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Abstract—In this paper, we are interested in the modelling and 

simulation of imperfect systems in the DEVS context. We want to 

hybrid the DEVS formalism with artificial neural networks and to 

propose a new modelling and simulation approach which makes it 

possible to represent the behavior of imperfect systems. 

The problematic of our work is the integration into the DEVS 

formalism of tools from artificial intelligence allowing the 

representation, manipulation, and processing of imperfect data 

(imprecise, uncertain). 

NN-DEVS is a new hybrid approach which allows to extend the 

classic DEVS formalism. This new approach is effective in 

uncertain systems where the behavior of the system is stochastic. 

To validate the proposed NN-DEVS approach, we apply this 

approach to a complex reactive navigation system of a mobile 

robot.  

Keywords—Modelling; Simulation; DEVS; Artificial Neural 

Networks; Reactive navigation. 

I. INTRODUCTION 

Simulation is a discipline whose aim is to develop models 
for an existing or theoretical system, once created this model, it 
is possible to run and analyze results. It is used in research and 
industry, whenever the construction of a prototype test is too 
expensive or that the usual mathematical study is too long to see 
too complex. 

The concepts of simulation and modelling are intrinsically 
linked, modelling and simulation are used to study the behavior 
of dynamic systems; in the literature several methods have been 
proposed for the analysis of the behavior of these systems in a 
more realistic, simple and very flexible way. 

Different research and implementations have been 
conducted on the theme of modelling and simulation of complex 
systems. Therefore, today there are a large range of methods, 
tools and software products in this context . 

A modelling approach called DEVS formalism is used as a 
modelling and simulation tool for many systems, this formalism 
is widely used to model and simulate dynamic systems with 
discrete events.. In the mid-seventies, several formal work has 

developed to provide a rigorous common basis for the modelling 
and simulation of discrete events [1], this formalism was 
introduced by Professor BP Zeigler [2].  

The approach proposed in this study is a hybrid modelling 
approach based on systems theory and the notion of state [2]. 
The notions of modularity, hierarchy, multi-modelling and the 
capacity of openness provided by the DEVS formalism make it 
possible to combine in a coherent way formalisms or paradigms 
based on the general theory of systems and centered on states, 
These characteristics makes the formalism a solid formal 
framework for modelling and simulating dynamical systems and 
thus makes a formalism suitable for many areas of application. 
[3][4][5][6][20][21]. 

In the literature there are many approaches to modelling the 
complexes system, generally the researchers use the method of 
the Artificial Intelligence like the artificial neural networks 
(ANN) [15][16], the fuzzy logic (FL) [17], in other researchs 
they used the combination of the precedent approach to realized 
the Neural-fuzzy. 

The main objective of this study is to propose a new hybrid 
approach named NN-DEVS based on the DEVS formalism 
integrated with artificial neural networks, this approach is used 
to study the behavior of uncertain dynamic systems (stochastic). 

In order to evaluate our NN-DEVS approach we applied this 
approach on a reactive navigation system of a mobile robot. 

This article is organized as follows: we start with the 
presentation of the basic concepts of the DEVS formalism as 
well as the theory of artificial neural networks. Then we model 
by our NN-DEVS approach a reactive navigation system of a 
mobile robot. We then carry out simulations in order to validate 
our approach. Finally, we conclude our work and give some 
perspectives of this work. 
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II. BACKGROUND 

In this section we present the DEVS formalism and artificial neural 
networks (ANN). 

A.  The DEVS formalism 

The DEVS formalism is used to model and simulate discrete 
systems. DEVS gives a robust model, based on atomic models 
and on the coupling of higher level models. This allows for 
hierarchical modeling. DEVS is independent of the 
implementation of simulators. This formalism is used in 
different applications such as, in robotics, computer 
architectures, ecological modeling, manufacturing system, 
environmental systems and transport systems. 

The DEVS Atomic Model  

The atomic model autonomously describes the behavior of 
the system. A DEVS atomic model is based on continuous time, 
inputs, outputs, states and functions (output, transition, the time 
advance).Tthe internal transition function that moves the system 
from one state to another autonomously. It depends on the time 
spent in the state. When an internal event occurs, the model 
produces an output. the external transition function allows the 
reaction of the system to an external event dependent on the 
current state of the system, the input and the elapsed time in that 
state. 

An atomic model is specified as follows [2]: 
AM = (X, Y, S, δext, δint, λ, ta) 

X : are the input values of the model. 
Y : are the output values of the model. 
S : are the possible states of the model. 
δint : S→S: is the internal transition function.  

δext: Q×S→S :  is the external transition function.   
        Q={(s,e) | s∈S.0≤e≤ta(s)} : total state set  
        e: is the  time elapsed 
λ : the output function. 
ta: the time advance function of state s ∈ S. 
 
