
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330044616

Introduction to Systems Modeling Concepts

Chapter · January 2019

DOI: 10.1016/B978-0-12-813370-5.00009-2

CITATION

1
READS

8

3 authors:

Some of the authors of this publication are also working on these related projects:

MPC for applications View project

Modeling and Simulation of Large Scale Dynamical Systems View project

Bernard Phillip Zeigler

The University of Arizona

635 PUBLICATIONS 11,854 CITATIONS

SEE PROFILE

Alexandre Muzy

Université Côte d'Azur, CNRS

101 PUBLICATIONS 493 CITATIONS

SEE PROFILE

Ernesto Kofman

National Scientific and Technical Research Council

138 PUBLICATIONS 1,886 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alexandre Muzy on 02 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330044616_Introduction_to_Systems_Modeling_Concepts?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330044616_Introduction_to_Systems_Modeling_Concepts?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MPC-for-applications?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Modeling-and-Simulation-of-Large-Scale-Dynamical-Systems?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernard_Zeigler?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernard_Zeigler?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Arizona?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bernard_Zeigler?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Muzy?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Muzy?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Muzy?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ernesto_Kofman?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ernesto_Kofman?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Scientific_and_Technical_Research_Council?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ernesto_Kofman?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Muzy?enrichId=rgreq-382a14c5eb496c5427061f913ca33047-XXX&enrichSource=Y292ZXJQYWdlOzMzMDA0NDYxNjtBUzo3NDMxMTM5MzI5MzEwNzJAMTU1NDE4MzU3NjYzOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

AUTHOR QUERY FORM

Book: Theory of Modeling and
Simulation

Please e-mail your responses and any corrections to:

Chapter: 01 E-mail: Ni.Kumar@elsevier.com

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof. It is crucial that you NOT
make direct edits to the PDF using the editing tools as doing so could lead us to overlook your desired changes. Rather,
please request corrections by using the tools in the Comment pane to annotate the PDF and call out the changes you would
like to see. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags
in the proof.

Location Query / Remark: Click on the Q link to find the query’s location in text
in chapter Please insert your reply or correction at the corresponding line in the proof

Q1 It seems that text in letter slightly differs from sentences in corrected pdf file ("when the usual kinds
of deviations" in letter and "when deviations" in pdf file). Please check if corrections were made
properly. (p. 23/ line 14)

Please check this box or indicate your approval
if you have no corrections to make to the PDF file

Thank you for your assistance. Page 1 of 1

mailto:Ni.Kumar@elsevier.com
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1
CHAPTER

INTRODUCTION TO SYSTEMS
MODELING CONCEPTS

CONTENTS
1.1 Systems Specification Formalisms ... 4

1.1.1 Relation to Object Orientation... 5
1.1.2 Evolution of Systems Formalisms... 6
1.1.3 Continuous and Discrete Formalisms .. 7
1.1.4 Quantized Systems.. 8
1.1.5 Extensions of DEVS ... 9

1.2 Levels of System Knowledge .. 10
1.3 Introduction to the Hierarchy of Systems Specifications ... 12
1.4 The Specification Levels Informally Presented .. 14

1.4.1 Observation Frame .. 14
1.4.2 I/O Behavior and I/O Function... 15
1.4.3 State Transition System Specification.. 16
1.4.4 Coupled Component System Specification .. 16

1.5 System Specification Morphisms: Basic Concepts .. 17
1.6 Evolution of DEVS ... 20
1.7 Summary.. 23
1.8 Sources ... 23
Definitions, Acronyms, Abbreviations ... 24
References... 24

This chapter introduces some key concepts that underlie the framework and methodology for model-
ing and simulation (M&S) originally presented in “Theory of Modeling and Simulation” published in
1976 – referred to hereafter as TMS76 to distinguish it from the current revised third edition TMS2018.
Perhaps the most basic concept is that of mathematical systems theory. First developed in the nineteen
sixties, this theory provides a fundamental, rigorous mathematical formalism for representing dynam-
ical systems. There are two main, and orthogonal, aspects to the theory:

• Levels of system specification: these are the levels at which we can describe how systems behave
and the mechanisms that make them work the way they do.

• Systems specification formalisms: these are the types of modeling styles, such continuous or
discrete, that modelers can use to build system models.

Although the theory is quite intuitive, it does present an abstract way of thinking about the world
that you will probably find unfamiliar. So we introduce the concepts in a spiral development consisting
of easy-to-grasp stages – with each spiral revolution returning to a more faithful version of the full
story.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 1

Theory of Modeling and Simulation. https://doi.org/10.1016/B978-0-12-813370-5.00009-2
Copyright © 2019 Elsevier Inc. All rights reserved.

3

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

https://doi.org/10.1016/B978-0-12-813370-5.00009-2

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

4 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

In this chapter we first introduce some basic systems concepts, then motivate the systems specifi-
cation formalisms by describing their evolution over time. This also provides a way to point out the
differences between earlier editions and this one (TMS2018). Finally, we discuss the levels of system
specification, illustrating them with familiar examples. In this ground stage of our spiral development,
the presentation is informal and prepares the way for the framework for M&S that comes in the next
chapter. Later, in the second part of the book, we return to a more rigorous development of the concepts
to lay a sound basis for the developments to come in the third part.

1.1 SYSTEMS SPECIFICATION FORMALISMS
System theory distinguishes between system structure (the inner constitution of a system) and behavior
(its outer manifestation). Viewed as a black box (Fig. 1.1) the external behavior of a system is the rela-
tionship it imposes between its input time histories and output time histories. The system’s input/output
behavior consists of the pairs of data records (input time segments paired with output time segments)
gathered from a real system or model. The internal structure of a system includes its state and state
transition mechanism (dictating how inputs transform current states into successor states) as well as
the state-to-output mapping. Knowing the system structure allows us to deduce (analyze, simulate)
its behavior. Usually, the other direction (inferring structure from behavior) is not univalent – indeed,
discovering a valid representation of an observed behavior is one of the key concerns of the M&S
enterprise.

An important structure concept is that of decomposition namely, how a system may be broken down
into component systems (Fig. 1.2). A second concept is that of composition, i.e., how component sys-
tems may be coupled together to form a larger system. Systems theory is closed under composition
in that the structure and behavior of a composition of systems can be expressed in the original system
theory terms. The ability to continue to compose larger and larger systems from previously constructed
components leads to hierarchical construction. Closure under composition guarantees that such a com-
position results in a system, called its resultant, with well-defined structure and behavior. Modular

FIGURE 1.1

Basic System Concepts.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 2

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.1 SYSTEMS SPECIFICATION FORMALISMS 5

FIGURE 1.2

Hierarchical System Decomposition.

systems have recognized input and output ports through which all interaction with the environment
occurs. They can be coupled together by coupling output ports to input ports and can have hierarchical
structure in which component systems are coupled together to form larger ones.

