

Abstract— DEVS is a sound formal modeling and
simulation (M&S) framework based on generic dynamic
system concepts. Cell-DEVS is a formalism for cell-shaped
models based on DEVS. This work presents a new
simulation technique for execution of DEVS and Cell-
DEVS models in parallel environments. These techniques
are modifications to the original Time Warp mechanism
offered by WARPED kernel. Time Warp functionalities
are revised to include two new algorithms namely, Local
Rollback Frequency Model (LRFM) and Global Rollback
Frequency Model (GRFM). The resultant simulator is
used as new simulation engine for CD++, a M&S toolkit
that implements DEVS and Cell-DEVS theories. The
results obtained allowed us to achieve considerable
speedups due to the reductions that LRFM and GRFM
protocols perform on number of rollbacks and anti-
messages.

Index Terms— Cellular Automata, Parallel Simulator,
Cell-DEVS, Optimistic Simulator.

I. INTRODUCTION

ODELING and simulation (M&S) methodologies have
become crucial for implementing, designing, and

analyzing a broad verity of systems. Among the existing
simulation techniques, DEVS (Discrete Event System
Specification) formalism [Zei00] provides a discrete-event
M&S approach which allows construction of hierarchical
models in a modular manner. DEVS is a sound formal
framework based on generic dynamic systems concepts that
allows model reuse, and reduction in development and testing
time due to its hierarchical approach in constructing models.
Cell-DEVS [Wai01] is an extension to DEVS which
integrates DEVS and cellular automata by presenting each
cell as an atomic DEVS model. Cell-DEVS introduced a
novel mechanism for computation based on asynchronous
cellular models with explicit timing constructions. The
technique has been used to develop a wide variety of models
in different field, ranging from environmental sciences,
traffic, biology and physics.

When large complex models are defined, the computing
power of a single computer. In these cases, a parallel
simulator can improve execution times. Here, we present new
techniques for executing DEVS and Cell-DEVS models in

parallel and distributed environments based on the WARPED
kernel [Mar99], an implementation of the Time Warp
protocol [Jef85]. Our optimistic simulator, called as PCD++,
is built as a new simulation engine for CD++ [Wai02], a
M&S toolkit that implements the DEVS and Cell-DEVS
formalisms. Algorithms in CD++ and the WARPED kernel are
redesigned based on Near Perfect State Information technique
to carry out optimistic simulations using a non-hierarchical
approach that reduces the communication overhead. Two new
algorithms namely, Local Rollback Frequency Model (LRFM)
and Global Rollback Frequency Model (GRFM) have been
implemented and used by our PCD++ simulator. These two
algorithms have been tested using different Cell-DEVS
models. Here we present an evacuation model of a ship and a
model of the Synapsin-Vesicle reaction in neurons.

II. BACKGROUND

DEVS [Zei00] is a formalism for modeling and simulation of
DEDS (Discrete Events Dynamic Systems) which provides a
framework for the definition of hierarchical models in a
modular way by decomposing the real system into behavioral
(atomic) and structural (coupled) components. DEVS theory
provides a rigorous methodology for representing models, and
it does present an abstract way of thinking about the world
with independence of the simulation mechanisms, underlying
hardware and middleware. A DEVS atomic model is formally
defined by:

M = <X, Y, S, dint, dext, ?, ta>,
where
X = {(p,v) | p ∈ IPorts, v ∈ Xp}
 is the set of input ports and values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp}
 is the set of output ports and values;
S is the set of sequential states;
dint: S → S is the internal state transition
function;
dext: Q × X →S is the external state transition
function, where
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the
time elapsed since the last state transition;
?: S →Y is the output function;

ta: S → R+
0,∞ is the time advance function.

An Environment for Advanced Parallel
Simulation of Cellular Models

Shafagh Jafer Gabriel A. Wainer

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6 Canada
(phone: 613-520-2600 x 1957; e-mail: {sjafer,gwainer@sce.carleton.ca}).

M

The semantics for this definition is given as follows. At any
time, a DEVS coupled model is in a state s ∈ S. In the
absence of external events, the model will stay in this state for
the duration specified by ta(s). When the elapsed time e =
ta(s), the state duration expires and the atomic model will
send the output λ(s) and performs an internal transition to a
new state specified by δint(s). Transitions that occur due to the
expiration of ta(s) are called internal transitions. However,
state transition can also happen due to arrival of an external
event which will place the model into a new state specified by
δext(s,e,x); where s is the current state, e is the elapsed time,
and x is the input value. The time advance function ta(s) can
take any real value from 0 to ∞. A state with ta(s) value of
zero is called transient state, and on the other hand, if ta(s) is
equal to ∞ the state is said to be passive, in which the system
will remain in this state until receiving and external event.

A DEVS coupled model is composed of several atomic or
coupled submodels, which is formally defined by:

CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>,
where
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and
values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and
values;
D is the set of the component names, and the following
requirements are imposed on the components, which must also be
DEVS models:
For each d ∈ D, Md = (Xd, Yd, Sd, dint, dext, ?, ta) is a DEVS with
Xd = {(p,v) | p ∈IPortsd, v∈Xp},
 and Yd = {(p,v) | p ∈ OPortsd, v∈ Yp}.
The component couplings are subject to the following
requirements:
External input coupling (EIC) connects external inputs to
component inputs,
EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D, ipd∈IPortsd};
External output coupling (EOC) connects component outputs to
external outputs,
EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd};
Internal coupling (IC) connects component outputs to component
inputs,
IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, ipb∈IPortsb};
Select: 2D - {} ? D is the tie-breaking function for imminent
components.

