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Abstract

Existing studies of priority queue implementations often focus on improving canonical
operations such as insert and deleteMin, while sacrificing design simplicity and pre-
dictable worst-case latency. Design simplicity is sacrificed as the algorithm becomes more
and more optimized, taking into account characteristics of the input workload distribution.
Predictable worst-case latency is sacrificed when operations such as memory allocation and
structural re-organization are deferred until absolutely necessary. While these techniques
often yield performance improvement to some degree, it is possible to take a step back and
ask a more basic question: is it possible to achieve similar performance while retaining
a simple design? By combining techniques such as hierarchical bit-vector and dynamic
horizon resizing, all of which are straight-forward in principle, this thesis presents a new
priority queue design called FlexQueue, that answers this question with a definitive “yes”.
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Chapter 1

Introduction

A priority queue is a data structure that manages a set of key-value pairs, in a way
that allows efficient retrieval of the value associated with the smallest key. It is used in
many different fields including runtime timer management, discrete event simulation, and
memory allocation. In all cases, the efficiency of this data structure is crucial as it is often
the most accessed structure in the system [23]. The need for a high performance priority
queue thus drives numerous design proposals published over the last few decades.

Among these proposals roughly two research directions can be identified. The first
line of research focuses on improving the theoretical bound of canonical operations, such
as insert and deleteMin, which includes tree-based algorithms such as skew heap, bi-
nomial heap, and Fibonacci heap. The second direction of research takes into account
the characteristics of the input workload and uses this information to dynamically ad-
just the internal structure. Algorithms in this category often achieve O(1) or amortized
O(1) cost for insert and deleteMin in practice and are generally list-based, such as the
two-list procedure [11], timing wheel [57], and calendar queue [19]. However, while im-
proved performance is appreciated, it often comes with trade-offs in terms of complexity
and predictability. Novel but complicated design is typically introduced when a heuristic
is made better at estimating workload characteristics, and predictability is sacrificed when
memory allocation and self-adjustments, in response to a skewed input distribution, are
deferred to an unknown point of time in the future. Some of these trade-offs may be more
favourable to one type of application than others. For example, in a scheduler for a hard
real-time system, a predictable worst-case latency is extremely valuable as this guarantees
that operations can be completed within a stringent timeline. In contrast, applications
like discrete event simulation can work with amortized complexity and a more relaxed
worst-case requirement.

1



This thesis presents an overview of existing priority queue implementations and dis-
cusses their strengths and weaknesses in various applications. Moreover, a different trade-
off of complexity and performance is explored through the development and evaluation of
a new priority queue design called FlexQueue that performs on par with state-of-the-art
implementations, while using only a straightforward heuristic and not requiring dynamic
memory allocation. This is especially useful, for example, in an operating system kernel or
a runtime system. In these systems, intrusive data structures are common because insert

and deleteMin operations do not result in memory allocation or release. To evaluate the
performance of FlexQueue, it is benchmarked against several popular tree-based and list-
based implementations using the classic hold model with piece-wise distribution, normal
distribution, and triangular distribution. Results show that FlexQueue outperforms sev-
eral tree-based implementations including Fibonacci heap and red-black tree. Finally, this
thesis modifies a popular network simulator, ns3, and replaces its priority queue structure
with FlexQueue. A simulator such as ns3 represents a scenario for which FlexQueue is not
optimized because dynamic memory allocation is implied by ns3’s source code interface,
and amortized overhead is acceptable. Therefore, good performance in this case indicates
that FlexQueue is also suitable for more restricted scenarios, for example, when being used
inside an operating system kernel.

1.1 Problem Statement

If P is a priority queue, then at minimum the following operations are defined:

• insert(P, k, v) Adds the key-value pair (k, v) to P .

• deleteMin(P) Returns and deletes the key-value pair with the smallest key.

• delete(P, k) If k exists in P , then remove it and its associated value.

In addition to the above, extra operations are defined for priority queues that are
used in solving problems such as Dikjstra’s shortest path algorithm [26] [30] and minimum
spanning tree [53].

• decreaseKey(P, k, k′) If key k exists in P , then modify it to k′. This is functionally
equivalent to delete followed by a insert and does not change the associated value.
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• merge(P1,P2) Returns a new priority queue containing all elements from both P1

and P2. This is functionally equivalent to a sequence of alternating deleteMin and
insert.

Note that although these compound operations can be implemented using the three
basic primitives above, certain designs are more efficient at supporting them. That is,
decreaseKey can be more efficient compared to a delete followed by an insert. For this
thesis, the primary target scenario is runtime systems in which these operations are not
relevant. Therefore, the priority queue design needs to focus only on the basic operations.

As previously mentioned, there are two important trade-offs to consider when designing
a priority queue: complexity and predictability. Complexity can be traded for better
performance but this trade-off is often not proportional. That is, it can be questionable
whether a marginal reduction in time complexity is worth the additional effort required to
implement it correctly. There are simple tree-based data structures that offer worst-case
complexity of O(lg n), while more sophisticated designs can achieve O(lg lg n) or amortized
O(1) time complexity. The proposed priority queue should thus strike a balance between
the two, while ensuring worst case is at least O(lg n). On the other hand, predictability
can be traded for better memory utilization. With dynamic memory allocation, only
the minimum amount of memory is required to manage queue objects. However, the
assumption that memory allocation is O(1) is not always true or reasonable. For example,
a system can always run out of memory causing system calls such as mmap to fail. Therefore,
it can be desirable for the priority queue to allocate required memory ahead of time,
while making use of intrusive data structures to eliminate the need for dynamic memory
allocation during operations.

The rest of the thesis is organized as follows. Chapter 2 gives an overview of the past
research efforts on priority queues and identifies the primary competitors of FlexQueue.
Chapter 3 details the design of FlexQueue and the rationale of the choices involved. Chap-
ter 4 presents the experimental setup and evaluation of design. Chapter 5 concludes the
thesis.
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Chapter 2

Background and Related Work

2.1 Priority Queue and Sorting

The problems of designing an efficient priority queue and sorting integers have received
similar treatment in the early literature. In both cases, there is a need to manage a totally
ordered set of elements. As a result, solutions to these problems are often very similar.
For example, every priority queue can also be used for sorting, by first calling a sequence
of insert operations followed by a sequence of deleteMin operations. If the priority
queue supports both insert and deleteMin in O(lg n) time, this method results in an
O(n lg n) time sorting algorithm. More recently, Thorup [54] also proved the opposite:
that a sorting algorithm with complexity O(f(n)) implies that there is a priority queue

with O(f(n)
n

) insert and deleteMin. In fact, early priority queue designs such as the
binary heap [62] are originally proposed as a sorting algorithm.

However, despite the homogeneity in pure mathematical terms, there has been no
recent priority queue design that starts by building an efficient sorting algorithm, because
differences remain between the two problems. In a sorting problem, the data to be processed
are often available offline. That is, the problem input is known. A highly optimized sorting
algorithm can therefore take advantage of this complete knowledge, and for example apply
the median of medians method [13] for pivot selection used in QuickSort. On the other
hand, the operations of a priority queue are similar to those of an online sorting algorithm,
where the data structure must be able to operate efficiently under incomplete knowledge.
Furthermore, the output of a sorting algorithm is required to be a list of ordered elements,
whereas a priority queue does not necessarily maintain total order on every element at
all times. Since the primary operations are insert and deleteMin, only the largest or
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smallest element needs to be readily available. Furthermore, many results in Word-RAM
sorting, including Thorup’s, introduce hidden constants that are not immediately obvious
at a glance. These hidden constants often prevent the theoretical superior techniques from
running well in practice.

As a result of such distinctions, studies on these problems became largely independent
and research efforts began to diverge. On the one hand, there are continued improvements
to the original priority queue design, which focus on the theoretical cost of those primary
operations. On the other hand, more recent proposals improve the efficiency by taking
advantage of external information, such as knowledge of the input workload.

2.2 Improving the Theoretical Bound

One direction of research into priority queues focuses on general algorithms. That is,
algorithms that make no assumption about the types of elements or the system in which
they are used. Floyd presents Treesort as “Algorithm 113” [27], that uses O(2n) space to
sort n elements. This algorithm is essentially a tournament tree that is able to find the
largest or smallest elements in N−1 comparisons. In this tree, elements are compared pair-
wise to determine a “winner”, and winners are compared pair-wise repeatedly until one
element remains. From this idea, William proposes an implicit version of the tournament
tree, known as binary heap [62], as the first priority queue implementation that supports
insert and deleteMin. This uses a single n-component array A to store n elements and
both operations maintain heap order. That is, A[i] ≤ A[2i] and A[i] ≤ A[2i + 1] for all
0 ≤ i ≤ n − 1. It can be shown that both insert and deleteMin on the binary heap
are O(lg n) in the worst case, because any out-of-order element A[j] needs at most O(lg j)
swaps with a parent element to restore heap order.

This worst-case bound of O(lg n) has been improved repeatedly by different researchers.
For example, Carlson [20] modifies the implicit heap structure resulting in O(1) insert,
while deleteMin is still O(lg n). The idea builds on the binomial heap [60] in which
elements are organized in a forest of trees that are powers of two in size, and two trees in
the forest can be merged in constant time if their height is the same.

