
Proc. of the 3rd International Conference on Electrical, Communication and Computer Engineering (ICECCE)

12-13 June 2021, Kuala Lumpur, Malaysia

978-1-6654-3897-1/21/$31.00 ©2021 IEEE

Using NN-DEVS Approach for Modelling and
Simulation of Imperfect Systems: Application to
the Reactive Navigation of Autonomous Robot

Kadda Mostefaoui
Ecole nationale Supérieure

d’Informatique BP 68M, 16309

Oued-Smar,

 Alger, Algérie
k_mostefaoui@esi.dz

https://orcid.org/0000-0002-
6367-1245

Youcef Dahmani
Department of Computer Science

University of Tiaret

Tiaret, Algeria
dahmani_y@yahoo.fr

https://orcid.org/0000-0001-

6528-1825

Bendaoud Mebarek
Department of Computer Science

University of Tiaret

Tiaret, Algeria
mebarekbendaoud@yahoo.fr

https://orcid.org/0000-0002-

6838-3867

Mohamed Goucem
Department of Computer

Science University of Tiaret

Tiaret, Algeria
goucemohamedinginf@gmail.co

m

Abstract—In this paper, we are interested in the modelling and

simulation of imperfect systems in the DEVS context. We want to

hybrid the DEVS formalism with artificial neural networks and to

propose a new modelling and simulation approach which makes it

possible to represent the behavior of imperfect systems.

The problematic of our work is the integration into the DEVS

formalism of tools from artificial intelligence allowing the

representation, manipulation, and processing of imperfect data

(imprecise, uncertain).

NN-DEVS is a new hybrid approach which allows to extend the

classic DEVS formalism. This new approach is effective in

uncertain systems where the behavior of the system is stochastic.

To validate the proposed NN-DEVS approach, we apply this

approach to a complex reactive navigation system of a mobile

robot.

Keywords—Modelling; Simulation; DEVS; Artificial Neural

Networks; Reactive navigation.

I. INTRODUCTION

Simulation is a discipline whose aim is to develop models
for an existing or theoretical system, once created this model, it
is possible to run and analyze results. It is used in research and
industry, whenever the construction of a prototype test is too
expensive or that the usual mathematical study is too long to see
too complex.

The concepts of simulation and modelling are intrinsically
linked, modelling and simulation are used to study the behavior
of dynamic systems; in the literature several methods have been
proposed for the analysis of the behavior of these systems in a
more realistic, simple and very flexible way.

Different research and implementations have been
conducted on the theme of modelling and simulation of complex
systems. Therefore, today there are a large range of methods,
tools and software products in this context .

A modelling approach called DEVS formalism is used as a
modelling and simulation tool for many systems, this formalism
is widely used to model and simulate dynamic systems with
discrete events.. In the mid-seventies, several formal work has

developed to provide a rigorous common basis for the modelling
and simulation of discrete events [1], this formalism was
introduced by Professor BP Zeigler [2].

The approach proposed in this study is a hybrid modelling
approach based on systems theory and the notion of state [2].
The notions of modularity, hierarchy, multi-modelling and the
capacity of openness provided by the DEVS formalism make it
possible to combine in a coherent way formalisms or paradigms
based on the general theory of systems and centered on states,
These characteristics makes the formalism a solid formal
framework for modelling and simulating dynamical systems and
thus makes a formalism suitable for many areas of application.
[3][4][5][6][20][21].

In the literature there are many approaches to modelling the
complexes system, generally the researchers use the method of
the Artificial Intelligence like the artificial neural networks
(ANN) [15][16], the fuzzy logic (FL) [17], in other researchs
they used the combination of the precedent approach to realized
the Neural-fuzzy.

The main objective of this study is to propose a new hybrid
approach named NN-DEVS based on the DEVS formalism
integrated with artificial neural networks, this approach is used
to study the behavior of uncertain dynamic systems (stochastic).

In order to evaluate our NN-DEVS approach we applied this
approach on a reactive navigation system of a mobile robot.