Due to the closure property, a coupled model is regarded
as a new DEVS model [Zei00]. This property clarifies that
the overall behavior of a coupled model is equivalent to a
basic atomic model, and therefore allows hierarchical model
construction.

Cell-DEVS [Wai01] is an extension to DEVS which
integrates DEVS and cellular automata by presenting each
cell as an atomic DEVS model. Two types of timing delays
can be used, namely transport and inertial [Wai00]. When
transport delay is used, the future value is added to queue
sorted by output time, allowing the previous values that were
scheduled for output but have not yet been sent to be kept. On
the other hand, inertial delays allow a preemptive policy at

which any previous scheduled output value will be deleted
and the new value will be scheduled. Cell-DEVS formalism is
defined by:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >
where
 X is a set of external input events;
 Y is a set of external output events;

I represents the model's modular interface;
S is the set of sequential states for the cell;
θ is the cell state definition;
N is the set of states for the input events;
d is the delay for the cell;
δint is the internal transition function;
δext is the external transition function;
τ is the local computation function;
λ is the output function; and
D is the state's duration function.

By integrating atomic Cell-DEVS, coupled models can be
constructed representing the cell space. A coupled Cell-DEVS
model is formally defined as follows:
GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

where
Xlist is the input coupling list;
Ylist is the output coupling list;
I represents the definition of the model’s

interface;
 X is the set of external input events;

Y is the set of external output events;
n is the dimension of the cell space;
{t1,...,tn} is the number of cells in each of the

dimensions;
N is the neighborhood set;
C is the cell space;
B is the set of border cells;
Z is the translation function; and

select is the tie-breaking function for
simultaneous events.

 The above formalism explains that a coupled model is
composed of an array of atomic cells with given size and
dimensions where each cell is connected through standard
DEVS input/output ports to the cells defined in the
neighborhood. Since the cell space is finite, the borders of
the cells are either connected to a different neighborhood than
the rest of the space, or they are “wrapped” in which they are
connected to those in the opposite one using the inverse
neighborhood relationship. However, border cells have a
different behavior due to their particular locations, which
result in a non-uniform neighborhood. A Cell-DEVS coupled
model is informally presented in Figure 1.

Figure 1. Description of a Cell-DEVS atomic model[Wai00]

CD++ [Wai02] is a modeling tool that implements the DEVS
and Cell-DEVS theories by applying the original formalisms.
The toolkit includes facilities to build DEVS and Cell-DEVS
models. CD++ toolkit also includes an interpreter for Cell-
DEVS models [Wai00]. The language is based on the formal
specifications of Cell-DEVS. The model specification
includes the definition of the size and dimension of the cell
space, the shape of the neighborhood and the type of cell’s
bordering. The cell’s local computing function is defined
using a set of rules with the form POSTCONDITION
DELAY
{ PRECONDITION }. These indicate that when the
PRECONDITION is met, the state of the cell will change to
the designated POSTCONDITION after the duration specified
by DELAY. If the precondition is not met, then the next rule
is evaluated until a rule is satisfied or there are no more rules.
The next section will present two Cell-DEVS models
generated with CD++ toolkit.

In parallel and distributed environments the entire task of
simulation is divided among the processors or nodes (Logical
Process (LP)) and therefore each one of them handles a
smaller chunk of the simulation while the whole process of
execution takes place in parallel and as a result in a
significantly reduced time. In sequential simulations, events
are executed base on timestamp order, therefore the
correctness of the result is automatically guaranteed. In
contrast, parallel and distributed simulations require a
mechanism to ensure that the result of concurrent execution
is identical to that of sequential one. To obtain this
correctness, Local Causality Constraint [Fuj00] must be
satisfied. This requirement is said to be met if and only if
each process executes events in non-decreasing timestamp
order. Therefore, synchronization among LPs is the most
challenging problem of parallel and distributed simulation.
There exist three different types of synchronization strategies
for event driven simulations:

1. No synchronization at all: synchronization is
ensured by the application.

2. Pessimistic (conservative) synchronization [Bry77]:
causality violations are strictly avoided.

3. Optimistic synchronization [Jef85]: causality errors
are fixed by the notion of rollbacks.

Conservative parallel discrete event simulation: This

synchronization approach disallows any occurrence of
causality errors. The essential for this technique is the

lookahead which provides the smallest time stamp of the new
events that a process can schedule in the future. Null
messages are responsible to carry out the lookahead
information among LPs. This way each LP, based on the
lookahead information that it receives from all other LPs can
derive a lower bound on the time stamp (LBTS) of the events
that it will receive in future. As a result, the LP would know
which event is safe to process. The biggest drawback of the
conservative synchronization approach is the time wasting
flow of null messages which degrade the simulation
performance significantly. Having the fact that optimistic
approaches lack in terms of causality errors avoidance,
however, they offer two important advantages over
conservative techniques:

1. Optimistic approaches have a higher degree of
parallelism unlike the conservative approaches
where they are overly pessimistic and force the
simulation to behave sequentially when in is not
necessary.

2. Conservative approaches rely very much on
application-specific information when making run-
time decisions on whether it is safe to process the
event or not. But optimistic mechanism are less
reliant on the application for correct execution,
therefore allow a simplified software development
and more transparent synchronization.

