
Software & Systems Modeling
https://doi.org/10.1007/s10270-018-0700-7

REGULAR PAPER

AMulti-ParadigmModelling approach to live modelling

Yentl Van Tendeloo1 · Simon VanMierlo1 · Hans Vangheluwe1,2,3

Received: 13 February 2018 / Revised: 16 September 2018 / Accepted: 15 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
To develop complex systems and tackle their inherent complexity, (executable) modelling takes a prominent role in the
development cycle. Butwhereas good tool support exists for programming, tools for executablemodelling have not yet reached
the same level of functionality andmaturity. In particular, live programming is seeing increasing support in programming tools,
allowing users to dynamically change the source code of a running application. This significantly reduces the edit–compile–
debug cycle and grants the ability to gauge the effect of code changes instantly, aiding in debugging and code comprehension
in general. In the modelling domain, however, live modelling only has limited support for a few formalisms. In this paper, we
propose a Multi-Paradigm Modelling approach to add liveness to modelling languages in a generic way, which is reusable
across multiple formalisms. Live programming concepts and techniques are transposed to (domain-specific) executable
modelling languages, clearly distinguishing between generic and language-specific concepts. To evaluate our approach, live
modelling is implemented for three modelling languages, for which the implementation of liveness substantially differs. For
all three cases, the exact same structured process was used to enable live modelling, which only required a “sanitization”
operation to be defined.

Keywords Live programming · Live modelling · Debugging · Multi-Paradigm Modelling

1 Introduction

Complex software-intensive systems are becomingmore and
more pervasive in our daily lives [32]. Modelling, and in par-
ticular domain-specific modelling [18] (DSM), has proved
to be an essential technique to avoid the accidental complex-
ity incurred when using traditional programming techniques,
by allowing domain experts to specify systems in a nota-
tion they are familiar with. Historically, models were mostly
used for documentation. More recently, they are increasingly
used for execution, for example through code generation [18]

Communicated by Prof. Gordon Blair.

B Yentl Van Tendeloo
Yentl.VanTendeloo@uantwerpen.be

Simon Van Mierlo
Simon.VanMierlo@uantwerpen.be

Hans Vangheluwe
hv@cs.mcgill.ca; Hans.Vangheluwe@uantwerpen.be

1 University of Antwerp, Antwerp, Belgium

2 Flanders Make vzw, Lommel, Belgium

3 McGill University, Montreal, Canada

or simulation/interpretation, often implemented using model
transformation [38]. This brings forth the need for debug-
ging the execution, as seen in the programming community.
While there is a growing interest in model verification, not
all models can be verified due to the size of the state space, or
due to lacking (efficient) tool support. Furthermore, model
verification can indeed aid in finding whether a system is
correct, but it is often unable to track down the source of the
violation. As such, debugging will remain a vital part of the
modelling process.

Commercial modelling and simulation tools often pro-
vide limited support for debugging. The research community
has recently made several contributions that enable spe-
cific debugging features for several types of formalisms [2,
8,22,34,51]. Compared to code debugging, which has a
wide variety of debugging operations [52], current modelling
approaches and tools supporting them are still in their infancy
in terms of features, applicability, and usability. It is therefore
tempting for system developers to debug the automatically
generated code directly, instead of the model itself [10].

Live programming [41] is an advanced feature of sev-
eral programming tools, allowing programmers to modify
the code of applications while the application is running,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0700-7&domain=pdf


Y. Van Tendeloo et al.

immediately having the new code integrated in the running
application. There is no apparent compile and rerun cycle,
reducing the cognitive gap between program code and exe-
cution. Additionally, the state of the running application is
transparently transferred from the running program to the
newly compiled version of the code, thereby removing the
need to redo all operations up to the point in time where
the change was made. While there are already several tools
that support live programming, making a programming lan-
guage “live” is carried out ad hoc and is referred to as a black
art [5]. As such, it is difficult to transpose liveness techniques
between languages.

In this paper, we transpose the essence of live program-
ming to the modelling domain, in a generic way. Contrary to
live programming, where only a single language is consid-
ered most of the time, domain-specific modelling raises the
need for many different domain-specific formalisms. Many
of these domain-specific formalisms only have a handful
of users, rendering the investment for implementing live
modelling techniques in an ad hoc way difficult to justify.
Therefore, livemodelling should be implemented in a generic
way, making it applicable to many modelling formalisms
with minimal effort. Support for live modelling was identi-
fied as a key feature to advance the usability of model-driven
techniques [19]. The research question thus is “how can live
programming concepts be ported to the modelling domain,
making them generically applicable”. Despite mostly being
presented as a debugging operation in this paper, live for-
malisms can be applied to other situations as well, such as
education or model comprehension in general.

To effectively support live modelling in the context of
domain-specific formalisms, we deconstruct the traditional
live programming process and reconstruct it in the context
of modelling by applying concepts and techniques from live
programming to executable modelling formalisms. All activ-
ities related to liveness are distilled into a single operation,
which we term sanitization. To make a formalism live, only
the sanitization operation should have to be updated, while
reusing all other aspects of live modelling. Note that live-
ness only applies to executable modelling formalisms, and
we therefore limit ourselves to these in this paper.

We present a Multi-Paradigm Modelling (MPM) [30,49]
approach to livemodelling.MPMadvocates the explicitmod-
elling of all pertinent parts and aspects of complex systems.
It addresses and integrates three orthogonal dimensions: (1)
multi-abstraction modelling, concerned with the relation-
ships between models (e.g. refinement and generalization);
(2) multi-formalism modelling, concerned with the coupling
of and transformation between models described in differ-
ent formalisms (e.g. multi-view and multi-component); and
(3) explicitly modelling the often complex, concurrent work-
flows. We present an explicitly modelled framework for the
definition of live modelling formalisms: all aspects of the

approach, including the process [23], are explicitlymodelled.
Our approach therefore relies on MPM tool support. Addi-
tionally, our approach is especially useful in the context of
MPM, where various domain-specific formalisms are used
and processes can be enacted.

We distinguish between three types of executable mod-
elling formalisms for which the implementation of the
sanitization operation is fundamentally different. For each,
we present a representative example, which we use through-
out this paper as a running example: Finite State Automata
(FSAs) [17], Discrete Time Causal Block Diagrams
(DTCBDs) [7], and Continuous Time Causal Block Dia-
grams (CTCBDs) [7].

These modelling formalisms, and their live implementa-
tion, are implemented in the Modelverse [47], our Multi-
Paradigm Modelling environment [48]. The Modelverse
provides full support forMulti-ParadigmModelling, thereby
providing the necessary tool support for language engineer-
ing,model transformations, process enactment, and the use of
multiple flexible interfaces. All codes are available online.1

The remainder of this paper is organized as follows.
Section 2 introduces the necessary background on live pro-
gramming and executablemodelling. Section 3presents three
running examples: a Finite State Automata model, a Dis-
crete Time Causal Block Diagrams model, and a Continuous
Time Causal Block Diagrams model. Section 4 presents our
approach to live modelling, explaining our concepts and
method, and demonstrates its application to our running
examples. Section 5 presents a prototype implementation
of our approach for the three examples. Section 6 presents
related work, and Sect. 7 concludes the paper.

2 Background

As this paper combines techniques from the live program-
ming and executable modelling domain, both domains are
first briefly introduced.

2.1 Live programming

Live or interactive programming aims to bridge the “gulf
of evaluation” [21,44]. It allows users to update the source
code of an application while it is running, with changes being
applied instantly in the running application. There is there-
fore no need to manually recompile, restart, and rerun the
program up to the point of execution when the modification
was made. This has several advantages, such as decreasing
the length of the edit–compile–debug cycle and offering users
immediate insight in the effect of code changes. An example

1 https://msdl.uantwerpen.be/git/yentl/modelverse.

123

https://msdl.uantwerpen.be/git/yentl/modelverse


A Multi-ParadigmModelling approach to live modelling

of live programming, as implemented by ElmScript [9], can
be seen online.2

Basically, the process of live programming is as follows.

1. A developer writes code in a programming language.
2. The (valid) code is compiled to instructions for the spe-

cific machine.
3. The instructions are loaded into memory, and storage is

allocated for execution.
4. The program is executed, which performs operations on

the program and its state.
5. The developer modifies the code of the program, concur-

rently with execution.
6. The modified code is compiled to new instructions.
7. The program merges its old instructions and state with

the new instructions.
8. The program executes the new instructions.

With the exception of the seventh item, these steps are
identical to the workflow of normal programming. Normally,
however, the new instructions are only executed in a new
invocation of the program. The merge operation, therefore,
is the only new operation in live programming (from a func-
tional point of view). The merge operation alters a running
program to incorporate changes unknown at compilation
time, by merging the updated set of instructions with the old
state of the running program. Specifically, new instructions
that do not have an execution context are merged with old
instructions and their associated execution state. As data are
also merged, such as the value of variables, information from
the old programmust be combined with the new instructions.

Data merging is intentionally left vague, as many
approaches exist. Three categories were proposed [26],
depending on how much data are copied: no live program-
ming, recorded event, and real time. We illustrate all three
with a game example, similar to the ElmScript example. The
game is a simple platform game, where the jump height of
the character is updated during execution. The game’s cur-
rent state is shown in Fig. 1a, where the character jumped
onto the platform and, in the meantime, collected one coin.
If the character were to jump, the coin is collected and the
score is increased to 2.