This article is organized as follows: we start with the
presentation of the basic concepts of the DEVS formalism as
well as the theory of artificial neural networks. Then we model
by our NN-DEVS approach a reactive navigation system of a
mobile robot. We then carry out simulations in order to validate
our approach. Finally, we conclude our work and give some
perspectives of this work.

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ric
al

, C
om

m
un

ic
at

io
n,

 a
nd

 C
om

pu
te

r E
ng

in
ee

rin
g

(IC
EC

CE
) |

 9
78

-1
-6

65
4-

38
97

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

EC
CE

52
05

6.
20

21
.9

51
40

97

Authorized licensed use limited to: Carleton University. Downloaded on September 14,2021 at 16:33:22 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

In this section we present the DEVS formalism and artificial neural
networks (ANN).

A. The DEVS formalism

The DEVS formalism is used to model and simulate discrete
systems. DEVS gives a robust model, based on atomic models
and on the coupling of higher level models. This allows for
hierarchical modeling. DEVS is independent of the
implementation of simulators. This formalism is used in
different applications such as, in robotics, computer
architectures, ecological modeling, manufacturing system,
environmental systems and transport systems.

The DEVS Atomic Model

The atomic model autonomously describes the behavior of
the system. A DEVS atomic model is based on continuous time,
inputs, outputs, states and functions (output, transition, the time
advance).Tthe internal transition function that moves the system
from one state to another autonomously. It depends on the time
spent in the state. When an internal event occurs, the model
produces an output. the external transition function allows the
reaction of the system to an external event dependent on the
current state of the system, the input and the elapsed time in that
state.

An atomic model is specified as follows [2]:
AM = (X, Y, S, δext, δint, λ, ta)

X : are the input values of the model.
Y : are the output values of the model.
S : are the possible states of the model.
δint : S→S: is the internal transition function.

δext: Q×S→S : is the external transition function.
 Q={(s,e) | s∈S.0≤e≤ta(s)} : total state set
 e: is the time elapsed
λ : the output function.
ta: the time advance function of state s ∈ S.

Fig. 1. Semantics of the DEVS atomic model

The DEVS Couplded Model

The coupled model makes it possible to describe a complex
system, this model is formed by the interconnection of several
atomic models. In a higher level description this new model is
used as a base model, this allows hierarchical modelling.
Formally a classical DEVS coupled model is defined as
follows [2]:

 CM = <X, Y, D, {Md / d ∈ D}, EIC, EOC, IC, Select>

X: are the input values of the coupled model.

Y: are the output values of the coupled model.
D: is the set of component names of the coupled model.
Md: are the component names of the coupled model.
EIC: are the couplings of the external inputs of the coupled
model.
EOC: are the couplings of the external outputs of the coupled
model.
IC: are the internal couplings of the coupled model which
connect component outputs to component inputs.
Select: 2D →D: is the selection function, this function allows to
give priority between the elements two by two, in order to
avoid any conflict.

Fig. 2. Description of a DEVS coupled model

B. Artificial Neural Networks

For decades, Artificial Neural Networks (ANNs) have been
used in several scientific fields such as medicine, biology,
ecology, and economics, etc.). Artificial neural networks are
excellent tools for pattern recognition, complex signal
processing, classification and prediction [10]. Artificial Neural
Networks (ANNs) are models inspired by biology in the form of
a mathematical model that mimics the functioning of a
biological neuron.

ANNs are alternative models to mathematical models, these
models belong to nonparametric and nonlinear statistical models
which respond to identification problems., prediction, etc. [18].
A neural network is made up of a set of artificial neurons
interconnected by weights whose values influence the behavior
of the entire structure. The rules by which the operation of
adjusting connections is performed characterize the network
learning algorithm.

1) Process of learning

In an artificial neural network, each neuron of a layer is
linked with the other neurons of the other layers to solve a well-
determined problem on the data supplied at the input of the
network. Once the network is formed, inputs are injected and
network learning is started to estimate these parameters. There
are basically two types of learning, unsupervised learning and
supervised learning. For unsupervised learning, examples are
presented to the network which is left to organize itself. In the
case of supervised learning, we seek to impose a given operation
on the network. The network parameters are adjusted from the
input / output pairs presented.