The difference between a decomposed systems, as in Fig. 1.2, and undecomposed systems, as in
Fig. 1.1, provides our first introduction to levels of systems specification. We’ll say later that the former
are at a higher level of specification than the latter since they provide more information about the
structure of the system.

1.1.1 RELATION TO OBJECT ORIENTATION
Models developed in a system theory paradigm bear a resemblance to concepts of object-oriented pro-
gramming. Both objects and system models share a concept of internal state. However, mathematical
systems are formal structures that operate on a time base while programming objects typically do not
have an associated temporal semantics. Objects in typical object oriented paradigms are not hierarchi-
cal or modular in the sense just described. The coupling concept in modular systems provides a level
of delayed binding – a system model can place a value on one of its ports but the actual destination of
this output is not determined until the model becomes a component in a larger system and a coupling
scheme is specified. It can therefore: a) be developed and tested as a stand alone unit, b) be placed in a
model repository and reactivated at will and c) reused in any applications context in which its behavior
is appropriate and coupling to other components makes sense.

While coupling establishes output-to-input pathways, the systems modeler is completely free to
specify how data flows along such channels. Information flow is one of many interactions that may be
represented. Other interactions include physical forces and fields, material flows, monetary flows, and
social transactions. The systems concept is broad enough to include the representation of any of these

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 3

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

6 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

and supports the development of M&S environments that can make including many within the same
large-scale model.

Although systems models have formal temporal and coupling features not shared by conventional
objects, object-orientation does provide a supporting computational mechanism for system modeling.
Indeed, there have been many object-oriented implementations of hierarchical, modular modeling sys-
tems These demonstrate that object-oriented paradigms, particularly for distributed computing, can
serve as a strong foundation to implement the modular systems paradigm.

1.1.2 EVOLUTION OF SYSTEMS FORMALISMS
As in many situations, portraying the evolution of an idea may help in the understanding of the
complexities as they develop. Fig. 1.3 depicts the basic systems modeling formalisms as they were
presented in the first edition, TMS76. This edition was the first book to formulate approaches to mod-
eling as system specification formalisms – shorthand means of delineating a particular system within
a subclass of all systems. The traditional differential equation systems, having continuous states and
continuous time, were formulated as the class of DESS (Differential Equation System Specifications).
Also, systems that operated on a discrete time base such as automata were formulated as the class of
DTSS (Discrete Time System Specifications). In each of these cases, mathematical representation had
proceeded their computerized incarnations (it has been three hundred years since Newton-Leibnitz!).

However, the reverse was true for the third class, the Discrete Event System Specifications (DEVS).
Discrete event models were largely prisoners of their simulation language implementations or algorith-
mic code expressions. Indeed, there was a prevalent belief that discrete event “world views” constituted
new mutant forms of simulation, unrelated to the traditional mainstream paradigms. Fortunately, that
situation has begun to change as the benefits of abstractions in control and design became clear. Witness
the variety of discrete event dynamic system formalisms that have emerged (Ho, 1992). Examples are
Petri Nets, Min-Max algebra, and GSMP (generalized semi-Markov processes). While each one has its

FIGURE 1.3

Basic Systems Specification Formalisms.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 4

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.1 SYSTEMS SPECIFICATION FORMALISMS 7

application area, none were developed deliberately as subclasses of the systems theory formalism. Thus
to include such a formalism into an organized system-theory based framework requires “embedding”
it into DEVS.

“Embedding.” What could such a concept mean? The arrows in Fig. 1.4 indicate subclass relation-
ships; for example, they suggest that DTSS is a “subclass of” DEVS. However, it is not literally true
that any discrete time system is also discrete event system (their time bases are distinct, for example).
So we need a concept of simulation that allows us to say when one system can do the essential work
of another. One formalism can be embedded in another if any system in the first can be simulated by
some system in the second. Actually, more than one such relationship, or morphism, may be useful,
since, as already mentioned, there are various levels of structure and behavior at which equivalence of
systems could be required. As a case in point, the TMS76 edition established that any DTSS could be
simulated by a DEVS by constraining the time advance to be constant. However, this is not as useful
as it could be until we can see how it applies to decomposed systems. Until that is true, we either must
reconstitute a decomposed discrete time system to its resultant before representing it as a DEVS or we
can represent each DTSS component as a DEVS but we can’t network the DEVS together to simulate
the resultant. TMS2000 established this stronger simulation relation and we discuss its application in
Chapters 18 and 20 of this edition.

1.1.3 CONTINUOUS AND DISCRETE FORMALISMS
Skipping many years of accumulating developments, the next major advance in systems formalisms
was the combination of discrete event and differential equation formalisms into one, the DEV&DESS.
As shown in Fig. 1.5, this formalism subsumes both the DESS and the DEVS (hence also the DTSS)
and thus supports the development of coupled systems whose components are expressed in any of
the basic formalisms. Such multi-formalism modeling capability is important since the world does not

FIGURE 1.4

The Dynamics of Basic System Classes.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 5

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

8 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

FIGURE 1.5

Introducing the DEV&DESS Formalism.

usually lend itself to using one form of abstraction at a time. For example, a chemical plant is usu-
ally modeled with differential equations while its control logic is best designed with discrete event
formalisms. In 1990, Praehofer (Praehofer, 1991) showed that DEV&DESS was closed under cou-
pling and in order to do so, had to deal with the pairs of input-output interfaces between the different
types of systems. Closure under coupling also required that the DEV&DESS formalism provide a
means to specify components with intermingled discrete and continuous expressions. Finally, simula-
tor algorithms (so called abstract simulator) had to be provided to establish that the new formalism
could be implemented in computational form (look ahead to Chapter 9 to see how this was all accom-
plished).

1.1.4 QUANTIZED SYSTEMS
TMS2000 built on the advances since 1976 especially in the directions pointed to by the introduction
of DEV&DESS. Since parallel and distributed simulation has become a dominant form of model ex-
ecution, and discrete event concepts best fit with this technology, the focus turned to a concept called
the DEVS bus. This concept, introduced in 1996, concerns the use of DEVS models, as a “wrappers”
to enable a variety of models, to interoperate in a networked simulation. It was particularly germane to
the High Level Architecture (HLA) defined by the United States Department of Defense. One way of
looking at this idea is that we want to embed any formalism, including for example, the DEV&DESS,
into DEVS. Another way was to introduce a new class of systems, called the Quantized System, as
illustrated in Fig. 1.6. In such systems, both the input and output are quantized. As an example, an
analog-to-digital converter does such quantization by mapping a real number into a finite string of dig-
its. In general, quantization forms equivalence classes of outputs that then become indistinguishable for
downstream input receivers, requiring less data network bandwidth, but also possibly incurring error.

