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ABSTRACT 

Modeling and simulation (M&S) methodologies can be use-
ful in the development of hardware-in-the-loop applications. 
CD++ is a toolkit with support for real-time model execu-
tion that implements DEVS, a sound, formal M&S frame-
work allowing hierarchical, modular model composition and 
component reuse. We present a methodology that uses 
CD++ to develop hybrid hardware/software systems. The 
technique enables incremental transition from the simulated 
models to the actual hardware counterparts, supports ex-
perimental frameworks to facilitate testing in a risk-free en-
vironment, encourages component reuse, and allows devel-
oping models with different levels of abstraction. CD++ can 
reduce cost and time-to-market of hardware-in-the-loop ap-
plications, and preserves the benefits of a formal M&S 
methodology like DEVS. 

1 INTRODUCTION 

Modeling and simulation (M&S) have gained popularity in a 
wide variety of fields ranging from biotechnology to game 
design, from aerospace engineering to economics, from logis-
tics management to fluid dynamics. Scientists and engineers 
use M&S methodologies and tools to understand and analyze 
complex phenomena under risk-free environments. Moreover, 
M&S is used to develop new systems and to improve existing 
ones in a cost-effective manner. Using a simulated environ-
ment, it is possible to verify the correctness of the system un-
der different conditions. 

The development of hardware-in-the-loop applications 
is a challenging process in which M&S can become essen-
tial. These applications are inherently complex as a result of 
the high degree of interaction between software and hard-
ware components. Since different parts of the system are of-
ten deployed in parallel and therefore are not available, it is 
difficult to perform thorough testing in early stages of the 
development process. Development teams face delays wait-

ing for components to be ready, affecting the time-to-market 
of the application. 

We present a methodology to use M&S with hardware-
in-the-loop applications. This approach combines the advan-
tages of a simulation-based approach with the rigour of a 
formal methodology. DEVS (Discrete EVents Systems 
specifications) (Zeigler, Kim, and Praehofer 2000) is a for-
mal foundation to M&S, proved to be successful in a wide 
range of complex systems.  

CD++ (Wainer 2002) is a M&S software that imple-
ments DEVS theory with extensions to support real-time 
model execution (Glinsky and Wainer 2002a). CD++ was 
used as the base for our development, building on previous 
research focused on real-time applications with hardware-in-
the-loop (Li, Pearce, and Wainer 2003). 

We will explain how to use this framework to seam-
lessly integrate simulation models with hardware compo-
nents. Initially, we develop models entirely in CD++, and 
we replace them incrementally with hardware surrogates at 
later stages of the process. Thus, it is possible to make the 
transition in incremental steps, incorporating models in the 
target environment with hardware-software components af-
ter thorough testing in the simulated platform. The use of 
this methodology shortens the development cycle and re-
duces its cost. 

Our approach does not impose any order in the deploy-
ment of the actual hardware components, providing flexibil-
ity to the overall process. The use of DEVS improves reli-
ability (in terms of logical correctness and timing), enables 
model reuse, and permits reducing development and testing 
times for the overall process. 

2 BACKGROUND 

The DEVS (Discrete EVents Systems specifications) for-
malism (Zeigler, Kim, and Praehofer 2000) is a M&S 
framework based on systems theory. DEVS has well-
defined concepts for coupling of components and hierarchi-
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cal, modular model composition. DEVS defines a complex 
model as a composite of basic components (called atomic), 
which can be hierarchically integrated into coupled models. 
A DEVS atomic model is described as: 

 
M = < X, S, Y, δint, δext, λ, ta > 

 
where X is the set of input events, S is the set of discrete 
states, Y is the set of output events, δδδδint is the internal transi-
tion function, δδδδext is the external transition function, λλλλ is the 
output function, and ta is the time advance function. Every 
state is associated with a lifetime, which is defined by the 
time advance function. When an event receives an input 
event, the external transition function is triggered. This 
function uses the input event, the current state and the time 
elapsed since the last event in order to determine which is 
the next model’s state. If no events occur before the time 
specified by the time advance function for that state, the 
model activates the output function (providing outputs), and 
changes to a new state determined by the internal transition 
function. 