No live programming is the most basic, where no infor-
mation is passed between executions. Upon recompilation,
the currently running application is terminated and restarted
afresh. This approach does not implement live programming
at all and can easily be replicated without any modification
to the programming language itself. All that is required is an
automatic restart of the application after a change is detected.
In the game example, the character is respawned at the begin-
ning and the score is initialized to zero. This is shown in

2 http://debug.elm-lang.org/.

Fig. 1b, where the character has respawned and all coins
have been reset as well. From this point onwards, the jump
height is reduced and the character will be unable to jump on
the platform. In conclusion, no state is retained.

Recorded event takes over the history of all inputs sent to
the old running application. The new program is then exe-
cuted with these simulated events, making it seem as if the
inputs sent to the old program were sent to the new pro-
gram. This approach is used in programming languages such
as ElmScript [9]. For performance reasons, the program is
often not completely re-executed, but only dependent func-
tions are re-evaluated. In the game example, our character
might switch location and score, depending on what these
valueswould be if the exact same inputswere given in the new
application. When the jump height parameter is decreased,
we suddenly find the character below the platform, instead
of on top of it. This is shown in Fig. 1c, where we see the
character below the platform: the jump we did before did
not reach the same height, which made the character unable
to reach the platform. Subsequent actions, such as moving
to the right, were still replicated, but in a different context:
below instead of on top of the platform. In conclusion, the
input history part of the state is retained.

Real time takes over the complete history of the old run-
ning program, but merges in new instructions to be used in
the future. The new program is effectively a rewritten ver-
sion of the old program, which just continues computation.
This approach is used in programming languages such as
Smalltalk [14] and is often also termed fix and continue. In
the game example, our character will be at the same location
and have the same score as before, but changeswill take effect
from that point onwards. When the jump height parameter is
decreased, we find it impossible to jump as high as we could
before, though our current location remains unchanged. This
is shown in Fig. 1d, where we see no immediate change.
From this point onwards, however, we are unable to get the
coin right above us, as the character can no longer jump that
high. In conclusion, the complete state is retained.

In the remainder of this paper, we will mostly consider
real-time live programming, as this was previously identified
as being the most appropriate for simulation [26].

2.2 Executable modelling

Modelling has historically mostly been used in the form of
documentation of a separate coded application. Recently,
however, executable modelling has gained popularity, where
the model itself becomes the final application, without addi-
tional coding effort. In this case, the model is not necessarily
used as documentation or to generate skeleton code, but its
execution becomes detached from programming. In essence,
models have gained semantics, forwhich twomain categories
exist: denotational and operational semantics.

123

http://debug.elm-lang.org/


Y. Van Tendeloo et al.

(a) (b) (c) (d)

Fig. 1 State of the game before and after decreasing the jump height parameter. a Original configuration. b No live programming. c Recorded
event. d Real time

Denotational semantics, or translational semantics, con-
sists ofmapping themodel to a different formalism, forwhich
a semantics does exist. For example, if the model is trans-
lated to programming code, this is denotational semantics.
The semantics is then only concerned with the translation
in itself: generating code. How this code is executed is
beyond the scope of denotational semantics. Denotational
semantics is mostly used to employ existing knowledge and
formalisms. For example, it is popular to generate code
(leveraging existing code execution platforms) or map it to
different domain-specific formalisms, such as Petri nets [31]
(leveraging existing analysis methods). Chaining is possible,
where the target formalism has denotational semantics itself,
as long as eventually we end up with a formalism that has
operational semantics defined.

Operational semantics defines the semantics by execut-
ing the model directly: the model is transformed from one
valid configuration to another. For example, a current state
flag is kept for all elements, which is moved along the model
to indicate the currently executing state. Contrary to denota-
tional semantics, operational semantics does not rely on other
formalisms, but it requires additional data to be stored some-
where. For this purpose, a distinction is often made between
a design and runtime metamodel.

The design metamodel is the metamodel that is used by
the designer when creating the model. It has all the nec-
essary constructs for design, but is not concerned with the
execution. For example, in Finite State Automata (FSAs),
a State only has a name and initial attribute. The runtime
metamodel, however, has additional information required for
execution. For example, the state now still has its name and
initial attribute, but additionally has a current attribute. This
attribute stores a boolean containing whether or not this is
the current state of the execution. While this information is
required for the execution, as it needs to be stored somewhere,
it is invisible to the designer.

Due to the distinction between these two types of meta-
models, multiplemodels are actually required for operational
semantics: the design model is first translated to a runtime

model, thereby initializing it (e.g. setting the current attribute
to the initial attribute). The actual operational semantics is
subsequently executed on this intermediate runtime model.

3 Running examples

In this section, we present the formalisms used as run-
ning example throughout the remainder of the paper. For
all formalisms, we present a simple model on which we
use live modelling. Modelling formalisms can have widely
varying semantics, including non-determinism, event-driven
behaviour, timing. While implementing live modelling tech-
niques for each of these categories will be different, one
essential difference that has an effect on live modelling is
the types of changes that can be made. We identify three
types of formalisms: two that gain semantics through oper-
ational semantics (i.e. they manage the state themselves),
with support for breaking and non-breaking changes, and one
that gains semantics through denotational semantics (i.e. it
delegates execution and states to another formalism).Thedis-
tinction between breaking and non-breaking changes stems
from the language evolution community [28], where changes
to the metamodel can be considered to break the instances.
With breaking changes, the instances have to be adapted, for
example when adding a new mandatory attribute to a class.
This can be either resolvable (e.g. when the attribute has a
default value) or non-resolvable (e.g. when the attribute has
no default value). With non-breaking changes, the instances
do not have to be adapted, for example when adding an
optional attribute to a class.

With operational semantics and breaking changes, con-
forming changes on the design model might result in non-
conforming changes on the runtime model. For example, in
live programming, the currently executing line of code can be
removed. In this case, the change in the designmodel (source
code) is a valid piece of program code, but when this same
change is mapped to the runtime model, the current instruc-
tion pointer is also removed, making the runtime model

123



A Multi-ParadigmModelling approach to live modelling

invalid. To solve inconsistent states after such a change, a
new line of code must be selected as the currently executing
line of code, which can often not be performed automatically.
As a representative example of a formalism with breaking
changes, we choose Finite State Automata.

With operational semantics and non-breaking changes,
conforming changes on the design model always result in
conforming changes on the runtime model. For example, in
live programming, variables can be added or removed, and
their values cannot be changed. In this case, the change in
the design model (source code) is a valid piece of program
code, and when the same changes are mapped to the run-
time model, the runtime model stays valid. Note that it is
not possible to change the values of variables themselves,
as we only have access to the source code, not to the execu-
tion information. As a representative example of a formalism
with non-breaking changes, we choose Discrete Time Causal
Block Diagrams.

With denotational semantics, execution is delegated to
another formalism. For example, in live programming, the
codebase can be first translated to another programming for-
malism, for which live programming is supported. To solve
the inconsistent state, the functionalities of the target for-
malism can be used as is. In the end, however, the modeller
is likely only an expert in the source formalism and might
even be unaware of the existence of a target formalism.
As a representative example of a formalism with denota-
tional semantics, we choose Continuous Time Causal Block
Diagrams, which we map to Discrete Time Causal Block
Diagrams through discretization and optimization.

For readability, we present our approach using these three
different formalisms. Of course, our approach is applicable
for other formalisms as well. Many formalisms support dif-
ferent types of changes, such as some that are breaking (e.g.
the executing line of code) and others that are non-breaking
(e.g. variable values). Therefore, a composite merge rule is
often required, which handles all aspects simultaneously.We
explain all used formalisms next, along with an example
model.

These three types of formalisms are exhaustive: a change
is either breaking (i.e. requires changes to be applied to the
model) or non-breaking (i.e. the model can be used as is).
For breaking changes, two resolution methods exist, both
of which are handled in this paper. Denotational seman-
tics does not consider the difference between breaking and
non-breaking changes, as it merely relies on the underlying
semantics for this. As such, denotational semantics is only
considered in combination with one type of changes in this
paper.

Note that we only consider the feasibility and general
structure of live modelling for these formalisms. Different
applications naturally raise new challenges. For example,

one of the major challenges in live programming is efficient
recompilation, as this takes a significant amount of time.

3.1 Finite State Automata

The Finite State Automata (FSA) formalism [17] is used to
model reactive systemswith discrete state. Its building blocks
are:

– States, which represent the state a system is in. There is
exactly one initial state, where execution starts.

– Transitions between states that model the flow of the
system. A transition is triggered by an event from the
environment, consuming it as the transition is taken.Only
transitions whose source state is the current state can fire.
After triggering, the target of the transition becomes the
new current state. A transition can additionally raise an
output event to the environment.

Its abstract syntax is shown in Fig. 2. Note the notation
for Transition, which is an association going from a State
to another State, having two attributes: a raise and trigger
string. A pseudocode version of its semantics is shown in
Algorithm 1.