Quantization provides a process for representing and simulating continuous systems that is an al-
ternative to the more conventional discretization of the time axis. While discretization leads to discrete

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 6

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.1 SYSTEMS SPECIFICATION FORMALISMS 9

FIGURE 1.6

Introducing Quantized Systems.

time systems, quantization leads to discrete event systems. The theory of quantized state systems that
has been developed since 2000 is presented in Chapter 20 of this edition.

When we restrict quantization to differential equation systems, we can express the resulting class,
Quantized DESS, within DEV&DESS and study its properties, especially from the point of view of
the DEVS bus. We can then study the approximation capability and simulation efficiency of DEVS in
distributed simulation in comparison with classical time stepped integration and simulation approaches.
Particularly with respect to reduction of message passing and network bandwidth (a major concern in
distributed simulation) promising results are being obtained.

1.1.5 EXTENSIONS OF DEVS
Various extensions of DEVS have been developed as illustrated in Fig. 1.7. In the interest of space
conservation, some of them are not discussed here while still available in TMS2000. Since our focus
here is on Iterative System Specification as a modeling formalism, we present new types of such models
in Chapter 12. These developments expand the classes of system models that can be represented and
integrated within both DEVS and the parent systems theory formalism and UML can be used to classify
newly developed variants and extensions (Blas and Zeigler, 2018).

These developments lend credence to the claim that DEVS is a promising computational basis for
analysis and design of systems, particularly when simulation is the ultimate environment for develop-
ment and testing (Fig. 1.8). The claim rests on the universality of the DEVS representation, namely
the ability of DEVS bus to support the basic system formalisms. TMS2000 went some distance toward
substantiating the claim that DEVS is the unique form of representation that underlies any system
with discrete event behavior. In this edition, we expand the scope to consider Iterative Specification of
Systems and the DEVS Bus support of co-simulation, the ability to correctly interoperate simulators
embedding models from diverse formalisms within an integrated distributed simulation environment.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 7

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

10 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

FIGURE 1.7

Extensions of the DEVS Formalism.

FIGURE 1.8

DEVS as a Computational Basis for Simulation, Design and Control.

1.2 LEVELS OF SYSTEM KNOWLEDGE
As already mentioned, the systems specification hierarchy is the basis for a framework for M&S which
sets forth the fundamental entities and relationships in the M&S enterprise. The hierarchy is first pre-
sented in an informal manner and later in Chapter 5 in its full mathematical rigor. Our presentation
starts with a review of George Klir’s (Klir, 1985) systems framework.

Table 1.1 identifies four basic levels of knowledge about a system recognized by Klir. At each level
we know some important things about a system that we didn’t know at lower levels. At the lowest level,

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 8

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.2 LEVELS OF SYSTEM KNOWLEDGE 11

Table 1.1 Levels of System Knowledge

Level Name What we know at this level
0 Source what variables to measure and how to observe them

1 Data data collected from a source system

2 Generative means to generate data in a data system

3 Structure components (at lower levels) coupled together to form a generative system

the source level identifies a portion of the real world that we wish to model and the means by which we
are going to observe it. As the next level, the data level is a data base of measurements and observations
made for the source system. When we get to Level 2, we have the ability to recreate this data using
a more compact representation, such as a formula. Since typically, there are many formulas or other
means to generate the same data, the generative level, or particular means or formula we have settled
on, constitutes knowledge we didn’t have at the data system level. When people talk about models in
the context of simulation studies they are usually referring to the concepts identified at this level. That
is, to them a model means a program to generate data. At the last level, the structure level, we have a
very specific kind of generative system. In other words, we know how to generate the data observed at
Level 1 in a more specific manner – in terms of component systems that are interconnected together
and whose interaction accounts for the observations made. When people talk about systems, they are
often referring to this level of knowledge. They think of reality as being made up of interacting parts –
so that the whole is the sum (or a sometimes claimed, more, or less, than the sum) of its parts. Although
some people use the term ‘subsystems’ for these parts, we call them component systems (and reserve
the term subsystem for another meaning).

As we have suggested, Klir’s terms are by no means universally known, understood, or accepted
in the M&S community. However, his framework is a useful starting point since it provides a unified
perspective on what are usually considered to be distinct concepts. From this perspective, there are
only three basic kinds of problems dealing with systems and they involve moving between the levels
of system knowledge (Table 1.2). In systems analysis, we are trying to understand the behavior of an
existing or hypothetical system based on its known structure. Systems inference is done when we don’t
know what this structure is – so we try to guess this structure from observations that we can make.
Finally, in systems design, we are investigating the alternative structures for a completely new system
or the redesign of an existing one.

The central idea is that when we move to a lower level, we don’t generate any really new knowl-
edge – we are only making explicit what is implicit in the description we already have. One could
argue that making something explicit can lead to insight, or understanding, which is a form of new
knowledge, but Klir is not considering this kind of subjective (or modeler dependent) knowledge. In
the M&S context, one major form of systems analysis is computer simulation which generates data
under the instructions provided by a model. While no new knowledge (in Klir’s sense) is generated,
interesting properties may come to light of which we were not aware before the analysis. On the other
hand, systems inference and systems design are problems that involve climbing up the levels. In both
cases we have a low level system description and wish to come up with an equivalent higher level one.
For systems inference, the lower level system is typically at the data system level, being data that we
have observed from some existing source system. We are trying to find a generative system, or even a
structure system, that can recreate the observed data. In the M&S context, this is usually called model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 9

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

12 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

Table 1.2 Fundamental Systems Problems

Systems Problem Does source of the data exist?
What are we trying to learn
about it?

Which level transition is
involved?

systems analysis The system being analyzed may ex-
ist or may be planned. In either case
we are trying to understand its behav-
ioral characteristics.

moving from higher to lower levels,
e.g., using generative information to
generate the data in a data system

systems inference The system exists. We are trying to
infer how it works from observations
of its behavior.

moving from lower to higher levels,
e.g., having data, finding a means to
generate it

systems design The system being designed does not
yet exist in the form that is being con-
templated.