As mentioned before, any priority queue implementation can be used for sorting by
first inserting all elements, and then repeatedly calling deleteMin. This implies that a
generic priority queue has the same theoretical lower bound as comparison-based sorting
algorithms. That is, it is not possible to obtain a better lower bound than O(lg n) for
insert and deleteMin combined. As such, there is an increased interest in optimizing
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other priority queue operations, such as merge and decreaseKey. A basic binary heap
design has the disadvantage that a straightforward merge still takes O(n) time. This is
improved to O(lg n) by Crane with the leftist heap [25] by maintaining extra rank informa-
tion about each node and its distance to the nearest leaf node. The previously mentioned
binomial heap reduces the space usage of leftist heap, since it no longer needs to maintain
the same rank information, while achieving amortized O(1) insert. Skew heap [50] is later
introduced as a self-adjusting leftist heap, and proves that merge can be executed in amor-
tized constant time as well. Note that in this case, self-adjusting simply means that the
heap itself does not maintain balance information like the leftist heap. Instead, the heap
is modified each time it is accessed to maintain balance. Thus, the strength of the skew
heap is its amortized cost and not the worst-case cost.

Fredman notes the importance of decreaseKey in algorithms such as Dijkstra’s single
source shortest path. The Fibonacci heap [30] is then presented as a solution that supports
decreaseKey in amortized constant time, improving the solution for the shortest path
problem to O(n lg n+m), where m is the number of edges. Other standard priority queue
operations such as insert and deleteMin are also supported in amortized O(1) and O(lg n)
time, respectively.

So far, those tree-based algorithms do not inherently require dynamic memory allo-
cation, since the metadata of a node can be stored alongside its data using an intrusive
data structure. However, they bring increasing complexity as a result of optimizing for
the general case. In addition, at least one of deleteMin and insert still takes O(lg n)
time on average, which is unfavourable for workloads that contain approximately an equal
proportion of insert and deleteMin operations.

More recent priority queues begin to make assumptions about the context of the prob-
lem. In discrete event simulation, the pending event set contains events that must occur at
a specific time in the future. As simulation progresses, these events are removed from the
set in temporal order. In this context, keys can be assumed to be non-negative integers that
represent the amount of simulation time elapsed since the beginning of the simulation. For
example, the van Emde Boas (vEB) tree [14] takes advantage of this assumption, resulting
in insert and deleteMin in O(lg lgN) time, where N is the size of the key universe. This
is accomplished by recursively dividing the universe N into children of size

√
n. This is a

significant improvement over previous results that do not make such assumptions. Johnson
[35] builds on this using a non-recursive approach resulting in a O(lg lgD) bound, where
D is the difference between the smallest and the largest item in the queue. The same
idea is used by Anderson to improve radix sort [4]. Thorup [54] modifies this idea again
achieving a priority queue that supports deleteMin and insert in O(lg lg n) time while
using O(n2εw) space, where n is the number for keys and w is the maximum number of
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bits of each key. However, a downside of the vEB tree and its derivatives is that they
also require space proportional to the size of the universe N . This O(N) space complexity
can be improved to O(n) if hashing is used, allocating a sub-tree for a child only when
an element belonging to that sub-tree is first inserted. However, this approach once again
requires dynamic memory allocation.

2.3 Timing Wheel and Array-Based Designs

With the advent of data structures like the vEB tree, there has been a shift in research
efforts into more specific designs. In comparison to previous tree-based algorithms, those
designed for specific applications can make more assumptions that are otherwise impossible.
One such assumption is that time is discrete rather than continuous. In other words, time
is always represented as an integer. The unit of the integer is typically 1 ns on a modern
operating system such as GNU/Linux.

Under these assumptions, Varghese proposes the timing wheel [57] using a fixed-size
array of list pointers. Each pointer A[i] in the array points to a linked list of timers that
are due i− i0 time units in the future, where i0 represents the current time. Suppose the
size of this array is n, and if there is an event that is more than n time units away, then this
event is not stored in the array but in a separate sorted linked list. Note that there is no
need to sort each A[i] because by definition, all events in a list are due at the same time. In
this context, deleteMin is less relevant because it is also assumed that each element in the
array corresponds to a periodic timer tick, which the operating system must already spend
some CPU cycles on bookkeeping. Therefore, it is not useful to be able to look ahead and
find an event that is not due immediately. Hence, the timing wheel simply increments i,
and processes the list that A[i] points to, if any. This results in a constant time insert

operation, without amortization.

Brown [19] extends this concept with the calendar queue. Instead of letting A[i] rep-
resent a single time unit, it can now represent an interval, u, of time units. Effectively,
the universe of n future events is partitioned into m < n lists, each of these m lists corre-
sponds to an element in A and is known as a bucket. This implies that within a bucket,
all events have similar but not necessarily identical timestamps. Thus, there is a choice of
implementing the bucket as either a sorted or unsorted list. A sorted bucket means that
events are dequeued in the same order as a timing wheel. An unsorted bucket such as a
FIFO list means that for each event dequeued at time t, the next event can be up to u
time units before or after t, introducing an error proportional to u. Furthermore, the size
of A or the number of buckets can be dynamically adjusted as well. In order to limit the
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maximum number of events that can be stored in a single bucket, the following method is
used:

1. Initially there are two buckets, and u = 1.

2. If the total number of events is more than twice the size of A, i.e. the number of
buckets, then create a new A′ = A with twice the number of buckets and copy all
events from A to A′.

3. Similarly, if the number of events is less than half of the size of A, then the A′ is
created with half the number of buckets.

4. Whenever a new A′ is created, the amount of time units each bucket represents is
recomputed by calculating the average separation of a fixed number of events at the
head of the queue.

This method bounds the average number of times an existing event is copied and
prevents any A[i] from eventually having to perform a costly linear search on a large list.
If the queue size grows to an exact power of two, then on average each event is copied
once. However, in the worst case the queue size grows to one more than a power of two,
then all events must be copied once more. More recent variations of the calendar queue
propose smarter heuristics on when and how to modify A, but the problem remains that
event copying can result in large latency spikes as new events are inserted to ensure they
remain in the correct bucket.

Lazy queue [46] and DSplay queue [49] are more recent variations that also use a multi-
list structure. They do not require resize operations in the same way as other dynamic
calendar queues such as the SNOOPy queue [52], in which frequent sampling of the input is
used to obtain the necessary metrics for deciding when and how to resize. Lazy queue uses
an unsorted list for far-away events, and defers sorting to the first deleteMin operation.
At that time, the bucket width is computed using the minimum and maximum timestamps
found in this overflow list, and every event is moved into the appropriate bucket. Then,
buckets are emptied sequentially into a splay tree, where they become fully sorted. This
eliminates the sampling overhead present in many heuristics-based calendar queue varia-
tions. However, as all events in the overflow list must be transferred at the same time, a
heavy latency spike is still possible. In contrast, FlexQueue does not rely on intensively
sampling the input nor does it require existing events to be relocated each time the bucket
width is adjusted. Furthermore, these variations of the original calendar queue do not meet
the design objectives because buckets in A are created and destroyed dynamically as the
total number of elements grows and shrinks.
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2.4 Concurrency

Parallel discrete event simulation (PDES) emerged as an alternative way to cope with a
complex system that is far too time consuming to analyze using sequential simulation.
PDES attempts to exploit the underlying parallelism in some system models and can dras-
tically speed up a simulation’s execution time. However, one of the major challenges as
with any concurrency problem is synchronization between execution units. In particular, if
simulation events are to be processed in parallel, the implied causality in sequential simu-
lation may not be preserved since the processing order of events is no longer deterministic.
In addition, any changes to the global simulation state must be synchronized and this
further limits the degree to which the model is parallelizable.

To make use of array-based priority queues in a concurrent application, one could
simply apply spin locks either on the queue itself, or on the level of individual elements in
the array. Either way, controlling access to the array is analogous to protecting the hash
buckets in a hast table. It has been shown [51] that it is sufficient to use a spin lock at the
bucket level. This approach only occupies one addition bit per bucket, and is shown to be
simpler and faster compared to other techniques such as lock-free queue or reader/writer
lock.

2.5 Evaluation Methodology

Regardless of the design choices, it is possible to evaluate tree-based and list-based priority
queues using the same methods. For example, access time is an intuitive measurement to
understand the performance of a priority queue operation. That is, one could measure the
time required to perform the most basic operation of insert and deleteMin. On top of
this, the hold model has been used for evaluation by nearly every paper that proposes a new
priority queue design [45]. In this model, the queue is first populated using a fixed number
of items generated by an increment distribution Pinc. During this time, self-adjusting data
structures like the dynamic calendar queue may begin to re-organize according to Pinc.
After this initial setup phase, the hold operation is executed repeatedly, which consists
of a deleteMin and an insert. Subsequent events inserted are generated using the same
distribution Pinc. The total time for all hold operations are then measured and an average
access time can be calculated.