Optimistic parallel discrete event simulation: In this

technique which was first proposed by Jefferson’s Time Warp
mechanism [Jef85], each LP has a Local Virtual Time (LVT)
which advances every discrete step as events are executed on
the process. Therefore, time warp processes execute their own
portion of the simulation based on LP’s LVT. Since every LP
has its own LVT, causality errors occur when LPs send
messages to each other. This way, an LP may receive a
message with time stamp smaller than its current LVT. Such
events are referred to as straggler events. Once a straggler
event is received the process will rollback. Rollback is the
operation performed upon reception of a straggler event,
where the process recovers from the causality error by
undoing the effects of all the events that were processed and
had timestamp greater than the time stamp of the straggler
event. Therefore, these messages were falsely sent to other
processes and now must be canceled. This cancellation is
performed by sending anti-messages. The anti-message has
exactly the same format as the original message (the positive
message) except for a negative flag to indicate it is an anti-
message.

Our PCD++ optimistic simulator implements the Parallel
DEVS and Cell-DEVS formalisms and provides the frame
work for building and executing DEVS and Cell-DEVS
models in distributed environments using the Time Warp
protocol. PCD++ implements a flattened structure for the
simulation framework. Two types of CD++ processors exist
on PCD++: Flat Coordinator (FC) and Node Coordinator
(NC). This approach reduces the communication overhead by
flattening the structure of the simulation framework.

UU (-2,0)

U (-1,0)

(0,0)

D (1,0)

UL (-1, -1)

L (0, -1)

DL (1, -1) DR (1, 1)

R (0, 1) RR (0, 2)

UR (-1, 1)

III. SHIP EVACUATION MODEL

The first Cell-DEVS model we represent here is the
illustration of an emergency ship evacuation scenario
[Klu01]. The model consists of 20×20 cell space in CD++.
The rules defining the model are based on the following
restrictions:

1. Each cell representing a person on the ship,
calculates its shortest path toward the exit. During
initialization phase, people are placed randomly in
any empty cell to imitate real ship evacuation
scenario.

2. People run in their initial direction until they
encounter another person or an obstacle (e.g. wall).

At the end of simulation, there should be no one left on the
ship, i.e. all people must have been left through the exit
doors.
The neighborhood of each cell consists of 10 cells which will
affect the cell’s movement (i.e. they can be walls, exit doors,
people, or empty cells) as shown in Figure 2.

Figure 2. Cell neighborhood
From the above figure we can see that the neighborhood
consists of 11 cells: {(-2,0), (-1,-1), (-1,0), (-1,1), (0,-1), (0,0),
(0, 1), (0, 2), (1, -1), (1,0), (1, 1)} where UU is the upper’s
upper cell, UL is the upper’s left cell, U is the upper cell, UR
is the upper’s right cell, L is the left cell, R is the right cell,
RR is the right’s right cell, DL is the down’s left cell, D is the
down cell and DR is the down’s right cell. Each value on the
cell space defines a distinct state, such as the type of the cell:
wall, empty, exit door, a moving person. Also each type of
movement is given a state value in order to identify the next
position of the person. Table 1 summarizes these values.

Name Value Comments
N/A 0 Unknown Empty cell.
Wall 1 Represents an obstacle or a wall.
Exit 2 Represents an exit (e.g. stairs, door).
ED 3 Empty cell and its down (D) cell is the

shortest path to the nearest exit.
ER 5 Empty cell and its right (R) cell is the

shortest path to the nearest exit.
EU 7 Empty cell and its up (U) cell is the

shortest path to the nearest exit.
EL 9 Empty cell and its left (L) cell is the

shortest path to the nearest exit.
FD 4 A Full cell (cell with person) and its

down (D) cell is the shortest path to the
nearest exit.

FR 6 A Full cell (cell with person) and its
right (R) cell is the shortest path to the

Name Value Comments
nearest exit.

FU 8 A Full cell (cell with person) and its up
(U) cell is the shortest path to the
nearest exit.

FL 10 A Full cell (cell with person) and its left
(L) cell is the shortest path to the
nearest exit.

Table 1. State values and their description

Based on these values, we define different rules for the
movement of people in the vessel. The first four rules
initialize the model by calculating the shortest path for each
undefined cell and placing people on the cell space randomly.

Result Precondition

3 or 4 (ED or FD) (0,0) = Undefined and (1,0) is defined.

5 or 6 (ER or FR) (0,0) = Undefined and (0,1) is defined.

7 or 8 (EU or FU) (0,0) = Undefined and (-1,0) is
defined.

9 or 10 (EL or FL) (0,0) = Undefined and (0, -1) is
defined.

The algorithm works as follows: when a cell detects that one
of its attached cells has changed its state to “defined”, it
would know that the attached cell is the shortest path.The
above four rules are implemented as the following:

rule: {3+randInt(1)} 0 {(0,0)=0 and (1,0)>1 and
(1,0)<11}
rule: {5+randInt(1)} 0 {(0,0)=0 and (0,1)>1 and
(0,1)<11}
rule: {7+randInt(1)} 0 {(0,0)=0 and (-1,0)>1 and
(-1,0)<11}
rule: {9+randInt(1)} 0 {(0,0)=0 and (0,-1)>1 and
(0,-1)<11}

Then the second four rules define the case when a cell
knows that a person will move towards it. The cell knows it
will soon be occupied by a person if it is empty and it is the
shortest path to at least one cell with a person occupying it.

Result Precondition
 4
? FD state

(0,0) = ED and ((0,1) = FL or (-1,0) =
FD or (0,-1) = FR)

6
? FR state

(0,0) = ER and ((1,0) = FU or (-1,0) =
FD or (0,-1) = FR)

8
? FU state

(0,0) = EU and ((1,0) = FU or (0,1) =
FL or (0,-1) = FR)

10
? FL state

(0,0) = EL and ((1,0) = FU or (0,1) = FL
or (-1,0) = FD)

The third four rules define when a cell occupied with a

person is attached to the exit. Then, the cell knows that a
person will leave it and exit.