Algorithm 1 FSA operational semantics.
function SimFSA(M)

state ← InitialStates(M).pickOne()
while state /∈ FinalStates(M) do

wait for input
state ← Target(M, input)

end while
end function

A frequently used visualization is as a state diagram,
where states are represented as circles and transitions as
arrows, labelled with their trigger and output event. The ini-
tial state is pointed to by an arrow starting from a small black
dot. An example is shown in Fig. 3, where a simple home
security alarm system ismodelled. In the idlemode, the alarm
system can be armed by the user. If someone is detected in
the armed mode, the alarm goes off, until the user inputs the

Fig. 2 Abstract syntax of Finite State Automata. Runtime-only con-
cepts are shown in bold

123



Y. Van Tendeloo et al.

Fig. 3 Example FSA of a home security alarm system

Fig. 4 Abstract syntax of Discrete Time Causal Block Diagrams.
Runtime-only concepts are shown in bold

correct combination. The alarm can be disabled by sending
the Disable event, but only when no intrusion is detected.

The FSA formalism is an example formalism with poten-
tial breaking changes: the only state of the model is the
current state, which is explicitly present and can thus be
removed. If the user deletes the current state, execution can
only resume when another state is chosen as the current
state. This can be resolved either manually (breaking, non-
resolvable) or automatically (breaking, resolvable).

3.2 Discrete Time Causal Block Diagrams

The Discrete Time Causal Block Diagrams (DTCBD) for-
malism [7] is a dataflow formalism, where signals are
propagated through a network of connected blocks. It allows
to model systems by defining them as a set of equations.
The semantics is given by a set of continuous signals. Blocks
implement atomic mathematical operations, which take their
input signals and generate, instantaneously, a single out-
put value. The mathematical concepts modelled by these
blocks include constants, addition, negation, multiplication,
and inversion. Additionally, a delay block is provided which
holds the value for a single iteration, thus introducing the
notion of “next step”. At initialization, the block uses the
value coming into it via the Initial Condition (IC) port. Con-
nections between blocks indicate dependencies: the output
of the source block is used as input by the target block.

Its abstract syntax is shown in Fig. 4. Pseudocode for its
operational semantics is shown in Algorithm 2.

Figure 5a presents a simple DTCBD model representing
the equations shown in Fig. 5b. The equation for y is reduced

Algorithm 2 DTCBD operational semantics.
function SimulateCBD(M,maxIters,�t)

clock ← 0
state ← InitSignals(M)

numIters ← 0
while numIters < maxIters do

g ← DepGraph(M, numIters)
s ← LoopDetect(g)
for c in s do

if c = {gblock} then
state ← CompB(c, state)

else
state ← CompL(c, state)

end if
end for
clock ← clock + �t
numIters ← numIters + 1

end while
return clock, state

end function

(a)

(b)

Fig. 5 Example DTCBD. a Example DTCBD, containing an algebraic
loop. b The equations represented by the example DTCBD model

to y = x − y, which is a direct feedback loop (termed “alge-
braic loop”).While this seems a trivial model to map to code,
this is not the case: the algebraic loop must be resolved first.
Indeed, in code, the statement y = x - y translates to the
equation y(t) = x(t−1)− y(t−1), as the old values of x and
y are used. To actually implement the equation y = x − y,
the algebraic loop must be solved to y = x

2 , which can be
implemented in code. Programmers therefore have to manu-
ally solve the set of linear equations to come upwith the code
to solve this system of equations. Small changes in the sys-
tem of equations can result in large changes on the resulting
solution.

In contrast, DTCBDs handle linear algebraic loops
natively, solving y = x − y automatically and generating
the necessary code. To solve linear algebraic loops, the loop
is detected as a strongly connected component, and a linear

123



A Multi-ParadigmModelling approach to live modelling

Fig. 6 Abstract syntax of Continuous Time Causal Block Diagrams

system of equations is constructed. In the case of Fig. 5a, for
example, we construct the set of equations shown in Fig. 5b.
These equations are automatically solved and code can be
generated.

TheDTCBD formalism is an example of a formalismwith
exclusively non-breaking changes: delay blocks have amem-
ory of their previous iteration, but this is no longer necessary
when the block is deleted. The runtime state of the model is
an aggregation of the memory values, which the user cannot
manipulate directly. When a delay block is added, the state
needs to be updated accordingly by initializing a new state
variable. Similarly, when a delay block is removed, part of
the state is removed. It is impossible for a conforming design
model to result in a non-conforming runtime model.

3.3 Continuous Time Causal Block Diagrams

TheContinuous TimeCausal BlockDiagrams (CTCBD) for-
malism [7] is an extension to DTCBDs, introducing two
continuous blocks: an integrator and derivator. Its abstract
syntax is shown in Fig. 6. As denotational semantics is used,
no runtime-only elements are present in the abstract syntax.
While intuitively this could be implemented by extending the
operational semantics of DTCBDs as well, this has several
disadvantages. First, the operational semantics would have to
be mostly duplicated, as it is mostly identical (e.g. topologi-
cal sorting, algebraic loop detection, and iteration), meaning
that there is code duplication, resulting in poor maintain-
ability. Second, by mapping to DTCBDs, all operations on
DTCBDs can be reused, such as live modelling, but also
other techniques such as debugging. Third, the algebraic loop
detection algorithm would have to be expanded as well, as
algebraic loops can also exist in CTCBDs, where an inte-
grator or derivator is part of the loop. By mapping them to
DTCBDs, all algebraic loop detection and resolution algo-
rithms can be reused as is, without further additions.

Figure 7a presents a simple CTCBD model representing
the equations shown in Fig. 7b. These equations model the
behaviour of a mass attached to a spring, which is going up
and down. Most important is the addition of the integrator
blocks, which were not possible in DTCBDs. When map-
ping this CTCBD to a DTCBD, the integrator blocks are

(a)

(b)

Fig. 7 Example CTCBD. a Example CTCBD model. b The equations
represented by the example CTCBD model

Fig. 8 Expand rule for an integrator block

Fig. 9 Optimize rule for an invertor block

expanded to a discretized version of the integrator, for exam-
ple using the forward Euler approach.While both formalisms
look similar, there is a non-trivial translation step between
them: discretization. Additionally, while discretizing, it is
possible to perform an optimization step for constant fold-
ing, dead block removal, and flattening [33]. Two example
model transformation rules are shown for expansion (Fig. 8,
mapping 1 CTCBD element to multiple DTCBD elements)
andoptimization (Fig. 9,mappingmultipleCTCBDelements
to one DTCBD element).

The CTCBD formalism is an example with denotational
semantics: to execute the model, it is first translated to an
equivalent DTCBD (with respect to some properties), which
is then executed instead. It does not matter whether the tar-
get formalism has breaking or non-breaking changes, or has
denotational semantics itself, as live modelling is assumed to
be supported for that formalism already. As such, we build
on top of the live modelling functionality that was developed
for our other running example.

123



Y. Van Tendeloo et al.

While we acknowledge that DTCBDs and CTCDBDs
look similar, there is a non-trivial n-to-n mapping between
both formalisms. Even though many concepts can be reused
between the two, the mapping exhibits most of the complex-
ities normally associated with traceability links in denota-
tional semantics.

4 Livemodelling

We start our approach to live modelling by deconstructing
the current process for live programming schematically and
then generalize the concepts and processes tomodelling. This
results in a general framework for live modelling that can
be applied to any (domain-specific) modelling formalism.
Programming languages also fit this framework, as they can
themselves be seen as an executable modelling formalism.

4.1 Deconstructing live programming

The first step in our work is the deconstruction of the live
programming process. This process consists of artefacts (i.e.
files or structures in memory) and modifications (i.e. opera-
tions on these artefacts). An overview is shown in Fig. 10.

4.1.1 Artefacts

We distinguish three artefacts: code, instructions, and the
running program.

The code is the textual notation that represents a program,
created by the developer. Code is often persisted as a text file.
It is the only artefact programmers should edit; they should
not edit any subsequent (automatically generated) artefacts.
An example is a C++ source code file.

The instructions are the result of compiling the code,
consisting of a set of instructions and data, which can be
interpreted by the machine. Execution-time concepts are not
yet considered: variables have no value, nor is there a cur-
rently executing line of code. The compiled program is only
an “intermediate” form: it is an optimized version of the orig-
inal code and is easier to read for a computer. As part of
the compilation process, the program is instrumented with
extra information, such as mapping variables to registers.

Fig. 10 Diagrammatic overview of live programming. Full lines rep-
resent operations; dotted lines represent typing relations

An example is a compiled C++ program in ELF format. It
is important to note that these instructions are semantically
equivalent to the original code.

The running program is the actual program loaded in
memory, including its state. It is executed by the machine
and is very similar to the compiled program, but it includes
runtime information (the state). Multiple versions of the
same program can execute at the same time without shar-
ing state (i.e.memory): each program runs independently of
the others. Even when the instructions are changed (i.e. in
self-modifying code), these changes only take effect on the
running instance. Thus, program execution can be defined as
the continuous updating of the artefact itself. An example is
the memory used for executing an ELF file, encompassing
both the instructions and the execution data.

4.1.2 Operations

We distinguish five operations between these artefacts: com-
pilation, initialization, execution, modification, andmerging.

Compilation (code to instructions) transforms a human-
readable piece of code to a machine-readable representation.
This process involves steps such as making implementa-
tion decisions and register allocation. The generatedmachine
code remains semantically equivalent to the original code.

Initialization (instructions to running program) loads a com-
piled program into memory and initializes its state at the start
of execution. Apart from initializing the state, the machine
code is copied to memory.

Execution (modification of running program) modifies the
program by changing the data or by changing the instructions
(self-modifying programs). Execution typically only alters
the state of the variables contained in the program.