This model is a useful representation of a discrete event simulation and can be used
to examine the relationship between access time and queue size. However, if the queue is
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distribution-aware, either in terms of tree balancing or bucket resizing, then this model can
be misleading as the internal queue structure may have changed, even as the total number
of elements remains constant. In this situation, it is no longer meaningful to report an
average measurement as this does not capture the performance fluctuations as a result of
implementation-specific resizing policies. Jones [36] also points out that in addition to the
increment distribution, the initial distribution and the resulting queue structure can both
have a significant impact on the measured time.

As a generalization of the hold model [45], the Markov model tries to better represent
the random nature of event simulation by introducing transition probabilities. In the hold
model, a deleteMin operation always comes after every insert. In a Markov-based model,
each deleteMin operation has a probability p1 to transition into the insert state where
the next operation will be insert. Similarly, each insert operation has probability p2 to
transition into the deleteMin state, making the next operation a deleteMin. The result
is that there is a random sequence of insert and deleteMin operations. However, these
models tend to mask the internal re-organization of distribution-sensitive queues because
they measure the average of a group of temporally sequential operations. Other models
exist that are better at exposing this characteristic, and they are often used together with
the hold model or the Markov model. The up-down model [44] consists of a sequence
of insert operations followed by a sequence of deleteMin operations, making it easy to
see the effects of a growing/shrinking queue size and thus the effectiveness of the resize
operation.

2.6 Simulator as a Testbed

Aside from benchmark models, which are primarily simulations of real world workloads, it is
important to evaluate FlexQueue in a real-world setting. FlexQueue is designed with many
restrictions and trade-offs in mind, ones that make it very suitable for use in a operating
system kernel where memory footprint should be minimized. However, it would be slow and
difficult to assess the effectiveness of FlexQueue’s design choices in such an environment,
because integration with a kernel is a non-trivial undertaking. Therefore, given priority
queue’s affinity to discrete event simulation, a network simulator is a natural alternative
test platform. A network simulator attempts to model the internal state of a given system
such as link speed, congestion, and routing tables. In general, there are two approaches
to building a simulator: synchronous and asynchronous. In synchronous or clock-driven
simulation, the simulator checks for events, or a modification to the current state at each
clock tick, giving an impression that time is progressing continuously. In asynchronous or
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event-driven simulation, all changes to the simulation state are processed in a first-in-first-
out fashion, skipping any clock ticks that have no events attached. These two approaches
are not mutually exclusive however, as a system being modelled can exhibit characteristics
of both. A event can trigger more events resulting in a complex dependency graph that
must be followed to ensure simulation accuracy. Asynchronous simulation represents an
interesting test case for FlexQueue because the deleteMin operation lends itself naturally
to finding the next event to be processed. As an example, Chapter 4 presents modifications
to an event-driven simulator ns3 to use FlexQueue.
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Chapter 3

Design of FlexQueue

The original calendar queue as proposed by Brown consists of an N -component array A,
storing pointers to N sorted linked lists. Each element in A represents some amount of
time units u such that an event with a timestamp of t belongs to a list pointed to by A[i],
if iu ≤ t < (i+ 1)u. That is, the bucket to which t belongs can be computed as b t

u
c. The

horizon of this calendar queue is therefore h = uN time units, and any event that is more
than h time units away is stored in the same list as if its timestamp is the remainder of t

h
.

Figure 3.1 illustrates the structure of a calendar queue with five events, and u = 5, N = 4.
Here, event 30 is considered a distant event because 30 > 5 · 4, and it is placed in the same
bucket as if its timestamp is 30− 5 · 4 = 10.

FlexQueue inherits the simplicity of a calendar queue, but differs in a few key areas.
First, since a calendar queue uses only a pointer array A to manage buckets, the deleteMin
operation necessarily has to check each bucket sequentially in order to find the next event.
This behaviour is acceptable in cases where the timer facility or operation system is al-
ready spending CPU time to process each tick, but becomes inefficient when this per-tick
bookkeeping cost can be eliminated, such as in a tick-less runtime where the notion of

A[0]:  4        // [20k, 20k+5)

A[1]:  7        // [20k+5, 20k+10)

A[2]:  10,30    // [20k+10, 20k+15)

A[3]:  19       // [20k+15, 20k+20)

Figure 3.1: A simple calendar queue with five events
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iterating through buckets is nonexistent. FlexQueue adds a hierarchical bit-vector on top
of A, which contains a summary of the state of A, using one bit for each bucket. A 1-bit in-
dicates that the bucket is non-empty and a 0-bit indicates the bucket is empty. This allows
FlexQueue to query the bit vector to find the next non-empty bucket, instead of searching
in A directly. With the help of modern CPU instructions, querying the bit-vector can be
much faster than searching in A. Second, events outside of the finite horizon represented
by A are not stored in the same array as those belonging to the current horizon. Instead,
they are stored in a separate overflow list L. This ensures that any non-empty bucket as
indicated by the bit-vector does indeed contain the event which should be dequeued next.
Finally, FlexQueue uses a different strategy for adjusting the bucket width of A, based on
the assumption that regardless of the input distribution, the extent to which a majority of
event timestamps deviate from the mean is bounded.

To summarize, in addition to the pointer array from the original calendar queue,
FlexQueue also uses:

1. A non-aggressive resizing policy for calculating bucket width.

2. A bit-vector V , that allows the next non-empty bucket in A to be located efficiently;

3. A second pointer array A2 and bit-vector V2, that facilitates the non-aggressive re-
sizing policy as explained in Section 3.1.

4. An collection of events L, or the overflow list, for any events beyond the current
calendar horizon.

3.1 Pointer Array and Overflow List

Given an uniform input distribution, list-based priority queues, such as the timing wheel
and the original calendar queue, are very efficient because the events are uniformly parti-
tioned and distributed into buckets, indexed by their timestamps. In this scenario, there
is no bucket that holds a large number of events, nor is there a bucket that holds no events
at all. Therefore, the average access time to a bucket is reduced. Furthermore, when the
bucket width u = 1, as is the case with the original timing wheel, all events in A[i] have
identical timestamps and thus the bucket itself can be implemented as an unsorted linked
list, instead of a sorted data structure. This further reduces the complexity and average
access time to each bucket. However, such assumption is unrealistic as the FlexQueue is
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designed to vary the bucket width u periodically, in order to prevent buckets from becoming
overpopulated as well as underpopulated.

The pointer array A that FlexQueue uses is a statically allocated N -component array,
where N is a pre-determined integer that is a power of two. As a result, the bit-vector V
that FlexQueue uses, contains N bits. It is also FlexQueue’s goal to attempt to balance
the variation in bucket sizes and therefore, it is expected that the majority of buckets
will contain some reasonable number of events rather than being empty. This goal further
justifies using a static array as the amount of wasted memory is expected to be low. On the
other hand, one could easily modify A to be any other randomly accessible data structure,
if dynamic memory allocation is not a concern. For example, a hash table can be considered
if the total number of events is very small compared to N .

Figure 3.2 illustrates the operation of such a static pointer array whose horizon h = 20
does not vary. Solid dots represent events, and are loosely distributed across A. Any
non-empty bucket has its corresponding bit in V set to 1. Note here the use of a second
pointer array and bit-vector A2 and V2. This is done for two reasons. First, using a second
pointer array ensures that periodically at least one of the pointer arrays will be empty. If
only one pointer array would be used (by treating A1 as a circular buffer), then it is likely
that A1 is never empty. Resizing A1 while it is non-empty implies that events need to be
relocated to the correct bucket, which can result in a latency spike. On the other hand,
using a second pointer array also ensures that the first non-zero bit of V1 (or V2, whichever
represents the current horizon) always points to the bucket that contains the event with
the highest priority. It is explained in Section 3.3.3 why this has the added benefit that
searching for the next non-zero bit is faster.

The next question is the type of data structure to be used for each bucket, and whether it
should be sorted or unsorted. A sorted data structure is required if the goal is to guarantee
all events be dequeued in exact temporal order. This is similar to the behaviour of tree-
based algorithms and results in a queue that can perform sorting correctly. An unsorted
bucket implies that two events with timestamps e1 and e2 dequeued consecutively does not
necessarily satisfy e1 ≤ e2. As the bucket width u grows and shrinks, so does the potential
distance of events dequeued out-of-order. FlexQueue supports both variants, and can be
configured to use either scheme with trivial effort.

It is the responsibility of the overflow list L to hold “outlier” events, so that the remain-
ing events may be stored in the pointer array without introducing too much skew. As a
result of this, those events that are not stored in the array may become significantly more
skewed compared to the original distribution. Thus, it is logical to implement L using a
tree-based algorithm which is insensitive to input distribution.
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Figure 3.2: Static horizon

3.2 Dynamic Horizon

Given that FlexQueue uses no dynamic memory allocation, this also implies that it can-
not allocate memory for new events inserted. Fortunately, intrusive data structures are
common in operating system kernels and timer management systems as previously men-
tioned. In these systems, metadata such as pointers are stored in the same structure as
the event itself, using memory previously allocated by a third party such as a user-level
program. Furthermore, since changing u is the only dynamic adaptation that does not
introduce latency spikes or require memory allocation and expensive event copying, it is
important to modify u in a way that ensures a reasonable partition of incoming events.
FlexQueue shows that a simple strategy using a dynamic horizon is sufficient to obtain
good performance in most cases.

