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Abstract: To reduce the influence of non-line-of-sight (NLOS) errors in the ultra-wideband (UWB)
positioning process, a UWB positioning algorithm based on fuzzy inference and adaptive anti-NLOS
Kalman filtering (KF) was proposed in this paper. First of all, the NLOS errors of the channel
impulse response (CIR) signal characteristics were estimated by the fuzzy inference algorithm and
then initially mitigated. Next, an adaptive anti-NLOS KF algorithm was developed to perform a
second mitigation on the ranging errors after mitigation of the NLOS errors with the fuzzy inference,
thereby further raising the range estimation accuracy. At last, the range estimation information after
error mitigation was taken as the ranging information of the LS positioning algorithm for target
localization. In the static positioning experiment, the probability of producing an error range of less
than 19.1 cm with the positioning algorithm combining fuzzy inference with adaptive anti-NLOS KF
was 0.93, which was much better than the positioning algorithm based on fuzzy inference and the
adaptive anti-NLOS KF positioning algorithm. In the dynamic positioning experiment, compared
with the adaptive anti-NLOS KF positioning algorithm, the RMSE was reduced by 43.31% in the
overall positioning. Furthermore, compared with those of the positioning algorithm based on fuzzy
inference, the RMSEs in overall positioning were lowered by 12.89%. The positioning accuracy was
improved significantly.

Keywords: ultra-wideband positioning; non-line-of-sight; fuzzy inference; self-adaption; Kalman filter

1. Introduction

Under the influences of such factors as the blockage of buildings and the complexity of
environments, the traditional outdoor global positioning system (GPS) satellite positioning
technology is becoming unable to meet the requirements of indoor and outdoor positioning
due to great positioning errors [1]. Compared with Wi-Fi, radio frequency identification,
ultrasound, Bluetooth and other positioning technologies, ultra-wideband (UWB)-based
positioning technology has many advantages, including centimeter-level positioning ac-
curacy, good multi-path resistance, preferable resistance against the interference of other
electronic signals from complex environments and strong penetrability [2,3], which not
only endow it with high reliability but also facilitate the collection of dynamic data and
real-time positioning of moving objects in complex environments [4]. The emergence of
the fifth-generation mobile communication technology (5G) provides a new idea for high-
precision indoor positioning. However, 5G indoor positioning technology is still immature.
In addition, since the UWB frequency band and the 5G frequency band are partially shared,
the UWB signal will severely impact the demodulation of the 5G signal [5].