Modification (modification of code) represents the
changes a user makes to the original source code artefact.
Arbitrary changes are supported, as long as the result is still
a valid instance of the original language (i.e. it can be com-
piled).

Merging (instructions and running program to a running pro-
gram) merges the state of a running programwith an updated
set of instructions. Themerge operation is specific to live pro-
gramming: the currently executed program is merged with
the updated instructions. Afterwards, the “new” program
resumes execution where the “old” program left off, thereby
replacing it. This can be seen as a generalization of the initial-
ization operation: as part of the merge, the state is initialized
for new instructions, while it is modified if instructions are
removed or updated. We therefore consider initialization a
merge with an “empty program”.

123



A Multi-ParadigmModelling approach to live modelling

The live programming process is shown in Fig. 10, where
we explicitly mention the type of artefacts for a specific sce-
nario. That way, the signature of the operations becomes
apparent. While live programming environments often offer
additional features for performance reasons, such as incre-
mental compilation, these are not functionally required.

4.2 Transposition tomodelling

Taking this diagrammatic process, we generalize to the
domain of modelling. We port these concepts to the mod-
elling domain: instead of using programming languages and
execution on actual machines, we make it platform indepen-
dent. Whereas we used a language such as C++ before, we
now assume the artefacts as instances of a formalism. Our
approach is a generalization: it can also be applied to pro-
gramming languages, since they can be seen as a formalism.
Their syntax is defined in the language’s grammar (cf. meta-
model), while their semantics is defined by their mapping
onto machine code.

4.2.1 Artefacts

First, we transpose the artefacts, which gives us three kinds
of models: the design model (code), partial runtime model
(instructions), and full runtime model (running program).

The designmodel is the equivalent of the code. Similar to
code, it is the only artefact that the user can edit and thus also
the one that is seen as the “master” copy of the program. Our
previous examples of an FSA, DTCBD, and CTCBDmodel,
presented in Figs. 3, 5a and 7a, respectively, are expressed in
the design language.

The partial runtime model is the equivalent of the
instructions. Similar to instructions, it has the same mean-
ing as the design model, though it might be pre-processed. If
operational semantics is defined for this formalism directly,
it can be seen as a retyping operation. In general, however,
the structure of both might vary significantly (as was the case
with C++ and ELF). In the FSA and DTCBD formalisms,
the partial runtime models are equivalent to the design mod-
els, since both formalisms have operational semantics. In the
CTCBD formalism, the partial runtime model differs, as it is
amodel in the target formalism:DTCBDs. Figure 11 presents
a discretized version of the original CTCBD model, in the
DTCBD formalism.

The (full) runtimemodel is the equivalent of the running
program. Similar to the running program, the full runtime
model is a copy of the partial runtime model, extended
with additional elements representing the execution state. In
Fig. 12, the full runtime models of the running examples are
shown.

For FSAs (Fig. 12a), a pointer to the current state is added.
In the figure, the model is currently in the detected state. For

Fig. 11 Partial runtime model of the example CTCBD, as an instance
of the DTCBD formalism

(a)

(c)

(b)

Fig. 12 Full runtime models of the examples. a Full runtime model of
the example FSA, during execution. b Full runtime model of the exam-
ple DTCBD, during execution. c Full runtime model of the example
CTCBD, during execution

123



Y. Van Tendeloo et al.

execution, the model is updated by changing the current state
based on the input events received from the environment.

For DTCBDs (Fig. 12b), more runtime information is
added, as they have a notion of time, represented by the
number of iterations. The time is incremented each time an
iteration is executed. Each iteration, the signal values are
(re)computed based on the new input values. Formost blocks,
their output signal value only depends on their current input
values, and hence, they are stateless. One exception is the
delay block, whose output value depends on its input value
in the previous iteration. Amem runtime variable keeps track
of this value, which must be initialized as well.

For CTCBDs (Fig. 12c), the situation is identical to
DTCBDs now, as the model was effectively translated to the
DTCBD domain.

4.2.2 Operations

Second, we transpose the various operations on these arte-
facts: retyping (compilation), simulation (execution), mod-
ification (modification), and sanitization (initialization and
merging).

The retype operation is the equivalent of the compile
operation. Similar to compilation, it creates a semantically
equivalent copy of a model, while retyping it to a runtime
model. It does not necessarily have to be a trivial retyping,
as potentially the design and partial runtime model have a
slightly different structure (e.g. flattening hierarchy). Retyp-
ing is thus also responsible for making this translation. As
explained before, the partial runtimemodels for both the FSA
and DTCBD formalism do not contain additional informa-
tion. The retyping operation is therefore trivial in this case.
For CTCBDs, the retyping actually casts the model to a for-
malism for which semantics exists. This operation involves
discretization (one CTCBD element is mapped to multi-
ple DTCBD elements) and optimization (multiple CTCBD
elements aremapped to oneDTCBD element). After this dis-
cretization, however, the case becomes identical to DTCBDs
for the remainder of the live modelling process. In all cases,
traceability links are created between the various elements
to help in future operations. For example, in the FSA, the
design state is linked to the equivalent partial runtime state,
such that on subsequent operations, it is known that this state
has already been converted before and therefore does not
need to be recreated again.

The simulation operation is the equivalent of the execu-
tion operation. Simulation computes the next state of the full
runtime model and updates it in place. For the FSA formal-
ism, the next state of the model is computed by processing
an event from the environment and executing an enabled
transition by changing the current state and (optionally) rais-
ing output events to the environment. For the DTCBD and
CTCBD formalism, there is no external input or output. The

(a) (b) (c)

Fig. 13 Sanitization in FSAs. a Modified design model. b Automatic
resolution. c Manual resolution to “armed” state

next state of the model is computed by, for each block, com-
puting the output signal value based on its input values. This
requires detecting loops and solving them if they represent
a set of linear equations. For delay blocks, the output value
is equal to its value in memory (or the initial condition at
the first iteration when the memory value has not been set
yet). The memory value is overwritten by the current input
value of the delay block. At the end of computing the next
value of all blocks’ output signal values, the iteration counter
is incremented. As we are operating on models, and not on
generated code, we do not need to consider the technical
aspects of replacing executing code: the model is updated in
place and the simulation algorithm picks up these changes
in the next step. Note, however, that the simulation algo-
rithm does not take care of initialization, as is usually the
case. Indeed, normally the first step of simulation is to ini-
tialize variables, which is now unnecessary: all information
is stored and read out from the model itself. Some parts of
the simulation algorithm still need to be carried out, which
are not related to initialization of the model, but initialization
of the simulation algorithm, such as topological sorting for
DTCBDs.

Themodification operation is the equivalent of themodi-
fication operation in programming. Similar tomodification in
the programming domain, users can only modify the design
model. Since all other artefacts are automatically generated,
the design model is the only artefact they are familiar with.
While the user never edits the partial or full runtime mod-
els directly, the design model can be freely modified. As
usual, Create–Read–Update–Delete (CRUD) operations are
supported on themodel. This boils down to Creating new ele-
ments and attributes, Updating the values of attributes, and
Deleting elements and attributes. Note that reading does not
modify the model and is therefore ignored.

To highlight the various types of changes, each formalism
has a different type of change. For the FSA formalism, users
can change the triggers on transitions, remove transitions,
create new states, and so on. A modified FSA design model
is shown in Fig. 13a, where the detected state is removed

123



A Multi-ParadigmModelling approach to live modelling

(a)

(b)

Fig. 14 Sanitization in DTCBDs. a New design model. b Sanitized
runtime model

Fig. 15 New design model for CTCBDs

(Delete). For the DTCBD formalism, users can instantiate
new blocks, delete existing blocks, add or remove depen-
dencies, and so on. A modified DTCBD design model is
shown in Fig. 14a, where the value of y(t) is multiplied by
two, thereby changing the algebraic loop (Create). For the
CTCBD formalism, users can instantiate new blocks (includ-
ing the integrator andderivator), delete existingblocks, addor
remove dependencies, and so on. Amodified CTCBD design
model is shown in Fig. 15, where the gravitational constant is
altered (Update). For all formalisms, the design models must
conform after the modifications. Note that different types
of operations were applied for each formalism: removing a
structural element in FSAs, creating several structural ele-
ments in DTCBDs, and changing a parameter in CTCBDs.
This highlights the various types of operations that can be
performed on the design model, all of which are reflected in
the running simulation.

The sanitization operation is the equivalent of the merge
operation. While it is indeed a merge operation, it was
renamed to sanitization to prevent confusionwith the existing
termmodel merging [4]. The operation creates a full runtime

model from a (new) partial runtime model and an (old) full
runtime model. As the sanitization is domain specific, it is
difficult to make general claims about this operation: it is
whatever the language engineer wants it to be. Nonetheless,
the sanitization function can be sure that both input models
will conform to their metamodel (which the language engi-
neer can define), and must ensure its output conforms to the
full runtime metamodel. Sanitization includes initialization
(where the runtime state is empty) and the live modelling
“merge”, where the runtime state is taken into account. As
discussed previously, sanitization is fundamental to livemod-
elling support, and as such, it is discussed in detail next. As
was the case with the retyping operation, sanitization makes
use of traceability links, linking elements from the partial
runtime to the full runtime. Traceability links are used to
correctly migrate the state of the full runtime model to the
right elements in the partial runtime model. For example, in
the FSA, a state in the partial runtime model without any
traceability link is considered to be a new element, while a
state in the full runtime model without a traceability link is
considered to be removed, possibly triggering a problematic
situation when this was the current state of the simulation.

