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Abstract—The accuracy and reliability of an Ultra-WideBand
(UWB) Indoor Positioning System (IPS) are compromised owing
to the positioning error caused by the Non-Line-of-Sight (NLoS)
signals. To address this, Machine Learning (ML) has been
employed to classify Line-of-Sight (LoS) and NLoS components.
However, the performance of ML algorithms degrades due
to the disproportion of the number of LoS and NLoS signal
components. A Weighted Naı̈ve Bayes (WNB) algorithm is
proposed in this paper to mitigate this issue. The performance
of the proposed algorithm is compared with conventional state-
of-the-art ML algorithms such as K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), and Decision Tree (DT) using
the Receiver Operating Characteristic (ROC) and Area Under
the Curve (AUC). The results prove that the WNB classifier
can significantly reduce the impact of the limited number of
NLoS components that are available for training the model. The
proposed WNB algorithm also maintains a high classification
accuracy and robustness in mixed LoS/NLoS conditions.

Index Terms—Ultra-wideBand, Indoor Positioning System,
Machine Learning, Non-Line-of-Sight Identification, Naı̈ve
Bayes, Weighted Naı̈ve Bayes.

I. INTRODUCTION

Target tracking and positioning in an indoor environment
have emerged as a great challenge for future wireless net-
works [1]–[6]. Among several popular technologies available
for IPS in the literature includes Visible Light Communication
(VLC), Radio Signal Identification (RSSI), Wi-Fi, Bluetooth,
Zigbee and Ultra-wideBand (UWB). UWB has gained signif-
icant attention in the community, because UWB can estimate
the location of a tag with centimeter (cm)-level accuracy due
to its wider bandwidth and very accurate timestamps [7]–
[9]. However, one of the substantial challenges for UWB
based IPS is the presence of Non-Line-of-Sight (NLoS)
components that arise due to the reflection and refraction
of the UWB signal [10]. These NLoS components adds a
positive bias error in the estimated distance and thus, degrade
the localisation accuracy [11], [12].

Several Machine Learning (ML) algorithms for NLoS iden-
tification have been proposed in the recent literature [13]–
[16]. The authors in [14], [15] investigated ML-based NLoS
identification and proposed the Support Vector Machine
(SVM) algorithm as a classifier. The results indicated that
the ML approach could improve the accuracy of UWB IPS
by identifying the NLoS components. Consequently, in [16],
the authors also applied SVM as a classifier, and used linear
discriminant analysis to train the model. The authors proposed
the K-mean clustering algorithm for NLoS classification
in [17]. The signal features used in the paper were mean
excess delay, kurtosis, and root mean squared delay spread
of UWB signals [17]. Different ML techniques like Naı̈ve
Bayes (NB) based on the Bayesian sequential test [11], [18],
[19], Boosted Decision Tree (BDT) [20], K-Nearest Neighbor
(KNN) [21], etc., were also investigated. Deep-learning based
approach was proposed for the identification of NLoS signal
as well in [22].

The above-mentioned methods require a large number of
balanced LoS and NLoS signals for training the ML model.
However, in practice, the available dataset is not always class-
balanced. This results in poor performance of the proposed
model due to the limited availability of the NLoS components
for training the model. Therefore, it further results in a low
classification accuracy. To address this issue, we proposed a
weighted Naı̈ve Bayes (WNB) classifier for an imbalanced
LoS and NLoS signals for UWB IPS.

The main contributions are as follows:
• We introduce a novel signal feature-based solution, i.e.,

WNB, to address the imbalanced NLoS classification.
This approach will improve the classification of the
UWB based IPS.

• We compare the proposed WNB classifier with the ex-
isting state-of-the-art ML algorithms that is KNN, SVM
and DT in terms of the Receiver Operating Characteristic
(ROC) and Area Under the Curve (AUC). Precision,
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Recall, and Classification Accuracy is also compared.
This paper is organized as follows. Section II describes how
the NLoS signal affect the UWB positioning accuracy. In
Section III, we mainly discuss the principles of our proposed
positioning algorithm. Section IV discusses the experimen-
tal setup employed for collecting the dataset including the
hardware and signal features used for post processing. Sec-
tion V presents the performance evaluation of the proposed
algorithms with existing ML algorithms. The summary of the
work is given in Section VI.