 

 
 
 
 
 
 

 

 

Fig. 1. Semantics of the DEVS atomic model 

The DEVS Couplded Model 

The coupled model makes it possible to describe a complex 
system, this model is formed by the interconnection of several 
atomic models. In a higher level description this new model is 
used as a base model, this allows hierarchical modelling. 
Formally a classical DEVS coupled model is defined as 
follows [2]: 

    CM = <X, Y, D, {Md / d ∈ D}, EIC, EOC, IC, Select> 

X: are the input values of the coupled model. 

Y: are the output values of the coupled model. 
D: is the set of component names of the coupled model. 
Md: are the component names of the coupled model. 
EIC: are the couplings of the external inputs of the coupled 
model. 
EOC: are the couplings of the external outputs of the coupled 
model. 
IC:  are the internal couplings of the coupled model which 
connect component outputs to component inputs. 
Select: 2D →D: is the selection function, this function allows to 
give priority between the elements two by two, in order to 
avoid any conflict. 
 
 

 

 

 

 

 

Fig. 2.  Description of a DEVS coupled model 

B. Artificial Neural Networks 

For decades, Artificial Neural Networks (ANNs) have been 
used in several scientific fields such as medicine, biology, 
ecology, and economics, etc.). Artificial neural networks are 
excellent tools for pattern recognition, complex signal 
processing, classification and prediction [10]. Artificial Neural 
Networks (ANNs) are models inspired by biology in the form of 
a mathematical model that mimics the functioning of a 
biological neuron. 

ANNs are alternative models to mathematical models, these 
models belong to nonparametric and nonlinear statistical models 
which respond to identification problems., prediction, etc. [18]. 
A neural network is made up of a set of artificial neurons 
interconnected by weights whose values influence the behavior 
of the entire structure. The rules by which the operation of 
adjusting connections is performed characterize the network 
learning algorithm. 

1) Process of  learning 

In an artificial neural network, each neuron of a layer is 
linked with the other neurons of the other layers to solve a well-
determined problem on the data supplied at the input of the 
network. Once the network is formed, inputs are injected and 
network learning is started to estimate these parameters. There 
are basically two types of learning, unsupervised learning and 
supervised learning. For unsupervised learning, examples are 
presented to the network which is left to organize itself. In the 
case of supervised learning, we seek to impose a given operation 
on the network. The network parameters are adjusted from the 
input / output pairs presented. 

Different algorithms, such as back-propagation [7] [8] [9], 
allow training of the neural network. We try to obtain from the 
network a response preestablished as being correct. We have a 
knowledge base of expected input / output type. We then 
compare the output to the expected output. We introduce an 
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error function that we will try to minimize by modifying the 
weights of the network.Once the weights defined by this 
algorithm from examples known to the user, we will try to 
extrapolate the network, by providing it with unknown inputs.  

The basic structure of a back-propagation neural network 
[13] is shown in Figure. 3. It consists of mathematical modules 
called neurons (Figure 4)[13]. These neurons are distributed in 
layer, which means  that the input layer is made up of all the 
inputs in the model. Each of these inputs is transmitted to all 
neurons in the hidden layer where it is weighted by a 
multiplicative weight (Wij). A bias (0 or 1) is added to the sum 
of the weighted inputs to produce an intermediate result 
modulated by a transfer function, then passed to neurons in the 
output layer where it is weighted (Wjk) and repeated the same 
operations leading to model outputs (the output layer will 
contain as many neurons as there are variables to be modeled). 

 

Fig. 3.  General structure of a backpropagation neural network[13]. 

 

 
 

Fig. 4. Typical neuron structure in backpropagation neural network[13]. 

Among the different architectures of artificial neural 
networks we have adopted for this study Multi-Layer 
Perceptrons (MLP) [19]. MLPs are the most used in supervised 
learning approaches, that is, when an association between two 
types of data, respectively representing the input and the output 
of the network, must be learned. The Multi-layer Perceptron  is 
the largest class of neural networks due to the simplicity of its 
learning algorithm and its aptitude for approximation and 
generalization [11]. In an MLP artificial neurons are organized 
in layers. Two extreme layers correspond to the layer which 
receives the input data, and the layer which provides the result 
of the processing carried out (output layer). The intermediate 
layers are called hidden layers, their number is variable. 

Connectivity between successive layers is total and each 
connection is weighted 

III. APPLICATION AND TEST OF THE NN-DEVS APPROACH 

The complexity of artificial systems is growing and the 
crucial importance of better understanding and mastering the 
complexity of systems, require the design of new modeling and 
problem solving methods. 