4.2.3 Sanitization

The sanitization operation is largely dependent on the types
of changes to be merged (i.e. breaking or non-breaking),
but remains a formalism-specific operation. Therefore, a
manually defined version needs to be created for each new
formalism. Nonetheless, our decomposition has shown that
this is the only operation that needs to be added, in order
to provide live modelling for that formalism. Depending on
how the sanitization operation is implemented, any of the
three types of live modelling (i.e. none, recorded event, or
real time) can be implemented. We leave open the medium
in which this operation is expressed (e.g. procedurally using
code or declaratively using model transformations). The pre-
sented code snippets therefore do not restrict sanitization to a
procedural approach. In this subsection, we present the sani-
tization operations for both types of state, using our running
example: the FSA, DTCBD, and CTCBD formalisms. For all
three, we present real-time live modelling. Note that, similar
to live programming, sanitization can only happen when the
state is consistent (i.e. inbetween two execution steps).

We have opted for an operational approach to define the
sanitization operation, mostly for didactic reasons. Another
approach would be denotational, for example through con-
straint solving. In that case, the models, metamodels, and all
semantics would have to be encoded in a constraint system.
Breaking changes When breaking changes are possible, the
runtimemodelmight have to bemade conforming to itsmeta-
model again. For example, when users remove the current
state in the design model, the equivalent state in the runtime

123



Y. Van Tendeloo et al.

model also has to be removed, thereby violating the con-
straint that the runtime model has exactly one current state.
In that case, a new state of the updated running system must
be defined. Changes to any other aspect of the design model
are irrelevant to the running system, and are just taken over.

Algorithm 3 The FSA sanitize operation.

function SanitizeFSA(Mnew
P , Mold

F )
if isInitialized() then

currState ← getCurrentState(Mold
F )

if not currState ∈ Mnew
P then

if automaticResolution then
currState ← getInitialState(Mnew

P )

else
if disallowChange then

raise Exception
else

currState ← userChoice(Mnew
P )

end if
end if

end if
else

currState ← initializeState(Mnew
P )

end if
end function

Resolving this breaking change is the core task of the
sanitization operation. There are several options: reset the
current state to the initial state or pick the last known state
(automated, so resolvable), prompt the user for a new state
(manual, so non-resolvable), disallow the change completely
(disallow breaking changes), and so on. For the new design
model in Fig. 13a and the old full runtime model in Fig. 12a,
the first two options are presented. Figure 13b shows auto-
matic resolution where, in this case, the system chooses the
initial state (the “idle” state) as the new current state. Fig-
ure 13c shows manual resolution, where the user chooses the
“armed” state as the new current state. Figure 3 shows the
pseudocode of a sanitize operation for FSAs, allowing for
three different sanitization options.

Changes resulting in an undefined current state could also
be explicitly disallowed. We did not pursue the direction of
disallowing design model changes, as we explicitly want all
modifications to be possible.

Non-breaking changes. For non-breaking changes, any
change the user makes always reflects on a conforming run-
timemodel. In contrast to breaking changes,where resolution
is required, non-breaking changes do not require significant
changes to the runtime model.

In our example DTCBD formalism, only operations on
the integrator, derivator, and delay blocks have any influ-
ence. Since each block and connection have its own signal
and memory, removing a block or connection only affects
that specific signal. In further simulation steps, however, the

change will of course have its effects on other elements as
well, as it propagates through the system. It is possible, how-
ever, to add new parts to the state (i.e. add new blocks or
connections) or remove parts of the state.

Algorithm 4 The DTCBD sanitize operation.

function SanitizeCBD(Mnew
P , Mold

F )
for all block ∈ Mnew

P do
if block ∈ Mold

F then
oldSignal ← getSignal(Mold

F , block)
setSignal(Mnew

P , block, oldSignal)
else

initializeSignal(Mnew
P , block)

end if
end for
if isInitialized() then

iterations ← getNumberOfIterations(Mold
F )

setNumberOfIterations(Mnew
P , iterations)

else
initializeNumberOfIterations(Mnew

P )

end if
end function

When sanitizing, we take the structure from the partial
runtime model, which we augment with the runtime data
from the full runtime model. In the case of DTCBDs, the
runtime information consists of (1) the current simulation
time, and (2) the memory of delay blocks, derivators, and
integrators. Blocks that were not present in the full runtime
model are initialized as usual, since they are new. Blocks that
were present, however, have their state copied from the full
runtime model. The pseudocode of the sanitize operation for
DTCBDs is shown in Algorithm 4.

An example of sanitization is shown in Fig. 14. In this
figure, we see the new design model in Fig. 14a and the
resulting full runtime model in Fig. 14b. The full runtime
model consists of the structure of the partial runtime model,
combined with the values of the old full runtime model. In
this case, the value of the t variable (representing the current
iteration of the simulation), as well as the memory value of
the delay block, is copied.

Denotational semantics. For denotational semantics, the
sanitization is carried out at the level of the target formal-
ism and will therefore be any of the previously mentioned
approaches. Sanitization might require traceability informa-
tion to be present. This information links the various models
to be merged together, as indeed the source and target par-
tial runtime models can vary significantly. Using traceability
links, elements in different formalisms can be connected to
their equivalent counterparts. Some elements, such as the
integrator in CTCBDs, will have traceability links to mul-
tiple elements in the DTCBD partial runtime model, as it
was expanded (1-to-n mapping). Other elements, such as a

123



A Multi-ParadigmModelling approach to live modelling

Fig. 16 Overview of our approach applied to an FSA mode, including traceability links

constant block in CTCBDs, might have traceability links to
a shared element in the DTCBD partial runtime model, as it
was partially optimized away (n-to-1 mapping).

The sanitization process is completely identical to that of
operational semantics in terms of traceability information:
information is stored during retyping and sanitization and is
subsequently used in the next sanitization phase to identify
equivalent elements. The only difference is that there is no
longer a 1-to-1mapping, but an n-to-nmapping.Nonetheless,
during all phases of live modelling, traceability links are still
created. Using this information, it is still possible to find
out which design element(s) was the source of the current
element in the full runtime model. As for each element in the
full runtimemodel the design element is known, it is possible
to find out which elements are identical and should have their
state copied.

No new sanitize operation is presented, as the DTCBD
sanitization operation is reused.

4.3 Livemodelling process

An overview of the approach, for each case, is shown in
Fig. 16 for FSAs, in Fig. 17 for DTCBDs, and in Fig. 18 for
CTCBDs.

More generally, Fig. 19 shows an FTG+PM [23] model
describing both the different formalisms and processes of
live modelling for any formalism. The left side shows the
Formalism Transformation Graph (FTG), describing the dif-
ferent formalisms and the transformations between them.
The right side shows the Process Model (PM), describing

the sequence of operations performed by the user and the
data dependencies. It includes the artefacts, how they are
related, and the process describing the (automatic or man-
ual) operations. The sanitize operation has a dual colour: it is
mostly automatic, though it can bemanual for non-resolvable
breaking changes, where the user is prompted. In the PM,
simulation and modification run concurrently: modifications
can be made throughout simulation. This is typical for live
modelling, in contrast to the mostly linear development pro-
cess of a single model in ordinary modelling.

4.4 Relation to Multi-ParadigmModelling

Our approach can be considered aMulti-ParadigmModelling
(MPM) approach to live modelling for several reasons.

On the one hand, this approach builds on MPM, as it
requires all techniques that are present in MPM: language
engineering (e.g. for domain-specific modelling), activi-
ties (e.g. for model transformations), and processes (e.g.
for enactment). Language engineering is required for the
various formalisms that are used by the approach: design
metamodel, partial runtime metamodel, and the full runtime
metamodel. All these formalisms must be created within the
tool and should have support formaintaining them.Activities
are required to relate the various formalisms and mod-
els together, thereby automatically applying the approach.
Activities can be implemented in different ways, such as
through declarative model transformations or a procedu-
ral action language, and are executed to translate between
the various models. Processes are required to structure the

123



Y. Van Tendeloo et al.

Fig. 17 Overview of our approach applied to a DTCBD model, including traceability links

Fig. 18 Overview of our approach applied to a CTCBD model. Only some interesting traceability links are shown

123



A Multi-ParadigmModelling approach to live modelling

Fig. 19 Overview of our approach, as an FTG+PM model

approach, thereby preventing it from being ad hoc as the
majority of other approaches to liveness. With support for
enactment, it even becomes possible to automatically per-
form the complete live modelling approach. In conclusion,
all relevant aspects of the approach are modelled explicitly,
as proposed by MPM.

On the other hand, this approach is desirable in an MPM
context, asMPM requires the use of themost appropriate for-
malism(s) for a problem. The most appropriate formalism,
however, is likely to be domain specific and have a rather
limited application domain. As such, the number of users of
these formalisms is small, making it hard to justify the effort
ordinarily required to make formalisms live. With the pro-
posed generic approach, formalisms canmore easily bemade
live with the addition of a “sanitize” operation, significantly
lowering the threshold to live modelling and increasing the
usability of the formalism. Increasing the usability of a for-
malism naturally makes the formalism more appropriate for
its use, thereby strengthening the MPM approach.