Existing variations of the calendar queue usually compute the number of buckets needed
dynamically, in addition to modifying the bucket width. These changes are combined in
order to guarantee that subsequent enqueues and dequeues are efficient. More buckets are
added when the average number of elements in each bucket is too large. Whenever such a
resize occurs, a large number of existing elements may have to be relocated so that they are
stored in the correct bucket under the newly computed values. This results in unpredictable
memory allocation overhead and a latency spike. FlexQueue uses a fixed-sized bit-vector
and pointer array, and varies u, the time spanned by each bucket or the bucket width,
instead of adding or removing buckets. This way memory is allocated upfront, and no
dynamic allocation is performed during normal queue operations.

Among other things, if the size of L grows too large, this indicates that the current
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horizon may be too small and that the pointer array A is not being used efficiently. This
is because L is implemented as a tree-based data structure as mentioned before, and if L
holds the majority of events, then the expected performance of the queue will approach
O(lg n). In order to ensure such degradation does not occur, the next event to be dequeued
must be stored in A with a high probability. In such cases, a resize should be triggered by
calculating a new value for u. Ideally, a smooth and even distribution of elements across
all buckets is achieved, but this is impossible unless the input distribution itself is uniform.
However, an approximation can be made by ensuring the standard deviation of events
stored in A does not become too large.

3.2.1 Calculating Horizon Size

Suppose that the input distribution is normal, if all events are stored to A, then a majority
of events (approximately 68%) will be concentrated within one standard deviation from
the mean. Furthermore, within one standard deviation, the difference between the most
and least populated bucket will not be as significant as if the entire population of events
are considered. This suggests that u can be adjusted using the sample mean and standard
deviation as a guideline. Effectively, A will store all events that fall within a two-sided
truncated normal distribution. If the input distribution is not normal however, it is not
possible to be precise about the degree to which events are centred around the mean, but
approximation is still possible through the Chebyshev’s inequality [47] which states that:

Chebyshev’s Inequality. If X is a random variable with finite expected value µ and finite
non-zero variance σ2, then for any real number k > 0, there is P (|X − µ| ≥ kσ) ≤ 1

k2
.

A direct result of this inequality is that regardless of the input distribution, suppose
k = 1.5, then at most 44% of all events will be more than 1.5 standard deviations away
from the mean. Of course, this is a more relaxed bound compared to one that can be
computed if the distribution is known in advance. For example, if k = 2, then P = 25% by
this inequality, while a normal distribution with µ = 0 and σ2 = 1 has approximately 95%
of all values within two standard deviations according to the three-sigma rule [37]. Setting
k to a large value guarantees that L cannot hold too many events, which is critical to
prevent FlexQueue from degrading to a generic O(lg n) data structure. At the same time
however, this also increases the standard deviation of the truncated distribution that A is
meant to store, resulting in an even more skewed distribution in A that L exists to prevent.
Clearly, an appropriate value of k is somewhere between these two extremes. If there is
prior knowledge of the input distribution, then it is possible to calculate k such that the
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size of a bucket is equal to the size of L. For example, assuming the input distribution
is normal with mean µ and variance σ2, then the percentage of events EA that is stored
in A is given by integrating the probability density function of the normal distribution as
follows:

EA =

∫ µ+kσ

µ−kσ
pdf(x, µ, σ2)dx

=

∫ µ+kσ

µ−kσ

1√
2πσ2

e−
(x−µ)2

2σ2 dx

Let x = y + µ, y =
√

2σ2z and integrating by substitution:

EA =

∫ k√
2

− k√
2

1√
2πσ2

e−
(
√

2σ2z)2

2σ2

√
2σ2dz

=
1√
π

∫ k√
2

− k√
2

e−z
2

dz

= erf

(
k√
2

)
Therefore, the percentage of events EH that is stored in L is simply 1− erf

(
k√
2

)
, and the

value of k such that

erf
(

k√
2

)
N

= 1− erf

(
k√
2

)
erf

(
k√
2

)
=

N

N + 1

guarantees that on average the size of the overflow list is the same as the average bucket
size. Here

erf(x) =
1√
π

∫ x

−x
e−t

2

dt

is a well known non-elementary function, which means that an analytical solution is not
possible. An implementation of this function is available in the standard C++ library that
approximates its value with high precision. However, this implementation uses expensive
floating point operations that FlexQueue intends to avoid, for example, when being used
inside an operating system kernel. Also note that there is no analytical solution for k to

17



this equation, and an answer can be computed only through methods such as a numerical
simulation. This makes it impractical to dynamically adjust k as part of the resizing policy,
even with prior knowledge of the input distribution. For this reason, Chapter 4 presents
an experiment to determine an appropriate value for k, and leaves this as a configuration
parameter, similar to the bucket count N .

In the meantime, both the average and the standard deviation can be approximated
efficiently after each insert operation, by using an exponential weighted moving average
algorithm. Similar to the method used to estimate Round Trip Time (RTT) in TCP [41],
this approach has been used successfully in practice and can be implemented efficiently
as follows. If the current mean is µ, the current standard deviation is σ and a new event
is ∆ time units away, then the new estimate µ′ = αµ + (1 − α)∆, and the new standard
deviation σ′ = βσ + (1 − β)|∆ − µ| where α and β are the weights given to the current
estimate. If α and β can both be written as fractions with powers of two as denominators,
then the division operations involved in computing µ′ and σ′ can be replaced with bit shift
operations. For this reason, typically α = 0.875 = 7

8
and β = 0.25 = 1

4
.

Once a new value is calculated for u, this updated estimate can be applied to in-
coming events by setting CurrentHorizonMin to µ′ − kσ′ or 0, whichever is greater, and
CurrentHorizonMax to µ′ + kσ′. To avoid copying existing events and thus introducing a
latency spike, a second bit-vector V2 and pointer array A2 is used. A1 and A2 can have
different values for u, as it is updated for one pointer array at a time. Effectively, the
actual horizon remains equal to that of a single pointer array. Let ui denote the bucket
width for pointer array Ai, then the correct bucket and pointer array for an event with
absolute timestamp t can be calculated as follows in Algorithm 1. This assumes that this
event belongs to A, in other words, t−CurrentTime() is between CurrentHorizonMin

and CurrentHorizonMax. The first return value indicates which one of the two bucket
arrays the event belongs, and the second return value is the index of the correct bucket.

The bucket width u is updated for an Ai whenever it becomes empty as a result of
deleteMin operations. This is because applying an update at this point requires no event
copying since all events in Ai have just been dequeued. Using the estimated mean µ and
standard deviation σ, ui is updated as follows in Algorithm 2. It is possible that the new
horizon value does not divide evenly into N , resulting in a non-integer u. In this case, u is
simply rounded up to the nearest integer, and CurrentHorizonMax is adjusted accordingly
by setting it to CurrentHorizonMin + u ·N .

Note that a consequence of triggering the resize only after one of Ai becomes empty is
that if the current horizon Ai is already holding a large number of events, then Resize is
not triggered after all events in Ai are first dequeued. The amount of time this process
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Algorithm 1 CalcBucket

1: function CalcBucket(t)
2: interval← t−CurrentTime()
3: p← interval/ui
4: if p ≥ N then
5: p← (t− (ui ∗N))/u2−i
6: return 2− i, p
7: else
8: return i, p
9: end if
10: end function

takes depend on this arbitrary number, as well as how often incoming events are stored to
Ai. If many incoming events are close to CurrentHorizonMin, then the number of events
in Ai will decrease very slowly. The result is that FlexQueue does not instantly react to
input distribution changes. This would only have a severe impact if the input distribution
changes drastically as soon as the current horizon comes to an end, which is unlikely.

Figure 3.3 illustrates the idea of a dynamically adjustable horizon. Whenever a horizon
has fully elapsed, the empty pointer array has its semantics updated using the estimated
mean and standard deviation. This can result in a horizon that does not necessarily begin
at the current time. Therefore, in addition to overflowing events, underflowing events
(those that are too close to the current time) are also stored in L. To reiterate, the use
of a second pointer array creates opportunities where one of them is empty and can be
modified without affecting any existing events. Here the effective horizon is represented
partially by A1 and partially by A2.

Algorithm 2 Resize

1: function Resize(µ, σ)
2: CurrentHorizonMin←Min(µ− kσ, 0)
3: CurrentHorizonMax← µ+ kσ
4: ui ← d(CurrentHorizonMin + CurrentHorizonMax)/Ne
5: end function
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3.2.2 Insert

The remaining parts of Insert and deleteMin are not very different from their counter-
parts in the calendar queue. When FlexQueue needs to insert an event, it first checks
if it belongs to the overflow list by comparing the difference of its timestamp and the
current time with the current horizon minimum and maximum, CurrentHorizonMin and
CurrentHorizonMax. If it belongs in A1 (or A2), then it calculates the correct bucket
in A1 or A2 using interval, and inserts the event into the corresponding bucket. Finally,
FlexQueue updates the current estimate of mean and standard deviation using the moving
average method previously mentioned. Pseudocode for Insert is presented in Algorithm
3.