Different algorithms, such as back-propagation [7] [8] [9],
allow training of the neural network. We try to obtain from the
network a response preestablished as being correct. We have a
knowledge base of expected input / output type. We then
compare the output to the expected output. We introduce an

S
out

X Y

t t

in

Si+1=δint (Si)

ta(Si)

δint

Si+1=δext (Si,e,x)

λ

δext

A1
in

in

out

A2

A3

EIC
 IC

in
out

in out

 EOC

out in

Authorized licensed use limited to: Carleton University. Downloaded on September 14,2021 at 16:33:22 UTC from IEEE Xplore. Restrictions apply.

error function that we will try to minimize by modifying the
weights of the network.Once the weights defined by this
algorithm from examples known to the user, we will try to
extrapolate the network, by providing it with unknown inputs.

The basic structure of a back-propagation neural network
[13] is shown in Figure. 3. It consists of mathematical modules
called neurons (Figure 4)[13]. These neurons are distributed in
layer, which means that the input layer is made up of all the
inputs in the model. Each of these inputs is transmitted to all
neurons in the hidden layer where it is weighted by a
multiplicative weight (Wij). A bias (0 or 1) is added to the sum
of the weighted inputs to produce an intermediate result
modulated by a transfer function, then passed to neurons in the
output layer where it is weighted (Wjk) and repeated the same
operations leading to model outputs (the output layer will
contain as many neurons as there are variables to be modeled).

Fig. 3. General structure of a backpropagation neural network[13].

Fig. 4. Typical neuron structure in backpropagation neural network[13].

Among the different architectures of artificial neural
networks we have adopted for this study Multi-Layer
Perceptrons (MLP) [19]. MLPs are the most used in supervised
learning approaches, that is, when an association between two
types of data, respectively representing the input and the output
of the network, must be learned. The Multi-layer Perceptron is
the largest class of neural networks due to the simplicity of its
learning algorithm and its aptitude for approximation and
generalization [11]. In an MLP artificial neurons are organized
in layers. Two extreme layers correspond to the layer which
receives the input data, and the layer which provides the result
of the processing carried out (output layer). The intermediate
layers are called hidden layers, their number is variable.

Connectivity between successive layers is total and each
connection is weighted

III. APPLICATION AND TEST OF THE NN-DEVS APPROACH

The complexity of artificial systems is growing and the
crucial importance of better understanding and mastering the
complexity of systems, require the design of new modeling and
problem solving methods.

The modelling and simulation of complex systems involves
the processing and analysis of information or data, for which the
values are often imprecise, uncertain, or incomplete

The NN-DEVS is a new hybrid approach which allows to
extend the classical formalism of DEVS. This new approach is
effective in uncertain systems where the behavior of the system
is stochastic as well in many fields of application. The proposed
NN-DEVS approach is a hybrid approach of artificial neural
networks with the DEVS formalism which makes it possible to
respond to our problem, namely the definition of a method for
taking into account the uncertainties linked to transitions
between states. The NN-DEVS allows to represnt the stochastic
(uncertain) behavior of dynamic systems.

In order to test and apply the NN-DEVS approach, we have
chosen as a case the modelling and simulation of a reactive
navigation system of a mobile robot. The behavior of
autonomous mobile robots is deeply random due to their
interaction with complex and unpredictable environments.

The specification of uncertain system with the NN-DEVS
approach is similar to the classical DEVS. The only difference
exists when the system exhibits probabilistic or stochastic
behavior unlike a deterministic system. In this case the future
state of the system is not determined with the transition function
of the classical DEVS formalism but with the use of a new
stochastic function which determines the next most probable
state in the future, and which is obtained using the artificial
neural networks which detrmines the evolution of the model.

A. The model of the mobile robot system using DEVS

The mobile robot is a complex system which includes: the
subsystem localization, the subsystem perception, the subsystem
controller ans the subsystem actuator.

The subsystem Localization: this module estimates the
current position of the robot which is obtained by information
coming from the proprioceptive sensors.