Result Precondition
 3? ED state (0,0) = FD and (1,0) is exit
5? ER state (0,0) = FR and (0,1) is exit
7? EU state (0,0) = FU and (-1,0) is exit
9? EL state (0,0) = FL and (0,-1) is exit

Then the fourth four rules define when a cell knows that

a person will leave it when it is not near an exit. The cell
knows that a person will leave it when it is already occupied
by a person and its shortest path cell is empty. However, only
one person can move to the empty cell when more than one
person is trying to move to the same cell. In this case, the
priority is first with the person who is in the upper cell,
second the one in the right cell, third the one in the down
cell, and finally the one in the left cell has the lowest priority.

Result Precondition
 3? ED state (0,0) = FD and down (D) cell is empty.
5? ER state (0,0) = FR and right cell (R) is empty and

UR,RR, and DR cells don’t have a person
moving to R.

7? EU state (0,0) = FU and upper cell (U) is empty and
UU and UR cells don’t have a person moving
to U.

9? EL state (0,0) = FL and left cell (L) is empty and UL
doesn’t have a person moving to L.

Finally if none of the rules are evaluated, the following
rule which serves as a default case, will evaluate. A cell
executing this line will remain unchanged and stay as before.

rule : {(0,0)} 100 { t }
Figure 3 shows an extract of the model’s definition in CD++.

[top]
components : ship

[ship]
type : cell dim : (20,20) delay : transport
defaultDelayTime : 20 border : nowrapped

neighbors : (-2,0) (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,0) (0,1) (0,2) (1,-1) (1,0) (1,1)
…
localtransition : ship-rule
[ship-rule]
rule : {3 + randInt(1)} 0 {(0,0)=0 and (1,0)>1 and
(1,0)<11}
…
rule : 4 100 {(0,0)=3 and ((0,1)=10or(-1,0)=4 or
(0,-1)=6)}
…
rule : 3 100 { (0,0) = 4 and (1,0) = 2}
…
rule : 3 100 { (0,0) = 4 and odd((1,0)) }
…
rule : {(0,0)} 100 { t }

Figure 3. Definition of ship evacuation model in CD++

The ship evacuation model can be modified by adding

more exit doors or changing the position of these cells. As
presented in Figure 4 initially four different types of cells
appear on the grid: empty spaces, walls, people, and exit
doors, while the final result of the simulation shows no
presence of people, i.e. the ship is evacuated.

Figure 4. Model Execution Results; initial values; final

execution

IV. SYNAPSIN-VESICLE REACTION MODEL

The second model we built was the reserve pool of
synaptic vesicles in a presynaptic nerve terminal, predicting
the number of synaptic vesicles released from the reserve pool
as a function of time under the influence of action
potentials at differing frequencies. Time series amounts for
the components are obtained using rule-based methods (the
rules defined by Cell-DEVS) [ALA07].

Synapsin is a neuron-specific phosphoprotein that binds to
small synaptic vesicles and actin filaments in a
phosphorylation-dependent pattern. Microscopic models have
demonstrated that synapsin inhibits neurotransmitter release
either by forming a cage around synaptic vesicles (cage
model) or by anchoring them to the F-actin cytoskeleton of
the nerve terminal [Fab90].

We modeled the molecular interaction of synapsin (S)
with vesicles (V) which occur inside a nerve cell. The model
describes the behavior of synapsin movements until reaching
a vesicle and binding to it. Once binding has occurred,
depending on offrate V and S can again go apart and break
their bindings. The onrate and offrate describe how often
bindings occur or break then after. The following formula
describes the nature of the reaction:

S + V ? SV
From the above formula, the left hand side of the

equation demonstrates the binding scenario where synapsin
and vesicles perform a bind at a rate specified by onrate,
while the right hand side of the equation illustrates the bind-
break scenario where an synapsin-vesicle at an offrate which
is always smaller than onrate breaks apart and again synapsin

and vesicles get released. Then, synapsin and vesicles can
again perform binding and break apart then after. This
equation shows an on-going process of “binding” and
“breaking apart” which depends on offrate/onrate. The larger
the offrate is, the more bindings get broken apart. Similarly,
the larger the onrate is, the more V-S binds are produced.
Three different scenarios are modeled: 1) V is stationary
(with a fixed position on cell space), and S is mobile, 2) V is
mobile and S is stationary, and 3) V and S are both mobile
(leads to maximum number of total movements and therefore
bindings).

The coupled Cell-DEVS model for this application is
described as follows.
 M=<I,X,Y,Xlist,Ylist,? , N,{m,n}, C, B, Z, select>
Xlist=F Ylist=F ? =9 I=<PX,Py>,with PX={F },Py={F };
N={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1)(1,0)
(1,1)};
X={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};
Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};
m=26; n=22; B={F }; C={Cij/ie [1,26], je [1,22]}
select ={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1),
(1,0), (1,1) };

Z:
Pij Y1 → Pi,j-1 X1
Pij Y2 → Pi+1,j X2
Pij Y3 → Pi,j+1 X3
Pij Y4 → Pi-1,j X4
Pij Y5 → Pij X5

Pi,j+1 Y1 → Pij X1
Pi-1,j Y2 → Pij X2
Pi,j-1 Y3 → Pij X3
Pi+1,j Y4 → Pij X4
Pij Y5 → Pij X5

The cell space, the value 1 was used to represent V, and

the value 2 was used to represent S. The number 0 represents
an empty cell for which a mobile S can occupy. To give
direction to the V (although the model assumes fixed V) or S,
a two digit number was used. For example, the following
represent:

11 “up” moving V
12 “right” moving V
13 “down” moving V
14 “left” moving V

21 “up” moving S
22 “right” moving S
23 “down” moving S
24 “left” moving S

As we can see, Cell-DEVS provides great support for

defining these models, for having independent cell states and
random mobility of cells, provide an excellent environment to
simulate the process of synapsin-vesicles interactions of a
nerve. As mentioned earlier, the model constructed can be
further extended to include the movement of both synapsin
(S) and vesicles (V) as well as defining different off and on
rates. Aside from V-S reactions, the model can also include
Actins, which bind to synapsins. Actins can be represented as
a string of cells being fixed at their cell space position. A
summarized version of the model’s definition in CD++ is
as follows:

[top]
components : chemCell

[chemCell]

type : cell dim : (26,22) delay : transport
defaultDelayTime : 100 border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1)
neighbors : (1,-1) (1,0) (1,1)
localtransition : chemCell-rule

[chemCell-rule]
rule : {round(uniform(11,14))} 100 { (0,0) = 1 }
…
rule : {round(uniform(31,34))} 100 {((0,0)=21 or
(0,0)=22 or (0,0)=23 or (0,0)=24) and(((-1,0)-10=1
or (-1,0)-10=2 or…}
…
%moving up
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and
(1,0)=91 }
…
%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or
(0,0)=32 or
(0,0)=31 or (0,0)=34) and random < 0.10}
…
rule : { (0, 0) } 100 { t}

Figure 5. Synapsin-Vesicle Reaction model in CD++

 In the following code, we explain in details each part of

the model definition.

initialrowvalue : 0 0010201202201012020100
initialrowvalue : 1 0001020120101020120100
initialrowvalue : 2 0000000000000000000000
initialrowvalue : 3 0010112010120220220100
initialrowvalue : 4 0002010001120220111200

...
initialrowvalue : 25 0001202020111202201000

...

rule : {round(uniform(11,14))} 100 { (0,0) = 1 }
rule : {round(uniform(21,24))} 100 { (0,0) = 2 }

In the above two rules, the cells are first initialized with

11-14 (for Vesicles) and 21-24 (for Synapsin) to show the
scenario at time = 0, where bindings have not yet been
performed. Once bindings occur, cells change their values;
11-14 get replaced with 31-34, and 21-24 get replaced with
41-44. Also for Synapsins, four intermediate values 91-94 are
used to represent a moving cell that has not yet being settled
down. Once it settles down its value changes back to 21-24
(depending on its direction of movement) and gets ready to
bind to a vesicle in its neighborhood.

rule : {round(uniform(31,34))} 100 {((0,0)=21 or
(0,0)=22 or (0,0)=23 or (0,0)=24) and
(((-1,0)- 10 = 1 or (-1,0)- 10 = 2 or (-1,0)- 10 =
3 or (-1,0)- 10 =4) or
 ((1,0)- 10 = 1 or (1,0)- 10 = 2 or (1,0)- 10 = 3
or (1,0)- 10 = 4) or
 ((0,-1)- 10 = 1 or (0,-1)- 10 = 2 or (0,-1)- 10 =
3 or (0,-1)- 10 = 4) or
 ((0,1)- 10 = 1 or (0,1)- 10 = 2 or (0,1)- 10 = 3
or (0,1)- 10 = 4) or
 ((-1,1)- 10 = 1 or (-1,1)- 10 = 2 or (-1,1)- 10 =
3 or (-1,1)- 10 = 4) or
 ((1,-1)- 10 = 1 or (1,-1)- 10 = 2 or (1,-1)- 10 =
3 or (1,-1)- 10 = 4) or
 ((1,1)- 10 = 1 or (1,1)- 10 = 2 or (1,1)- 10 = 3
or (1,1)- 10 = 4) or
 ((-1,-1)- 10 = 1 or (-1,-1)- 10 = 2 or (-1,-1)- 10
= 3 or (-1,-1)- 10 = 4)) and random > 0.10}

The above rule describes the following scenario: if there
exists a synapsin having the value 21, 22, 23, or 24 (a
synapsing that can move up/right/down/left) and there is a
vesicle in its neighboring which could be an adjacent cell or a
diagonal cell, then the synapsin (red cells) will move toward
this vesicle and a binding will occur soon, the value of the
synapsin gets changed to 31, 32, 33, or 34 (i.e. 21 changes to
31, 22 changes to 32, 23 changes to 33, and 24 changes to 34)
to represent a synapsin that is bonded to a vesicle.

rule : {round(uniform(41,44))} 100 {((0,0)=11 or
(0,0)=12 or (0,0)=13 or (0,0)=14) and
(((-1,0)- 30 = 1 or (-1,0)- 30 = 2 or (-1,0)- 30 =
3 or (-1,0)- 30 = 4) or
((1,0)- 30 = 1 or (1,0)- 30 = 2 or (1,0)- 30 = 3 or
(1,0)- 30 = 4) or
((0,-1)- 30 = 1 or (0,-1)- 30 = 2 or (0,-1)- 30 = 3
or (0,-1)- 30 = 4) or
((0,1)- 30 = 1 or (0,1)- 30 = 2 or (0,1)- 30 = 3 or
(0,1)- 30 = 4) or
((-1,1)- 30 = 1 or (-1,1)- 30 = 2 or (-1,1)- 30 = 3
or (-1,1)- 30 = 4) or
((1,-1)- 30 = 1 or (1,-1)- 30 = 2 or (1,-1)- 30 = 3
or (1,-1)- 30 = 4) or
((1,1)- 30 = 1 or (1,1)- 30 = 2 or (1,1)- 30 = 3 or
(1,1)- 30 = 4) or
((-1,-1)- 30 = 1 or (-1,-1)- 30 = 2 or (-1,-1)- 30 =
3 or (-1,-1)- 30 = 4)) and random > 0.10}

