the
computing power available on the smart phones.

In an other instance Malik et al. noted in (Malik, Park, and Fujimoto 2010) that frequent rollback occurs due
to the extra delay caused by the VM layer over the cloud environment. The authors developed a Time Warp
Straggler Message Identification Protocol (TW-SMIP) to handle the frequent rollback issues by dynamically
defining a barrier synchronization mechanism at each of the LP. In a similar work, Fujimoto et al. (Fujimoto,
Malik, and Park 2010) suggested a master worker approach that aggregates the messages destined to same
LP to efficiently utilize the available cloud bandwidth.

Aguilar et al. (Aguilar and Hernandez 2000) presented a fault tolerance protocol for parallel task execution
by defining a buddy process . Each time a task is assigned to a process, a copy is send to a buddy process to
handle the process failure. If the primary process fails, then the copies of the task on the buddy process are
utilized. This is designed to handle process failure for parallel execution, but it generate a large amount of
messages that are not even processed in the best case scenario. Therefore, such an approach is infeasible for
the cloud environment as it requires a buddy process of each of the LP, due to which execution of thousands
of LPs requires the same number of buddy processes. Agrawal and Agre (Agrawal and Agre 1992) presented
an interesting approach to recover from the process failure by gathering generated messages from all of
the other processes. Although the approach presented is quite effective but it is not designed for cloud
environment.

Srikanth B et. at. (Srikanth and Kalyan 2015) has presented the challenges of executing PDES codes over
cloud envirnoment. The challenges arises due to VM technologies and other scheduling policies that are
not designed for PDES applications. So, they proposed a deadlock-free scheduling algorithm, tested on the
Amazon EC2.

The area of PDES execution over cloud has relatively been less explored. The next section contains the
detailed description of the proposed framework that handles the VM failure and continues the simulation
execution without interruption.

4 PROPOSED FAULT RESILIENT FRAMEWORK

In this section we discuss the fault resilient framework that is design to handle VM failure during execution
of PDES codes. The proposed framework cater VM failures without interruptions. In our proposed
framework, we made the following assumptions:

a. The communication channel is reliable
b. Balanced distribution of the LPs on the VMs and
c. Super Process (S,) reside on actual host instead of the VM (role of super process is define below)

In the proposed framework, one of the logical process, acts as a super process (S,) and a pool of
VMs are kept separately (as shown in Figurel), that are used to replace the faulty VMs during the execution
of the PDES. The pool of the VMs are maintained to handle the multiple failures during the execution. Each
VM holds the same number of logical processes. We assume that the communication channel between the
nodes are reliable. Therefore, the messages eventually delivered to the destination node. In our proposed
framework, each of the LP sends its states to the S, right after every Global Virtual Time (GVT) calculation
phase. The framework locally maintains a snapshot of the Iy along with the generated event list. However,
running an optimistic simulation over a cloud environment demands a new GVT algorithm due to additional
delays added by the VMs and other scheduling policies used inside data center (Srikanth and Kalyan 2015),
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but in this study, we use the cut based GVT algorithm for fossil collection (Mattern 1993).
Our objective is to handle VM failures in such a way that PDES continues its execution without restarting
the entire simulation. In this regard, following notations has been defined that is used in rest of the sections.

VM, VM,...VM,
LP,,LP,....LP,
C1,C2....Cok

where VM represents the Virtual Machines, LP represents the Logical Processes and C, represents the
coordinating process. Each VM holds multiple LPs and one of the LP is designated as coordinating process
(C)). We can define tuple as:

<VM;, (LPl,Lpz, ...LPj),Crk >

In proposed framework, six types messages can be generated by an LP. The messages are notated as:
M; =< Mg,Mp,Mg,Ms, Mup,Mpr >

Where

ME represents time stamped event message

My represents anti-message

Mg represents Global Virtual Time (GVT) message

Mg represents state info message

My represents heartbeat message and

Mpr represents the messages that contains process table information

In the framework, the VM failure is identified through the missing consecutive heartbeat (Myp) of
messages. At each of the VM, a process with the smallest ID is designated as the coordinating process (C,),
responsible for generating the Myp messages after some interval of time that is destined to the S,. The
selection of coordinating process at each VM is done only once at the time of the simulation initialization.
Initially all of the LPs form a virtual ring, S, initiate a token that moves between processes. The purpose of
this token is to find the location of process at each of the VM. The structure of this token is given below:

TOkenmessage = CeolorsSid, Dia,table < uid,,, uidlp >

Figure 1: VM Pooling

Where S;d represents the source process identifier, D;d represents the destination process identifier,
table < uid,,,uid;p > is used to find the smallest process identification on each VM. The C,,, is a
single bit field, used to differentiate between the various phases of the process i.e. coordinator selection
or coordinator information dissemination. The selection of the coordinating process is a two phase
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Figure 2: The process table a). With initial values b). After VM placement

process. Initially the color bit is set to zero and the token is moved from one LP to another. The token
moves through all the LP hosted on VMs. The framework is implemented using the Message Passing
Interface (MPI). Therefore, the next node is determined by adding 1 to its own process identification number.

On receiving a token, each of the LP performs a look up to its VM unique identification and com-
pare to the logical process identification (ID). If the value is greater than its process ID, the LP replaces the
value with its own ID in the token ring and forward to next process. The process continue until the token
reaches the §),, where the S, set the color bit to 1 and the token is again disseminated to inform all LPs
about their coordinating process. The coordinating process is responsible for sending Myp messages to the
Sp. The selection of the coordinating process is critical as it reduces the bandwidth consumption inside the
cloud. Otherwise, all processes have to send the Myp messages, and thus overburdens the communication
network and increase the overall cost.