(a)

(b)

Fig. 1: (a) UWB scenario with three anchors and one tag in
NLoS conditions, (b) positive bias error of range estimation
caused due to the signal propagation.

II. NLOS PROBLEM FORMULATION

A UWB positioning setup is depicted in Figure 1. From
the figure, it can be observed that three fixed anchor nodes
are placed at known locations. A tag will use the knowledge
of anchors’ location to estimate its position. We consider that
the three-dimensional (3D) coordinates corresponding to the
tag are (x, y, z). The 3D coordinates of the i-th anchor is
represented as (xi, yi, zi). The distance between each anchor
and tag is estimated using a Time-of-Arrival (ToA) based
method. In ToA, the estimated distance di between the ith
anchor and the tag is computed as

di =
c× τi
2

, (1)

where c represents the speed of light and τi represents the
signal propagation time from the tag to the i-th anchor. Also

the estimated distance di in terms of the coordinates of the
i-th anchor and the tag is given as

di =
√
(x− xi)2 + (y − yi)2 + (z − zi)2. (2)

The position of tag (x, y, z) can be determined through
equation (2) by using least-squares solution [19]. It is impor-
tant to note that at least (three) fours anchors are required
to determine position of the tag in (two) three dimensions.
Furthermore, as depicted in Figure 1, the positioning accuracy
degrades in the presence of NLoS condition. Let us consider
Figure 1(a), where anchor 1 and anchor 2 have LoS link and
anchor 3 has NLoS link due to the presence of an obstacle.
This NLoS condition results in a positive bias error in the
computation of d3. This is because the signal propagation
time τ3 will be longer, which results in a typical NLoS mea-
surement error. Correspondingly, the NLoS error is depicted
Figure 1(b). Circles will overlap due to the positive bias error
of d3, and this significantly degrades the performance of the
localization system. Now considering the NLoS condition, the
estimated distance dNLoS

i can be calculated by

dNLoS
i = di + ϵi + bi, (3)

where ϵi denotes the measurement noise which follows the
Gaussian distribution with mean zero and variance σ2

ϵ and bi
is the NLoS measurement error. Finally, the corresponding
ranging error δi can be expressed as:

δi =

{
ϵi, LoS,

ϵi + bi, NLoS.
(4)

The NLoS condition is common in the indoor environment
due to a variety of physical obstcles such as walls, humans,
and machines that can block the direct path between the trans-
mitter and the receiver [23], [24]. Therefore, classification of
NLoS components is crucial to develop an accurate IPS. In
the next section, we will discuss the classification algorithm
to distinguish between LoS and NLoS scenario.

III. POSITIONING ALGORITHMS

A. Naı̈ve Bayes Algorithm, (NB)

It is a supervised learning method based on Bayesian theory
which predicts the label class with a corresponding maximum
posterior probability [19]. The predicted class l̂k at the k-th
instance of data can be determined as

l̂k = argmax
l

P (l)
n∏

i=1

P (Xk
i | l), (5)

where l is the class label and l ∈ {0, 1} which indicates LoS
(l = 0) or NLoS (l = 1) and P (Xi) is the probability of the
i-th attribute. The current formulation is more suitable for
balanced classes. However, to address the imbalanced NLoS
and LoS case, we propose a weighted Naı̈ve Bayes (WNB)
based classifier which is discussed in detail in the next section.
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B. Weighted Naı̈ve Bayes, (WNB)

In practice, the underlying principle of employing the
weighted Naı̈ve Bayes (WNB) algorithm is that some at-
tributes are not of the same importance as others [25], [26].
By using the attribute weighting scheme, the predicted class
l̂k is determined as

l̂k = argmax
l

P (l)
n∏

i=1

Pw(i)(X
k
i | l), (6)

where Pw(i)(X
k
i | l) represents the likelihood of the attribute

and is given as

Pw(i)(X
k
i | l) := P (Xk

i | l)w(i). (7)