We are trying to come up with a good
design for it. moving from lower to
higher levels, e.g. having a means
to generate observed data, synthesiz-
ing it with components taken off the
shelf.

construction. In the case of systems design, the source system typically does not yet exist and our
objective is to build one that has a desired functionality. By functionality we mean what we want the
system to do; typically, we want to come up with a structure system, whose components are technolog-
ical, i.e., can be obtained off-the-shelf, or built from scratch from existing technologies. When these
components are interconnected, as specified by a structure system’s coupling relation, the result should
be a real system that behaves as desired.

It is interesting to note that the process called reverse engineering has elements of both inference
and design. To reverse engineer an existing system, such as was done in the case of the cloning of IBM
compatible PCs, an extensive set of observations is first made. From these observations, the behavior
of the system is inferred and an alternative structure to realize this behavior is designed thus bypassing
patent rights to the original system design!

1.3 INTRODUCTION TO THE HIERARCHY OF SYSTEMS SPECIFICATIONS
At about the same time (in the early 1970’s) that Klir introduced his epistemological (knowledge)
levels, TMS76 formulated a similar hierarchy that is more oriented toward the M&S context. This
framework employs a general concept of dynamical system and identifies useful ways in which such a
system can be specified. These ways of describing a system can be ordered in levels as in Table 1.3.
Just as in Klir’s framework, at each level more information is provided in the specification that cannot
be derived from lower levels. As can be seen in Table 1.3, these levels roughly correspond to those of
Klir’s framework.

The major difference between the two frameworks is that the System Specification Hierarchy rec-
ognize that simulation deals with dynamics, the way in which systems behave over time. Therefore,
time is the base upon which all events are ordered. We also view systems as having input and output in-
terfaces through which they can interact with other systems. As illustrated in Fig. 1.9, systems receive
stimuli ordered in time through their input ports, and respond on their output ports. The term “port” sig-

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 10

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.3 INTRODUCTION TO THE HIERARCHY OF SYSTEMS SPECIFICATIONS 13

Table 1.3 Relation between System Specification Hierarchy and Klir’s levels

Level Specification Name Corresponds to Klir’s What we know at this
level

0 Observation Frame Source System how to stimulate the sys-
tem with inputs; what vari-
ables to measure and how
to observe them over a time
base;

1 I/O Behavior Data System time-indexed data collected
from a source system; con-
sists of input/output pairs.

2 I/O Function Knowledge of initial state;
given an initial state, every
input stimulus produces a
unique output.

3 State Transition Generative System How states are affected by
inputs; given a state and an
input what is the state after
the input stimulus is over;
what output event is gener-
ated by a state.

4 Coupled Component Structure System Components and how they
are coupled together. The
components can be speci-
fied at lower levels or can
even be structure systems
themselves – leading to hi-
erarchical structure.

FIGURE 1.9

Input/Output System.

nifies a specific means of interacting with the system. Whether by stimulating it (input) or observing it
(output). The time-indexed inputs to systems are called input trajectories; likewise, their time-indexed
outputs are called output trajectories. Ports are the only channels through which one can interact with
the system. This means that system are modular. While Klir’s framework can include dynamics, in-

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 11

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

14 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

put/output ports and modularity, it is not dedicated to these concepts. However, understanding these
concepts is critical to effectively solving the problems that arise in M&S.

Before discussing each level of the specification hierarchy in some detail, let’s observe that we
could have the very same real world object specified simultaneously at each of the levels. Thus there
should be a way to associate the next lower level specification with any given one. This association
concept is illustrated in Fig. 1.10. For example, if we have know the detailed structure at the Coupled
Component level, then we ought to be able to construct the corresponding specification at the State
Transition level. The hierarchy is set up to provide such an association mapping at each (other than
the lowest) level. Indeed, this is the formal version of climbing down the levels just discussed. Since
the association mapping is not necessarily one to one, many upper level specifications may map to the
same lower level one. This is the underlying reason why climbing up the levels is much harder than
climbing down the levels. Indeed, when we select one of the associated upper level specifications for a
given lower level one, we are gaining knowledge we didn’t have at the lower level.

1.4 THE SPECIFICATION LEVELS INFORMALLY PRESENTED
1.4.1 OBSERVATION FRAME
The Observation Frame specifies how to stimulate the system with inputs; what variables to measure
and how to observe them over a time base.

As an example, Fig. 1.11 shows a forest subject to lightning, rain and wind, modeled as input ports
and smoke produced from fire, represented as an output port. This is a level 0 or Observation Frame
specification. Note the choice of variables we included as ports and their orientation (i.e., whether they

FIGURE 1.10

Association between levels of the System Specification Hierarchy.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 12

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.4 THE SPECIFICATION LEVELS INFORMALLY PRESENTED 15

FIGURE 1.11

A forest specified as a system in the Observation Frame (Level 0).

are input or output ports). We could have chosen differently. For example, we could have included an
output port to represent heat radiation. Moreover, rather than representing each variable by a single
value, it can be distributed over space, i.e., represented by an array of values. Such choices depend on
our modeling objectives and are specified through experimental frames, a concept which we discuss in
Chapter 2.

Fig. 1.12 shows some examples of input and output trajectories. The input trajectory on the lightning
port shows a bolt occurring at some particular time t0. Only one such bolt occurs in the time period
shown. The smoke output trajectory, at the top, depicts a gradual build up of smoke starting at t0 (so
presumably, caused by a fire started by the lightning bolt). The possible values taken on by smoke,
called its range, would result from some appropriate measurement scheme, e.g., measuring density of
particulate material in grams/cubic meter. The pair of input, and associated output, trajectories is called
a input/output (or I/O) pair. Fig. 1.12 also displays a second I/O pair with the same input trajectory but
different output trajectory. It represents the fact that there may be many responses to the same stimulus.
In the second case, lightning did not cause a major fire, since the one that broke out quickly died. Such
multiple output trajectories (for the same input trajectory) are characteristic of knowledge at Level 1.
Knowing how to disambiguate these output trajectories is knowledge we will gain at the next level.

1.4.2 I/O BEHAVIOR AND I/O FUNCTION
The collection of all I/O pairs gathered by observation is called the I/O Behavior of a system. Returning
to Table 1.3, this represents a system specification at Level 1. Now suppose that we are able to uniquely

FIGURE 1.12

Some Input-Output Pairs for the Forest System Frame of Fig. 1.11.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 13

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

16 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

predict the response of the smoke output to a lightning bolt. For example, suppose we know that if the
vegetation is dry, then a major fire will ignite, but if the vegetation is moist then any fire will quickly
die. Having such a factor represents knowledge at Level 2, that of the I/O Function. Here, in addition
to lower level information, we add initial states to the specification – when the initial state is known,
there is a functional relationship between input and output trajectories, i.e., the initial state determines
the unique response to any input (Fig. 1.13A).