Given the complexity of the actual positioning environment, non-line-of-sight (NLOS)
errors, multi-path errors, clock drift errors and errors caused by antenna delay tend to occur
in the UWB positioning process [6], among which the NLOS errors are the primary type,
having a significant influence on positioning accuracy. In this context, the recognition and
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mitigation of NLOS errors have become hot topics in the research on UWB positioning [7,8].
The existing methods for handling the NLOS errors mainly include [9,10]: (1) realizing
integrated UWB positioning by adding hardware other than UWB, (2) identifying and
mitigating the NLOS errors by virtue of filtering algorithms, (3) mitigating the NLOS
errors with the positioning algorithm based on convex optimization and (4) identifying
and mitigating the NLOS errors based on the channel impulse response (CIR) signal
characteristics. Tian et al. [11] proposed a UWB/INS integrated location method based
on an improved robust Kalman filter and support vector regression (SVR). The robust
Kalman filter (RKF) is improved, and the enhanced IGG3 weight function is used to modify
the innovation piecewise to reduce the influence of abnormal measurement information
on the filtering result. Hu Q et al. [12] put forward a UWB-GPS combined positioning
scheme, in which filtering is achieved with plane coordinates, speed and azimuth angle
as observation vectors, thus improving the positioning accuracy. Zhang [13] proposed a
Wi-Fi/UWB combined positioning algorithm. The algorithm first uses the ultra-wideband
ranging value to filter the Wi-Fi fingerprint points. After the matching and positioning, the
positioning result is added to the neighbor set as a new neighbor. The algorithm finds the
nearest neighbor to the UWB base station among these neighbors and uses the position
coordinates corresponding to this neighbor as the final positioning result. Moreover, by
combining the inertial measurement unit and UWB, Liang Y [14] proposed an indoor
positioning method that applies UWB ranging and inertial navigation fusion. A tightly
coupled Kalman filter was adopted, where UWB ranging values were taken as the extended
Kalman filter observation quantity, the position and attitude of the inertial navigation
were taken as the extended Kalman filter prediction value, and UWB ranging values were
used to constantly correct the position and attitude data of the inertial navigation solution.
Zhang et al. [15] applied the KF algorithm to study the change rules in residual errors in
both LOS and NLOS indoor environments. Moreover, an appropriate threshold was set
and compared with the real-time residual error of ranging to identify and mitigate the
NLOS errors. Liu T et al. [16] established the robust factor identification using the KF
innovation vector and the threshold in the LOS environment, which is utilized to identify
the NLOS errors and attenuate the influences of NLOS ranging errors and abnormal ranging
values. Meanwhile, the positioning accuracy is improved by real-time estimation of system
noise using the Sage–Husa filtering. Based on LOS/NLOS scene recognition, Huang
et al. [17] proposed a TDOA location algorithm based on particle filter and maximum
likelihood. Firstly, the approximate maximum likelihood TDOA algorithm was used to
obtain a preliminary location result without distinguishing between LOS and NLOS scenes;
then, the preliminary results were corrected with particle filter to reduce the increase in
positioning error and inconsistency of positioning results caused by LOS and NLOS scene
switching. In addition, Chen H et al. [18] introduced the “balance parameter” related to
NLOS errors and proposed a new robust weighted LS problem with the target position and
the NLOS balance parameter as the estimation variables. For the identification of the UWB
channel state, V. Barral et al. [19] designed a statistical model by incorporating the RSSI
of CIR signals and root mean square (RMS) delay characteristics. Furthermore, Marano
et al. [20] developed a machine-learning model for an LS support vector machine based
on the CIR channel characteristics, which can not only judge NLOS errors but also reduce
the ranging errors resulting from NLOS errors. However, the algorithm accomplishes
the identification and mitigation of NLOS errors in two steps, thus increasing its overall
complexity. To increase the ranging accuracy, Yang [21] put forward a machine-learning
method for NLOS error mitigation with low complexity based on a sparse pseudo-input
Gaussian process.

Among the above methods, adding hardware for integrated positioning can improve
the positioning accuracy, but such method undoubtedly increases the total cost of the posi-
tioning system and the cost of the data fusion algorithm. Given the possible influence of
NLOS errors on the measured range information, the methods based on ranging estimation
will have a less favorable effect on identifying and mitigating NLOS errors. Though the
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machine-learning-based algorithms have the best effect on NLOS error identification and
mitigation, they are not suitable for occasions with strong timeliness due to their high com-
plexity. As the fuzzy inference algorithms possess the characteristics where no statistical
model construction and data training are needed and given their high operating speed,
they can mitigate the NLOS and LOS errors and improve the positioning accuracy in the
case of estimating ranging errors of CIR signal characteristics, conforming to the needs of
UWB node positioning [22]. The anti-NLOS KF algorithm can conduct smoothing filtering
on the data and realize identification and mitigation of NLOS errors, thus effectively weak-
ening the influence of ranging errors on positioning during UWB mobile node positioning
and improving the positioning accuracy [23,24]. Based on the advantages of these two
algorithms, a UWB positioning algorithm combining the fuzzy inference for NLOS error
mitigation with adaptive anti-NLOS KF was proposed in this paper. In this algorithm, a
fuzzy inference system of the ranging errors was first established using the changes in RSSI,
first path power level (FPPL) and rise time (RT) characteristics of the CIR signals collected
via ranging, and the ranging errors were initially mitigated by the fuzzy inference method.
Then, the adaptive anti-NLOS KF algorithm was employed to process the range data after
fuzzy inference, and the triple innovation variance was compared with the innovation
to identify the NLOS errors. Moreover, the value of the innovation correction factor was
automatically adjusted according to the changes in differences between innovation and
innovation variance, so as to conduct second mitigation for the NLOS errors after fuzzy
inference. Ultimately, the final estimated range information was substituted into the LS
positioning algorithm for node positioning.