The subsystem perception : This module is very important
for the safety of the robot if the environment is cluttered with
fixed or mobile obstacles. It provides characteristic
measurements of the position that the robot can acquire in its
environment by detecting objects that bypass..

The subsystem controller: a mobile robot is controlled by a
control module which reads the data received by the sensors,
interprets them, calculates the motor commands and sends them
to the actuators

The subsystem actuator: In order to move within and interact
with its environment, a robot is equipped with actuators. For
example, a robot has one or more motors that can turn its wheels
in order to perform movements. Usually the robot wheels are
controlled by two drive controls

Authorized licensed use limited to: Carleton University. Downloaded on September 14,2021 at 16:33:22 UTC from IEEE Xplore. Restrictions apply.

Figure 5 represents the model of a reactive navigation system
of a mobile robot using the DEVS formalism.

Fig. 5. Model of a reactive navigation system of a mobile robot using DEVS

B. The NN-DEVS Controller

Robots therefore need a high level of planning in order to
generate the correct action corresponding to the context of the
task and the environment to which they are attached.for this
purpose, the Artificial Intelligence community is developing
several approaches for the description of the action and the
generation of plans for the robot

The mobile robot is a physical agent performing tasks in its
environment, endowed with the capacities of perception,
decision and action. The objective is to allow the robot to react
automatically without collision with unforeseen objects,
automatically (without human intervention) when the
environment becomes more complex (ie partially known or
dynamic), For this, the robot must follow the diagram
corresponding to the paradigm (Perceive-Decide-Act).

The reactive navigation of an autonomous mobile robot in
unfamiliar environments is considered a very difficult task in the
field of mobile robotics. This involves controlling the evolution
of the robot in environments characterized by their complexity
(they can be vast, imprecise, dynamic or unknown, etc.). Which
brings us to the definition of certain elementary behaviors such
as: convergence towards a goal, avoidance of obstacles, pursuit
of a trajectory or of a target, etc.

In this work we are interested in the use of DEVS formalism
combined with artificial neural networks. The basic principle of
the behavior-based navigation system is to subdivide the overall
navigation task into a set of elementary action behaviors

(behavior 1, behavior 2,…, behavior n); easy to design and
manage. The classical DEVS formalism is a deterministic
formalism and it is not suitable for systems whose state
transitions are stochastic [22]. The DEVS formalism is a multi-
modelling environment, therefore it allows the integration of
many other formalisms or modelling methods.

Figure 6 represents the principle design of our controller in
DEVS.

Fig. 6. A Neural Network controller in DEVS

1) Specification of the controller in NN-DEVS

The formal specification of the controller using the NN-
DEVS approach is as follows:

) ta, ,, S, Y, X, (Controller extint λδδ=

Where:

X: D (L_D, F_D, R_D): are the values of the distances sent by
by the subsystem perception.
Y: V, Δθ are the values of the speed of movement of the robot
respectively the value of the angle of deviation of the robot.
S: “Initial State”, “Stop State” , “Turning right State”,
“Turning left State”, “Moving Forward State”.

����: The internal transition function.

����: ANN (Distance) neural network controller, receives the
value of the input distance (D) from the perception subsystem.

λ: the values calculated by the controller are sent to the
subsystem actuator.
ta : function which gives the lifetime of the state S.

2) The neural network controller

The neural network controller proposed is a network with
five layers where: one layer for the input data with one neuron,
and one layer for the output with two neurons (one for the speed
of robot and the second for the angle) , and three hidden layers
with 15,14,13 neurons respectively.

Robot

 Sensor

Front_Le
ft

 Controller

 Sensor
Front

Actuat

or

L_D

F_D

R_D

Perception

V

Avoidance

obstacles

Manag
er of

conflic
ts

θ

X_sl

Y_sl

X_sf

Y_sf

 Sensor
Front
Right

X_r

Follow
Goal X_sr

Y_r

Y_sr

Localization

G_D

Authorized licensed use limited to: Carleton University. Downloaded on September 14,2021 at 16:33:22 UTC from IEEE Xplore. Restrictions apply.