1.4.3 STATE TRANSITION SYSTEM SPECIFICATION
At the next level (3) of system specification, we can specify not only initial state information but
also how the state changes as the system responds to its input trajectory. Fig. 1.13B and C illustrate
this important concept. Fig. 1.13B presents the situation where the forest is in state (dry vegetation,
unburned) when a lightning bolt occurs at time t0. The state that the forest is in at time t1 when a
second bolt occurs is (dry vegetation, burnt) reflecting the fact that a fire has ignited. Since the forest
is in a different state, the effect of this second bolt is different from the first. Indeed, since there is little
left to burn, there is no effect of the second bolt.

In contrast, Fig. 1.13C illustrates the situation where the forest is wet and unburned when the first
bolt occurs. It does not cause a major fire, but it does dry out the vegetation so the resulting state is (dry,
unburned). Now the second bolt produces a major fire, just as the first bolt did in Fig. 1.13B – since
both the state and subsequent input trajectory are the same, the response of the system is the same.

Exercise. A watershed is a region like a valley or basin in which water collects and flows downward
toward a river or sea. When it rains heavily the rain water starts to show up quite quickly at a measuring
point in the river. For a lighter rain event very little of the rain water may be measured because it is
absorbed in the ground. However, after several rain events the ground can get saturated and a light rain
can send water quickly downstream. Sketch a set of input/output pairs similar to that of the forest fire
to capture the dynamics of such rain events. What variable would you chose to represent that state of
the system at the next level of specification.

Exercise. In climates where it can rain or snow, a watershed can have an even more interesting behav-
ior. During winter snow from snow events might accumulate on the ground and there is no indication
of any increase in water at the downstream measuring point. But as the temperature increases in spring,
the melting snow can eventually cause flooding downstream. Expand your model of the last exercise to
include snow events and temperature changes as inputs and sketch the kinds of input/output behaviors
you would expect.

1.4.4 COUPLED COMPONENT SYSTEM SPECIFICATION
At the highest level of system specification, we can describe more about the internals of the system.
Until now, it was a black box, at first observable only through I/O ports. Subsequently, we were able
to peer inside to the extent of observing its state. Now, at level 4, we can specify how the system is
composed of interacting components. For example, Fig. 1.14 illustrates how a forest system could be
composed of interacting cells, each representing a spatial region, with adjacent cells interconnected.
The cells are modeled at level 3, i.e., their state transition and output generation definitions are used
to act upon inputs, and generate outputs, respectively to and from, other cells. The cells are coupled
together using ports. The output ports of one cell are coupled to the input ports of its neighbors.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 14

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.5 SYSTEM SPECIFICATION MORPHISMS: BASIC CONCEPTS 17

FIGURE 1.13

Initial State Concept: a specification at Level 3 (I/O Function) in which we have initial state knowledge about
the forest.

1.5 SYSTEM SPECIFICATION MORPHISMS: BASIC CONCEPTS
The system specification hierarchy provides a stratification for constructing models. But, while con-
structing models is the basic activity in M&S, much of the real work involves establishing relationships
between system descriptions. The system specification hierarchy also provides an orderly way of pre-
senting and working with such relationships. Fig. 1.15 illustrates the idea that pairs of system can
be related by morphism relations at each level of the hierarchy. A morphism is a relation that places
elements of system descriptions into correspondence as outlined in Table 1.4.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 15

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

18 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

FIGURE 1.14

Component Structure System Specification for the Forrest System.

FIGURE 1.15

Morphism Concepts for System Specification Hierarchy.

For example, at the lowest level, two Observation Frames are morphic, if we can place their defining
elements – inputs, outputs, and time bases into correspondence. Such Frames are isomorphic if their
inputs, outputs, and time bases respectively, are identical. In general, the concept of morphism tries to
capture similarity between pairs of systems at the same level of specification. Such similarity concepts
have to be consistent between levels. When we associate lower level specifications with their respective

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 16

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.5 SYSTEM SPECIFICATION MORPHISMS: BASIC CONCEPTS 19

Table 1.4 Morphism relations between systems in System Specification Hierarchy and Klir’s levels

Level Specification Name Two Systems are Morphic at this
level if:

0 Observation Frame their inputs, outputs and time bases
can be put into correspondence

1 I/O Behavior they are morphic at level 0 and
the time-indexed input/output pairs
constituting their I/O behaviors also
match up in one-one fashion

2 I/O Function they are morphic at level 0 and their
initial states can be placed into cor-
respondence so that the I/0 functions
associated with corresponding states
are the same

3 State Transition the systems are homomorphic (ex-
plained below)

4 Coupled Component components of the systems can
be placed into correspondence so
that corresponding components are
morphic; in addition, the couplings
among corresponding components
are equal

upper level ones, a morphism holding at the upper level must imply the existence of one at the lower
level. The morphisms defined in Table 1.4 are set up to satisfy these constraints.

The most important morphism, called homomorphism, resides at the State Transition level and is
illustrated in Fig. 1.16. Consider two systems specified at level 3, S and S′, where S may be bigger
than S′ in the sense of having more states. Later, we’ll see that S could represent a complex model and
S′ a simplification of it. Or S could represent a simulator and S′ a model it is executing. When S′ goes

FIGURE 1.16

Homomorphism Concept. This figure illustrates the preservation of state transitions that a homomorphism
requires.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 17

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

20 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

through a state sequence such as a, b, c, d , then S should go through a corresponding state sequence
say A,B,C,D. Typically, a simulator has a lot of apparatus, represented in its states, necessary to
accommodate the whole class of models rather than a single one. Thus we don’t assume that states of
S and S′ are identical – only that there is a predefined correspondence between them illustrated by the
shaded connecting lines in the figure. Now to establish that this correspondence is a homomorphism
requires that whenever S′ specifies a transition, such as from state b to state c, then S actually makes
the transition involving corresponding states B and C. Typically, the simulator is designed to take a
number of microstate transitions to make the macrostate transition from B to C. These are computation
steps necessary to achieve the desired end result. It is not hard to see that if such a homomorphism holds
for all states of S′, then any state trajectory in the S′ will be properly reproduced in S.

Often, we require that the correspondence hold in a step-by-step fashion. In other words, that the
transition from a to b is mirrored by a one-step transition from A to B . Also, as just indicated, we want
the I/O Behavior’s of homomorphic models specified at the I/O System level to be the same. Thus, as
in Fig. 1.17, we require that the outputs produced from corresponding states be the same. In this type of
homomorphism, the values and timing of the transitions and outputs of the base model are preserved in
the lumped model. Thus, in this case, the state and output trajectories of the two models, when started
in corresponding states, are the same.