As mentioned previously, the values of α and β for the moving average calculation are
selected so that floating point operations and integer divisions can be replaced with bit
shift. For example α = 0.875 means that αµ+ (1− α)∆ is equivalent to (7µ+ ∆) >> 3.

3.2.3 DeleteMin

When FlexQueue needs to dequeue the next event, it must check both pointer arrays A1

and A2 as well as L, and return the event with the highest priority. If the event is inside
one of the pointer arrays, then it is removed from the bucket and if no more events remain
within the bucket, the corresponding bit in V1 or V2 is cleared.

If the current pointer array is Ai but the next event is found in A2−i, then this implies
that the current horizon has elapsed and a resize should be triggered. From here, Resize
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Algorithm 3 Insert

1: function Insert(P, t)
2: interval← CurrentTime()− t
3: if interval < CurrentHorizonMax & interval ≥ CurrentHorizonMin then
4: p, i← CalcBucket(t)
5: BucketInsert(Ai[p], t)
6: SetBit(Vi, p)
7: else
8: OverflowInsert(t)
9: end if
10: µ← µα + interval(1− α)
11: σ ← σβ + (interval − µ)(1− β)
12: end function

is called and the mean and standard deviation are used to compute the next horizon and
its corresponding pointer array A2−i. This process is very efficient because changes to the
next horizon are purely semantic: no events are moved and no new buckets are created or
existing ones destroyed. Pseudocode for DeleteMin is given in Algorithm 4.

3.2.4 Delete

Apart from insert and deleteMin, delete is another operation that is commonly as-
sociated with a priority queue. The delete operation differs from deleteMin in that
deleteMin only removes the event with the highest priority, while delete removes an
arbitrary event given its timestamp.

The delete operation is important in a timer system such as network protocol timeouts
because a large number of timers are created with the assumption that a timeout indicates
failure. For example, if a TCP re-transmission timer expires, this means a previous trans-
mission was not successful, potentially due to network congestion causing packets to be
dropped. Therefore, most of these timers are actually cancelled during normal operations,
before they expire, and are be removed from the queue through delete. FlexQueue sup-
ports delete in the same way insert is supported. Using the timestamp, the correct
bucket in A1 or A2 can be computed with the same algorithm presented in Algorithm
3. Once the correct bucket is located, the appropriate Remove function on the bucket
is called to remove the event. If the bucket is implemented as a sorted linked list, then
Remove must iterate through the list until the correct event is found. However, given a
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Algorithm 4 DeleteMin

1: function DeleteMin(P )
2: pos← FindFirstSet(Vcur)
3: i← cur
4: if pos = INTMAX then
5: pos← FindFirstSet(V2−cur)
6: i← 2− cur
7: end if
8: v ← FirstEvent(Ai[pos])
9: h← FirstEvent(H)
10: if v < h then
11: DeleteFirst(Ai[pos])
12: if Ai[pos] is empty then
13: BitClear(Vi, pos)
14: end if
15: if i not equal cur then
16: Resize( )
17: end if
18: return v
19: else
20: return h
21: end if
22: end function

intrusive linkage, there is no need to search in V or A. Assuming the list is doubly linked,
the event itself contains sufficient pointer information to perform Remove in O(1) time.
Because of the simplicity of this operation, this thesis does not attempt to measure the
performance of delete, and instead focuses only on insert and deleteMin.

3.3 Hierarchical Bit Vector

Bit vectors are capable of storing a universe of bits in an extremely compact fashion. With
modern CPU support, finding the first set bit in a machine word is very efficient. It is
possible to take advantage of this efficiency and construct a bit-vector composed of multiple
machine words, such that scanning the bit-vector is equivalent to scanning each machine
word sequentially. However, a bit-vector constructed in this fashion is inefficient when
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Figure 3.4: A hierarchical bit-vector with capacity C = 16 bits

the number of words becomes large, for example, to support a larger universe. One such
large universe is the timestamps in event simulation problems, which are typically 64-bit
integers. To accommodate this, a bit-vector must have capacity for 264 bits, or 258 words
on a 64-bit machine. Scanning these words sequentially is impractical.

Some tree-based priority queues such as the vEB tree use summary vectors to efficiently
skip consecutive zero bits during search. Similarly in FlexQueue, the bit-vector is organized
hierarchically, with level 0 being the plain bit vector and every level above being a summary
vector of the level below. Exactly how many lower level bits are represented by an upper
level bit can vary, and this fanout factor determines the total number of levels required.
For example, a 232 hierarchical bit-vector with a fanout f = 64 bits has a total of L = 6
levels, 5 of which are summary vectors. In this case, every f = 64 bits in a lower level are
represented by a single bit in the level above, thus, the total number of levels required is
blog64 232c = b32/6c = 6 levels. Searching in this structure starts from the topmost level
and proceeds downward. This scheme requires exactly one word scan on a 64-bit machine
at each level and guarantees to find the result in time proportionally to the height of the
hierarchical bit-vector. Figure 3.4 shows the organization of a very simple bit-vector with
a total of 16 bits and f = 4, assuming 4-bit words. At Level 0, all 16 bits are divided into
4 words. This can be stored using an array a with 4 elements, with the least significant bit
of the a[0] being b0, and the most significant bit of a[3] being b15. Since f = 4, every four
bits in Level 0 is represented by one bit in Level 1, using a total of four bits to represent
all 16 bits in Level 0. In this example, two word scans are needed to reach the first set
bit, one scan in each level. Generally, searching such a structure is an O(lgN) operation,
where N is the size of the bit universe. Note that N is not the same as the finite horizon
of A, since each bit may be used to manage a bucket spanning more than one unit of time.

The next question is whether it is possible to further reduce the latency of searching in
this bit-vector. Note that each bsf scan instruction can scan at most one machine word
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(typically W = 64 bits) and modern CPUs typically have a cache line size of 64 bytes (512
bits). This implies that scanning a level when f = 64 loads not just the word required
for bsf, but also an additional 56 bytes from memory. These extra bytes are not needed
for searching in the current level, and therefore, cache loads are not being used in the
most efficient manner for any f < 512. By increasing f , the number of extraneous bytes
loaded decreases and so does the number of levels. Thus the height of the bit-vector will
be reduced as well, without incurring extra cache loads. A bit vector with 232 bits now has
four levels, if f is increased to 256 from 64. This improved cache utilization may result
in a faster search operation. However, as the number of cache loads remain constant per
level, the downside is that this also increases the number of scans required per level, from
one f = 64 to four at f = 256. If a hierarchical bit-vector has T bits and the fanout is f ,
then it has L = b lg T

lg f
c levels. Clearly, if f ′ = f 2, then L′ = 1

2
L. Since n = df/W e scans

are needed per level, this changes the number of searches required to

L′n′ =
1

2
L · nf =

f

2
Ln.

Clearly, as long as f > 2, this results in a larger number of searches overall. Figure 3.5
shows the effect of fanout selection, with various levels. In Figure 3.5a, the horizontal axis
represents the total number of bits in the bit-vector, while the vertical axis represents the
latency of one million hold operations, in microseconds. It is clearly visible that there
is a latency increase at 213, 219, and 225, while the latency stays relatively flat for each
interval in-between. These values correspond to when the number of levels of the bit-
vectors increases by 1 and illustrates the effect on latency when the number of levels is
increased. In Figure 3.5b, the total number of bits is fixed, and the fanout f is varied from
64 to 2048. This illustrates the effect of decreasing the number of levels, while making
each level more expensive to search. The latency of finding the first set bit increase more
drastically after f = 29, since this means that a summary vector now occupies at least
two cache lines rather than one, when f < 29. Thus, for the remainder of the thesis, it is
assumed that f = 64.

3.3.1 SetBit Operation

A bit in V can be uniquely identified using three subscripts: the i-th level, the k-th word,
and the r-th bit. Setting a bit is performed bottom-up: setting the bit in Level i, then
setting the b i

fanout
c-th bit in Level i+1, and then updating the summary vectors repeatedly

until the top-most level is reached. This requires exactly L iterations, although it is possible
to stop as soon as V [i][k][r] = 1, since every level thereafter must already be 1.
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Figure 3.5: Impact of fanout factor f on hold time

Algorithm 5 BitSet

1: function BitSet(V, L, k)
2: for i← 0, L− 1 do
3: r ← k mod f
4: k ← k/B
5: V [i][k][r] = 1
6: end for
7: end function
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3.3.2 ClearBit Operation

Setting a bit in V to zero is slightly more involved, because in order to clear the correspond-
ing bit in Level i + 1, the current word must entirely consist of zero bits. This requires a
branch and the loop must terminate as soon as the current word is no longer zero. Similar
to BitSet, BitClear also requires at most L iterations.

