
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

ABSTRACT

Modeling and simulation (M&S) methodologies can be use-
ful in the development of hardware-in-the-loop applications.
CD++ is a toolkit with support for real-time model execu-
tion that implements DEVS, a sound, formal M&S frame-
work allowing hierarchical, modular model composition and
component reuse. We present a methodology that uses
CD++ to develop hybrid hardware/software systems. The
technique enables incremental transition from the simulated
models to the actual hardware counterparts, supports ex-
perimental frameworks to facilitate testing in a risk-free en-
vironment, encourages component reuse, and allows devel-
oping models with different levels of abstraction. CD++ can
reduce cost and time-to-market of hardware-in-the-loop ap-
plications, and preserves the benefits of a formal M&S
methodology like DEVS.

1 INTRODUCTION

Modeling and simulation (M&S) have gained popularity in a
wide variety of fields ranging from biotechnology to game
design, from aerospace engineering to economics, from logis-
tics management to fluid dynamics. Scientists and engineers
use M&S methodologies and tools to understand and analyze
complex phenomena under risk-free environments. Moreover,
M&S is used to develop new systems and to improve existing
ones in a cost-effective manner. Using a simulated environ-
ment, it is possible to verify the correctness of the system un-
der different conditions.

The development of hardware-in-the-loop applications
is a challenging process in which M&S can become essen-
tial. These applications are inherently complex as a result of
the high degree of interaction between software and hard-
ware components. Since different parts of the system are of-
ten deployed in parallel and therefore are not available, it is
difficult to perform thorough testing in early stages of the
development process. Development teams face delays wait-

ing for components to be ready, affecting the time-to-market
of the application.

We present a methodology to use M&S with hardware-
in-the-loop applications. This approach combines the advan-
tages of a simulation-based approach with the rigour of a
formal methodology. DEVS (Discrete EVents Systems
specifications) (Zeigler, Kim, and Praehofer 2000) is a for-
mal foundation to M&S, proved to be successful in a wide
range of complex systems.

CD++ (Wainer 2002) is a M&S software that imple-
ments DEVS theory with extensions to support real-time
model execution (Glinsky and Wainer 2002a). CD++ was
used as the base for our development, building on previous
research focused on real-time applications with hardware-in-
the-loop (Li, Pearce, and Wainer 2003).

We will explain how to use this framework to seam-
lessly integrate simulation models with hardware compo-
nents. Initially, we develop models entirely in CD++, and
we replace them incrementally with hardware surrogates at
later stages of the process. Thus, it is possible to make the
transition in incremental steps, incorporating models in the
target environment with hardware-software components af-
ter thorough testing in the simulated platform. The use of
this methodology shortens the development cycle and re-
duces its cost.

Our approach does not impose any order in the deploy-
ment of the actual hardware components, providing flexibil-
ity to the overall process. The use of DEVS improves reli-
ability (in terms of logical correctness and timing), enables
model reuse, and permits reducing development and testing
times for the overall process.

2 BACKGROUND

The DEVS (Discrete EVents Systems specifications) for-
malism (Zeigler, Kim, and Praehofer 2000) is a M&S
framework based on systems theory. DEVS has well-
defined concepts for coupling of components and hierarchi-

MODELING AND SIMULATION OF HARDWARE/SOFTWARE SYSTEMS WITH CD++

Ezequiel Glinsky
Gabriel Wainer

Dept. of Systems and Computer Engineering

Carleton University
4456 Mackenzie Building

1125 Colonel By Drive
Ottawa, ON. K1S 5B6. CANADA.

Glinsky and Wainer

cal, modular model composition. DEVS defines a complex
model as a composite of basic components (called atomic),
which can be hierarchically integrated into coupled models.
A DEVS atomic model is described as:

M = < X, S, Y, δint, δext, λ, ta >

where X is the set of input events, S is the set of discrete
states, Y is the set of output events, δδδδint is the internal transi-
tion function, δδδδext is the external transition function, λλλλ is the
output function, and ta is the time advance function. Every
state is associated with a lifetime, which is defined by the
time advance function. When an event receives an input
event, the external transition function is triggered. This
function uses the input event, the current state and the time
elapsed since the last event in order to determine which is
the next model’s state. If no events occur before the time
specified by the time advance function for that state, the
model activates the output function (providing outputs), and
changes to a new state determined by the internal transition
function.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >

where X is the set of input events, and Y is the set of output
events. D is an index of components, and for each i ∈ D, Mi
is a basic DEVS model (atomic or coupled). Ii is the set of
influencees of model i. For each j ∈ Ii, Zij is the i to j trans-
lation function.