1.6 EVOLUTION OF DEVS
Around 1960, the first use of a form of digital simulation appeared which we can roughly identify as
event-oriented simulation. At its advent, event-oriented simulation was mainly thought to be a form
of programming associated with the recent introduction of the digital computer and applied to opera-
tional research problems. In contrast, classical simulation was taken to be a form of numerical solution
applicable to physics and related sciences whose speed could be greatly increased with mechanical,
as opposed to, hand calculation. The concept of “system” was defined by Wymore (1967) as a ba-

FIGURE 1.17

Homomorphism: a mapping preserving step-by-step state transition and output.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 18

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.6 EVOLUTION OF DEVS 21

sis for unifying various forms of discrete and continuous model specification. About a decade after
event-oriented simulation took hold, the Discrete Event System Specification (DEVS) formalism was
defined as a specification for a subclass of Wymore systems that captured all the relevant features of
the models underlying event-oriented simulations (Section 1.1.2). In contrast, Discrete Time Systems
Specification (DTSS) and Differential Equation System Specification (DESS) were introduced to spec-
ify other common distinct subclasses of Wymore systems – the first, as a basis for discrete time models
(including those specified by finite automata and cellular automata); the second to represent the con-
tinuous models underlying classical numerical solvers. K.D. Tocher appears to be the first to conceive
discrete events as the right abstraction to characterize the models underlying the event-oriented sim-
ulation techniques that he and others were adopting in the mid-1950s. According to Hollocks (2008),
Tocher’s core idea conceived of a manufacturing system as consisting of individual components, or
‘machines’, progressing as time unfolds through ‘states’ that change only at discrete ‘events’. Indeed,
DEVS took this idea one step further in following Wymore’s formalistic approach, both being based
on the set theory of logicians and mathematicians (Whitehead and Russell, 1910, Bourbaki).

Some distinctive modeling strategies soon emerged for programming event-oriented simulation.
They became encapsulated in the concept of world views: event scheduling, activity scanning, and pro-
cess interaction. These world views were formally characterized in Zeigler (1984) showing that they
could all be represented as subclasses of DEVS (Chapter 7), thus also suggesting its universality for
discrete event model formalisms extending to other representations such as Timed Automata and Petri
Nets (Fig. 1.18). Also at the same time the distinction between modular and non-modular DEVS was
made showing that the world views all fit within the non-modular category. Moreover, while the mod-
ular class was shown to be behaviorally equivalent to that of the non-modular one, it better supported
the concepts of modularity, object orientation, and distributed processing that were impending on the
software engineering horizon.

An overview of some of the milestones in the development DEVS depicted in the figure below is
given in Zeigler and Muzy (2017).

Classic DEVS is a formalism for modeling and analysis of discrete event systems can be seen as
an extension of the Moore machine formalism, which is a finite state automaton where the outputs
are determined by the current state alone (and do not depend directly on the input). Significantly, the
extension associates a lifespan with each state and provides a hierarchical concept with an operation,
called coupling, based on Wymore’s system theory.

FIGURE 1.18

Timeline of some developments in DEVS.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 19

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

22 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

Parallel DEVS (Chapter 4) revises the classic DEVS formalism to distinguish between transition
collisions and ordinary external events in the external transition function of DEVS models, extends
the modeling capability of the collisions. The revision also replaces tie-breaking of simultaneously
scheduled events by a well-defined and consistent formal construct that allows all transitions to be
simultaneously activated providing both conceptual and parallel execution benefits.

Hierarchical, Modular DEVS (Chapter 4) established the similarity and differences with, and im-
plemented DEVS in, the Object-oriented programming (OOP) and modular programming paradigm,
among the first in numerous implementations (Van Tendeloo and Vangheluwe, 2017).

System entity structure (SES) (Chapter 18 of TMS2000) is a structural knowledge representation
scheme that contains knowledge of decomposition, taxonomy, and coupling of a system supporting
model base management.

Dynamic Structure DEVS (Chapter 12), enables representing systems that are able to undergo struc-
tural change. Change in structure is defined in general terms, and includes the addition and deletion of
systems and the modification of the relations among components.

DEVS considered as a universal computational formalism for systems (Chapter 18) found increas-
ing implementation platforms that handled combined discrete and continuous models (also called co
simulation, hybrid simulation, Chapter 12). Some of the milestones in this thread of development are:

• DEV&DESS (Discrete Event and Differential Equation System Specification) (Chapter 9) is a
formalism for combined discrete-continuous modeling which based on system theoretical com-
bines the three system specification formalisms-differential equation, discrete time, and the
discrete event system specification formalism.

• Quantized State Systems (Chapter 19) are continuous time systems where the variable trajecto-
ries are piecewise constant and can be exactly represented and simulated by DEVS. The benefits
of this approach in the simulation of continuous time systems are discussed in Chapter 19, in-
cluding comparisons with conventional numerical integration algorithms in different domain
applications.

• GDEVS (Giambiasi et al., 2001) (Generalized DEVS) organizes trajectories through piecewise
polynomial segments utilizing arbitrary polynomial functions to achieve higher accuracies in
modeling continuous processes as discrete event abstractions.

• Modelica&DEVS (Floros et al., 2011; Nutaro, 2014) transforms Modelica continuous mod-
els into DEVS thus supporting models with state and time events that comprise differential-
algebraic systems with high index.

A formalism transformation graph showing how the diverse formalism of interest in modeling and
simulation can be transformed into DEVS was developed by Vangheluwe (2008).

Finite Deterministic DEVS (Chapter 13) is a powerful subclass of DEVS developed to teach the
basics of DEVS that has become the basis for implementations for symbolic and graphical platforms
for full-capability DEVS.