Now by substituting (7) in (6) and taking logarithm of (6),
a linear function of the weights can be achieved, yielding

l̂k = Po +wPwPwPXk , (8)

where

Po = log2

(
P (l = 1)

P (l = 0)

)
, (9)

PPPXk =

[
log2

(
P (Xk

1 | l = 1)

P (Xk
1 | l = 0)

)
,

log2

(
P (Xk

2 | l = 1)

P (Xk
2 | l = 0)

)
,

· · · , log2
(
P (Xk

n | l = 1)

P (Xk
n | l = 0)

)]T
, (10)

and the weight vector is defined as

www = [w(1), w(2), · · · , w(n)] . (11)

Finally, we can classify data as

Xk is classified as =
{
1, if l̂k > α,

0, if l̂k ≤ α.
(12)

where α represents the threshold and its value depends on the
available data set.

IV. MEASUREMENT SCENARIOS AND DATA COLLECTION

This section provides the details regarding the considered
measurement scenario and as well as the data preparation
method. The particular focus is on the data collection process,
followed by extraction of the key features of UWB IPS.

TABLE I: MDEK-1001 Configuration

Properties Values
Chip DW 1000
Data rate 6.8 Mbps
Frequency 3993.6 MHz
Channel 2
Pulse-receptition frequency (PRF) 16 MHz
Bandwidth 499.2 MHz

A. Data Collection Process

In this section, we describe the experimental setup for the
evaluations and the data collection process for the UWB IPS.
For labeling the data, we consider a binary classification i.e,
either LoS or NLoS. For the LoS samples, there is a direct
signal propagation path between all anchors and the tag.
Although, in the NLoS scenario, an obstacle is placed between
the anchor and the tag. The data collection environment was
carried out in a room occupying of size 3.3 × 4.8 m2.
The MDEK1001 UWB kits that can be configured either
as an anchor or a tag are used in our experiment. Table I
provides the detailed MDEK1001 kit configurations used in
our evaluation. Four anchors are placed in each corner of
the room with same height. The tag was connected to a
personal computer (PC) to collect the dataset with the help
of MATLAB. As the focus of this work is to mitigate the
imbalanced class issue, therefore, we randomly selected 1000
LoS and 100 NLoS components from the dataset.

B. Signal Feature Extraction

There are several features mentioned in the literature that
can be used for ML based classification for positioning
systems [11], [27], [28]. The first-path power level (FPPL)
can be calculated as

FPPL = 10 log10

(
F 2
1 + F 2

2 + F 2
3

N2

)
−A, (13)

where F1, F2, F3 represents the first path amplitude value at
points 1, 2 and 3, respectively [29]. A is the constant and
equal to 113.77 and 121.74 for a Pulse Repetition Factor
(PRF) of 16 MHz and 64 MHz, respectively, and N represents
the preamble accumulation count value [29].

The received power level (RXPL) is calculated by the
following formula

RXPL = 10 log10

(
C × 217

N2

)
−A, (14)

where C is the channel impulse response power value [29].
The difference between RXPL and FPPL can be used to
identify the LoS and NLoS by setting a threshold. The
formula for the threshold computation is given as

Threshold Power = RXPL − FPPL (15)

Finally, n = 10 features are extracted from the UWB IPS
signal in our analysis. The details these figures are given as
follows:

• X1: The first path amplitude (F1) of the UWB signal.
• X2: The second path amplitude (F2) of the UWB signal.
• X3: The third path amplitude (F3) of the UWB signal.
• X4: The preamble accumulation count value.
• X5: The power of the channel impulse response (C).
• X6: The standard noise variance.
• X7: The estimated FP power.
• X8: The estimated RX power.
• X9: The power difference between the FP and RX power.
• X10: The reported estimated distance.
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V. PERFORMANCE EVALUATION

In this section, we focus on examining the performance of
the proposed algorithm. In order to verify the improvements
of our proposed WNB algorithm, we compare the results
with the existing state-of-the-art ML algorithms, i.e., KNN,
SVM, and DT. Table II shows the classification accuracy of

TABLE II: Performance comparison of the proposed WNB
with KNN, SVM and DT algorithm.