A DEVS coupled model is defined as: 
 

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} > 
 
where X is the set of input events, and Y is the set of output 
events. D is an index of components, and for each i ∈ D, Mi 
is a basic DEVS model (atomic or coupled). Ii is the set of 
influencees of model i. For each j ∈ Ii, Zij is the i to j trans-
lation function.  

A coupled model is composed by a set of basic models 
(i.e., atomic or coupled) interconnected through their inter-
faces. The translation function, Zij, converts the outputs of a 
model into inputs for others using I/O ports. An index of in-
fluencees is created for each model (Ii), determining the des-
tination models for the outputs. This index is used to con-
nect outputs in model Mi are connected with inputs in the 
model Mj (for each j in Ii). The formalism is closed under 
coupling, therefore, coupled and atomic models are se-
mantically equivalent, which enables model reuse. 

DEVS models can be executed by an abstract mecha-
nism that is independent from the model itself. As a result of 
this explicit separation of concerns between modeling and 
simulation, it is possible to verify each layer independently. 
DEVS also permits defining independent experimental 
frames for the model, that is, a set of conditions under which 
the system is observed or experimented with. Experimental 
frames formulate the objectives that motivate the project 
(Zeigler, Kim, and Praehofer 2000). Within the conditions 
imposed by an experimental frame, the modeler observes the 
behaviour of the system and determines its correctness. 

CD++ (Wainer 2002) is a M&S toolkit that implements 
DEVS theory. Atomic models can be defined using a state-
based approach (coded in C++ or an interpreted graphical 
notation). The toolkit has been used to model and simulate a 

wide variety of applications, such as urban traffic, robot path 
planning, and computer architectures (Wainer 2002). 

Figure 1 shows the definition of an atomic model that 
represents the behaviour of an Ethernet switch using CD++. 
 

EthernetSwitch::EthernetSwitch  
( const string &name ) : Atomic( name ),  
in1( addInputPort( "in1" ) ), 
in2( addInputPort( "in2" ) ), 
in3( addInputPort( "in3" ) ),  
enable( addInputPort( "enable" ) ), 
disable( addInputPort( "disable" ) ), 
out1( addOutputPort( "out1" ) ), ... , { } 
 
Model &EthernetSwitch::externalFunction 
( const ExternalMessage &msg ) { 
 
  if ( (state() == passive) && 
  ((msg.port() == in1) && (enabled1 == 1)) || 
  ((msg.port() == in2) && (enabled2 == 1)) || 
  ((msg.port() == in3) && (enabled3 == 1)) ) { 
    request = msg.value(); 
    request_waiting = 1; 
    holdIn (active, delay); 
  } 
 
  if ( (state() == passive) && 
  (msg.port() == disable) )   { 
    if ( msg.value() == 1 ) enabled1 = 0; 
    if ( msg.value() == 2 ) enabled2 = 0; 
    if ( msg.value() == 3 ) enabled3 = 0; 
    request_waiting = 0; 
    holdIn (active, delay); 
  } 
 
  if ( (state() == passive) && 
      (msg.port() == enable) )  {  
    if ( msg.value() == 1 ) enabled1 = 1; 
    ... 
    holdIn (active, delay); 
  } 
 
} 
 
Model &EthernetSwitch::internalFunction 
( const InternalMessage &msg ) { 
 
  request_ready = 0; 
  passivate(); 
  return *this ; 
 
} 
 
Model &EthernetSwitch::outputFunction 
( const InternalMessage &msg ) { 
 
  if (request_ready == 1)   {  
    if (( request == node_1 ) && ( hab1 == 1 )) 
      sendOutput( msg.time(), out1, request ) ; 
 
    if ((request == node_2 ) && ( hab2 == 1 )) 
      sendOutput( msg.time(), out2, request ) ; 
  ... 
 