Algorithm 6 BitClear

1: function BitClear(V, L, k)
2: for i← 0, L− 1 do
3: r ← k mod f
4: k ← k/B
5: V [i][k][r] = 0
6: if V [i][k] not 0 then
7: return
8: end if
9: end for
10: end function

3.3.3 FindFirstSet Operation

Finding the first non-zero bit is also very straightforward. Starting at Level L, which by
definition has at most one word, find the first non-zero bit at position p, then the next word
to scan is simply the p-th word in Level L− 1. This is repeated until level 0 is reached, at
which point the final position can be calculated.

WordScan is a wrapper function that calls the built-in macro builtin ffs in GNU
gcc, which depending on the implementation and the architecture, uses bsf on x86, or
an functionally equivalent software implementation if bsf is not supported in hardware.
According to the GNU gcc documentation, if the return value of this built-in macro is zero,
it indicates that the input word is empty. In this case, f is returned as a signal that no
one-bit is found. Otherwise, the return value s is the index of the least significant one-bit
of W, starting at 0.

Variations of FindFirstSet are possible, for example, if one wishes to begin the search
not from the least significant end, but rather from some other non-zero position p. In this
case, a simple top-down scan as presented in Algorithm 7 does not work, since finding the
first non-zero bit using this algorithm relies on the principle that the first non-zero bit
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Algorithm 7 FindFirstSet

1: function FindFirstSet(V, L)
2: p←WordScan(V [L− 1][0])
3: if p = f then
4: return INTMAX

5: end if
6: for i← L− 2, 0 do
7: l←WordScan(V [i][p])
8: p← f ∗ p+ l
9: end for
10: return p
11: end function

Algorithm 8 WordScan

1: function WordScan(W )
2: s← builtin ffs(W )
3: if s = 0 then
4: return f
5: else
6: return s− 1
7: end if
8: end function

in Level i is represented also by the first non-zero bit on Level i + 1. The same however
does not apply to an arbitrary p. At minimum, the Level 0 word in which bit p is stored
(word b p

f
c) must be searched since there is no information elsewhere on whether there are

multiple 1-bits in a word. If there is no one-bit after bit p on Level 0, then the bits on
Level 1 can be used to the find the next non-zero word, by searching word b p

f2
c on Level

1. If the next one-bit is far away from p, then this process may repeat until Level L is
reached, after which a top-down search can be performed in the same way as Algorithm 7.
This variation requires at most 2L iterations and is slower than when p can be assumed to
be zero.

In any case, V is only responsible for the meta-information, while the events themselves
are managed by the pointer array A. After the first non-empty bucket is located efficiently,
the correct event can be removed from that bucket.
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Chapter 4

Benchmarks

As previously mentioned, the primary operations on a priority queue are insert and
deleteMin, which is the focus of evaluation in this chapter. While other common op-
erations, such as decreaseKey and delete, are not directly evaluated, the methods and
results presented in this chapter allow the observation of FlexQueue’s performance under
the most common workloads.

For the purpose of clarity, a preliminary set of experiments are conducted on the indi-
vidual components of FlexQueue: the bit-vector and the bucket structure. The first part
of these experiments is intended to measure the average access time of a bit-vector and a
linked-list. The linked-list is considered to be the simplest and fastest data structure that
may be used to implement buckets, thus, this comparison shows the maximum overhead
of adding a bit-vector on top of the pointer array. The second part of these experiments
focuses on the bucket itself. Specifically, these experiments measure the difference between
using an intrusive and non-intrusive data structure.

Section 4.3 present experiments that evaluate the effectiveness of FlexQueue’s resizing
policy. FlexQueue’s hold time is first measured when the horizon is not permitted to
vary dynamically. The results are then contrasted with those when the resizing policy is
employed. Next, the performance of insert and deleteMin are compared to Fibonacci
heap, red-black tree, binomial heap, and the original calendar queue. Implementations
of these queues are freely available in third-party libraries such as boost except for the
calendar queue, and they are selected for the following reasons:

1. Fibonacci queue claims amortized O(1) time for not just insert and deleteMin, but
also delete and decreaseKey. This implies that it has an average case complexity
that is theoretically comparable to a calendar queue under optimal conditions.
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2. Red-black tree is the implementation used by the GNU C++ library for the map and
set data structure. It is readily available for any C++ program and thus it can be
considered a default choice when a priority queue is needed. It is also the priority
queue used by the popular network simulator ns3. For simplicity, this thesis refers
to this as the set queue.

3. Binomial queue is the one of the earliest designs of priority queue, and it claims to
have favourable worst-case performance than other tree-based algorithms.

4. The original calendar queue performs well if the input distribution is uniform and
if the number of queue items does not fluctuate significantly. However, costly event
copying and poor resizing policy are two flaws that are immediately obvious when
compared with FlexQueue. This serves as a baseline for other calendar queue varia-
tions.

4.1 Experiment Design

One of the primary objectives of FlexQueue is to achieve comparable performance to ex-
isting priority queue implementations, while not requiring complex heuristics and dynamic
memory allocation. Other objectives are arguably less relevant, if FlexQueue does not at
least perform comparatively in an optimal setup, such as uniform input distribution. In
this distribution, the number of events in each bucket remain consistent across the entire
horizon. Thus, the average access time is minimized. More importantly, performance is
critical especially when the queue is intended to be useful in operating system kernels
and timer management systems. This section focuses on synthetic benchmarks and access
patterns, rather than real workloads. These benchmarks are specifically crafted to stress
FlexQueue’s implementation in a particular way by allowing experiment parameters to be
easily controlled.

Each benchmark consists of three stages: model selection, initialization, and simulation.
During the model selection stage, one of the three experiment models are selected as the
harness that drives the remaining two stages. Each model represents a different set of
criteria for performance evaluation. For example, the hold model measures the average
latency for a pair of insert and deleteMin operations under a fixed queue size, while
the Markov model measures the average access time of a single operation which may be
insert with probability p and deleteMin with probability 1− p. During the initialization
stage, an increment distribution Pinc is selected that is used to populate the queue being
evaluated until the number of events in the queue reaches the specified size. Finally, during
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the simulation stage, a large number of insert and deleteMin operations are executed on
the queue and the relevant performance metrics are measured and reported.

4.1.1 Hold Model

The most commonly used model to measure a priority queue’s performance is the hold
model. The objective of this model is to measure the time of insert and deleteMin

combined. This simulates a scenario where the number of events stored in a queue converges
to a steady state value. A plausible reason that this model is widely used is that most
tree-based implementations have time complexities that are proportional to the size of the
queue. It is therefore convenient to use a model where this variable can be easily controlled.

4.1.2 Markov Model

In a discrete event simulator, simulation typically begins by generating a large number of
events, causing the priority queue size to steadily increase, and then finishes by eventually
deleting every event from the queue. A Markov model with parameters p0 and p1 gener-
alizes the classic hold model. By decoupling insert and deleteMin, such a model allows
insert to precede a second insert with probability p0, and deleteMin to precede a second
deleteMin with probability p1. Clearly, the hold model is a special case where p0 = p1 = 0.
This results in a slightly more general approximation of a real-world workload, since it is
not likely that each deleteMin produces exactly one insert as is the case with the hold
model.

4.1.3 Transient Model

Distribution-sensitive priority queues, which in general include all variations of the cal-
endar queue, modify their internal structure as a response to shifting input distribution.
Therefore, assuming the input distribution remains stable, it is expected that these queues
reach a steady state after some initial period of time. On the other hand, tree-based pri-
ority queues are often insensitive to input distribution, and the latency of the insert and
deleteMin operation does not typically fluctuate as the distribution shifts. In both the
Markov and the hold model, measurements made during and across distribution shifts are
reported as a single average, which does not reflect the transient state of the queue, but
also does not reflect a meaningful steady state. While this is not an issue for tree-based
implementations, for FlexQueue there may be a significant difference between the observed
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performance at the beginning of an experiment and after this initial period of time. For
these types of queues including FlexQueue, it is helpful to understand if and when the
data structure initiates this transient behaviour, and for how long it persists. This can
be accomplished by taking the average of a smaller set of consecutive hold operations.
For example, instead of reporting the average of one million hold operations, these can
be divided into smaller groups of 10,000, and reporting 100 data points. In other words,
by measuring over a smaller interval, it is possible to observe, at a finer granularity, the
change in latency as a function of time.

There is another type of transient behaviour that is best described as the warm-up
period. When a benchmark program is first loaded into memory and execution begins,
CPU cache lines are not yet populated, or contain data from other programs running
on the same CPU that may need to be evicted. Once the benchmark has executed the
deleteMin-insert loop a few times, it is more likely that measurements will be protected
from such effects.

4.1.4 Increment Distributions

The increment distribution Pinc is used to generated event timestamps, or priorities. Given
the timestamp t of a previously expired event, Pinc produces an non-negative integer ∆,
according to some pre-determine distribution parameters. The timestamp of the new
event is simply t+ ∆. Different distribution parameters can result in vastly distinct access
patterns.