One used the algorithm of the BackPropagation of the
gradient and as supervisor one used the results of a ANN
controller. The function of activation of the neuron is the
sigmoid function.

Two behaviors are used based on a reactive approach for
mobile robot navigation:

Obstacle avoidance behavior and target tracking behavior.
The subsystem controller receives as inputs the values of the
distances L_D, F_D and R_D sent by the perception subsystem
and G_R the angle existing between the target and the robot,
subsequently and after a calculation this subsystem returns the
value Δθ of the change in direction of the robot and the value
ΔV the variation of the speed of the robot at the subsystem
actuator.

IV. SIMULATIONS AND RESULTS

Several examples of mobile robot navigation in indoor
environments will be presented to validate the proposed
NN-DEVS approach. The environment used takes into account
the constraints of modelling and movement of the robot used in
several situations such as: free space and the environment with
static obstacles.

To specify, design and develop our system, we used the
POWERDEVS simulator for the modelling and simulation of
the mobile robot's reactive navigation system.

POWERDEVS is a simulator different from other existing
simulators. It is a flexible simulator and offers general usage, it
provides a high level of DEVS formalism. POWERDEVS is a
functional, abstract tool and provides specific components and
interfaces, these characteristics qualify it as a domain-specific
modeling and simulation tool [12].

Figure.7 represents the implementation on the
POWERDEVS environment of the reactive navigation system
of a mobile robot. Each subsystem is modeled by a
corresponding atomic model.

Fig. 7. Representation of the model under POWERDEVS.

In the first test shown in Figure. 8 When the robot's
perception sensors do not detect any obstacle near it, the task
then becomes a direct orientation towards the target to reach it.
It is also called free navigation to a goal.

Fig. 8. The trajectory in the first case.

If the robot's environment contains one or more obstacles,
the robot must be able to avoid collisions with these objects.
The autonomous navigation system contains two basic
behaviors: following the target behavior and another for
obstacle avoidance. The robot performs the appropriate action
to reach the final destination safely without risk of collision
with objects by triggering one of two behaviors depending on
the perceived situation.

Figures 9 and 10 show examples of navigation of the mobile
robot in the presence of obstacles in the environment. Obstacle
avoidance is a basic behavior present in almost all movements
of mobile robots. Collisions can occur when moving the robot
towards the target. The autonomous mobile robot must have an
effective obstacle avoidance capability. As shown in the figures
in all cases, the robot is able to navigate autonomously and can
achieve its target efficiently by successfully avoiding obstacles
regardless of its initial position.

 The movement trajectory obtained and the actions generated
show that the proposed control system gives better performance
and efficiency.

Fig. 9. The navigation of the mobile robot in the presence of obstacles.

Authorized licensed use limited to: Carleton University. Downloaded on September 14,2021 at 16:33:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. The navigation of the mobile robot in the presence of obstacles.

V. CONCLUSION AND FUTURE WORK

In this article we have proposed a new hybrid approach
called NN-DEVS which combines the classical DEVS
formalism with artificial neural networks to model systems with
imperfect parameters.

The DEVS formalism is based on systems theory. More
precisely, The notions of modularity, hierarchy, multi-
modelling and the capacity of openness provided by the DEVS
formalism make it possible to combine in a coherent way
formalisms or paradigms based on the general theory of systems
and centered on states, These characteristics makes it a
formalism suitable for many areas of application.

This formalism was chosen both for its ability to integrate
heterogeneous models and for its notions of coupling and
hierarchical decomposition

The new NN-DEVS approach allows to represnt the
stochastic (uncertain) behavior of dynamic systems.

In order to validate the NN-DEVS approach, various
simulation examples are provided using the POWERDEVS tool
to simulate the behavior of an autonomous mobile robot. This
approach has shown its performance for the different behaviors
of the mobile robot.

The proposed NN-DEVS approach proves its validation in
the modelling and simulation of simple systems also in complex
systems.

Several perspectives are possible following our work First,
we consider the practical implementation of the methods studied
on a real mobile robot,. On the other hand we can integrate other
soft computing mechanisms, (fuzzy_neuro, genetic algorithms
etc ...).