} 

Figure 1: Specification of EthernetSwitch in CD++ 
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Most of the logic of the EthernetSwitch is located in the 
external transition (δext). This function determines what to 
do with the incoming packets. External events arriving via 
the input ports in1, in2, and in3 represent packets received 
from the network, whereas enable and disable are used to 
indicate which ports are working. The next internal event 
(δint) is scheduled by the holdIn method, which implements 
the time advance function (ta). For example, if an event is 
received via in2 and the port is enabled (enabled2), the 
model stores the value received and schedules an internal 
transition. When the time indicated by the variable delay 
expires, the output function (λ) notices that there is a request 
ready and directs the output to the corresponding port, 
according to the value previously received (i.e., request). 
Enabling and disabling ports do not generate any output. 
The internal transition function clears the request_ready flag 
and passivates the model (i.e., sets the next internal 
transition time to infinity). 

CD++ also enables the user to define coupled models 
by using a built-in specification language that follows 
DEVS formal specifications. Once an atomic model is de-
fined (as in Figure 1), it can be integrated into a coupled 
model as the one presented in Figure 2. 

 
components:  server1   server2  
components:  client    eth@EthernetSwitch 
in:  eth_enable  eth_disable 
in: hss1_start  hss1_stop  hss2_start  hss2_stop 
... 
out: packets     status 
link: server_out@serv1   in1@eth 
link: out1@eth        server_in@serv1 
link: server_out@serv2   in2@eth 
link: out2@eth        server_in@serv2 
... 
 
[eth] 
delay:  00:00:01:000 
node_1: 1      node_2: 2      node_3: 3 
 
[client] 
components: WSclient   clientNet@Network   com-
ponents: hsclient@HSClient 
in:   hs_start    hs_stop   client_in 
out:  client_out 
link: hs_start    start@hsclient 
... 
[WSclient] 
components: selclient@Selector  display@Display 
... 
[server1] 
components: WSserv1           s1Net@Network   
components: hsserv1@HSServer  PDBserv1 
components: drvserv1@Driver 
... 

Figure 2: Specification of a Coupled Model in CD++ 
 
The top model here is composed of three coupled 

models (server1, server2, and client) and one atomic 
component (eth, an instance of EthernetSwitch). client is 
composed by two atomic components (clientNet and 
hsclient) and one coupled component (WSclient). The input 

and output ports define the model’s interface, and the links 
between components define the model’s coupling. The input 
ports in the top model (e.g., eth_enable, eth_disable, 
hss1_start) are used to activate and deactivate the Ethernet 
switch, server nodes, and client. The output ports (e.g., 
status, packets) are used to inform the progress in the 
system. 

Models developed in CD++ are independent from the 
engine in charge of driving their execution. At present, 
CD++ is able to execute models in single processor, parallel 
or real-time mode. The execution engine uses model’s 
specifications, and it builds one object to control each 
component in the model hierarchy. These objects 
communicate using message passing, and they are called 
processors. There are different types of  processors 
according to the activity they carry out: simulators are 
specialized in atomic models (executing its associated 
functions), coordinators manage coupled models, and the 
root coordinator controls global execution aspects (time, 
start/stop, interfacing with the environment, etc.).  

RT-CD++ (Glinsky and Wainer 2002a) uses the real-
time clock to trigger the processing of discrete events in the 
system. Figure 3 outlines the processor’s hierarchy gener-
ated by RT-CD++ to execute the model presented in Figure 
2. The root coordinator created at the top level manages the 
interaction with the experimental frame that tests the model 
receiving inputs (via eth_enable, eth_disable, hss1_start, 
etc.), and returns outputs (via status and packets). The root 
coordinator exchanges messages with its children. Coordina-
tors are created to handle the coupled models server1, 
server2, client, etc. Simulators are created to handle the 
components eth (which inherits from the atomic 
EthernetSwitch), clientNet (from atomic Network), hsclient 
(from atomic HSClient), drvserv1 (from atomic Driver), etc. 

 
 

root coordinator 

System simulated 
in RT-CD++ 

External events 
(eth_enable, eth_disable, 

hss1_start, etc.) 