5 Implementation

To assess the feasibility of our approach, we implemented
live modelling for the three running examples. Our prototype
consists of a single visual modelling and simulation front-
end, in which multiple formalisms can be loaded, including
FSAs, DTCBDs, and CTCBDs. This front-end is unaware

of live modelling. All operations are defined in the Model-
verse [47], our Multi-Paradigm Modelling (MPM) tool. The
Modelverse implements all aspects of MPM [48], making it
possible to use all aspects of language engineering, model
transformations, and process modelling, as required by our
approach.

In our prototype tool, users start the live modelling pro-
cess relevant to the formalisms they want to use. The process
can be parameterized with an input model, which is the ini-
tial model. If no input model is provided, users start from
an empty model. Independent of the initial model, simula-
tion is always started anew, as only the design models are
stored. Enactment completely resembles the usual modelling
interface, but instead of only having a modelling window,
a simulation window is now also present. This simulation
window is merely an external program that visualizes the
simulation results obtained.

Even during modelling, simulation is progressing, and
users will see that the simulation window is updated in real
time. Changesmade by the user are not immediately commit-
ted to the actual designmodel, as users might want to group a
set of operations together into a transaction. As soon as users
are satisfied with the design model and wish to propagate the
changes to the running simulation, they commit the design
model. In our prototype implementation, committing can be
carried out by closing the modelling window. When the win-
dow is closed, the manual “edit” activity is finished, and the
process enactment continues by stopping the current execu-
tion and performing the required translations. Once these are
completed, simulation is resumed and a new modelling win-
dow is opened with the current version of the design model.
Users will immediately see that their simulation is resumed,
but now taking into account the new model.

For all the three examples presented below, the exact
same tool is used, with the exact same (parameterized)
FTG+PM model. Apart from the usual operations that have
to be implemented for any formalism (i.e. runtime metamod-
els, operational semantics, denotational semantics), only the
sanitize operation is new and had to be defined for each for-
malism individually. As for the visual interfaces, these are
untouched when implementing live modelling, as everything
is based on process enactment.

5.1 Finite State Automata

The implementation of our FSA live modelling environment
is shown in Fig. 20. To the left, the modelling window is
shown, which contains a visual representation of the design
model. To the right, the simulation window is shown, which
is continuously updated with results from the running sim-
ulation. The trace shows the current state throughout time.
Although FSAs are untimed, input events can be raised by the
user through the simulation interface. The state of the system

123



Y. Van Tendeloo et al.

Fig. 20 Live modelling for FSAs, before change

Fig. 21 Live modelling for FSAs, after removing current state and setting new initial state

is constant in between such events; the time plotted on the
x-axis is wall-clock time. The FSA model itself is oblivious
of the current time.

During execution, the current state (“idle”) is removed and
the new initial state is set to “armed”. Upon committing this
change, the model and trace are updated as shown in Fig. 21.
It is shown that, upon making that change, sanitization sets
the new current state to the new initial state, which is “armed”
in this case.Note that therewill always be a single initial state,
as this is part of the constraints imposed by the metamodel.
The history of the simulation is left as is, since the history is
not rewritten with real-time live modelling. Nonetheless, the
current state has no effect on the result of sanitization.

5.2 Discrete Time Causal Block Diagrams

The implementation of our DTCBD live modelling envi-
ronment is shown in Fig. 22. It is similar to the FSA live
modelling environment, as they reuse a lot from the Model-
verse and our generic approach. Actually, the only difference

related to live modelling is the sanitize operation. Of course,
the formalisms also differ, just like the simulation viewer,
though these are all independent of livemodelling, andwould
be required anyway, even without live modelling. In the sim-
ulation view, probed signals are plotted. It is possible for
signals to appear or disappear throughout simulation, when
a probe block is added or removed during simulation. This
is a design consideration of the simulation viewer if it wants
to support live modelling.

During execution, the algebraic loop is resolved and sets
both y and z to 1

2 . After some time, the algebraic loop in the
DTCBDmodel is extended with an additional multiplication
block and constant 2. The value for z now becomes the output
of the addition block, while the value for y becomes the result
of the multiplication block. After all elements are connected
and changes are committed, the trace is updated, as shown
in Fig. 23. Again, the algebraic loop is solved transparently
to the user, resulting in a y value of 2

3 and a z value of 1
3 .

123



A Multi-ParadigmModelling approach to live modelling

Fig. 22 Live modelling for DTCBDs, before change

Fig. 23 Live modelling for DTCBDs, after adding and connecting the multiplication block

5.3 Continuous Time Causal Block Diagrams

The implementation of our CTCBD live modelling envi-
ronment is shown in Fig. 24. It is identical to the DTCBD
live modelling environment, but now we have access to the
derivator and integrator blocks. To the user, it is indistinguish-
able whether this live modelling functionality was provided
by using an operational or denotational semantics approach.
Similarly, the simulation viewer from DTCBDs is reused.

Up to time 60, the simulation executes themodel shown in
Fig. 24, showing the results on the trace in Fig. 25. We notice
the harmonic oscillator behaviour that is expected of such a
system. At time 60, however, the CTCBD model is altered

by changing the value of constant g from 10 to 30, effec-
tively being a sudden increase in gravitational force. This
has an immediate effect on the simulation trace, as shown in
Fig. 25 after time 60: instead of having a decreasing velocity,
the velocity starts increasing again. Results stay continuous,
though a difference in behaviour is clearly observed at the
point in simulation where the change was made.

5.4 Discussion

Given that our generic tool could be used for three differ-
ent domain-specific formalisms, while all using the same
(parameterized) FTG+PM model, we believe our approach

123



Y. Van Tendeloo et al.

Fig. 24 Implementation of live modelling for CTCBDs

Fig. 25 Simulation trace, where the constant “g” is changed at around
time 63

to be applicable to a wide variety of modelling formalisms.
Indeed, our structured approach required no modification for
these three types of semantics, making us believe that it can
be applied for other formalisms as well. We can therefore
assume that our approach provides structure to the currently
ad hoc process of making a formalism live.

Sanitizationwas theonly activity thatwas further required;
its logic was described in the previous sections. The goal of
the sanitization function is conceptually clear: combine the
currently executing model (with state information) with an
uninitialized runtime model. In the limit, this sanitization
function can be seen as an advanced initialization function,
which can take an existing simulation model as input. We
can therefore assume that our approach can make existing
formalisms live with little additional work for the language
engineer.

As presented in this paper, the sanitization operations
are relatively small in size and easy to understand, but of
course these are still relatively simple example formalisms.

In our examples, the sanitization operation is actually rather
efficient as well, given its low time complexity. Note that
performance of the simulation is not impeded, as the simu-
lation activity in itself is not modified at all: it only pauses
upon changes, where the model has to be reloaded. This is
particularly obvious with CTCBDs, where the translation is
only performed once, and the execution stays at the level of
DTCBDs. As such, there is no negative impact on normal
simulation performance.

6 Related work

Our contribution provides a formalism-neutral overview of
liveness, thus enabling liveness for domain-specific for-
malisms. Two categories of related work exist: live program-
ming and (live) executable modelling.

In the live programming domain, the concept of live-
ness is well studied. One of the most important distinctions
between different approaches is how they handle time: a dis-
tinction is made between real-time and recorded event [26].
In real-time mode, the past is left unaltered, and only future
executions of the code are influenced. This is often termed fix
and continue, as implemented by Lisp [37], Smalltalk [14],
Erlang [1], and SELF [42]. In recorded event, all past input
events are recorded and replayed, resulting in a completely
new history. This is implemented in languages such as Elm-
Script [9] andYinYang [26].Weonly implement the real-time
livemodelling approach, as recorded livemodelling has been
shown not to be ideal for simulation [26]. Nonetheless, fur-
ther investigation into recorded event live modelling might
be interesting for other types of formalisms.

123



A Multi-ParadigmModelling approach to live modelling

A lot of work is spent towards making live programming
usable. This requires research as to which representation is
most usable, such as textual or graphical formalisms [11,15,
25,35]. Therefore, several kinds of formalisms have been
made live: graphical formalisms such as VIVA [41] and
Flogo [16], textual formalisms such as ElmScript [9] and
Smalltalk [14], and hybrid formalisms such as Subtext [11].
Our approach does not commit itself to textual, graphical, or
hybrid formalisms. It is implemented on the abstract syntax
of models and does not require a specific visualization. If
required, our live simulator can be coupled to multiple inter-
faces, possibly with different representations (e.g. textual,
graphical).

Another important usability aspect of live programming
is the need for immediate feedback to the user [41], result-
ing in the need for effective visualization and tight latency
constraints [25,39]. Latency is considered harmful when it
becomes too large, with the threshold being defined some-
where between 50ms [26] and 500ms [25]. For this reason, a
lot of work has focused on optimizing specific aspects, such
as incremental compilation [26] and code hotswapping [12].
Our framework focuses exclusively on the functional require-
ments of live modelling, without considering performance,
visualization, and so on. While these concerns are certainly
important, we consider them as future work.

Many challenges related to livemodelling are tackled only
for specific cases or specific formalisms. An example issue
is the question how the state needs to be retained [12,40],
and what needs to be recomputed [6]. Making an existing
programming language live is often carried out through ad
hoc modifications, often turning liveness into a black art [5].
With our approach, we provide an overview of the steps
required to make a formalism live. And while not fully auto-
mated, since some domain information remains necessary,
the approach becomes structured and easier for language
engineers to understand and implement.