A coupled model is composed by a set of basic models
(i.e., atomic or coupled) interconnected through their inter-
faces. The translation function, Zij, converts the outputs of a
model into inputs for others using I/O ports. An index of in-
fluencees is created for each model (Ii), determining the des-
tination models for the outputs. This index is used to con-
nect outputs in model Mi are connected with inputs in the
model Mj (for each j in Ii). The formalism is closed under
coupling, therefore, coupled and atomic models are se-
mantically equivalent, which enables model reuse.

DEVS models can be executed by an abstract mecha-
nism that is independent from the model itself. As a result of
this explicit separation of concerns between modeling and
simulation, it is possible to verify each layer independently.
DEVS also permits defining independent experimental
frames for the model, that is, a set of conditions under which
the system is observed or experimented with. Experimental
frames formulate the objectives that motivate the project
(Zeigler, Kim, and Praehofer 2000). Within the conditions
imposed by an experimental frame, the modeler observes the
behaviour of the system and determines its correctness.

CD++ (Wainer 2002) is a M&S toolkit that implements
DEVS theory. Atomic models can be defined using a state-
based approach (coded in C++ or an interpreted graphical
notation). The toolkit has been used to model and simulate a

wide variety of applications, such as urban traffic, robot path
planning, and computer architectures (Wainer 2002).

Figure 1 shows the definition of an atomic model that
represents the behaviour of an Ethernet switch using CD++.

EthernetSwitch::EthernetSwitch
(const string &name) : Atomic(name),
in1(addInputPort("in1")),
in2(addInputPort("in2")),
in3(addInputPort("in3")),
enable(addInputPort("enable")),
disable(addInputPort("disable")),
out1(addOutputPort("out1")), ... , { }

Model &EthernetSwitch::externalFunction
(const ExternalMessage &msg) {

 if ((state() == passive) &&
 ((msg.port() == in1) && (enabled1 == 1)) ||
 ((msg.port() == in2) && (enabled2 == 1)) ||
 ((msg.port() == in3) && (enabled3 == 1))) {
 request = msg.value();
 request_waiting = 1;
 holdIn (active, delay);
 }

 if ((state() == passive) &&
 (msg.port() == disable)) {
 if (msg.value() == 1) enabled1 = 0;
 if (msg.value() == 2) enabled2 = 0;
 if (msg.value() == 3) enabled3 = 0;
 request_waiting = 0;
 holdIn (active, delay);
 }

 if ((state() == passive) &&
 (msg.port() == enable)) {
 if (msg.value() == 1) enabled1 = 1;
 ...
 holdIn (active, delay);
 }

}

Model &EthernetSwitch::internalFunction
(const InternalMessage &msg) {

 request_ready = 0;
 passivate();
 return *this ;

}

Model &EthernetSwitch::outputFunction
(const InternalMessage &msg) {

 if (request_ready == 1) {
 if ((request == node_1) && (hab1 == 1))
 sendOutput(msg.time(), out1, request) ;

 if ((request == node_2) && (hab2 == 1))
 sendOutput(msg.time(), out2, request) ;
 ...

}

Figure 1: Specification of EthernetSwitch in CD++

Glinsky and Wainer

Most of the logic of the EthernetSwitch is located in the
external transition (δext). This function determines what to
do with the incoming packets. External events arriving via
the input ports in1, in2, and in3 represent packets received
from the network, whereas enable and disable are used to
indicate which ports are working. The next internal event
(δint) is scheduled by the holdIn method, which implements
the time advance function (ta). For example, if an event is
received via in2 and the port is enabled (enabled2), the
model stores the value received and schedules an internal
transition. When the time indicated by the variable delay
expires, the output function (λ) notices that there is a request
ready and directs the output to the corresponding port,
according to the value previously received (i.e., request).
Enabling and disabling ports do not generate any output.
The internal transition function clears the request_ready flag
and passivates the model (i.e., sets the next internal
transition time to infinity).