Outputs 
(packets, 
status) 

Wall-
Clock 

server1: coordinator eth: simulator 

in1, in2, in3 

... 

out1, out2 

... 

externalFunction() 
internalFunction() 
outputFunction() 

drvserv1: simulator 

externalFunction() 
internalFunction() 
outputFunction() 

 
Figure 3: RT-CD++ Simulation Scheme 
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Model execution is triggered by the real-time clock 
using the time of the external events. When the root 
coordinator receives a new event, it forwards the message to 
the corresponding processor. Timing constraints (deadlines) 
can be associated to each external event. When the 
processing of an event is completed, the root coordinator 
checks if the deadline has been met. In this way, we can 
obtain performance metrics (number of missed deadlines, 
worst-case response time).  

We thoroughly tested the execution performance of RT-
CD++ (Glinsky and Wainer 2002a). These studies showed 
that models with more than 50 components execute with an 
overhead below 2%. For larger models (over 200 compo-
nents), the overhead incurred by the tool is below 3%. We 
have used RT-CD++ to build simulations hardware-in-the-
loop (Li, Pearce, and Wainer 2003), creating a model of the 
CODEC of an Analog Devices 2189M EZ-KITLITE DSP 
board. Different tests showed the feasibility of the approach, 
as we were able to reproduce simulated results in the real-
time environment. Nevertheless, when building components 
on the board, some of the existing models needed some re-
work (due to the use of Analog Devices’ IDE that was in 
charge of the communications between CD++ and the hard-
ware surrogate). These problems were solved by incorporat-
ing communication between facilities into CD++, permitting 
direct communication with the toolkit and external hard-
ware. In the following section, we will show how to use 
CD++ to develop a hardware-in-the-loop application. The 
experiments evolve from a simulated model running in a 
workstation to a microcontroller-based application. We have 
used the Motorola 68HC12 board, with a project board (in-
cluding varied sensors and actuators). 

3 AN AUTOMATED FACTORY MODEL 

We built an automated manufacturing system (AMS) with 
both hardware and simulated components. The proposed 
AMS is composed by dedicated stations that perform tasks 
on products being assembled, and conveyors that transport 
the products to/from those workstations.  

Figure 4 shows the physical layout of our AMS, which 
consists of four stations and two conveyor belts to transport 
the products (A and B). The production cycle is organized 
by a scheduler, which depends on the type of piece being 
assembled. The scheduler determines which station (e.g., 
painting machine, baking machine, storing station) should 
receive and work on the product. 

 

 

Conveyor A Conveyor B 

Station 
1 

Station 
2 

Station 
3 

Station 
4 

B 

A 

 
Figure 4: Layout of the AMS 

 
We started by modeling the entire system in CD++ 

based on the previous layout. The system is composed by 
two coupled components (conveyors), and three atomic 
components (a controller system, a scheduler, and a display 
controller). Each conveyor is formed by two atomic models 
(an engine and a sensor controller). Component reuse is an 
essential aim of our approach. In the development of the 
AMS, we reused a controller unit that was implemented for 
an elevator control system. We also reused a prototype of a 
painting station, which paints pieces placed on its working 
area following a predefined sequence (e.g., heat the paint at 
80ºC, activate a motor at 50 RPS). 
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Figure 5: Scheme of the AMS (entirely in CD++) 

 



Glinsky and Wainer 
 

The sensor controller is an atomic model, defined as 
shown in Figure 1. It receives events from the environment, 
and forwards them to the controller unit (CU), resembling 
the real components of the system. The display controller 
handles the digital display (showing the location of the piece 
in each conveyor belt), based on the signals received from 
the controller unit. The controller receives input signals 
from sensors and the scheduler, and determines where to 
dispatch each piece activating the engines of the conveyor 
belts. The scheduler stores information about which stations 
have to work on a specific product. Figure 6 shows the CU 
of the AMS. 
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Figure 6: Diagram of the Controller Unit 

 
Most of the logic of the CU is located in the external 

transition function, which handles the incoming events. 
Events received via ports station_ij are sent by the 
scheduler, and represent that the product in conveyor belt j 
has to be sent to station i. Events received via sensor_ij 
indicate that the product in conveyor j has reached station i. 
Thus, the controller can schedule the next internal transition 
function to activate or deactivate the engine of the 
corresponding conveyor (via direction_j and activate_j). It 
can also signal the display controller when the conveyor belt 
starts moving or a product reaches a new station (via 
direction_display_j and station_display_j). Users can define 
the activation time for the engine, customizing its timing 
behaviour. 