A common distribution used in bench-marking is the uniform distribution U(a, b). This
distribution produces values between real numbers a and b, each with equal probability of
1
b−a . This is a useful distribution because in addition to its simplicity, if a and b are assigned
the lower and upper bound respectively of the timestamps domain, then this distribution is
effectively a random number generator. As a result, the average case latency of a priority
queue can be measured. However, such a simple distribution is insufficient when it comes
to modelling a real workload. A normal distribution N(µ, σ2) with mean µ and standard
deviation σ comes much closer to a real workload than uniform distribution. As stated
in previous sections, the majority of events are centred around the mean in a normal
distribution, and events with larger or smaller timestamps are exponentially less probable.
This is useful in modelling workloads that exhibit temporal locality. That is, an simulation
event is more likely to trigger events that are closer to itself than to trigger events that are
more distant into the future.

While both uniform and normal distribution are useful models for workloads with dis-
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tinct characteristics, they are insufficient when the workloads becomes more complex. A
complex workload does not necessarily have a clear cluster, nor are its events uniformly
distributed. A triangular distribution Tri(a, b) generates values distributed over the in-
terval [a, b], such that the probability increases linearly from a to b. This distribution is
useful because unlike the normal distribution, there is clear cluster and thus can represent
a workload with mixed characteristics.

4.2 Setup and Implementation

The benchmarks are performed on the following platform:

• Intel Xeon E5-4610 8-core CPU with Hyper-Threading turned on

• 32 KiB L1 data cache, 256 KiB L2 cache, and 16 MiB L3 cache

• Linux v4.13.0-38, gcc-7.2.0

• 256 GB memory

Regardless of the models used, the core logic of the experiment harness remains largely
identical. The harness is divided in to two major modules: harness and test case.

4.2.1 Harness

This module is responsible for operations such as collecting input parameters, measure run
time of test cases, and printing the output to a white space separated row suitable for use
in a graphing utility such as gnuplot. It contains only the most basic logic required to
start a benchmark. Listing 4.1 shows the basic operations of the harness. Note that each
data point plotted is the average of 20 samples, as indicated by the num trials variable
in Listing 4.1. Results in Section 4.3 show that majority of measurements have a relative
standard error of less than 2.3%. That is, the true mean is likely to be within 2.3% of the
sample mean that is shown in subsequent figures. Occasional outliers exist with relative
standard errors up to 9%, these are noted where appropriate.

int main() {

const int num_trials = 20;

const int num_repeat = 1000000;
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TrialRun time;

// create test case from supplied name

TestCase *testCase = tcMap.at(XSTR(TEST_NAME))();

testCase->setUp();

for (int j = 0; j < num_trials; j++) {

auto start = chrono::steady_clock::now();

testCase->run(num_repeat);

auto end = chrono::steady_clock::now();

auto elapsed = chrono::duration_cast<chrono::microseconds>(end - start);

time.addResult(elapsed.count());

}

testCase->tearDown();

delete testCase;

cout << time.mean() << "\t" << time.stddev() << endl;

}

Listing 4.1: Operations of the harness

4.2.2 Test Cases

Test cases are collections of C++ classes that decide the content of a benchmark, including
the model used, the queue tested and the input distribution used. Listing 4.2 shows the
operation of a test case that implements the hold model using the normal distribution to
test FlexQueue.

class FlexQueueTestCase {

size_t _uid_counter = 0;

FlexQueue _queue;

Distribution *_dist;

public:

FlexQueueTestCase() {

_dist = distMap[XSTR(DISTRIBUTION)]();

}

// populate queue to desired size
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virtual void setUp() {

SetCurrentTime(0);

for (size_t j = 0; j < QueueSize; j++) {

Event e{};

e.key.m_ts = _dist->next();

e.key.m_uid = _uid_counter++;

_queue.Insert(e);

}

}

// begin the hold operation

virtual void run(int repeat) {

for (int i=0; i<repeat; i++) {

Event e = _queue.RemoveNext();

SetCurrentTime(e.key.m_ts);

size_t n = _dist->next();

e.key.m_ts = n + GetCurrentTime(); // a random interval + now

e.key.m_uid = _uid_counter++;

_queue.Insert(e);

}

}

};

Listing 4.2: A FlexQueue test case

While piece-wise and normal distribution’s implementation are both available directly
through the C++ standard library, the triangular distribution is not. Nevertheless, it is
simple to derive an equation from the definition of triangular distribution: Tri(a, b) can
be generated by a + (b − a)

√
rand(), where rand() generates uniformly distributed real

numbers from [0, 1]. Figure 4.1 show the values generated by a triangular distribution with
a = 106 and b = 108. Assuming that event timestamps are recorded in nanoseconds, this
represents a synthetic workload where there are more events 100 ms away than there are
events 1 ms away.
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Figure 4.1: Frequency histogram of Tri(106, 108)

4.3 Results

4.3.1 Preliminaries

Intuitively, setting a bit in a machine word is very fast. However, in a hierarchical bit-
vector this change must propagate to several words at higher levels. It is not obvious if
and how much overhead such an operation introduces, compared to inserting and removing
from a linked list, which is generally considered to be O(1). Thus, the objective of this
experiment is to determine the cost of operations on the hierarchical bit-vector, relative to
operations on the pointer array A.

In this experiment, an N -component array is created and its elements are accessed both
sequentially and using a randomized pointer chasing method. Such a method effectively
disables memory prefetching, and represents a maximum difference between accessing a
linked-list and accessing a hierarchical bit vector.

For the linked-list, the array is pre-allocated to store nodes that are later appended to
the linked-list. In the sequential experiment, each array element is accessed sequentially,
and linked to the previous node using standard linked-list operations. In the randomized
pointer-chasing experiment, before A[i] is appended to the linked list, the value of A[i]
indicates the index of the next element in A that should be inserted. Indices are generated
by first writing sequential integers starting from 0 into A, then shuffled using the C++

standard library function std::shuffle.
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Capacity (bits) Memory Used (bytes) Fits Into
64 16 L1
210 272 L1
212 1,040 L1
220 266,320 L1 and L2
232 1,090,785,360 Does not fit

Table 4.1: Total memory used by bit-vectors V1 and V2

Similarly for the bit-vector, the sequential experiment starts from the least significant
bit, change its value to 1, then moves on to the next least significant bit and so on. In the
randomized experiment however, there are no arrays or pointers for the bit-vector to chase,
therefore, instead of creating a dedicated array, a random bit is set for each insertion.

Figure 4.2 shows the results of inserting sequentially into a linked list versus a bit-
vector. The total number of items inserted is represented on the horizontal axis and the
latency of insertion is represented on the vertical axis. Multiples of 218 are selected because
FlexQueue’s bit vectors fit in to the L1 and L2 cache of the test machine’s CPU. Refer to
Section 4.3.2 and Table 4.1 for more details.

For the bit-vector, the horizontal axis represents the capacity, rather than the number
of bits set. For sequential insertion, the cost of these two types of data structures are very
close, suggesting that operations on a bit-vector are nearly as costly as operation on the
linked list itself. However, it is important to note that for the linked list experiment, items
are taken from a pre-allocated array sequentially. Therefore, it benefits significantly from
cache locality and is not indicative of a real-world workload.

Indeed, the right side of Figure 4.2 shows the result of random insertion, where much
of this benefit for the linked list is removed. Consequently, linked-list operations become
very expensive on average due to cache misses. In contrast, the hierarchical bit-vector only
uses one bit per element whereas the linked-list uses 64 times more memory, on a 64-bit
machine. Such space efficiency implies that the CPU cache can hold more elements from
the bit-vector compared to the linked list. As a result, the number of cache misses are
reduced significantly when accessing the bit-vector resulting in faster average access time.
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Figure 4.2: Cost of Bit Vector Operations

4.3.2 Static Horizon

This is a scenario in which the bucket width u is not allowed to change. To demonstrate the
consequence of not responding to changes in input distribution, the increment distribution
Pinc used is piece-wise, such that x% of all events are distributed evenly across a fixed
horizon, while the remaining (100− x)% are outside of the horizon and thus stored in the
overflow list. Therefore, this represents the best case performance attainable by FlexQueue
when x = 100. In all cases, the number of buckets is fixed at 220. This number is the largest
power of two such that the two bit-vectors V1 and V2 used by FlexQueue fit into L1 and L2
cache of the CPU in the test environment. Table 4.1 shows the amount of memory used
by FlexQueue’s bit-vectors at various configurations.

Figure 4.3 shows the performance of FlexQueue against the set queue under various
setups. Note that on the horizontal axis in Figure 4.3a, p decreases from 1 to 0, whereas it
increases from 0 to 1 in Figure 4.3b. This contrast emphasizes the fact that when p = 0, the
static setup stores all events using the overflow list, which results in similar performance
as SetQueue in Figure 4.3b. In addition, when the queue size is relatively small at 218 and
as the percentage of events in A approaches 0%, the average hold time decreases slightly.
This implies that set queue is slightly more efficient at managing small sets of events. In
contrast, as the queue size increases, it becomes more expensive to use set queue, while
the cost of FlexQueue does not increase as significantly. It is interesting to note that the
set queue also responds to distribution shift. Upon investigation, this is because the piece-
wise distribution used in this experiment uses the interval [0, 220] and (220, 232 − 1] with
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Figure 4.3: Time vs. p under various q

probability p and 1 − p respectively. That is, events outside of the horizon is distributed
over a much larger interval than those within the horizon. As the total number of events
outside the horizon grows, they occupy more and more non-leaf nodes in a balanced binary
tree, such as the set queue. As a result, the remaining events within the horizon are pushed
into a small sub-tree, while the rest of the events belong to a much larger sub-tree, with a
higher access time. Since these events are always dequeued before the others, effectively the
working size, or height, of the whole tree is reduced. However, even with this unintended
advantage, set queue does not outperform FlexQueue. This is especially obvious when the
queue size is large. When p = 0, both figures are effectively representing the same data
structure, and thus converge. Note that the measurements for set queue have relatively
large standard errors for 0.6 < p ≤ 1, this is possibly because as p approaches 0.5, it
becomes more likely that both sub-trees are accessed. Since the access time of these two
sub-trees differ, measurements across these ranges of p values are no longer stable.