In the modelling domain, the focus has primarily been
on the theoretical foundations of (meta-)modelling [20] and
how (domain-specific) modelling can help developers [18].
Nowadays, focus starts shifting to model execution [27]
and debugging [24]. And whereas model debugging is often
formalism-specific, such as for Causal Block Diagrams [50]
and Parallel DEVS [46], recently new approaches have been
developed that try to (partially) automate the addition of
debugging to formalisms [45].Advanced tracing facilities for
domain-specific formalisms have been developed [3], which
enable omniscient, or backwards-in-time debugging [2].
Closer to our approach is [44], in which the author explores
how formalisms can be made live with “semantic deltas”.
The system is capable of translating source program mod-
ifications (so-called deltas) to operations on the running
code. While the paper presents a prototype demonstrating
the approach, it does not present a structured way to add

live modelling to formalisms. Similarly, another approach
is based on textual differences [43], where existing textual
difference algorithms are leveraged to update the execut-
ing model. While that approach is also relatively generic, it
focuses exclusively on textual formalisms and is only evalu-
ated in the context of one kind of finite state automaton. Since
live modelling is rarely implemented, or at best in an ad hoc
way, we contribute by providing a general framework for
merging liveness into existing modelling formalisms, paired
with an implementation for three example formalisms.

Similar to reflection and code hotswapping, the modelling
community is starting to acknowledge the existence of mod-
els at runtime. These models, however, are mostly used for
self-managing systems [29,36] and do not directly apply
to live modelling. Specifically, models at runtime make the
changes internally, as a part of pre-defined, correct behaviour.
Live modelling, on the other hand, makes changes due to
external operations, knowing that somepart of themodelmay
be incorrect. Additionally, models at runtime techniques are
used to express dynamically changing systems, whereas live
modelling is used for modifiable systems (e.g. for debugging
or education). Due to this mismatch in application domain,
their requirements severely differ. For example, models at
runtimedonot need to copewith changes at the designmodel,
but apply changes on the full runtime model, rendering san-
itization unnecessary.

Finally, model evolution [13], and in particular language
evolution, has similar challenges to code hotswapping.When
swapping code, but retaining the state, the old state might
not be understandable for the new code operating on it [12].
Similarly, language evolution tries to tackle the problem of
existing models not being updated after a language change.
Sanitization, as part of model co-evolution [28], tackles such
changes semi-automatically. Our sanitization approach is
similar, as we also need to adapt a model under execution
to an evolved design model.

7 Conclusion

In this paper, we have argued in favour of live modelling:
live programming transposed to modelling. Our framework
is based on a deconstructed process of live programming,
which was reconstructed for modelling. The reconstruc-
tion process transposes operations on programming artefacts
(e.g. compilation, initialization, and execution) to equiva-
lent operations on model artefacts. As we do not require
specific formalism features, our framework is applicable
to many formalisms, including general-purpose program-
ming languages and domain-specific modelling formalisms.
Using our approach, adding liveness to (domain-specific)
modelling formalisms becomes more structured and repro-
ducible, though still necessarilymanual. The effort ofmaking

123



Y. Van Tendeloo et al.

a formalism live is completely shifted to defining a sanitize
operation, with all previously defined operations remain-
ing untouched. Domain-specificmodelling formalisms profit
from this contribution, as it becomes easier to add advanced
concepts to formalisms with a small user base. Due to the
sheer number of domain-specific modelling formalisms that
we envision in the near future, a structured approach will
certainly help to make them live.

As an example of our approach, we have applied this
framework to three formalisms: Finite State Automata (oper-
ational semantics with breaking changes), Discrete Time
Causal Block Diagrams (operational semantics with non-
breaking changes), and Continuous Time Causal Block
Diagrams (denotational semantics). All these modelling for-
malisms have distinct characteristics, demonstrating that our
approach is widely applicable. For each, a new sanitize
activity was defined, while reusing all other operations and
processes, which was sufficient to support live modelling.

Further research is required to improve the performance
of our approach, as this was not an objective of this work.
There are two time-consuming operations in our approach:
the “retype” operation, which has to operate on the complete
model, and the “sanitize” operation. Incremental approaches
to retyping might serve in the modelling community to
speed things up, particularly in combinationwith incremental
model transformations. The performance of the sanitize oper-
ation depends significantly on the formalism, as this might
range from trivial (e.g. reset to the initial state) to complex
(e.g. use constraint satisfaction to find the new state).

The combination of live modelling with other debugging
operations is another interesting direction, as these features
might interact with each other. For example, omniscient
debugging allows users to step back in time to inspect the
state before the bugmanifests itself. In combination with live
modelling, this would require model changes to be taken into
account as well, thereby stepping not only through states, but
also through model structures.

Denotational semantics could possibly also be used to
map domain-specific formalisms onto a live programming
language, thereby making the model live, while relying on
existing live programming techniques.

Acknowledgements This work was partly funded by PhD fellowships
from the Research Foundation—Flanders (FWO) and Agency for Inno-
vation by Science and Technology in Flanders (IWT). This researchwas
partially supported by Flanders Make vzw, the strategic research centre
for the manufacturing industry.

References

1. Armstrong, J.: The development of Erlang. In: Proceedings of the
Second ACM SIGPLAN International Conference on Functional
Programming (ICFP’97), pp. 196–203. ACM, New York (1997).
https://doi.org/10.1145/258948.258967

2. Bousse, E., Corley, J., Combemale, B., Gray, J., Baudry, B.: Sup-
porting efficient and advanced omniscient debugging for xDSMLs.
In: Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Software Language Engineering (SLE 2015), pp. 137–148.
ACM, New York (2015)

3. Bousse, E., Mayerhofer, T., Combemale, B., Baudry, B.: A genera-
tive approach to define rich domain-specific trace metamodels. In:
11th European Conference on Modelling Foundations and Appli-
cations (ECMFA). L’Aquila, Italy (2015)

4. Brunet, G., Chechik,M., Easterbrook, S., Nejati, S., Niu, N., Sabet-
zadeh, M.: A manifesto for model merging. In: Proceedings of the
2006 International Workshop on Global Integrated Model Man-
agement (GaMMa’06), pp. 5–12. ACM, New York (2006). https://
doi.org/10.1145/1138304.1138307

5. Burckhardt, S., Fähndrich, M., Kato, J.: It’s alive! continuous feed-
back in UI programming. In: Proceedings of PLDI’13, pp. 95–104
(2013)

6. Burnett, M.M., Atwood, J.W., Jr., Welch, Z.T.: Implementing level
4 liveness in declarative visual programming languages. In: Pro-
ceedings of Visual Languages ’98, pp. 126–133 (1998)

7. Cellier, F.E.: Continuous System Modeling. Springer, Secaucus
(1991)

8. Chiş, A., Denker, M., Gîrba, T., Nierstrasz, O.: Practical domain-
specific debuggers using the moldable debugger framework. Com-
put. Lang. Syst. Struct. 44(A), 89–113 (2015)

9. Czaplicki, E.: Elm: Concurrent FRP for Functional GUIs. https://
www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.
pdf (2012)

10. Déva, G., Kovács, G.F., Ancsin, A.: Textual, executable, translat-
able UML. In: Proceedings of the Workshop on OCL and Textual
Modeling Applications and Case Studies, pp. 3–12 (2014)

11. Edwards, J.: Subtext: Uncovering the simplicity of programming.
In: Proceedings of OOPSLA’05, pp. 505–518 (2005)

12. Fabry, R.S.: How to design a system in which modules can be
changed on the fly. In: Proceedings of ICSE’76, pp. 470–476 (1976)

13. Favre, J.M.: Languages evolve too! changing the software time
scale. In: Proceedings of the Eighth International Workshop on
Principles of Software Evolution, IWPSE’05, pp. 33–44. IEEE
Computer Society, Washington, DC, USA (2005). https://doi.org/
10.1109/IWPSE.2005.22

14. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman, Boston (1983)

15. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.:
Text-based modeling. In: Proceedings of the 4th International
Workshop on Software Language Engineering (2007)

16. Hancock, C.M.: Real-Time Programming and the Big Ideas of
Computational Literacy. Ph.D. thesis, Massachusetts Institute of
Technology (2003)

17. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to
AutomataTheory, Languages, andComputation, 3rd edn.Addison-
Wesley Longman, Boston (2006)

18. Kelly, S., Tolvanen, J.P.: Domain-SpecificModeling: Enabling Full
Code Generation. Wiley, New York (2008)

19. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study
of forces and frictions affecting large-scale model-driven devel-
opment. In: Proceedings of the 15th International Conference on
Model Driven Engineering Languages and Systems,MODELS’12,
pp. 352–367. Springer, Berlin (2012). https://doi.org/10.1007/978-
3-642-33666-9_23

20. Kühne,T.:Matters of (meta-)modeling. Softw. Syst.Model.5, 369–
385 (2006)

21. Lieberman, H., Fry, C.: Bridging the gulf between code and behav-
ior in programming. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 480–486 (1995)

22. Lindeman, R.T., Kats, L.C.L., Visser, E.: Declaratively defining
domain-specific language debuggers. In: Proceedings of the 10th