Different experimental frames were applied to this 
model, allowing the analysis of different scenarios. We 
started by analyzing the behaviour of each submodel inde-
pendently (using the specifications for their physical coun-
terparts) and then, we conducted integration tests. Figure 7 
shows a sample event file for one of such experiments. 

 

Time      Deadline   In-port    Out-Port   Value 
00:09:100 00:09:300  sta_3A     activate_A   1 
00:12:500 00:12:700  sensor_2A  sta_disp_A   1 
00:17:500 00:17:700  sensor_3A  sta_disp_A   1 
00:35:100 00:35:300  sta_4B     activate_B   1 
00:30:000 00:30:200  sensor_2B  sta_disp_B   1 
00:34:100 00:34:300  sensor_3B  sta_disp_B   1 
... 
 

Figure 7: Experimental Frame for the AMS Controller Unit 
 
Initially, a piece is placed in station 1 of each conveyor 

belt and there are no pending events. The first event repre-
sents a job scheduled for product A in station 3. The event 
occurs at time 00:09:100, and the simulator receives it via 
input port sta_3A. As a result, we expect to turn on the con-
veyor belt in less than 200 ms to transport the product. The 
second event in the list represents the activation of sen-
sor_2A (i.e., the product in belt A has reached the second 
station). In this case, we expect an output via port 
sta_disp_A before 00:12:700, informing the arrival of the 
product to that station. The value of 1 represents activation 
of sensors and scheduling of tasks in stations. Figure 8 
shows the outputs generated by the real-time simulator for 
this experiment. 

 
Time        Deadline     Out-port       Value 
00:09:110                direction_A      1 
00:09:110   00:09:300    activate_A       1 
00:12:510   00:12:700    sta_disp_A       2 
00:17:510   00:17:700    sta_disp_A       3 
00:17:510                direction_A      0 
00:35:110                direction_B      1 
00:35:110   00:35:300    activate_B       1 
... 
 

Figure 8: Outputs Generated by the AMS Controller Unit 
 
As we can see, the deadlines were met in every case. 

For example, the first event met its deadline, activating the 
engine of conveyor belt A at time 00:09:110 in the correct 
direction (the value 1 via port direction_A indicates that the 
belt will move forward). The third output is the result of ac-
tivating the sensor at the second station in belt A, and the 
following one represents the product reaching the third sta-
tion at time 00:17:510. The fifth line shows that the con-
veyor belt has stopped after product A has reached station 3. 
The last two lines show the initial activity that generates 
scheduling a job in station 4 for product B. 

We used different experimental frames to thoroughly 
test this model, and once satisfied with its behaviour, we 
progressively started to replace simulated components with 
their hardware counterparts. The first step was to replace the 
scheduler model, and to execute it on the microcontroller, as 
shown in Figure 9. The microcontroller generates the events 
to the simulated model, indicating that a product has to be 
sent to a station. The rest of the components remain un-
changed from the architecture described in Figure 5. 
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Figure 9: Scheduler in Hardware 

 
The following figure shows the CD++ coupled model 

specification for this version of the system. 
 