Figure 4.4 shows that as long as most events are stored within the pointer array, the
average hold time does not noticeably increase as queue size increases. However, when
the number of events is greater than the number of buckets, further increasing the queue
size does still increase the average access time of FlexQueue. Intuitively, since N = 20, on
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Figure 4.4: Time vs. queue size under various p

average each bucket, implemented with a set queue as well, holds a constant factor of 220

fewer events compared to the single set queue. When the number of events is less than 220,
there exists one or more empty bucket. Thus, increasing the queue size merely fills those
empty buckets, without increasing the average latency.

4.3.3 Dynamic Horizon

Figure 4.5 shows the result of enabling the resizing policy. When the number of events is
218 and p = 0, the resizing policy estimates the mean and standard deviation of Pinc and
attempts to resize to a smaller horizon. However, since the bucket width can be no less
than 1, FlexQueue does not make any changes to the horizon size. Notice that compared
to the static scenario, the hold time no longer briefly increases up to p = 0.8. This is the
result of the resizing policy modifying the boundaries of the horizon. As more events are
shifted from A to L, the mean of event timestamps increases. FlexQueue senses such a
shift and “tracks” it by increasing the lower bound of the horizon. As a result, hold time
remains relatively flat from p = 1 to p = 0.
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Figure 4.5: Effect of dynamic horizon

Notice that since the resizing policy is designed to minimize the negatives of a biased
input distribution, it has no effect on nor is it impacted by the queue size. As Figure 4.5b
shows, employing a dynamic horizon does not improve FlexQueue’s efficiency when every
bucket needs to store more events on average.

4.3.4 Determining the Value of k

Briefly recall k from Section 3.2.1, the appropriate value of k may differ depending on
the input distribution. For example, for a highly clustered distribution such as a normal
distribution with small variance, k may need to be large in order to effectively make use
of the buckets in A. On the other hand, a large k increases the difference between the
size of the largest and smallest bucket in A. This causes the distribution of events in A
to approach the actual workload distribution, which is presumably skewed. Section 3.2.1
states that the following must be satisfied in order for L and each bucket in A to have the
same size:
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Since erf is an increasing function, it is possible to approximate the value of k using
binary search by setting lower bound to 1 and upper bound to a sufficiently large value
such as 108. When N = 220 as is the case with previous experiments, k is estimated
to be approximately 4.90096. Figure 4.6 shows the effect of k on a normal distribution
benchmark with various standard deviations. Clearly, when the majority of events are
clustered as is the case with σ = 10000, varying k does not help. This is because when
k is small, a large percentage of events reside in L; when k is large, a small number of
buckets in A hold a majority of the events. Since bucket is also implemented using a set
queue similar to L, regardless of k, in both cases the average latency is dominated by the
performance of the set queue.

On the other hand, when σ is large, i.e. the events are more scattered, then increasing k
may marginally reduce the latency, by bringing more events into every bucket in A instead
of just a few when then events are tightly clustered. There is no single value of k that is
optimal for all distributions, and this experiment suggests that a large default value such
as 6 is safer than a small value such as 2. While a large k does not necessarily reduce
access time, it is reasonable to assume that it does not increase access time either.
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Figure 4.7: FlexQueue vs competitors

4.3.5 Other Distributions

Previous benchmarks employs a basic piece-wise uniform distribution that is unrealistic
for a real workload. This section compares FlexQueue against competing implementations
under synthetic, yet more typical of real world, input distributions. These include normal
and triangular distributions.

Notably, in Figure 4.7, set queue performs almost identical to FlexQueue. This is
because a normal distribution with a small variance is used. As such, a majority of the
events are centred around the mean, therefore, it becomes difficult to choose a value of
k such that 2k standard deviations of events can be distributed across all buckets evenly
when the queue size is only slightly larger than the number of buckets. This reduces the
effectiveness of the pointer array and increases the average latency of accessing A. It is
therefore expected that FlexQueue should have better performance if the input distribution
has several clumps rather than just one.

The triangular distribution in Figure 4.7 is similar to the result of adding multiple nor-
mal distributions with unique means. Such a distribution results in multiple, closely-spaced
clusters of values rather than just a single cluster, and gives FlexQueue the opportunity
to make use of the pointer array over a much larger range of events.
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Figure 4.8: ripng-network topology using different scheduler

4.4 ns3 Application

ns3 [1] is an open-source, discrete event network simulator. It is particularly good at packet
level simulation and creating models that are realistic enough that simulation results are
considered very realistic. According to its documentation, the priority queue used as the
scheduler is an STL set queue, which is implemented using a red-black tree. FlexQueue
works as a drop-in replacement for ns3’s scheduler with no changes to the source code.

Included in the source code repository are workloads that can be readily compiled
and executed. One of these workloads, ’ripng-network’ creates a small topology with 6
nodes and 7 links between them. This workload is intended to simulate the operation of
Routing Information Protocol next generation (RIPng) by repeatedly disconnecting and
reconnecting one of the low-cost links between two subnets. This causes the protocol to
re-route traffic through a different, high-cost link that is otherwise unused. By increasing
the number of copies t of this topology created during simulation, it is possible to ob-
serve the performance of FlexQueue under various queue sizes and determine whether its
performance benefits carry over to a real world application.

Figure 4.8 shows the running time of the ripng-network simulation. As expected,
FlexQueue does not out-perform set queue at smaller queue sizes, and is noticeably slower
at these parameters. Note that the smallest queue sizes here are much smaller than those
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during benchmarks. This shows that FlexQueue does not introduce significant overhead,
even under parameters that it is not optimized for. By increasing the number of nodes
used in the simulation, the number of queued events increases, and approaches the range
of values that FlexQueue excels at, as suggested by previous benchmarks. At t = 300,
FlexQueue’s simulation run time is roughly 2% faster than that of set queue. Using the
gprof profiler, it is discovered that priority queue related operations such as insert and
deleteMin account for roughly 10% of the entire ripng-network simulation run time.
Thus, this result translates to roughly a 20% improvement over set queue for priority
queue operations only, since all other components of the simulation remains identical.
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Chapter 5

Conclusion and Future Work

This thesis presents FlexQueue, a priority queue design that is suitable for use in system
software such as discrete event simulators and operating system kernels. FlexQueue is
different from other calendar queue variations in three ways. First, FlexQueue uses an
efficient hierarchical bit vector to locate the bucket where the highest priority item is stored.
This significantly lowers the cost of both insert and deleteMin operations. Searching
through the bit vector still takes time proportional to the logarithm of the total number
of buckets, but given that the number of buckets is fixed, the cost is practically constant.
Second, in order to ensure the bit vector can be queried at all times, events that do not
fit in the current horizon are stored separately in an overflow list L. Finally, to minimize
the possibility of having too many events in L as a result of a skewed input distribution,
FlexQueue uses a dynamic horizon that is able to track basic shifts in input characteristics.

A bench-marking tool has been implemented to evaluate the effectiveness of these
changes. Since the bit vector is intended to operate on top of the pointer array, its cost is
compared with operations on a linked list. This represents the cheapest operation possible
on a given bucket, thus exaggerates the overhead of the bit vector, if any. Results show
that in the worst case, accessing the bit vector is slightly faster than inserting elements
into a linked list. In addition, because the implementation of the bit vector uses bsf whose
input is at most one machine word, this limits the possibility of using a fanout factor larger
than 64 bits. Benchmark experiments also demonstrate the effect of dynamic horizon when
both queue size and distribution changes. FlexQueue’s resizing policy is able to sense and
track when the timestamps of the incoming events are increasing, and responds by modi-
fying the lower and upper bound of the current horizon. Through a combination of these
techniques, FlexQueue is able to perform competitively against popular tree-based priority
queue implementations when the queue size is sufficiently large.
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This thesis compares FlexQueue only with other tree-based implementations. A more
general and comprehensive study should include selected list-based implementations men-
tioned in Chapter 2. In addition, a clear weakness of FlexQueue is that it is slightly slower
when the queue size is small. In this scenario, most of the buckets are presumably empty.
As a result, attempting to divide the already small universe of elements into a much larger
number of buckets becomes more expensive than a simpler data structure such as a binary
tree. A possible solution is to allow the number of buckets to decrease, if it is detected
that a majority of buckets are unused. These ideas are left for future exploration.
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