2. A Ranging Error Mitigation Algorithm for CIR Signal Characteristics Based on
Fuzzy Inference
2.1. Theory of the Algorithm

The ranging errors mitigation algorithm for CIR signal characteristics based on fuzzy
inference estimates the ranging errors in accordance with the changes in CIR signal char-
acteristics. The commonly used standard CIR signal characteristics of UWB include total
energy, maximum amplitude, normalized strongest path, signal-to-noise ratio, RT, average
excess delay, RMS delay and kurtosis [25]. However, the level of standard implementa-
tion varies with UWB hardware manufacturers, so the actual UWB hardware should be
considered together during the selection of CIR signal characteristics. In this paper, three
CIR signal characteristics (RSSI, FPPL and RT) provided by the DWM1000 hardware were
adopted in the ranging errors mitigation algorithm for CIR signal characteristics based on
fuzzy inference.

RSSI is a signal characteristic possessed by almost all radio equipment, including
DWM1000. The energy of the received signal reflects the average level of received power,
which is closely correlated with the total energy characteristics in standard CIR signals.
Therefore, RSSI is usually replaced by the received energy. The calculation formula of RSSI
officially provided by DWM1000 is as follows:

RSSI = 10× log10(
C× 217

N2 )− A (1)

where C is the power value of CIR, A represents the constant of the pulse repetition
frequency, and N stands for the cumulative count value of the synchronization code.

The FPPL, officially given by DWM1000, was utilized to calculate the power estimation
of the earliest first path signal arriving at the receiver. Since the discrete value of the CIR
signals was obtained by sampling the wireless point signals at the time of reception, the
FPPL was estimated by means of three sampling amplitudes of CIR signals that were first
collected by DWM1000, which were calculated using the formula below:

FPPL = 10× log10(
F2

1 + F2
2 + F2

3
N2 )− A (2)
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where F1, F2 and F3 mean the first three sampling amplitudes of CIR signals, respectively.
RT referred to the difference between the time of the first sampling point on the

first path and the time of the sampling point with the maximum amplitude, which was
calculated according to the following formula:

RT = tFmax − tF1 (3)

where Fmax is the maximum amplitude among all the sampling points of the CIR signals,
and tF1 represents the sampling time of the first sampling amplitude F1 on the first path,
which can be read through the officially designated register.

The RSSI, FPPL and RT characteristics of the CIR signals reflected the severity of
NLOS conditions at different levels. Specifically, the RSSI indicates the severity of NLOS
in general and can be effectively classified, while FPPL and RT embody small changes in
NLOS. Hence, the CIR signal characteristics can be used to mitigate the ranging errors.

2.2. Implementation of the Fuzzy Inference System
2.2.1. Selection of Structure and Membership Function of the Fuzzy Inference System

In this paper, the Mamdani fuzzy system model [26] shown in Figure 1 was adopted.
Firstly, the RSSI, FPPL and RT characteristic data of the CIR signals collected by the
UWB hardware were converted into fuzzy variables available for fuzzy inference through
fuzzification, and then, the necessary variable of ranging errors was obtained via fuzzy
inference. Finally, the fuzzy variable in the form of discourse domain was transformed by
de-fuzzification into an estimated value of the ranging errors. The deviation probability
distribution of the RSSI, FPPL, RT and ranging errors of CIR signals were basically in line
with the Gaussian distribution. Here, the Gaussian membership function was selected for
inputting the RSSI, FPPL and RT and outputting the ranging errors.

Figure 1. Structure of the fuzzy system for mitigating ranging errors based on the Mamdani model.

2.2.2. Determination of Fuzzy Sets and Fuzzy Rules

In the present study, the commonly used indoor objects, such as iron plates, wooden
boards and the human body, were used as the obstacles to construct the fuzzy sets and fuzzy
rules for the CIR signal characteristics of UWB and the NLOS errors. The experimental
scene of the testing environment is depicted in Figure 2. The experimental processes to
establish the relationship between the CIR signal characteristics of UWB and the ranging
errors in an NLOS environment are set as follows: (1) The base station node was fixed
at a specific position, and the tag node was placed 0.5 m away from the base station;
(2) An obstacle was placed 10 cm away from the base station node to collect the signal
characteristic data 500 times; (3) The distance between the obstacle and the base station
node was increased by 20 cm after each measurement of a group of data, followed by
500 times of signal characteristic data collection; (4) The obstacle was moved in the above-
mentioned method until it could not be placed between the tag node and the base station
node; (5) The distance between the tag node and the base station node was increased by
0.5 m, and the previous procedures were repeated until this distance reached 3 m.
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Figure 2. Specific testing environment.