Similarly, the above rule describes the following: if there

exists a vesicle having the value 11, 12, 13, or 14 (a vesicle
that can move up/right/down/left) and there is a synapsin in
its neighboring which could be an adjacent cell or a diagonal
cell, then since the synapsin will come toward this vesicle and
a binding will occur soon, the value of the vesicle gets
changed to 41, 42, 43, or 44 (i.e. 11 changes to 41, 12
changes to 42, 13 changes to 43, and 14 changes to 44).

For the movement of synapsin the following four rules
are implemented: (each movement is performed in three
steps)

%moving up
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and
(1,0)=91 }
rule : 00 0 {(0,0)=91}

step 1: checking to see if there is an empty cell so the
synapsin can move into it, for example if the synapsin’s
direction is upward (value = 21), then at first we need to
check if there is an empty cell right above it. (91 is used as an
intermediate value to occupy the empty cell)
step 2: once an empty cell is found, it gets occupied by the
synapsin (i.e. the cell’s value changes from 0 to a random
number 21-24).
step 3: the previous position of the synapsin that just moved
to an empty cell gets cleared by setting the value of the cell to
0.

 Same procedure is used for right, left, and down
movement.

%moving right

rule : 92 100 {(0,0)=22 and (0,1)=00 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,-
1)=92}
rule : 00 0 {(0,0)=92}

%moving down
rule : 93 100 {(0,0)=23 and (1,0)=00 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (-
1,0)=93 }
rule : 00 0 {(0,0)=93}

%moving left
rule : 94 100 {(0,0)=24 and (0,-1)=00 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and
(0,1)=94 }
rule : 00 0 {(0,0)=94}

%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or
(0,0)=32 or (0,0)=31 or (0,0)=34) and random < 0.10}

The above rule is used to break the S-V bindings using

an offrate = 0.10. According to this rule, 10% of the bindings
get broken and as a result synapsins get released and will be
given another direction and they will move around until
finding a vesicle and binding to it.

Figure 6 shows the grid at the initial case where S and V
have not yet interacted to perform a bound. Then, Figure 7
will show how bounds are formed and the corresponding cells
change their values to represent the binding.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 24 14 24 23 23 11 13 21 22 12 |
 1| 12 23 13 22 14 12 22 12 23 13 |
 2| |
 3| 12 12 11 23 14 13 21 22 23 22 23 11 |
 4| 23 11 14 11 22 22 23 13 14 14 23 |
 5| |
 6| 12 22 12 23 23 13 22 23 13 13 11 22 |
 7| 13 21 24 23 12 12 22 14 24 13 22 |
 8| 12 22 13 22 23 23 11 13 14 22 13 24 |
 9| |
 10| 12 13 12 13 23 23 11 23 24 11 |
 11| 12 22 24 22 12 13 13 22 24 22 13 |
 12| 13 22 13 24 12 14 24 24 12 22 12 |
 13| 24 13 24 12 13 22 12 24 12 21 14 |
 14| |
 15| 13 22 21 22 12 14 12 13 24 23 13 |
 16| 12 23 11 23 21 22 13 21 14 21 12 13 |
 17| 12 13 12 12 22 21 12 21 22 12 |
 18| |
 19| 14 22 13 22 14 11 23 13 24 13 |
 20| |
 21| 14 23 23 24 11 23 22 23 13 12 13 |
 22| 21 12 24 |
 23| 22 13 |
 24| 12 24 13 22 21 21 12 14 12 22 12 23 |
 25| 12 21 22 23 12 14 12 21 22 23 14 |
 +--+

Figure 6. V and S before binding at Time: 00:00:00:100
(bold boxes represent examples of binding structures)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 32 41 22 32 34 31 44 42 34 31 12 |
 1| 12 32 44 21 42 12 23 42 32 13 |
 2| |
 3| 41 42 41 32 14 42 32 22 33 33 44 |
 4| 32 43 14 41 34 23 13 43 14 32 |
 5| 33 |
 6| 42 33 44 32 31 43 32 21 44 42 42 34 |
 7| 42 31 34 32 41 42 23 42 32 44 31 |
 8| 12 31 41 24 34 33 41 13 43 34 42 31 |
 9| |
 10| 42 44 42 41 23 31 43 32 33 11 |
 11| 41 32 32 33 44 44 13 33 33 33 43 |
 12| 42 31 41 32 42 43 33 32 12 22 12 |
 13| 22 41 32 42 13 34 42 32 44 31 14 |
 14| |
 15| 41 34 32 33 44 42 42 42 34 32 13 |
 16| 44 31 42 31 31 31 42 31 44 33 41 13 |
 17| 12 43 43 42 32 31 44 33 12 |
 18| 24 |
 19| 14 22 13 32 14 42 31 13 33 13 |
 20| |
 21| 43 33 22 44 31 22 13 44 13 |
 22| 23 32 42 32 33 |
 23| 33 41 |
 24| 12 33 43 31 33 33 42 14 42 23 44 34 |
 25| 42 32 34 41 42 42 31 34 21 14 |
 +--+

Figure 7. V and S after binding at Time: 00:00:00:300

 As illustrated on the above figures, the bold boxes show
bindings between synapsin (31-34) and vesicle (41-44). The
first illustration (Figure 6) represents the initial scenario
where synapsins (21-24) and vesicles (11-14) are free and

have not yet performed bindings. Once synapsins walk toward
vesicles, the values of the corresponding cells change to 31-34
(bonded synapsins) and 41-44 (bonded vesicles). It is shown
that vesicles can be surrounded by more than one synapsin,
but each synapsin can bind to only one vesicle at any time.
From the above figure we can see the following possible
binding scenarios:

? corresponds to: V– S

 ? corresponds to: S – V
 |

 S
Several initial parameters were tested in order to see the

running process of cell nerve with different offrate.