This selection of milestones illustrates that much progress has been made. We note the influence
of meta-modeling frameworks borrowed from software engineering (OMG, 2015) and increasing ap-
plied to development of higher level domain specific languages (Jafer et al., 2016). The confluence of
such frameworks with the system-theory based unified DEVS development process (Mittal and Martín,
2013) may be increasingly important in the future simulation model development.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 20

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

1.7 SUMMARY 23

Over the years, DEVS has finding an increasing acceptance in the model-based simulation research
community becoming one of the preferred paradigms to conduct modeling and simulation inquiries
(Wainer and Mosterman, 2016). Following the approach proposed in the M&S framework, new vari-
ants, extensions and abstractions have been developed using the core of concepts defined by the original
formalism. Several authors have improved the formalism capabilities in response to different situations,
giving useful solutions to a wide range of simulation problems. Some of these solutions (not includ-
ing listing those in milestones) are Cell-DEVS (Wainer, 2004), Fuzzy-DEVS (Kwon et al., 1996),
Min-Max-DEVS (Hamri et al., 2006), and Vectorial DEVS (Bergero and Kofman, 2014). Moreover,
the model/simulator separation of concerns inherent in the M&S framework of Chapter 2 allows re-
searchers to develop alternative simulation algorithms in order to complement existent abstract DEVS
simulators (Kim et al., 1998; Muzy and Nutaro, 2005; Shang and Wainer, 2006; Liu and Wainer, 2010).
Franceschini et al. (2014) provide a survey of DEVS simulators with performance comparison. Kim et
al. (2017) show how DEVS modeling for simulation greatly exceeds Big Data modeling techniques in
predictive power when deviations from the underlying state of the referent system come into play.

1.7 SUMMARY
We have outlined the basic concepts of systems theory: structure, behavior, levels of system speci-
fication and their associated morphisms. We have brought out the important distinctions that justify
having different levels of specification. However, we have not considered all the possible distinctions
and levels. For example, the important distinction between modular and non-modular systems has not
been recognized with distinct levels. A more complete hierarchy will emerge as revisit the concepts
introduced here in a more formal and rigorous manner in Chapter 5. We also have introduced the basic
system specification formalisms and outlined the advances in the development of such formalisms that
characterize the second edition, TMS2000 and reviewed some of the major milestones in the develop-
ment of DEVS.

We now turn to a framework for modeling and simulation that identifies the key elements and their
relationships. The systems specification hierarchy will provide the basis for presenting this framework.
For example, we use specifications at different levels to characterize the different elements. The various
system specification formalisms and their simulators provide the operational means to employ the
framework in real world applications. We focus on real world application in the last part of the book.

1.8 SOURCES
The basic concepts of systems theory were developed by pioneers such as Arbib (1967), Zadeh and
Desoer (1979) (later known more for his fuzzy sets theories), Klir (1985), Mesarovic and Taka-
hara (1975) and Wymore (1977). Since the first edition of this book (Zeigler, 1976) there have been
several trends toward deepening the theory (Mesarovic and Takahara, 1989; Wymore, 1993), extend-
ing its range of applicability with computerized tools (Pichler and Schwartzel, 1992) and going on
to new more abstract formulations (Takahashi and Takahara, 1995). Also, somewhat independently,
a new recognition of systems concepts within discrete event systems was fostered by Ho (1992). The
DEV&DESS formalism was introduced by Praehofer in his doctoral dissertation (Praehofer, 1991).

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14Q1 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 21

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

Query text:
Inserted query:
Q1: It seems that text in letter slightly differs from sentences in corrected pdf file ("when the usual kinds of deviations" in letter and "when deviations" in pdf file). Please check if corrections were made properly.

Bernard
Sticky Note
insert after when:the usual kinds of

Bernard
Highlight

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

24 CHAPTER 1 INTRODUCTION TO SYSTEMS MODELING CONCEPTS

The DEVS Bus originated in the research group of Tag Gon Kim (Kim and Kim, 1996). Quantized
system theory was first presented in Zeigler and Lee (1998). A recent collection of systems concepts
in computer science is given in Albrecht (1998).

DEFINITIONS, ACRONYMS, ABBREVIATIONS
• DEDS – Discrete Event Dynamic Systems.
• DESS – Differential Equation System Specification.
• DEVS – Discrete Event System Specification.
• DTSS – Discrete Time System Specification.
• DEV&DESS – Discrete Event and Differential Equation System Specification.
• M&S – Modeling and Simulation.
• TMS76 – 1976 Edition of Theory of Modeling and Simulation.
• TMS2000 – 2000 Edition of Theory of Modeling and Simulation.
• TMS2018 – 2018 Edition of Theory of Modeling and Simulation.

REFERENCES
Albrecht, R.F., 1998. On mathematical systems theory. Systems: Theory and Practice, 33–86.
Arbib, M., 1967. Theories of Abstract Automata. Prentice-Hall.
Bergero, F., Kofman, E., 2014. A vectorial DEVS extension for large scale system modeling and parallel simulation. Simulation:

Transactions of the Society for Modeling and Simulation International 90 (5), 522–546.
Blas, S.J., Zeigler, B.P., 2018. A conceptual framework to classify the extensions of DEVS formalism as variants and subclasses.

In: Winter Simulation Conference.
Floros, X., Bergero, F., Cellier, F.E., Kofman, E., 2011. Automated simulation of Modelica models with QSS methods: the

discontinuous case. In: Proceedings of the 8th International Modelica Conference, number 063. March 20th–22nd, Technical
University, Dresden, Germany. Linköping University Electronic Press, pp. 657–667.

Franceschini, R., Bisgambiglia, P.-A., Touraille, L., Bisgambiglia, P., Hill, D., 2014. A survey of modelling and simulation
software frameworks using discrete event system specification. In: Neykova, R., Ng, N. (Eds.), 2014 Imperial College
Computing Student Workshop. In: OpenAccess Series in Informatics (OASIcs). Schloss Dagstuhl—Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, pp. 40–49.

Giambiasi, N., Escude, B., Ghosh, S., 2001. GDEVS: a generalized discrete event specification for accurate modeling of dy-
namic systems. In: Proceedings of the 5th International Symposium on Autonomous Decentralized Systems. 2001. IEEE,
pp. 464–469.

Hamri, M.E.-A., Giambiasi, N., Frydman, C., 2006. Min–Max-DEVS modeling and simulation. Simulation Modelling Practice
and Theory 14 (7), 909–929.

Ho, Y.-C., 1992. Discrete Event Dynamic Systems: Analyzing Complexity and Performance in the Modern World. IEEE Press.
Hollocks, B.W., 2008. Intelligence, innovation and integrity—KD Tocher and the dawn of simulation. Journal of Simulation 2

(3), 128–137.
Jafer, S., Chhaya, B., Durak, U., Gerlach, T., 2016. Formal scenario definition language for aviation: aircraft landing case study.