Along with the required data structure mentioned previously, each of the LP maintains a Process Table (Pr)
that is used to send the messages to the other processes. The concept of Py is similar to the routing table
that handles the route failure by changing the next hop address. Similarly, in our proposed framework,
the S, notify about the VM failure to other LPs and send the updated Pr entry, as shown in Figure 2.
Initially, the Pr is shown in Figure 2a; whereas after the failure, the faulty VM is replaced with another
VM available from the pool. After replacing the faulty VM, process ID’s are updated in the process table,
as shown in Figure 2b. That is to say that LP3, LP, are replaced with LP39 and LPj5 respectively, before
sending message to any LP, process performs a lookup operation on its Pr and returned ID is used as the
destination node. The complete execution is shown in Figure 3. The failure is identify through multiple lost
of Myp messages, the Sp select a VM from available pool of VMs, share the states of failed VM with the
new selected VM and instruct all the VMs to restart its execution to previous GVT value and resend the
messages whose timestamp is greater than the previously calculated GVT value.

At the time of recovery it is important to cater all the received or transient messages. As depicted in Figure
4 the left portion shows a scenario where message is send before and received after GVT calculation phase.
At the time of rollback to previous GVT state to cater faulty VM, such event messages can be missed out.
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Figure 3: The proposed algorithm on timeline
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Figure 4: Two critical cases a) Left section: event message send before and received after GVT calculation
b). right portion: destination process fail. The proposed framework handles such cases.

Therefore, in our proposed scheme, we incorporated an extra field inside every message that includes the
last calculated GVT value. In this way our proposed framework determine the messages generated phase;
in case of rollback to previous GVT value, the processes does not discard such events that are send before
GVT phase. Moreover, the right portion of Figure 4 shows the a special scenario where destination process
fails; such situation is handled through acknowledgement. At the time of rollback to previous GVT value,
all events send before GVT must be acknowledged by the destination process, otherwise source process
resend before marching forward. Similarly, multiple transmission of same messages are identified through
seq. no. and discarded at destination process.

5 PERFORMANCE AND COMPARATIVE ANALYSIS

In this section, we analyzed the proposed framework in terms of the VM failure detection, replacement and
the number of Myp generated. We used the benchmark application model described in (Madisetti et al,
1993). The benchmark simulates the characteristics of load sharing in power grids. In the simulation model,
the messages generated by each of the source can be categorized into self and propagating messages. The
messages generated by source to itself are termed as self-messages and messages sent to other LPs are called
propagating messages. Both of these messages are sent with increment in the timestamp (localjye + look —
a — head). The electric power grid exhibits such behavior where load sharing requests are generated and
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propagated to other stations. In the simulation, on receiving each LP generates a propagating message with
a probability 0.5; otherwise, the LP sends a self-message. In case of the propagating message, neighbor
node is randomly selected.

To analyze the proposed framework, an optimistic simulation protocol Time Warp is used to benchmark
the proposed framework and series of experiments are performed on 64 VMs, and the results are obtained
by varying the number of the VM failures. The proposed framework is based on an optimistic simulation
protocol; therefore, we have also measured the total events generated, number of event rollback, and the
event rate. Figure 5 shows the proposed framework behaves like traditional TW when no VM failure occurs.
We analyzed the framework by varying the number of VM failures. The Figure 6 clearly shows that the
number of the total events generated decreases with the number of VM failures. This is because the proposed
framework discards the events and restores the states that are at the time of the previous GVT calculation.
As the VM failure increases the number of events generated, rollback and event rate decreases. Similarly,
the events dropped at other LPs due to VM recovery phase is increased with VM failures but after couple of
reading it has been observed the rate stabilized. As cloud provides computing infrastructure as a utility, so
more synchronization messages means more cost that user has to pay; therefore, we measured the number of
messages that traversed the network to keep the Sp up-to-date. Figure 7, shows the number of Mgz messages
generated on different VMs.

Events (Millicns)
na
+

Y] 5 10 15 20 25 30 35
Number of VM Failure

Figure 5: The proposed framework event analysis over VM failure

Figure 7 shows that the more the number of VMs participated in the simulation the more messages are
traverse the network to update Sp, whereas, HB message rate plays a significant role in reducing control
messages but at the same time, higher HB rate caused delay in VM failure detection. Figure 8 shows the
efficiency comparison by varying the number of VM failures. This shows the efficiency gradually decreased
as more VMs failure occur. With no VM failure, the efficiency achieved is 80 percent and with 32 VM
failures, the efficiency decreased to approximately 30 percent.

6 CONCLUSION

In this paper, we proposed a fault resilient framework that dynamically handles VMs failure inside the
cloud environment. The VM failure affects the entire simulation and lead to restarting the entire simulation.
That is not acceptable under complex simulation scenarios, especially executing over the cloud environment
that is based on pay-per-use model. The restart process simple means more cloud usage and result in
over budgeting. Our proposed fault resilient framework is based on state saving at the Sp and snapshots of
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Figure 6: Packet drop due to VM failure.
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Figure 7: HB generated by varying VMs

processed event list locally, after every GVT calculation. The experimental section showed that the overhead
is compared to restarting the entire simulation.
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