components:  conveyor_A  conveyor_B scheduler 
             cu@CU       dis@Display 
in   : sta_1A    sta_2A    sta_3A    sta_4A   
in   : sta_1B    sta_2B    sta_3B    sta_4B   
out  : status_conv_A    
out  : status_conv_B 
link : sta_1A    sta_1A@cu 
link : sta_2A    sta_2A@cu 
... 
link : sensor_1@conveyor_A   sensor_1@cu 
link : sensor_2@elevBox sensor_2@ec 
... 
link : dir_display_A@cu    dir_display_A@dis 
link : status_conv_A@cu    status_conv_A@dis 
link : dir_display_B@cu    dir_display_B@dis 
link : status_conv_B@cu    status_conv_B@dis 
... 
[conveyor_A] 
components:  sb@SensorController   eng@Engine 
in   : activate  direction 
out  : sensor_1 sensor_2 sensor_3 sensor_4 
link : activate    activate@eng 
link : direction   direction@eng 
link : sensor_1@sb sensor_1 
... 
link : current_pos@eng sensor_triggered@sb 
... 
[conveyor_B] 
components:  sb@SensorController   eng@Engine 
... 

Figure 10: CD++ Model: Scheduler in Hardware 
 

The components for the top model follow the architec-
ture in Figure 9. Here, conveyor_A and conveyor_B are cou-
pled components, whereas cu and dis are atomic. The top 
model input ports are used to receive events from the sched-
uler now running in the external board. Replacing a CD++ 
component with its counterpart running in the external de-
vices is straightforward, since the model is not changed (an 
option in the executable engine will establish that the sched-
uler is running in an external device). Likewise, testing this 
model only requires reusing the previously defined experi-
mental frames. As the scheduler model was built using the 
hardware specifications for the actual system, and the inter-
faces of the submodels do not change, the transition is trans-
parent. Figure 11 shows the output of a sample execution of 
this model. The results obtained are the same as before, re-
gardless of the use of a hardware surrogate. 

 
Time           Out-port           Value 
00:08:170    status_conv_A     2 
00:19:540    status_conv_A      3 
00:30:130    status_conv_B      2 
00:35:140    status_conv_B     3 
00:40:150    status_conv_B      4 
... 

Figure 11: Outputs for Example Shown in Figure 10 
 
In this case, events generated by the scheduler running 

on the experimental board are sent to CD++. These events 
trigger the same activities in the model as in the simulated 
environment (e.g., activating the conveyor engines, 
displaying the direction of the conveyor belt). In the 
previous figure, status_conv_A and status_conv_B show that 
the products in both belts are transported to the 
corresponding stations, similarly to what was shown in 
Figure 10. 

After conducting extensive tests, we also moved the 
display controller to the microcontroller. The value dis-
played on the digital display (which is informed by the 
model running in CD++), represents the current station for 
each product. The display controller and the scheduler were 
combined in a single application following the previous 
model specifications. The resulting configuration is shown 
in Figure 12. 

By simply activating the simulation engine specifying 
that the display controller is running in a hardware 
surrogate, we are able to execute the new application 
without any modifications. 

Every time the models activates the output ports 
status_conv_A and status_conv_B in Figure 10, the display 
controller on the board is activated, showing on the LCD the 
current location of each product. The following event log 
was obtained as a result of scheduling jobs in stations (3, 1, 
2) for product A and stations (2, 4, 3) for product B, with 
both pieces located initially on the first station. 
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Figure 12: Scheduler and Display Controller in Hardware 

 
The first two lines of the following figure show the 

product in conveyor A moving from the first to the third sta-
tion. The third line shows the product in conveyor B moving 
to station 2 at time 00:34:390. After station 3 finished its 
work on product A, the product reaches to station 1 at time 
01:15:170. Product B reaches station 4 at 01:26:170, which 
corresponds to the second job scheduled for it. 

 
Time           Out-port           Value 
00:27:410    status_conv_A          2 
00:33:180    status_conv_A          3 
00:34:390    status_conv_B          2 
01:10:690    status_conv_A           2 
01:15:170    status_conv_A          1 
01:21:110    status_conv_B          3 
01:26:170    status_conv_B          4 
... 

Figure 13: Outputs for Example Shown in Figure 12 
 
When the external display controller receives new data, 

it displays the value (i.e., the current position of the product 
in that belt) on the LCD display, and then waits for more 
data. 