In: AIAA Modeling and Simulation Technologies Conference, p. 3521.
Kim, B.S., Kang, B.G., Choi, S.H., Kim, T.G., 2017. Data modeling versus simulation modeling in the big data era: case study

of a greenhouse control system. Simulation 93 (7), 579–594. https://doi.org/10.1177/0037549717692866.
Kim, K.H., Kim, T.G., Park, K.H., 1998. Hierarchical partitioning algorithm for optimistic distributed simulation of DEVS

models. Journal of Systems Architecture 44 (6–7), 433–455.
Kim, Y.J., Kim, T.G., 1996. A heterogeneous distributed simulation framework based on DEVS formalism. In: Proceedings of

the Sixth Annual Conference on Artificial Intelligence, Simulation and Planning in High Autonomy Systems, pp. 116–121.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:13 p. 22

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

https://doi.org/10.1177/0037549717692866

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

REFERENCES 25

Klir, G.J., 1985. Architecture of Systems Complexity. Saunders, New York.
Kwon, Y., Park, H., Jung, S., Kim, T., 1996. Fuzzy-DEVS formalism: concepts, realization and applications. In: Proceedings

AIS 1996, pp. 227–234.
Liu, Q., Wainer, G., 2010. Accelerating large-scale DEVS-based simulation on the cell processor. In: Proceedings of the 2010

Spring Simulation Multiconference. Society for Computer Simulation International, p. 124.
Mesarovic, M.D., Takahara, Y., 1975. General Systems Theory: Mathematical Foundations, vol. 113. Academic Press.
Mesarovic, M., Takahara, Y., 1989. Abstract Systems Theory, vol. 116. Springer-Verlag, NY.
Mittal, S., Martín, J.L.R., 2013. Netcentric System of Systems Engineering with DEVS Unified Process. CRC Press.
Muzy, A., Nutaro, J.J., 2005. Algorithms for efficient implementations of the DEVS & DSDEVS abstract simulators. In: 1st

Open International Conference on Modeling & Simulation. OICMS, pp. 273–279.
Nutaro, J., 2014. An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation. Simu-

lation 90 (12), 1328–1345.
OMG, 2015. Documents associated with meta object facility version 2.5. Available via http://www.omg.org/spec/MOF/2.5/.

(Accessed 2 November 2016).
Pichler, F., Schwartzel, H., 1992. CAST (Computer Aided System Theory) Methods in Modeling. Springer-Verlag, New York.
Praehofer, H., 1991. System theoretic formalisms for combined discrete-continuous system simulation. International Journal of

General System 19 (3), 226–240.
Shang, H., Wainer, G., 2006. A simulation algorithm for dynamic structure DEVS modeling. In: Proceedings of the 38th Con-

ference on Winter Simulation. Winter Simulation Conference, pp. 815–822.
Takahashi, S., Takahara, Y., 1995. Logical Approach to Systems Theory. Springer-Verlag, London.
Van Tendeloo, Y., Vangheluwe, H., 2017. An evaluation of DEVS simulation tools. Simulation 93 (2), 103–121.
Vangheluwe, H., 2008. Foundations of modelling and simulation of complex systems. Electronic Communications of the

EASST 10.
Wainer, G.A., 2004. Modeling and simulation of complex systems with cell-DEVS. In: Proceedings of the 36th Conference on

Winter Simulation. Winter Simulation Conference, pp. 49–60.
Wainer, G.A., Mosterman, P.J., 2016. Discrete-Event Modeling and Simulation: Theory and Applications. CRC Press.
Whitehead, A., Russell, B., 1910. Principia Mathematica 1, 1 ed. Cambridge University Press, Cambridge. JFM 41.0083.02.
Wymore, A.W., 1993. Model-Based Systems Engineering, vol. 3. CRC Press.
Wymore, W., 1967. A Mathematical Theory of Systems Engineering: The Elements. Wiley.
Wymore, W., 1977. A Mathematical Theory of Systems Engineering: The Elements. Krieger Pub Co.
Zadeh, L.A., Desoer, C.A., 1979. Linear System Theory. Krieger Publishing Co.
Zeigler, B.P., 1976. Theory of Modeling and Simulation. Wiley Interscience Co.
Zeigler, B., Muzy, A., 2017. From discrete event simulation to discrete event specified systems (DEVS). IFAC-PapersOnLine 50

(1), 3039–3044.
Zeigler, B.P., 1984. Multifacetted Modelling and Discrete Event Simulation. Academic Press Professional, Inc, London.
Zeigler, B.P., Lee, J.S., 1998. Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment. In:

SPIE Proceedings, vol. 3369, pp. 49–58.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:14 p. 23

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

http://www.omg.org/spec/MOF/2.5/

U
N

C
O

R
R

EC
TE

D
P

R
O

O
F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the
author(s), editor(s), reviewer(s), Elsevier and typesetter VTeX. It is not allowed to publish this proof online or in print. This proof copy is the
copyright property of the publisher and is confidential until formal publication.

B978-0-12-813370-5.00009-2, 00001

NON-PRINT ITEMS

Abstract

We outline basic concepts of systems theory: structure, behavior, levels of system specification and
their associated morphisms. We bring out the important distinctions that justify having different levels
of specification. A more complete hierarchy will emerge as we revisit the concepts introduced in a
more formal and rigorous manner later. We also introduce the basic system specification formalisms
and outline the recent advances in the development of such formalisms.

Keywords

System specification, System specification morphism, Levels of system specification, Systems model-
ing, DEVS, Discrete event system specification, Differential equation system specification

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

LATEX class: zeigler, 2018/05/10 08:43:53 zeigler driver
ZEIGLER[monography] model: p05 • color: 1c • ref-style: Harvard Name-Year system. (Style 2) • lang: en-US • docsubty: CHP •
file: zeigler01.tex (lrinkeviciute) Prn: 2018/07/26;11:26:14 p. 24

ZEIGLER, 978-0-12-813370-5

These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been
planned. The color figures will appear in color in all electronic versions of this book.

View publication statsView publication stats

https://www.researchgate.net/publication/330044616

	1 Introduction to Systems Modeling Concepts
	1.1 Systems Speciﬁcation Formalisms
	1.1.1 Relation to Object Orientation
	1.1.2 Evolution of Systems Formalisms
	1.1.3 Continuous and Discrete Formalisms
	1.1.4 Quantized Systems
	1.1.5 Extensions of DEVS

	1.2 Levels of System Knowledge
	1.3 Introduction to the Hierarchy of Systems Speciﬁcations
	1.4 The Speciﬁcation Levels Informally Presented
	1.4.1 Observation Frame
	1.4.2 I/O Behavior and I/O Function
	1.4.3 State Transition System Speciﬁcation
	1.4.4 Coupled Component System Speciﬁcation

	1.5 System Speciﬁcation Morphisms: Basic Concepts
	1.6 Evolution of DEVS
	1.7 Summary
	1.8 Sources
	 Deﬁnitions, Acronyms, Abbreviations
	 References