CD++ also enables the user to define coupled models
by using a built-in specification language that follows
DEVS formal specifications. Once an atomic model is de-
fined (as in Figure 1), it can be integrated into a coupled
model as the one presented in Figure 2.

components: server1 server2
components: client eth@EthernetSwitch
in: eth_enable eth_disable
in: hss1_start hss1_stop hss2_start hss2_stop
...
out: packets status
link: server_out@serv1 in1@eth
link: out1@eth server_in@serv1
link: server_out@serv2 in2@eth
link: out2@eth server_in@serv2
...

[eth]
delay: 00:00:01:000
node_1: 1 node_2: 2 node_3: 3

[client]
components: WSclient clientNet@Network com-
ponents: hsclient@HSClient
in: hs_start hs_stop client_in
out: client_out
link: hs_start start@hsclient
...
[WSclient]
components: selclient@Selector display@Display
...
[server1]
components: WSserv1 s1Net@Network
components: hsserv1@HSServer PDBserv1
components: drvserv1@Driver
...

Figure 2: Specification of a Coupled Model in CD++

The top model here is composed of three coupled

models (server1, server2, and client) and one atomic
component (eth, an instance of EthernetSwitch). client is
composed by two atomic components (clientNet and
hsclient) and one coupled component (WSclient). The input

and output ports define the model’s interface, and the links
between components define the model’s coupling. The input
ports in the top model (e.g., eth_enable, eth_disable,
hss1_start) are used to activate and deactivate the Ethernet
switch, server nodes, and client. The output ports (e.g.,
status, packets) are used to inform the progress in the
system.

Models developed in CD++ are independent from the
engine in charge of driving their execution. At present,
CD++ is able to execute models in single processor, parallel
or real-time mode. The execution engine uses model’s
specifications, and it builds one object to control each
component in the model hierarchy. These objects
communicate using message passing, and they are called
processors. There are different types of processors
according to the activity they carry out: simulators are
specialized in atomic models (executing its associated
functions), coordinators manage coupled models, and the
root coordinator controls global execution aspects (time,
start/stop, interfacing with the environment, etc.).

RT-CD++ (Glinsky and Wainer 2002a) uses the real-
time clock to trigger the processing of discrete events in the
system. Figure 3 outlines the processor’s hierarchy gener-
ated by RT-CD++ to execute the model presented in Figure
2. The root coordinator created at the top level manages the
interaction with the experimental frame that tests the model
receiving inputs (via eth_enable, eth_disable, hss1_start,
etc.), and returns outputs (via status and packets). The root
coordinator exchanges messages with its children. Coordina-
tors are created to handle the coupled models server1,
server2, client, etc. Simulators are created to handle the
components eth (which inherits from the atomic
EthernetSwitch), clientNet (from atomic Network), hsclient
(from atomic HSClient), drvserv1 (from atomic Driver), etc.

root coordinator

System simulated
in RT-CD++

External events
(eth_enable, eth_disable,

hss1_start, etc.)

Outputs
(packets,
status)

Wall-
Clock

server1: coordinator eth: simulator

in1, in2, in3

...

out1, out2

...

externalFunction()
internalFunction()
outputFunction()

drvserv1: simulator

externalFunction()
internalFunction()
outputFunction()

Figure 3: RT-CD++ Simulation Scheme

Glinsky and Wainer

Model execution is triggered by the real-time clock
using the time of the external events. When the root
coordinator receives a new event, it forwards the message to
the corresponding processor. Timing constraints (deadlines)
can be associated to each external event. When the
processing of an event is completed, the root coordinator
checks if the deadline has been met. In this way, we can
obtain performance metrics (number of missed deadlines,
worst-case response time).

We thoroughly tested the execution performance of RT-
CD++ (Glinsky and Wainer 2002a). These studies showed
that models with more than 50 components execute with an
overhead below 2%. For larger models (over 200 compo-
nents), the overhead incurred by the tool is below 3%. We
have used RT-CD++ to build simulations hardware-in-the-
loop (Li, Pearce, and Wainer 2003), creating a model of the
CODEC of an Analog Devices 2189M EZ-KITLITE DSP
board. Different tests showed the feasibility of the approach,
as we were able to reproduce simulated results in the real-
time environment. Nevertheless, when building components
on the board, some of the existing models needed some re-
work (due to the use of Analog Devices’ IDE that was in
charge of the communications between CD++ and the hard-
ware surrogate). These problems were solved by incorporat-
ing communication between facilities into CD++, permitting
direct communication with the toolkit and external hard-
ware. In the following section, we will show how to use
CD++ to develop a hardware-in-the-loop application. The
experiments evolve from a simulated model running in a
workstation to a microcontroller-based application. We have
used the Motorola 68HC12 board, with a project board (in-
cluding varied sensors and actuators).