V. PARALLEL AND DISTRIBUTED SIMULATION

As was mentioned earlier, P-DEVS and Parallel Cell-
DEVS extend the standard formalisms of their type to allow a
higher degree of parallelism in parallel and distributed
environments. In our research, we have modified CD++
sequential simulator to enable parallel and distributed
simulations by implementing optimistic synchronization
protocol that was first proposed by Jefferson as Time Warp
mechanism [Jef85]. We have built an optimistic parallel
CD++ simulator (optimistic PCD++) that executes simulation
via several Time Warp processes [Mar99] by exchanging
time-stamped event messages using MPI [Gro96]. The Time
Warp protocol used by PCD++ simulator consists of two
parts: the local control mechanism and the global control
mechanism. The local control mechanism which is provided
in each Time Warp process is in charge of rollback operations
which include: sending anti-messages, restoring the state of
the LP, readjusting Local Virtual Time (LVT), etc. On the
other hand, the global control mechanism takes care of global
issues such as memory management, I/O operations, and
termination detection.

Our optimistic PCD++ simulator employs a layered
architecture, where each layer depends only on the layers
below it. Figure 8 represents these layers.

Figure 8. Layered architecture of PCD++ [Gli04]

On the bottom of the architecture the operating system
resides. We have chosen Linux Operating System as the
underlying platform on which our simulator runs. Above the
Operating System lies the Message Passing Interface (MPI).

MPI is a standard specification of message-passing library for
high-performance communications on both massively parallel
machines and on workstations clusters. The Operating
System with the use of MPI provides the communication
infrastructure for the PCD++ simulator. We have used
MPICH [Gro96] portable implementation of MPI which
provides a vehicle for MPI implementation research and for
developing parallel and distributed applications. The
WARPED [Rad98] simulation kernel is our next layer which
serves as a configuration middleware that implements the
Time Warp mechanism and a verity of optimization
algorithms. On top of the WARPED kernel we have our
PCD++ simulator implementing the Parallel DEVS and Cell-
DEVS formalisms which provides the frame work for
building and executing DEVS and Cell-DEVS models in
distributed environments using the Time Warp protocol.

PCD++ implements a flattened structure for the
simulation framework. Two types of CD++ processors exist
on PCD++: Flat Coordinator (FC) and Node Coordinator
(NC). This approach reduces the communication overhead by
flattening the structure of the simulation framework. The
class hierarchies in the modeling and the simulation
frameworks are shown in Figure 9.

Figure 9. Processor hierarchy

As seen on the diagram, there are four types of PCD++

processors during the simulation: Simulator, FC, NC, and
RC. When DEVS and Cell-DEVS models are executed over
multiple machines, a distributed processor structure is
constructed in PCD++ to carry out the simulation. Lets
consider the following example to see how partitioning takes
place when simulating a coupled DEVS or Cell-DEVS model
on two machines using PCD++ simulator. Figure 10
represents this scenario. In this example there are four atomic
models (A1, A2, A3, and A4) where A1 and A2 are grouped
by the coupled model C1, and C1, and the other two atomic
models A3, and A4 are then grouped by the TOP coupled
model. The whole model is referred to as TOP model. Since
we will execute the simulation on two machines, there will be
two partitions encapsulating the atomic models two by two.
Partition 0 will take care of A1 and A2, and partition 1 will
be responsible for A3 and A4. By partition we mean the
machine that will run the simulation.

MPI

WARPED

Parallel CD++

MODEL

Figure 10. Example model and partition definition

Moreover, a graphical representation of the distributed

processors structure of this example is illustrated by Figure 11
.

Figure 11. Distributed processor structure for the example

For this example, two logical processes are created, one per
each machine: LP0 and LP1. LPs group together the PCD++
processors on the machine they belong to. Two types of
messages exist: remote messages and local messages. Local
messages are exchanged among those Simulators which
reside on the same LP, while remote messages are exchanged
among simulators residing on LPs other than the one they are
originating from. Local messages are handled by the FC, and
the remote messages are handled by the NC and then sent to
the appropriate Simulator through the destination FC. The
root coordinator is created only on machine 0. It starts the
simulation and handles I/O operations. The NC which exists
on each machine is the local central controller on each LP
and the end point of inter-LP communications. The FC
residing between the NC and the Simulators is responsible for
synchronizing the execution of its child Simulators. Finally,
the Simulator is responsible for executing DEVS abstract
functions defined in the atomic models. When a Simulator
sends a message to another Simulator sitting on a remote
machine, the message is first directed to the FC, then to the
local NC through direct communication. Once the message
gets to the NC, it will be forwarded to the destination NC
through MPI communication. On the receiving end, the NC
will then forward the message to the destination Simulator
through the child FC.
 In PCD++, two types of communications exit among LPs:
synchronous intra-LP communications which are carried out
by all types of PCD++ processors (i.e. Simulator, NC, FC,
RC), and asynchronous inter-LP communications carried out
by NCs. Since inter-LP communications are asynchronous,
the NCs require a special structure named as NC Message
Bag to handle the message passing between LPs who have

different local virtual times. The following properties hold for
NC Message Bag:

1. Messages inside a Message Bag can have different
timestamps.

2. The time of a Message Bag is equal to the minimum
timestamp among the contained messages. If the
Message Bag is empty, then its time is set to infinity.