The experimental scene for exploring the relationship between the CIR signal charac-
teristics of UWB and the ranging errors in the LOS environment was basically consistent
with that in the NLOS environment, except that the former had no obstacles in the middle.
The experimental processes are set below: (1) The base station node was fixed at a specific
position, while the tag node was placed 0.5 m away from it, and the signal characteristic
data were collected 500 times at this position; (2) The position of the tag node was changed
to increase the distance by 0.5 m, the corresponding testing was conducted, and data were
recorded; (3) The previous operation was repeated until the distance between the tag node
and the base station node reached 3 m.

Based on the analysis of the obtained experimental data, the input signal characteristic
RSSI was grouped into five fuzzy sets in this study, represented by “very large”, “large”,
“medium”, “small” and “very small”. The input signal characteristic FPPL was classified
into six fuzzy sets indicated by “very large”, “large”, “medium”, “small”, “very small”
and “extremely small”. The input signal characteristic RT was assigned into five fuzzy sets
expressed by “extremely small”, “very small”, “small”, “medium” and “large”. Moreover,
the output NLOS error was divided into five fuzzy sets presented as “very small”, “small”,
“medium”, “large” and “very large”. In this paper, a total of 25 fuzzy rules were formulated
according to the collected data of the CIR signal characteristics RSSI, FPPL and RT of UWB
and the NLOS errors, as well as the established fuzzy sets, as shown in Table 1.

Table 1. The fuzzy rules based on RSSI, FPPL and RT of UWB.

RSSI FPPL RT Range Error

1 very large very large extremely small very small

2 very large very large very small very small

3 very large large extremely small very small

4 very large large very small very small

5 very large medium extremely small small

6 very large small large small

7 large very large extremely small small
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Table 1. Cont.

RSSI FPPL RT Range Error

8 large large extremely small small

9 large large very small small

10 large medium small small

11 large extremely small small small

12 large very small small small

13 large very small medium medium

14 large medium extremely small medium

15 large medium very small medium

16 medium small small medium

17 medium small medium medium

18 very large medium small large

19 very large small small large

20 large small small large

21 medium very small medium large

22 small small small large

23 small small large large

24 very large very small large very large

25 small very small large very large

3. Adaptive Anti-NLOS Error KF Algorithm
3.1. KF Algorithm

Assuming that the distance between the tag node and the base station node changes
uniformly in a short period, the motion state of the tag node could be expressed as x(k) =
[d(k) v(k)]T , where d(k) represents the distance between the tag node and the base station
at the moment k, and v(k) refers to the speed of the tag node at the moment k. Moreover,
w(k − 1) = [wd(k− 1) wv(k− 1)]T was applied to indicate that the tag is inevitably
disrupted by the process noise during the motion, where wd(k− 1) stands for the process
noise of range at the moment k − 1, and wv(k − 1) is the process noise of speed at the
moment k− 1. Then, the system state can be expressed by Equation (4):{

d(k) = d(k− 1) + v(k− 1)× T + wd(k− 1)
v(k) = v(k− 1) + wv(k− 1)

(4)

where T is the sampling time.
In this way, the KF model of the ranging data filtering was obtained, and Equations (5)

and (6) stood for the state equation and the observation equation, respectively:

xk = Fkxk−1 + wk−1 (5)

zk = Hkxk + vk (6)

where Fk is the state transition matrix, and wk−1 means the process noise at the moment
k− 1, obeying the Gaussian distribution with a mean value of 0 and a variance matrix of
Qk−1. In addition, Hk refers to the observation matrix, and vk represents the observation
noise at the moment k, which complies with the Gaussian distribution with a mean value
of 0 and a variance matrix of Rk.
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Assuming that the estimated state of KF at the moment k− 1 is
^
xk−1, and the observed

value of KF at the moment k is zk, the estimated state
^
xk calculation processes of KF at the

moment k are as follows:

(1) One-step prediction

The estimated state
^
xk−1 of KF at the moment k− 1 was used to predict the state at the

moment k. In other words, the observed value zk−1 at the moment k− 1 was applied to
estimate the linear minimum variance of the actual state xk. Furthermore, the least mean

square error at the moment k− 1 was estimated via
^
xk−1 = E{xk−1/zk−1}, and wk−1 only

affected the value of xk. Therefore, the value of E{wk−1/zk−1} was set to 0 to obtain the
formula for one-step state prediction:

^
xk|k−1 = E{xk/zk−1}

= FkE{xk−1/zk−1}+ E{wk−1/zk−1} = Fk
^
xk−1

(7)