3 AN AUTOMATED FACTORY MODEL

We built an automated manufacturing system (AMS) with
both hardware and simulated components. The proposed
AMS is composed by dedicated stations that perform tasks
on products being assembled, and conveyors that transport
the products to/from those workstations.

Figure 4 shows the physical layout of our AMS, which
consists of four stations and two conveyor belts to transport
the products (A and B). The production cycle is organized
by a scheduler, which depends on the type of piece being
assembled. The scheduler determines which station (e.g.,
painting machine, baking machine, storing station) should
receive and work on the product.

Conveyor A Conveyor B

Station
1

Station
2

Station
3

Station
4

B

A

Figure 4: Layout of the AMS

We started by modeling the entire system in CD++

based on the previous layout. The system is composed by
two coupled components (conveyors), and three atomic
components (a controller system, a scheduler, and a display
controller). Each conveyor is formed by two atomic models
(an engine and a sensor controller). Component reuse is an
essential aim of our approach. In the development of the
AMS, we reused a controller unit that was implemented for
an elevator control system. We also reused a prototype of a
painting station, which paints pieces placed on its working
area following a predefined sequence (e.g., heat the paint at
80ºC, activate a motor at 50 RPS).

Scheduler

Controller
Unit

Display Controller

Conveyor_A

Engine

Sensor
Controller

status_conveyor_A
status_conveyor_B

Conveyor_B

Engine

Sensor
Controller

Figure 5: Scheme of the AMS (entirely in CD++)

Glinsky and Wainer

The sensor controller is an atomic model, defined as
shown in Figure 1. It receives events from the environment,
and forwards them to the controller unit (CU), resembling
the real components of the system. The display controller
handles the digital display (showing the location of the piece
in each conveyor belt), based on the signals received from
the controller unit. The controller receives input signals
from sensors and the scheduler, and determines where to
dispatch each piece activating the engines of the conveyor
belts. The scheduler stores information about which stations
have to work on a specific product. Figure 6 shows the CU
of the AMS.

Controller

Unit

station_1A

sensor_1A

sensor_2A

sensor_3A

sensor_4A

station_display_A

direction_A

activate_A

station_2A

station_3A

station_4A

station_1B

station_2B

station_3B

station_4B

sensor_1B

sensor_2B

sensor_3B

sensor_4B

direction_display_A

station_display_B

direction_B

activate_B

direction_display_B

Figure 6: Diagram of the Controller Unit

Most of the logic of the CU is located in the external

transition function, which handles the incoming events.
Events received via ports station_ij are sent by the
scheduler, and represent that the product in conveyor belt j
has to be sent to station i. Events received via sensor_ij
indicate that the product in conveyor j has reached station i.
Thus, the controller can schedule the next internal transition
function to activate or deactivate the engine of the
corresponding conveyor (via direction_j and activate_j). It
can also signal the display controller when the conveyor belt
starts moving or a product reaches a new station (via
direction_display_j and station_display_j). Users can define
the activation time for the engine, customizing its timing
behaviour.

Different experimental frames were applied to this
model, allowing the analysis of different scenarios. We
started by analyzing the behaviour of each submodel inde-
pendently (using the specifications for their physical coun-
terparts) and then, we conducted integration tests. Figure 7
shows a sample event file for one of such experiments.

Time Deadline In-port Out-Port Value
00:09:100 00:09:300 sta_3A activate_A 1
00:12:500 00:12:700 sensor_2A sta_disp_A 1
00:17:500 00:17:700 sensor_3A sta_disp_A 1
00:35:100 00:35:300 sta_4B activate_B 1
00:30:000 00:30:200 sensor_2B sta_disp_B 1
00:34:100 00:34:300 sensor_3B sta_disp_B 1
...