REFERENCES

[1] P. A. Bisgambiglia, "Approximate modeling approach for discrete event
systems: Application to the study of propagation of forest fires," Ph.D.
dissertation, University of Corsica - Pasquale Paoli., France, 2008.

[2] B.P. Zeigler, Theory of Modeling and Simulation. New York: Wiley,
1976.

[3] F. Barros, "Dynamic structure discrete event system specification : a new
formalism for dynamic structure modelling and simulation," in
Proceedings of Winter Simulation Conference , 1995.

[4] A. Uhrmarcher. "Dynamic Structures in Modeling and Simulation : A
Reflective Approach," ACM Transactions on Modeling and Computer
Simulation, vol. 11, pp. 206–232, 2001.

[5] L. Ntaimo and B.P. Zeigler, "Expressing a forest cell model in parallel
DEVS and timed cell-DEVS formalisms," in Proceedings of the 2004
Summer Computer Simulation Conference, 2002.

[6] A. Troccoli and W. Gabriel, "Implementing parallel cell-DEVS," in IEEE,
editor, Proceedings of the 36th Annual Simulation Symposium, 2003.

[7] J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing.
NJ: Prentice Hall, 1997.

[8] Z. Effendi, R. Ramli, J. A. Ghani, “Back Propagation Neural Networks
for Grading Jatropha curcas Fruits Maturity,” American Journal of
Applied Sciences, vol. 7, issue 3, pp. 390-394, 2010.

[9] M. C. O'Neill, “Training back-propagation neural networks to define and
detect DNA-binding sites,” Nucleic Acids Research, vol. 19, issue 2, pp.
313-318, 1991.

[10] P. J. Drew, J. R. Monson, “Artificial neural networks," Surgery, vol. 127,
issue 1, pp. 3-11, 2000.

[11] Y. Huang, “Advances in artificial neural networks-methodological
development and application,” Algorithms, vol. 2, issue 3, pp. 973–
1007, 2009.

[12] PowerDEVS, http://sourceforge.net/projects/powerdevs/

[13] R. Kenaya, K. C. Cheok, “Back Propagation Neural Controller for a
Two-Drive Robot Vehicle“, in Proceedings of the World Congress on
Engineering and Computer Science , San Francisco, USA, 2010.

[14] F. Bergero, E. Kofman, “PowerDEVS: A Tool for Hybrid System
Modeling and Real Time Simulation,“ Simulation, vol. 87, issue1-2, pp.
113-132, 2011.

[15] B. R.Valluru and V. R. Hayagriva, C++ Neural Networks and Fuzzy
Logic. USA: M & T Books, 1995.

[16] S. Haykin, Neural Networks. UK: Macmillan College Publishing, 1994.

[17] Y. Dahmani, A Benyettou, "Fuzzy Reinforcement Rectilinear Trajectory
Learning," Journal of Applied Sciences, vol. 4, issue 3, pp. 388-392, 2004.

[18] A. Carling, Introducing Neural Networks. USA: John Wiley & Sons,
1992.

[19] M. B. Christopher, Neural Networks for pattern recognition. New York:
Oxford University press, 1995.

[20] N. Seddari, S. Boukelkoul, A. Bouras, M. Belaoued, M. Redjimi, “A new
transformation approach for complex systems modelling and simulation:
Application to industrial control system,” International Journal of
Simulation and Process Modelling, vol. 16, issue 1, pp. 34-48, 2021.

[21] Y. Dahmani, H. N . B. Ali, A. Boubekeur, “XML-based devs modelling
and simulation tracking,“ International Journal of Simulation and
Process Modelling, vol. 15, issue 1–2, pp. 155–169, 2020.

[22] K. Mostefaoui, Y. Dahmani, “Modeling of the Reactive Navigation of
Autonomous Robot using the Discrete Event System Specification
DEVS,“ International Journal of Computer Applications, vol. 45, issue 9,
pp. 19-24, 2012.

Authorized licensed use limited to: Carleton University. Downloaded on September 14,2021 at 16:33:22 UTC from IEEE Xplore. Restrictions apply.