LoS NLoS
Algorithms Classification Classification TP FP FN TN

Accuracy Accuracy

KNN 96.6% 72% 966 34 28 72
SVM 96.9% 88% 969 31 12 88
DT 97.2% 87% 972 28 13 87
WNB 99.1% 98% 991 9 2 98

the mentioned algorithms. It can be observed that for the
WNB algorithm, out of 100 NLoS samples, the True Negative
(TN)= 98 samples were classified correctly, resulting in a
classification accuracy of 98% for NLoS classification. The
remaining False Negative (FN)= 2, i.e., 2% of NLoS samples
were incorrectly classified as LoS samples. For the LoS
samples, 991 out of 1000 samples were classified as True
Positive (TP)= 991 out of 1000 were classified accurately
resulting in an accuracy of 99.1% whereas the 9 False Positive
(FP) cases resulted in 0.9% of inaccurate classification as
NLoS samples. The overall classification accuracy for both
classes is 98.8% which is higher than other state-of-the art
ML algorithms.

Figure 2 shows the plot for ROC curves and corresponding
AUC areas obtained for the proposed WNB and baseline
algorithms. The ROC curve is drawn for the true positive rate
(TPR) versus the false positive rate (FPR). If one ROC curve
is more closer to the upper left, the classifier performance
better. For AUC area, it refers to the area under the ROC
curve in a single number. Generally, the better classification
performance, the higher the AUC value which corresponds to
the ROC obtained. From the Figure 2, we can observe that
our proposed WNB algorithm is the closet to the upper left
corner which indicates it performance the best compare with
KNN, SVM and DT. Furthermore, the AUC area can reach
0.988 which is the highest in the mentioned algorithms i.e.,
0.214 higher than KNN, 0.192 higher than SVM, and 0.105
higher than DT. This implies that WNB outperforms other
ML algorithms for the NLoS classification.

Finally, Figure 3 shows the evaluation results of these
algorithms in terms of precision, recall, and accuracy. It
indicates that the accuracy of the KNN algorithm is equivalent
to 94.8%, whereas for SVM and DT algorithm it is equal to
95.8% and 96.3%, respectively. On the other hand, the accu-
racy for WNB algorithm is equivalent to 98.9% which shows
it is superior to the other state-of-the-art ML algorithms.
Moreover, for precision and recall, WNB algorithm achieved
99.8% and 98.9%, and both are higher than other algorithms
which show the WNB can provide better results for both

NLoS and LoS classification. Therefore, we can summarize
that the proposed WNB has shown very high accuracy for
identifying the NLoS samples in case of the imbalanced data.

Fig. 2: Receiver Operating Characteristics (ROC) and Area
Under the Curve (AUC) comparison of the four algorithms

Fig. 3: Performance comparison in terms of Precision, Recall,
and Accuracy for the KNN, SVM, DT and WNB algorithm.

VI. CONCLUSIONS

In the development of indoor localization applications,
reliable and precise localization becomes significantly impor-
tant owing to the presence of the NLoS components. This
work proposed a signal featured-based method for imbalanced
NLoS detection to improve the accuracy of the UWB posi-
tioning system in a harsh indoor environment. We compared
the performance of the proposed WNB algorithm with the
existing state-of-art ML techniques including KNN, SVM,
and DT in terms of ROC curve and AUC area. Moreover,
we also compared the precision, recall, and accuracy. Results
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showed that the proposed algorithm outperforms the state-of-
art algorithms with an accuracy of 98.9% which indicates its
robustness against the imbalanced data set. For future work,
the proposed could be applied in different environments and
different types of obstructions to experiment the robustness.
Moreover, the data could be extended to a large dataset to
evaluate the computational burden in terms of running time
and classification accuracy.
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