The final step was to implement the complete AMS on 
the microcontroller. Figure 14 shows the scheme for this ex-
perimental frame, in which only the engines are still simu-
lated in CD++. 
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Figure 14: Controller Unit Implemented in Hardware 
 
The model does not require any modification, and the 

model executing in the microcontroller feeds the input ports 
activate_in and direction_in in Figure 10. 

Figure 15 shows the events generated by the model 
running in the microcontroller, which represents setting the 
direction, activation and deactivation of the conveyor belt 
engines A and B. 

 
Time           Port          Value 
00:06:120  direction_A      1 
00:06:130  activate_A      1 
00:15:930  activate_A      0 
00:56:800  direction_B      2 
00:56:810  activate_B      1 
01:01:130  activate_B      0 
01:22:710  direction_B      2 
01:22:720  activate_B      1 
... 

Figure 15: Event Log Generated by the Engines Model 
 
Figure 16 shows the activation and deactivation of the 

belts when the requests are received, which is the result of 
the activity in the microcontroller. The values issued by the 
port result_A and result_B represent that the belt is activated 
to move forward (1), reverse (2), or deactivated (0). 

 
Time           Out-port          Value 
00:06:130    result_A            1 
00:15:930    result_A           0 
00:56:810    result_B          2 
01:01:130    result_B           0 
01:22:720    result_B           2 
... 

Figure 16: Outputs for the Model in Figure 14 
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4 CONCLUSION 

The development of M&S applications with hardware-in-
the-loop can be significantly beneficiated by using a formal 
technique like DEVS. In this work, we showed how to use 
CD++ to develop a sample application in which we incorpo-
rated hardware components gradually as the components be-
came available. Our technique enables a flexible approach to 
develop embedded applications, which is particularly useful 
when some of the components are being developed simulta-
neously and therefore are not available yet. 

Experimental frameworks allowed us to analyze the 
model execution in a simulated environment, checking the 
model’s behaviour and timing constraints within a risk-free 
environment. The simulation results were then used in the 
development of the actual application, permitting developers 
to validate their systems and subsystems at every stage of 
the process. 

The time required to develop models in RT-CD++ is a 
major concern, given that time-to-market is generally a 
crucial factor. The development of an atomic component 
with medium complexity like the EthernetNetwork required 
approximately 30 minutes for an experienced CD++ 
developer (or 2.5 hours to a developer who is new to CD++ 
but familiar with C++). Developing a coupled component 
like the conveyor presented in Figure 5 required 
approximately 2 hours for an advanced CD++ developer (or 
5 hours to a new developer). Additionally, the integration of 
hardware components into the system was straightforward. 
The transition from simulated models to the actual hardware 
counterparts can be incremental, incorporating deployed 
models into the framework when they are ready. Testing and 
maintenance phases are highly improved due to the use of a 
formal approach like DEVS for modeling. DEVS provides a 
sound methodology for developing discrete-event 
applications, which can be easily applied to improve the 
development of real-time embedded applications. These 
advantages include secure, reliable testing, model reuse, and 
the possibility of analyzing different levels of abstraction in 
the system. Model execution is automatically verifiable, as 
the execution processors are built following the formal 
specifications of DEVS. DEVS bibliography shows how to 
build execution engines that enable mimicking the model’s 
behaviour in a homomorphic formalism. Hence, the 
developer only needs to focus on the model under 
development.  

Relying on experimental frameworks facilitates testing 
in a cost-effective manner, allowing users to build and reuse 
test frames for each submodel of the system. Since the 
DEVS formalism is closed under coupling, models can be 
decomposed in simpler versions, always obtaining equiva-
lent behaviour. Finally, the semantics of models are not tied 
to particular interpretations, thus existing models can be re-
used. Likewise, model’s functions can be reused by just as-
sociating them with new models as needed. For instance, we 

are now building an extension to the examples presented 
here that will handle 10 conveyors and 20 stations. Extend-
ing the model here presented requires modifying only the 
external transition function in the CU, and defining a new 
coupled model including the new stations, while keeping the 
remaining methods unchanged. 
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