Figure 7: Experimental Frame for the AMS Controller Unit

Initially, a piece is placed in station 1 of each conveyor

belt and there are no pending events. The first event repre-
sents a job scheduled for product A in station 3. The event
occurs at time 00:09:100, and the simulator receives it via
input port sta_3A. As a result, we expect to turn on the con-
veyor belt in less than 200 ms to transport the product. The
second event in the list represents the activation of sen-
sor_2A (i.e., the product in belt A has reached the second
station). In this case, we expect an output via port
sta_disp_A before 00:12:700, informing the arrival of the
product to that station. The value of 1 represents activation
of sensors and scheduling of tasks in stations. Figure 8
shows the outputs generated by the real-time simulator for
this experiment.

Time Deadline Out-port Value
00:09:110 direction_A 1
00:09:110 00:09:300 activate_A 1
00:12:510 00:12:700 sta_disp_A 2
00:17:510 00:17:700 sta_disp_A 3
00:17:510 direction_A 0
00:35:110 direction_B 1
00:35:110 00:35:300 activate_B 1
...

Figure 8: Outputs Generated by the AMS Controller Unit

As we can see, the deadlines were met in every case.

For example, the first event met its deadline, activating the
engine of conveyor belt A at time 00:09:110 in the correct
direction (the value 1 via port direction_A indicates that the
belt will move forward). The third output is the result of ac-
tivating the sensor at the second station in belt A, and the
following one represents the product reaching the third sta-
tion at time 00:17:510. The fifth line shows that the con-
veyor belt has stopped after product A has reached station 3.
The last two lines show the initial activity that generates
scheduling a job in station 4 for product B.

We used different experimental frames to thoroughly
test this model, and once satisfied with its behaviour, we
progressively started to replace simulated components with
their hardware counterparts. The first step was to replace the
scheduler model, and to execute it on the microcontroller, as
shown in Figure 9. The microcontroller generates the events
to the simulated model, indicating that a product has to be
sent to a station. The rest of the components remain un-
changed from the architecture described in Figure 5.

Glinsky and Wainer

 Scheduler

RT-CD++

Microcontroller

sta_1A, sta_2A, sta_3A, sta_4A
sta_1B, sta_2B, sta_3B, sta_4B

Controller
Unit

Display Controller

Conveyor_A

Engine

Sensor
Controller

status_conveyor_A
status_conveyor_B

Conveyor_B

Engine

Sensor
Controller

Figure 9: Scheduler in Hardware

The following figure shows the CD++ coupled model

specification for this version of the system.

components: conveyor_A conveyor_B scheduler
 cu@CU dis@Display
in : sta_1A sta_2A sta_3A sta_4A
in : sta_1B sta_2B sta_3B sta_4B
out : status_conv_A
out : status_conv_B
link : sta_1A sta_1A@cu
link : sta_2A sta_2A@cu
...
link : sensor_1@conveyor_A sensor_1@cu
link : sensor_2@elevBox sensor_2@ec
...
link : dir_display_A@cu dir_display_A@dis
link : status_conv_A@cu status_conv_A@dis
link : dir_display_B@cu dir_display_B@dis
link : status_conv_B@cu status_conv_B@dis
...
[conveyor_A]
components: sb@SensorController eng@Engine
in : activate direction
out : sensor_1 sensor_2 sensor_3 sensor_4
link : activate activate@eng
link : direction direction@eng
link : sensor_1@sb sensor_1
...
link : current_pos@eng sensor_triggered@sb
...
[conveyor_B]
components: sb@SensorController eng@Engine
...

Figure 10: CD++ Model: Scheduler in Hardware

The components for the top model follow the architec-
ture in Figure 9. Here, conveyor_A and conveyor_B are cou-
pled components, whereas cu and dis are atomic. The top
model input ports are used to receive events from the sched-
uler now running in the external board. Replacing a CD++
component with its counterpart running in the external de-
vices is straightforward, since the model is not changed (an
option in the executable engine will establish that the sched-
uler is running in an external device). Likewise, testing this
model only requires reusing the previously defined experi-
mental frames. As the scheduler model was built using the
hardware specifications for the actual system, and the inter-
faces of the submodels do not change, the transition is trans-
parent. Figure 11 shows the output of a sample execution of
this model. The results obtained are the same as before, re-
gardless of the use of a hardware surrogate.

Time Out-port Value
00:08:170 status_conv_A 2
00:19:540 status_conv_A 3
00:30:130 status_conv_B 2
00:35:140 status_conv_B 3
00:40:150 status_conv_B 4
...