(2) Covariance matrix of estimated errors

Supposing that the value of one-step state prediction is
~
xk|k−1,

^
xk|k−1 means the ob-

served value predicted by substituting
^
xk|k−1 into the observation equation. In the frame-

work of filtering theory, the error between the observed value predicted by
~
zk/k−1 and the

actually observed value is called innovation. After appropriate weighting of
~
zk/k−1,

~
xk|k−1

information was obtained. Thus, the state after correction is estimated as follows:

^
xk =

^
xk/k−1 + Kk(zk −Hk

^
xk/k−1) (8)

where Kk is the KF gain matrix.
The covariance matrix of the one-step prediction error is defined below:

Pk|k−1 = E
{

~
xk|k−1

~
x

T
k|k−1

}
(9)

With the known condition of E
{

vkvT
k
}
= Rk, where Rk indicates the variance of the

observation noise, the estimated error was not correlated with the observation noise, that

is, E
{~

xk|k−1vT
k

}
= E

{
vk

~
x

T
k|k−1

}
= 0, which was substituted into Equation (9):

Pk = (I−KkHk)Pk|k−1(I−KkHk)
T + KkRkKT (10)

Through the analysis of the recursion formula from Pk−1 to Pk|k−1, the estimated error
at the moment k− 1 and the process noise at current moment k were not correlated either,
namely, E

{~
xk−1wT

k

}
= 0, so the covariance matrix of the one-step prediction error was

acquired by substituting the formula into Equation (9):

Pk|k−1 = FkPk−1Fk
T + Qk−1 (11)

(3) Gain matrix Kk

To minimize the estimated error covariance Pk, the smallest trace of the matrix is
usually adopted, that is

∂

∂Kk
tr(Pk) = 0 (12)

Equation (10) was substituted into Equation (12) to form the KF gain matrix:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

(13)
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Then, Equation (13) was substituted into Equation (10) to simplify the covariance
matrix of the estimated error:

Pk = (I−KkHk)Pk|k−1 (14)

3.2. Anti-NLOS KF Algorithm and Its Improvement

In actual UWB positioning, the measured range can be easily affected by the NLOS
and multi-path effects, thus inducing abnormal points and leading to poor filtering perfor-
mance, deviations and even converge failure. An anti-NLOS KF algorithm proposed in the
literature [26] mainly compares the triple innovation variance with innovation to determine
the existence of NLOS errors. If there are NLOS errors, they will be decreased by zooming
in the innovation at a fixed ratio. The anti-NLOS KF algorithm is mainly illustrated below:

Assuming the innovation ∆k and its variance matrix Dk at the moment k are expressed
as Equation (15) and (16), respectively:

∆k = zk −Hk
^
xk/k−1 (15)

Dk = E
{

∆k∆k
T
}
= HkPk/k−1HT

k + Rk (16)

According to the triple variance theory and combined with Equations (15) and (16), a
method to determine whether a measured value is affected by NLOS can be obtained in
Equation (17): ∣∣∣∆i

k

∣∣∣ ≤ 3
√

Di
k (17)

where Di
k is the element i on the diagonal of matrix Dk, and ∆i

k stands for the element i of
∆k. If Equation (17) was not met, Equation (18) would be used to correct its innovation:

∆i
k = α∆i

k, α ∈ [0, 1] (18)

where α is the correction factor of innovation.
It can be seen from the above algorithm that the inhibitory effect of the KF algorithm

on the NLOS errors is mainly determined by the fixed correction factor of innovation. In an
actual UWB mobile positioning scene, the NLOS changes. Hence, the fixed value of α has a
limited inhibitory effect on the NLOS errors.

Based on the literature [27], an adaptive anti-NLOS KF algorithm was proposed in this
paper, where the value of α was automatically adjusted as per the changes in the difference
between innovation and innovation variance, so as to further improve the anti-NLOS error
effect. The automatic adjustment method for α designed in this paper is expressed in
Equation (19): α = 1− (∆i

k/(3
√

Di
k)−1)× b , 3

√
Di

k ≤ ∆i
k ≤ 6

√
Di

k

α = 1− b , ∆i
k > 6

√
Di

k

(19)

where b is the maximum down-scaling ratio of the correction factor α, ranging from 0 to
1. This factor should not be too small. Otherwise, a large amount of information at the
current moment will be lost, eventually remarkably lowering the filtering accuracy. As a
result, several experiments are needed for adjustment when setting the value of b.