The modelling and simulation of complex systems involves 
the processing and analysis of information or data, for which the 
values are often imprecise, uncertain, or incomplete 

The NN-DEVS is a new hybrid approach which allows to 
extend the classical formalism of DEVS. This new approach is 
effective in uncertain systems where the behavior of the system 
is stochastic as well in many fields of application. The proposed 
NN-DEVS approach is a hybrid approach of artificial neural 
networks with the DEVS formalism which makes it possible to 
respond to our problem, namely the definition of a method for 
taking into account the uncertainties linked to transitions 
between states. The NN-DEVS allows to represnt the stochastic 
(uncertain) behavior of dynamic systems. 

In order to test and apply the NN-DEVS approach, we have 
chosen as a case the modelling and simulation of a reactive 
navigation system of a mobile robot. The behavior of 
autonomous mobile robots is deeply random due to their 
interaction with complex and unpredictable environments. 

The specification of uncertain system with the NN-DEVS 
approach is similar to the classical DEVS. The only difference 
exists when the system exhibits probabilistic or stochastic 
behavior unlike a deterministic system. In this case the future 
state of the system is not determined with the transition function 
of the classical DEVS formalism but with the use of a new 
stochastic function which determines the next most probable 
state in the future, and which is obtained using the artificial 
neural networks which detrmines the evolution of the model. 

A. The model of the mobile robot system using DEVS 

The mobile robot is a complex system which includes: the 
subsystem localization, the subsystem perception, the subsystem 
controller ans the subsystem actuator. 

The subsystem Localization: this module estimates the 
current position of the robot which is obtained by information 
coming from the proprioceptive sensors. 

The subsystem perception : This module is very important 
for the safety of the robot if the environment is cluttered with 
fixed or mobile obstacles. It provides characteristic 
measurements of the position that the robot can acquire in its 
environment by detecting objects that bypass.. 

The subsystem controller: a mobile robot is controlled by a 
control module which reads the data received by the sensors, 
interprets them, calculates the motor commands and sends them 
to the actuators 

The subsystem actuator: In order to move within and interact 
with its environment, a robot is equipped with actuators. For 
example, a robot has one or more motors that can turn its wheels 
in order to perform movements. Usually the robot wheels are 
controlled by two drive controls 
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Figure 5 represents the model of a reactive navigation system 
of a mobile robot using the DEVS formalism.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Model of a reactive navigation system of a mobile robot using DEVS 

B. The NN-DEVS Controller   

Robots therefore need a high level of planning in order to 
generate the correct action corresponding to the context of the 
task and the environment to which they are attached.for this 
purpose, the Artificial Intelligence community is developing 
several approaches for the description of the action and the 
generation of plans for the robot 

The mobile robot is a physical agent performing tasks in its 
environment, endowed with the capacities of perception, 
decision and action. The objective is to allow the robot to react 
automatically without collision with unforeseen objects, 
automatically (without human intervention) when the 
environment becomes more complex (ie partially known or 
dynamic), For this, the robot must follow the diagram 
corresponding to the paradigm (Perceive-Decide-Act). 

The reactive navigation of an autonomous mobile robot in 
unfamiliar environments is considered a very difficult task in the 
field of mobile robotics. This involves controlling the evolution 
of the robot in environments characterized by their complexity 
(they can be vast, imprecise, dynamic or unknown, etc.). Which 
brings us to the definition of certain elementary behaviors such 
as: convergence towards a goal, avoidance of obstacles, pursuit 
of a trajectory or of a target, etc. 

In this work we are interested in the use of DEVS formalism 
combined with artificial neural networks. The basic principle of 
the behavior-based navigation system is to subdivide the overall 
navigation task into a set of elementary action behaviors 

(behavior 1, behavior 2,…, behavior n); easy to design and 
manage. The classical DEVS formalism is a deterministic 
formalism and it is not suitable for systems whose state 
transitions are stochastic [22]. The DEVS formalism is a multi-
modelling environment, therefore it allows the integration of 
many other formalisms or modelling methods. 

Figure 6 represents the principle design of our controller in 
DEVS. 

 

  

Fig. 6. A Neural Network controller in DEVS  

1)  Specification of the controller in NN-DEVS 

The formal specification of the controller using the NN-
DEVS approach is as follows: 

                 
)  ta,  ,, S, Y, X,  (   Controller extint λδδ=

  
Where: 

X: D (L_D, F_D, R_D): are the values of the distances sent by 
by the subsystem perception. 
Y: V, Δθ are the values of the speed of movement of the robot 
respectively the value of the angle of deviation of the robot. 
S: “Initial State”, “Stop State” , “Turning right State”, 
“Turning left State”, “Moving Forward State”. 

����: The internal transition function. 