Figure 11: Outputs for Example Shown in Figure 10

In this case, events generated by the scheduler running

on the experimental board are sent to CD++. These events
trigger the same activities in the model as in the simulated
environment (e.g., activating the conveyor engines,
displaying the direction of the conveyor belt). In the
previous figure, status_conv_A and status_conv_B show that
the products in both belts are transported to the
corresponding stations, similarly to what was shown in
Figure 10.

After conducting extensive tests, we also moved the
display controller to the microcontroller. The value dis-
played on the digital display (which is informed by the
model running in CD++), represents the current station for
each product. The display controller and the scheduler were
combined in a single application following the previous
model specifications. The resulting configuration is shown
in Figure 12.

By simply activating the simulation engine specifying
that the display controller is running in a hardware
surrogate, we are able to execute the new application
without any modifications.

Every time the models activates the output ports
status_conv_A and status_conv_B in Figure 10, the display
controller on the board is activated, showing on the LCD the
current location of each product. The following event log
was obtained as a result of scheduling jobs in stations (3, 1,
2) for product A and stations (2, 4, 3) for product B, with
both pieces located initially on the first station.

Glinsky and Wainer

 Scheduler

RT-CD++

Microcontroller
sta_1A, sta_2A,
sta_3A, sta_4A,
sta_1B, sta_2B,
sta_3B, sta_4B

Controller
Unit

Display Controller

Conveyor_A

Engine

Sensor
Controller

status_conv_A
status_conv_B

Conveyor_B

Engine

Sensor
Controller

Figure 12: Scheduler and Display Controller in Hardware

The first two lines of the following figure show the

product in conveyor A moving from the first to the third sta-
tion. The third line shows the product in conveyor B moving
to station 2 at time 00:34:390. After station 3 finished its
work on product A, the product reaches to station 1 at time
01:15:170. Product B reaches station 4 at 01:26:170, which
corresponds to the second job scheduled for it.

Time Out-port Value
00:27:410 status_conv_A 2
00:33:180 status_conv_A 3
00:34:390 status_conv_B 2
01:10:690 status_conv_A 2
01:15:170 status_conv_A 1
01:21:110 status_conv_B 3
01:26:170 status_conv_B 4
...

Figure 13: Outputs for Example Shown in Figure 12

When the external display controller receives new data,

it displays the value (i.e., the current position of the product
in that belt) on the LCD display, and then waits for more
data.

The final step was to implement the complete AMS on
the microcontroller. Figure 14 shows the scheme for this ex-
perimental frame, in which only the engines are still simu-
lated in CD++.

Scheduler

RT-CD++

Microcontroller

Controller
Unit

Display Controller

Engine
(Conveyor_A)

Sensor
Controller
(Conveyor_A)

Sensor
Controller
(Conveyor_B)

Engine
(Conveyor_B)

activate_A
direction_A

activate_B
direction_B

result_A

result_B

Figure 14: Controller Unit Implemented in Hardware

The model does not require any modification, and the

model executing in the microcontroller feeds the input ports
activate_in and direction_in in Figure 10.

Figure 15 shows the events generated by the model
running in the microcontroller, which represents setting the
direction, activation and deactivation of the conveyor belt
engines A and B.

Time Port Value
00:06:120 direction_A 1
00:06:130 activate_A 1
00:15:930 activate_A 0
00:56:800 direction_B 2
00:56:810 activate_B 1
01:01:130 activate_B 0
01:22:710 direction_B 2
01:22:720 activate_B 1
...

Figure 15: Event Log Generated by the Engines Model

Figure 16 shows the activation and deactivation of the

belts when the requests are received, which is the result of
the activity in the microcontroller. The values issued by the
port result_A and result_B represent that the belt is activated
to move forward (1), reverse (2), or deactivated (0).

Time Out-port Value
00:06:130 result_A 1
00:15:930 result_A 0
00:56:810 result_B 2
01:01:130 result_B 0
01:22:720 result_B 2
...

Figure 16: Outputs for the Model in Figure 14

Glinsky and Wainer

4 CONCLUSION

The development of M&S applications with hardware-in-
the-loop can be significantly beneficiated by using a formal
technique like DEVS. In this work, we showed how to use
CD++ to develop a sample application in which we incorpo-
rated hardware components gradually as the components be-
came available. Our technique enables a flexible approach to
develop embedded applications, which is particularly useful
when some of the components are being developed simulta-
neously and therefore are not available yet.