In the scene of UWB mobile positioning, the innovation changed as the influence
of NLOS on ranging data was increased or decreased, and α, used to reduce innovation
multiplication, varied between 1 − b and 1, thus achieving the anti-NLOS error effect
through adaptive adjustment. The flow chart of the adaptive anti-NLOS KF algorithm is
displayed in Figure 3.
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Figure 3. Flow chart of the adaptive anti-NLOS KF algorithm.

4. Positioning Algorithm Based on Fuzzy Inference and Adaptive Anti-NLOS KF
4.1. Adaptive Anti-NLOS KF Positioning Algorithm

The LS positioning algorithm has a small influence on the NLOS errors and strong
robustness. In this paper, the adaptive anti-NLOS KF was combined with LS positioning,
and an adaptive anti-NLOS KF positioning algorithm was proposed. In this algorithm,
the adaptive anti-NLOS KF was first performed on the original ranging data to eliminate
the NLOS errors therein. Then, the filtered ranging data were substituted into the LS
positioning algorithm for the final estimation of the tag position. The flow chart of the
adaptive anti-NLOS KF positioning algorithm is shown in Figure 4.

Figure 4. Flow chart of the adaptive anti-NLOS KF positioning algorithm.
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4.2. Positioning Algorithm Combining Fuzzy Inference with Adaptive Anti-NLOS KF

The positioning algorithm based on fuzzy inference can estimate the NLOS ranging
errors through the CIR signal characteristics, thereby improving the positioning accuracy.
In the ranging error mitigation method for CIR signal characteristics based on fuzzy
inference, however, the fuzzy rules are established by virtue of the data collected in a
specific experimental environment, which fails to cover all situations in actual positioning.
Additionally, when a fuzzy rule is established based on the data of one sampling point,
the fuzzy estimation effect based on the data of other sampling points will be degraded,
which usually cannot be altered by the supplementation or deletion of fuzzy rules. In
contrast, the adaptive anti-NLOS KF positioning algorithm is able to identify the NLOS
errors by comparing innovation with its variance and automatically adjusting the value of
the correction factor of innovation on the basis of the changes in the difference between
the innovation and its variance, thereby mitigating the NLOS errors. Nevertheless, the
positioning accuracy of the adaptive anti-NLOS KF algorithm tends to decrease with the
increasing influence of NLOS errors.

Based on the advantages and disadvantages of the two algorithms mentioned above,
a positioning algorithm integrating fuzzy inference and adaptive anti-NLOS KF was put
forward in this paper. The ranging error was estimated with fuzzy inference performed
on the RSSI, FPPL and RT characteristics of the CIR signals collected during each range.
Afterward, the collected original ranging data minus the ranging error obtained through
fuzzification were regarded as the range data after fuzzy inference, which was subsequently
substituted into the adaptive anti-NLOS KF algorithm as the observation value to obtain
the final distance estimate. Last but not least, the final estimated range information was
input into the LS positioning algorithm, so as to complete the position estimation of the tag
nodes. The positioning algorithm combining fuzzy inference with adaptive anti-NLOS KF
is illustrated in Figure 5.

Figure 5. Flow chart of the positioning algorithm combining fuzzy inference with adaptive anti-NLOS KF.
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5. Experimental Results and Analyses
5.1. Architecture of the Positioning Experiment System

The positioning experiment system designed in this paper consisted of a UWB po-
sitioning system and a host computer system. The UWB positioning system had four
DWM1000 UWB positioning node modules manufactured by Big Bear Electric Technology
Co., Ltd. (Guangzhou, China), as well as a moving vehicle. With STM32F103 as the master
control, the DWM1000 modules supported serial communication and multi-tag positioning.
The moving vehicle, controlled by an STM32 single-chip microcomputer, supported PS2
remote control, PID speed control and tracking. The measuring distance of the system
equipment was about 10 m. The working procedure of the positioning experiment system
is described below. The tag node initiated ranging communication in each base station,
and then, the ranging data and the corresponding CIR signal characteristic data obtained
from each base station were sent to the primary base station. Later, the primary base station
gathered the data from all base stations and transmitted them to the host computer via
the serial port. After that, data analysis and processing were conducted using the host
computer system programed by the QT software, and the processed data were substituted
into the designed algorithm modules to obtain highly accurate positioning data, which
were eventually displayed on the interface in real time.