����: ANN (Distance) neural network controller, receives the 
value of the input distance (D) from the perception subsystem. 

λ: the values calculated by the controller are sent to the 
subsystem actuator. 
ta : function which gives the lifetime of the state S. 

2)  The neural network controller 

The neural network controller proposed is a network with 
five layers where: one layer for the input data with one neuron, 
and one layer for the output with two neurons (one for the speed 
of robot and the second for the angle) , and three hidden layers 
with 15,14,13 neurons respectively.  
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One used the algorithm of the BackPropagation of the 
gradient and as supervisor one used the results of a ANN 
controller. The  function of activation of the neuron is  the 
sigmoid function.   

Two behaviors are used based on a reactive approach for 
mobile robot navigation: 

Obstacle avoidance behavior and target tracking behavior. 
The subsystem controller receives as inputs the values of the 
distances L_D, F_D and R_D sent by the perception subsystem 
and G_R the angle existing between the target and the robot, 
subsequently and after a calculation this subsystem returns the 
value Δθ of the change in direction of the robot and the value 
ΔV the variation of the speed of the robot at the subsystem 
actuator. 

IV. SIMULATIONS AND RESULTS 

Several examples of mobile robot navigation in indoor 
environments will be presented to validate the proposed        
NN-DEVS approach. The environment used takes into account 
the constraints of modelling and movement of the robot used in 
several situations such as: free space and the environment with 
static obstacles. 

To specify, design and develop our system, we used the 
POWERDEVS simulator for the modelling and simulation of 
the mobile robot's reactive navigation system. 

POWERDEVS is a simulator different from other existing 
simulators. It is a flexible simulator and offers general usage, it 
provides a high level of DEVS formalism. POWERDEVS is a 
functional, abstract tool and provides specific components and 
interfaces, these characteristics qualify it as a domain-specific 
modeling and simulation tool [12]. 

Figure.7 represents the implementation on the 
POWERDEVS environment of the reactive navigation system 
of a mobile robot. Each subsystem is modeled by a 
corresponding atomic model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Representation of the model under POWERDEVS. 

 

In the first test shown in Figure. 8 When the robot's 
perception sensors do not detect any obstacle near it, the task 
then becomes a direct orientation towards the target to reach it. 
It is also called free navigation to a goal. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. The trajectory in the first case. 

If the robot's environment contains one or more obstacles, 
the robot must be able to avoid collisions with these objects. 
The autonomous navigation system contains two basic 
behaviors: following the target behavior and another for 
obstacle avoidance. The robot performs the appropriate action 
to reach the final destination safely without risk of collision 
with objects by triggering one of two behaviors depending on 
the perceived situation. 

Figures 9 and 10 show examples of navigation of the mobile 
robot in the presence of obstacles in the environment. Obstacle 
avoidance is a basic behavior present in almost all movements 
of mobile robots. Collisions can occur when moving the robot 
towards the target. The autonomous mobile robot must have an 
effective obstacle avoidance capability. As shown in the figures 
in all cases, the robot is able to navigate autonomously and can 
achieve its target efficiently by successfully avoiding obstacles 
regardless of its initial position. 

 The movement trajectory obtained and the actions generated 
show that the proposed control system gives better performance 
and efficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. The navigation of the mobile robot in the presence of obstacles. 
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Fig. 10. The navigation of the mobile robot in the presence of obstacles. 

V. CONCLUSION AND FUTURE WORK 

In this article we have proposed a new hybrid approach 
called NN-DEVS which combines the classical DEVS 
formalism with artificial neural networks to model systems with 
imperfect parameters. 

The DEVS formalism is based on systems theory. More 
precisely, The notions of modularity, hierarchy, multi-
modelling and the capacity of openness provided by the DEVS 
formalism make it possible to combine in a coherent way 
formalisms or paradigms based on the general theory of systems 
and centered on states, These characteristics makes it a 
formalism suitable for many areas of application. 

This formalism was chosen both for its ability to integrate 
heterogeneous models and for its notions of coupling and 
hierarchical decomposition 

The new NN-DEVS approach allows to represnt the 
stochastic (uncertain) behavior of dynamic systems. 

In order to validate the NN-DEVS approach, various 
simulation examples are provided using the POWERDEVS tool 
to simulate the behavior of an autonomous mobile robot. This 
approach has shown its performance for the different behaviors 
of the mobile robot. 

The proposed NN-DEVS approach proves its validation in 
the modelling and simulation of simple systems also in complex 
systems. 

Several perspectives are possible following our work First, 
we consider the practical implementation of the methods studied 
on a real mobile robot,. On the other hand we can integrate other 
soft computing mechanisms, (fuzzy_neuro, genetic algorithms 
etc ...). 
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