123

https://doi.org/10.1145/258948.258967
https://doi.org/10.1145/1138304.1138307
https://doi.org/10.1145/1138304.1138307
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://www.seas.harvard.edu/sites/default/files/files/archived/Czaplicki.pdf
https://doi.org/10.1109/IWPSE.2005.22
https://doi.org/10.1109/IWPSE.2005.22
https://doi.org/10.1007/978-3-642-33666-9_23
https://doi.org/10.1007/978-3-642-33666-9_23


A Multi-ParadigmModelling approach to live modelling

International Conference on Generative Programming and Com-
ponent Engineering, pp. 127–136 (2011)

23. Lucio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.:
FTG+PM: An integrated framework for investigating model trans-
formation chains. In: SDL 2013: Model-Driven Dependability
Engineering, Lecture Notes in Computer Science, vol. 7916, pp.
182–202. Springer, Berlin (2013). https://doi.org/10.1007/978-3-
642-38911-5_11

24. Mannadiar, R., Vangheluwe, H.: Debugging in domain-specific
modelling. In: Malloy, B., Staab, S., Brand, M. (Eds.) Soft-
ware Language Engineering, Lecture Notes in Computer Science,
vol. 6563, pp. 276–285. Springer, Berlin(2011). https://doi.org/10.
1007/978-3-642-19440-5_17

25. McDirmid, S.: Living it up with a live programming language. In:
Proceedings of OOPSLA’07, pp. 623–638 (2007)

26. McDirmid, S.: Usable live programming. In: Proceedings of
Onward! 2013, pp. 53–61 (2013)

27. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley, Reading (2002)

28. Meyers, B., Vangheluwe, H.: A framework for evolution of
modelling languages. Sci. Comput. Program. 76(12), 1223–1246
(2011). https://doi.org/10.1016/j.scico.2011.01.002

29. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.:Mod-
els@ run.time to support dynamic adaptation. Computer 42(10),
44–51 (2009). https://doi.org/10.1109/MC.2009.327

30. Mosterman, P.J., Vangheluwe, H.: Computer automated multi-
paradigm modeling: an introduction. Simulation 80(9), 433–450
(2004). https://doi.org/10.1177/0037549704050532

31. Murata, T.: Petri nets: properties, analysis and applications. Proc.
IEEE 77(4), 541–580 (1989). https://doi.org/10.1109/5.24143

32. National Science Foundation: Cyber-Physical Systems (CPS).
https://www.nsf.gov/pubs/2016/nsf16549/nsf16549.pdf (2016).
Document number: nsf16549

33. Oakes, B.: Optimizing Simulink Models. Tech. Rep’. CS-TR-
2014.5, McGill University (2014)

34. Pavletic, D., Voelter, M., Raza, S.A., Kolb, B., Kehrer, T.: Exten-
sible debugger framework for extensible languages. Lect. Notes
Comput. Sci. 9111, 33–49 (2015)

35. Petre, M.: Why looking isn’t always seeing: readership skills and
graphical programming. Commun. ACM 38(6), 33–44 (1995).
https://doi.org/10.1145/203241.203251

36. Rohr, M., Boskovic, M., Giesecke, S., Hasselbring, W.: Model-
driven development of self-managing software systems. In: Pro-
ceedings of the Models at run.time Workshop Co-located with the
ACM/IEEE 9th International Conference Models 2006 (2006)

37. Sandewall, E.: Programming in an interactive environment: the
“lisp” experience. ACM Comput. Surv. 10(1), 35–71 (1978).
https://doi.org/10.1145/356715.356719

38. Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw. 20(5),
42–45 (2003). https://doi.org/10.1109/MS.2003.1231150

39. Sorensen, A., Gardner, H.: Programmingwith time: cyber-physical
programming with Impromptu. In: Proceedings of Onward! 2010,
pp. 822–834 (2010)

40. Stewart, D., Chakravarty, M.M.: Dynamic applications from the
ground up. In: Proceedings of the 2005 ACMSIGPLANworkshop
on Haskell, pp. 27–38 (2005)

41. Tanimoto, S.L.: VIVA: a visual language for image processing. J.
Vis. Lang. Comput. 1, 127–139 (1990)

42. Ungar, D., Smith, R.B.: Self: the power of simplicity. SIG-
PLAN Not. 22(12), 227–242 (1987). https://doi.org/10.1145/
38807.38828

43. van Rozen, R., van der Storm, T.: Towards live domain-specific
languages: from text differencing to adapting models at run time.
Softw. Syst. Model. 1–18 (2017)

44. van der Storm, T.: Semantic deltas for live DSL environments.
In: Proceedings of the 1st International Workshop on Live Pro-
gramming, LIVE’13, pp. 35–38. IEEE Press, Piscataway, NJ, USA
(2013)

45. Van Mierlo, S.: Explicitly modelling model debugging environ-
ments. In: Proceedings of the ACM Student Research Competition
at MODELS 2015 Co-located with the ACM/IEEE 18th Interna-
tional Conference MODELS 2015, pp. 24–29 (2015)

46. Van Mierlo, S., Van Tendeloo, Y., Vangheluwe, H.: Debugging
Parallel DEVS. Simulation 93(4), 285–306 (2017). https://doi.org/
10.1177/0037549716658360

47. Van Tendeloo, Y.: Foundations of amulti-paradigmmodelling tool.
In: Proceedings of the ACM Student Research Competition at
MODELS 2015 Co-locatedwith the ACM/IEEE 18th International
Conference MODELS 2015 (2015)

48. Van Tendeloo, Y., Vangheluwe, H.: The Modelverse: a tool for
multi-paradigm modelling and simulation. In: Proceedings of the
2017 Winter Simulation Conference, WSC 2017, pp. 944 – 955.
IEEE (2017)

49. Vangheluwe, H., de Lara, J., Mosterman, P.J.: An introduction
to Multi-paradigm Modelling and Simulation. In: Proceedings of
the AIS’2002 Conference (AI, Simulation and Planning in High
Autonomy Systems), pp. 9 – 20 (2002)

50. Vangheluwe, H., Riegelhaupt, D., Mustafiz, S., Denil, J., Van
Mierlo, S.: Explicit modelling of a CBD experimentation envi-
ronment. In: Proceedings of the 2014 Symposium on Theory of
Modeling and Simulation—DEVS, TMS/DEVS’14, Part of the
Spring Simulation Multi-Conference, pp. 379–386. Society for
Computer Simulation International (2014)

51. Wu, H., Gray, J., Mernik, M.: Grammar-driven generation of
domain-specific language debuggers. Softw. Pract. Exp. 38(10),
1073–1103 (2008)

52. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, San Francisco (2005)

Yentl Van Tendeloo obtained his
Ph.D. at the Modelling, Simula-
tion and Design (MSDL) research
laboratory at the University of
Antwerp (Belgium). His Ph.D. is
on the conceptualization and
development of the Modelverse,
a new meta-modelling framework
and model management system.

123

https://doi.org/10.1007/978-3-642-38911-5_11
https://doi.org/10.1007/978-3-642-38911-5_11
https://doi.org/10.1007/978-3-642-19440-5_17
https://doi.org/10.1007/978-3-642-19440-5_17
https://doi.org/10.1016/j.scico.2011.01.002
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1177/0037549704050532
https://doi.org/10.1109/5.24143
https://www.nsf.gov/pubs/2016/nsf16549/nsf16549.pdf
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/356715.356719
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1145/38807.38828
https://doi.org/10.1145/38807.38828
https://doi.org/10.1177/0037549716658360
https://doi.org/10.1177/0037549716658360


Y. Van Tendeloo et al.

Simon Van Mierlo is a post-
doc researcher in the Modelling,
Simulation and Design (MSDL)
research laboratory at the Univer-
sity of Antwerp (Belgium). The
topic of his Ph.D. is studying
how modelling formalisms,
environments, and simulators can
be enhanced with debugging sup-
port.

Hans Vangheluwe is a Professor
at the University of Antwerp (Bel-
gium) and an Adjunct Professor at
McGill University (Canada). He
heads the Modelling, Simulation
and Design (MSDL) research lab-
oratory distributed over both uni-
versities. In a variety of projects,
often with industrial partners, he
develops and applies the theory
and techniques of Multi-Paradigm
Modelling. His current interests
are in domain-specific modelling
and simulation. Recently, he has
been active in the design of Mecha-

tronic and Automotive applications. He is the chairman of the Euro-
pean COST Action IC1404 “Multi-Paradigm Modelling for Cyber-
Physical Systems”.

123


	A Multi-Paradigm Modelling approach to live modelling
	Abstract
	1 Introduction
	2 Background
	2.1 Live programming
	2.2 Executable modelling

	3 Running examples
	3.1 Finite State Automata
	3.2 Discrete Time Causal Block Diagrams
	3.3 Continuous Time Causal Block Diagrams

	4 Live modelling
	4.1 Deconstructing live programming
	4.1.1 Artefacts
	4.1.2 Operations

	4.2 Transposition to modelling
	4.2.1 Artefacts
	4.2.2 Operations
	4.2.3 Sanitization

	4.3 Live modelling process
	4.4 Relation to Multi-Paradigm Modelling

	5 Implementation
	5.1 Finite State Automata
	5.2 Discrete Time Causal Block Diagrams
	5.3 Continuous Time Causal Block Diagrams
	5.4 Discussion

	6 Related work
	7 Conclusion
	Acknowledgements
	References