In this paper, static and dynamic positioning experiments were carried out in an actual
NLOS environment to compare the positioning algorithm for NLOS error mitigation based
on fuzzy inference, the adaptive anti-NLOS KF positioning algorithm and the positioning
algorithm combining fuzzy inference with adaptive anti-NLOS KF, so as to verify the
performance of the UWB positioning algorithm proposed.

5.2. Static Positioning Experiment

The static positioning experiment was performed in a rectangular region with a length
of 200 cm and a width of 300 cm in the laboratory (Figure 6). The three base station nodes,
numbered A1, A2 and A3 in a sequence, were placed at three corners of the rectangular
region, corresponding to the coordinates (0, 0), (200, 0) and (0, 300), respectively. The iron
plate obstacle was placed at (0, 68) and the wooden board obstacle at (0, 270). Finally, the
tag nodes were placed sequentially at (50, 150), (50, 175), (50, 200), (75, 200) and (100, 200)
for positioning testing.

Figure 6. Environment of the static positioning experiment.
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The settings of parameters of the positioning algorithm based on fuzzy inference and
adaptive anti-NLOS KF and the adaptive anti-NLOS KF positioning algorithm are shown
below [28]:

Q =

[
4 0
0 0.4

]
, R = 10, T = 0.5, b = 0.25

Q is the process noise matrix, R is the observation noise matrix, T is the sampling time,
b is the maximum reduction in the correction factor.

The positioning experiment system performed positioning every 0.5 s and closed
the serial port whenever over 600 pieces of positioning data were collected. Then, the
position of the tag nodes was adjusted for the positioning experiment at the next position
until tests at all positioning points were completed. The static positioning data at the five
testing points were analyzed to obtain the corresponding RMS errors (RMSEs) of the three
algorithms (Table 2).

Table 2. RMSEs of static positioning under NLOS conditions.

Positioning Algorithm (50, 150) (50, 175) (50, 200) (75, 200) (100, 200)

Adaptive Anti-NLOS KF
Positioning Algorithm 21.5767 29.6724 28.3351 12.8494 29.5745

Fuzzy Inference
Algorithm 15.5637 19.4664 28.5161 14.5265 16.7417

Positioning Algorithm
Combining Fuzzy

Inference with Adaptive
Anti-NLOS KF

14.8205 19.1152 25.2317 12.8007 15.1546

As shown in Table 1, in the five positioning tests, the positioning algorithm combining
fuzzy inference with adaptive anti-NLOS KF had the smallest RMSE; the fuzzy inference
algorithm had four RMSEs less than 20 cm; and the adaptive anti-NLOS KF positioning
algorithm had four RMSEs larger than 20 cm.

In order to more intuitively compare the performance of the three algorithms, the
scatter diagram and cumulative distribution function (CDF) diagram were drawn to analyze
the experimental data of the tag node at (50,150) (Figures 7 and 8, respectively).

Figure 7. Scatter diagram of static positioning by three positioning algorithms.
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Figure 8. CDF diagram of the three positioning algorithms.

According to Figure 7, compared with those of the positioning algorithm based on
fuzzy inference, the center of the scatter diagram of the positioning algorithm combining
fuzzy inference with adaptive anti-NLOS KF was closer to the actual coordinate, and the
scatter diagram was more concentrated. Therefore, before the integration of the positioning
algorithm based on fuzzy inference with the adaptive anti-NLOS KF positioning algorithm,
there might be a large deviation between the estimated NLOS error and the actual NLOS
error in some cases, which was significantly improved after the integration. In Figure 8, the
probability of producing an error range of less than 19.1 cm by the positioning algorithm
combining fuzzy inference with adaptive anti-NLOS KF was 0.93; that of the positioning
algorithm based on fuzzy inference was 0.83; and that of the adaptive anti-NLOS KF
positioning algorithm was only 0.06.

5.3. Dynamic Positioning Experiment

For better dynamic positioning testing, vehicle tracking was used for the experiment
in this paper. The parameters of the three algorithms were the same as those in the previous
static experiment. The environment of the dynamic positioning experiment is exhibited in
Figure 9. The black line was paved according to the preset trajectory, starting at (50, 50) and
ending at (150, 249.7). The tag nodes were placed on a 4 cm high vehicle. Then, the actual

measured distance between the UWB tag and UWB was calculated as d =
√

d2
c − (4)2,

where dc is the measured distance. Next, the vehicle was located at (50, 50), and the
primary base station node was connected with the hose computer. In the end, two iron
plate obstacles were placed at (11, 35) and (64, 240), respectively, and the wooden board
obstacle was at (155, 75).