Experimental frameworks allowed us to analyze the
model execution in a simulated environment, checking the
model’s behaviour and timing constraints within a risk-free
environment. The simulation results were then used in the
development of the actual application, permitting developers
to validate their systems and subsystems at every stage of
the process.

The time required to develop models in RT-CD++ is a
major concern, given that time-to-market is generally a
crucial factor. The development of an atomic component
with medium complexity like the EthernetNetwork required
approximately 30 minutes for an experienced CD++
developer (or 2.5 hours to a developer who is new to CD++
but familiar with C++). Developing a coupled component
like the conveyor presented in Figure 5 required
approximately 2 hours for an advanced CD++ developer (or
5 hours to a new developer). Additionally, the integration of
hardware components into the system was straightforward.
The transition from simulated models to the actual hardware
counterparts can be incremental, incorporating deployed
models into the framework when they are ready. Testing and
maintenance phases are highly improved due to the use of a
formal approach like DEVS for modeling. DEVS provides a
sound methodology for developing discrete-event
applications, which can be easily applied to improve the
development of real-time embedded applications. These
advantages include secure, reliable testing, model reuse, and
the possibility of analyzing different levels of abstraction in
the system. Model execution is automatically verifiable, as
the execution processors are built following the formal
specifications of DEVS. DEVS bibliography shows how to
build execution engines that enable mimicking the model’s
behaviour in a homomorphic formalism. Hence, the
developer only needs to focus on the model under
development.

Relying on experimental frameworks facilitates testing
in a cost-effective manner, allowing users to build and reuse
test frames for each submodel of the system. Since the
DEVS formalism is closed under coupling, models can be
decomposed in simpler versions, always obtaining equiva-
lent behaviour. Finally, the semantics of models are not tied
to particular interpretations, thus existing models can be re-
used. Likewise, model’s functions can be reused by just as-
sociating them with new models as needed. For instance, we

are now building an extension to the examples presented
here that will handle 10 conveyors and 20 stations. Extend-
ing the model here presented requires modifying only the
external transition function in the CU, and defining a new
coupled model including the new stations, while keeping the
remaining methods unchanged.

REFERENCES

Glinsky, E. and G. Wainer. 2002a. Definition of Real-Time
simulation in the CD++ toolkit. In Proceedings of the
2002 Summer Computer Simulation Conference. San
Diego, USA.

Glinsky, E. and G. Wainer. 2002b. Performance Analysis of
Real-Time DEVS Models. In Proceedings of the 2002
Winter Simulation Conference. Eds. E. Yücesan, C. –H.
Chen, J. L. Snowdon, and J. M. Charnes. San Diego,
USA. pp. 588-594.

Li, L., T. Pearce, and G. Wainer. 2003. Interfacing Real-
Time DEVS models with a DSP platform. In Proceed-
ings of the Industrial Simulation Symposium. Valencia,
Spain.

Wainer, G. 2002. CD++: a toolkit to develop DEVS models.
Software - Practice and Experience. 32: 1261-1306.

Zeigler, B., T. Kim, and H. Praehofer. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. 2nd Edi-
tion. Academic Press.

AUTHOR BIOGRAPHIES

EZEQUIEL GLINSKY has received a B. Sc. (2000) and
M. Sc. in Computer Sciences (2002) from the Universidad
de Buenos Aires, Argentina. He is currently a second year
Masters student in Electrical Engineering at the Department
of Systems and Computer Engineering in Carleton Univer-
sity, Ottawa, ON, Canada. His e-mail address is
<eglinsky@sce.carleton.ca>.

GABRIEL WAINER received the M.Sc. (1993) and Ph.D.
degrees (1998, with highest honors) of the Universidad de
Buenos Aires, Argentina, and Université d’Aix-Marseille
III, France. He is Assistant Professor in the Dept. of Systems
and Computer Engineering, Carleton University. He was a
visiting research scholar at the University of Arizona and
LSIS, CNRS, France. He is author of a book on real-time
systems and another on Discrete-Event simulation and more
than 90 research articles. He is Associate Editor of the
Transactions of the SCS. He has been the PI of several re-
search projects, and participated in different international
research programs. Prof. Wainer is a member of the Board
of Directors and the chair of the SISO DEVS standardiza-
tion study group. His e-mail and we addresses are
<gwainer@sce.carleton.ca> and
<www.sce.carleton.ca/faculty/wainer>.