The vehicle moved at a constant speed along the black line in the experimental field,
during which the system performed positioning once every 0.5 s, and data collection was
stopped when the vehicle arrived at the endpoint. The dynamic positioning data were
then analyzed to obtain the positioning trajectories of the three algorithms (Figure 10). The
RMSE curves of the positioning trajectories are given in Figure 11, and the RMSEs of the
three algorithms in X direction, Y direction and overall positioning are listed in Table 3.

According to Figures 10 and 11, the positioning trajectory of the positioning algorithm
combining fuzzy inference with adaptive anti-NLOS KF was closer to the target trajectory in
the second half, and its positioning RMSE was lower than that of the other two algorithms
at most moments. These findings revealed that the combination of historical information
and characteristic information of the CIR signals could better mitigate the NLOS errors.

It was manifested in Table 2 that the positioning accuracy of the positioning algorithm
combining fuzzy inference with adaptive anti-NLOS KF was improved to varying degrees
in comparison with that of the other two algorithms. In contrast with those of the adaptive
anti-NLOS KF positioning algorithm, the RMSE was reduced by 48.83% in the X direction,
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38.37% in the Y direction and 43.31% in overall positioning. Furthermore, compared with
those of the positioning algorithm based on fuzzy inference, the RMSEs in the X direction, Y
direction and overall positioning were lowered by 24.54%, 12.89% and 12.89%, respectively.

Figure 9. Environment of the dynamic positioning experiment.

Figure 10. Positioning trajectories of the three algorithms.
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Figure 11. RMSE curves of the positioning trajectories.

Table 3. Mobile positioning of RMSEs in NLOS conditions.

Positioning Algorithm X Direction RMSE
(cm)

Y Direction RMSE
(cm)

Overall Positioning
RMSE (cm)

Adaptive Anti-NLOS KF
Positioning Algorithm 29.6038 29.8749 42.0582

Fuzzy Inference
Algorithm 20.0713 21.1351 29.1471

Positioning Algorithm
Combining Fuzzy

Inference with Adaptive
Anti-NLOS KF

15.1454 18.4096 23.8390

6. Conclusions

(1) In terms of the decreased positioning accuracy caused by the changes in NLOS
errors due to UWB mobile node positioning, a UWB node positioning algorithm
combining fuzzy inference with adaptive anti-NLOS KF was proposed in this paper.
It classified the CIR signal characteristics by establishing fuzzy rules, adjusted the
innovation value based on the change in the difference between the innovation and
its variance in the KF algorithm, recognized and mitigated the NLOS errors and
substituted the positioning estimation data into the LS positioning algorithm for node
position estimation.

(2) Static and dynamic experiments were conducted to verify the positioning algorithm
based on fuzzy inference, the adaptive anti-NLOS KF positioning algorithm and the
positioning algorithm combining fuzzy inference with adaptive anti-NLOS KF. In
the static positioning experiment, the probability of producing an error range of less
than 19.1 cm by the positioning algorithm combining fuzzy inference with adaptive
anti-NLOS KF was 0.93, which was much better than the positioning algorithm
based on fuzzy inference and the adaptive anti-NLOS KF positioning algorithm.
In the dynamic positioning experiment, compared with the adaptive anti-NLOS
KF positioning algorithm, the RMSE was reduced by 43.31% in overall positioning.
Furthermore, compared with those of the positioning algorithm based on fuzzy
inference, the RMSEs in overall positioning were lowered by 12.89%. The experimental
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results demonstrated that the static positioning estimation and dynamic positioning
trajectory of the positioning algorithm combining fuzzy inference with adaptive anti-
NLOS KF were closer to the actual node position, the positioning performance was
significantly improved, and the positioning accuracy was increased.

(3) Because only three CIR signal characteristics (FPPL, RSSI and RT) were selected, the
positioning accuracy of the positioning algorithm based on fuzzy inference might
occasionally be significantly reduced. In the future, more CIR signal characteristics can
be considered to improve the estimation accuracy of NLOS errors, thereby improving
the positioning accuracy.
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