3. Messages inside a Message Bag are processed based
on their timestamp in an increasing order. That is
the message whose timestamp is equal to the
Message Bag’s time is processed first. Once the
message is processed, it is then removed from the
bag, and the bag’s time is advanced to the next
minimum value among the timestamps of the
remaining messages. Once all the messages are
processed and removed from the bag, the Message
Bag’s time is restored back to infinity implying that
the bag is empty.

In contrast, synchronous intra-LP communications are
handled by the Simulators and the FC since they are local to
the LP and do not pass the boundary of the LP. Similar to the
NC Message Bag, for intra-LP messages the FC holds a
message bag. In this case, when two local Simulators (i.e.
sitting on the same LP) need to communicate to each other,
they send the message to the local FC, and then the message
will be directed to the destination local Simulator by the FC.
There is no direct communications between Simulators, even
the ones sitting on the same LP. Local Simulators can only
communicate to each other through their FC. This is the
purpose of having FC message bag. PCD++ messages are in
form of data objects which are dynamically allocated and
deleted by the PCD++ processors.

PCD++ processors exchange two categories of messages:
content messages and control messages. The first category
includes the external message (x) and the output message (y),
and the second category includes the initialization message
(I), the collect message (@), the internal message (*), and the
done message (D). To describe these messages, external and
output messages are used to exchange simulation data
between the models, initialization messages start the
simulation, collect and internal messages trigger the output
and the state transition functions respectively in the atomic
DEVS models, done messages handle synchronization by
carrying the model timing information. The simulation is
executed in a message-driven manner.

Each type of PCD++ processor, define its own receive
functionality for each type of messages. Let’s what happens at
each PCD++ processor considering the scenario of reception
of different types of messages:
Simulator: upon receiving (I, 0) from the parent FC, two
variables are used to record the current simulation time (tL)
and the value of sigma (ta). Upon receiving the initialization
message, (I, 0), the Simulator resets tL to the timestamp of the
message, therefore the Simulator’s virtual time now is equal
to zero. Then the simulator initializes the variables defined in
its associated atomic model, and after that, it informs its
parent FC of the value of ta by sending a done message
stamped with time 0. When a (@, t) message is received, the

Simulator invokes the output function (?) of the atomic model
and as a result an output message (y, t) is sent to the FC.
After this, the Simulator will send (D, t) to the FC with ta = 0
to indicate that it is imminent. Following the collect message,
a (*, t) will arrive to trigger internal/external/confluent
function of the atomic model depending on the timing of the
message and the status of the Simulator’s message bag. The
last message that may arrive at the Simulator is (x, t) which is
simply inserted into the Simulator’s message bag.
Flat Coordinator: when (I, 0) is received, the FC records the
total number of its children in a variable named as doneCount
then forwards the (I, 0) message to each child. After this, the
FC waits for all its children to respond to this initialization by
sending back a (D, 0). The FC will only pass the control over
to the NC if all its children have finished their previous
computation and have sent done messages as notification
messages. Upon receiving a (@, t) message, the FC forwards
it to all imminent Simulators and will keep a record of this
for later use (to know which children need to do state
transitions when (*, t) is received). Moreover, when (y, t) is
received, the FC searches the model coupling information to
find out the correct destination. The destination is either an
input port on an atomic model, or an output port on the
topmost coupled model. In case of receiving (x, t) message,
the FC will simply insert the message into its message bag.
Upon receiving (*, t) message, the external messages inside
the FC’s message bag are flushed to the local receiving
Simulators. This will trigger the imminent Simulators to
perform a state transition. Finally, when a (D, t) message is
received from a child Simulator, the FC updates the child’s tN
to the sum of the current simulation time and the sigma value
carried by the received (D, t) message.
Node Coordinator: upon receiving (I, 0), the NC simply
forwards it to the child FC. In case of receiving (x, t), NC will
insert this message into the NC Message Bag. These external
messages contain values sent from remote Simulators to local
ones. When (y, t) is received the NC simply forward it the
Root (it has to be sent to the environment). Reception of a (D,
t) message by the NC from a child FC indicates that this is a
response to a control message that was previously sent out by
the NC.
Root Coordinator: this processor only handles environment-
oriented output messages during the simulation. Output to the
environment is done through a test file called as output file or
OUT file.

Aside from the functionalities of each of the PCD++
processors, we have modified the WARPED [Mar99] kernel
in order to run simulations under different protocols. These
protocols are modifications of the optimistic one that
WARPED implements. The idea is to reduce the number of
rollbacks by suspending the LP that has large number of
rollbacks and therefore stopping it from flooding the net with
anti-messages. However, the LP will still be able to receive
input events and they will be inserted into the corresponding
message bags. After a predefined duration, the suspend LP is
released and will go on simulating. These two protocols
[Szu00], namely Local Rollback Frequency Model (LRFM)
and Global Rollback Frequency Model (GRFM) are based on

the “Near Perfect State Information - NPSI” protocol [Sri98].
The NPSI protocol implements the Elastic Time mechanism.
Briefly, Elastic Time is composed of two parts:

1. Identifying the NPSI of the simulation.
2. Translating the NPSI in optimism on the simulation

objects.
Each part can be implemented in many ways. The main
concept is to associate each LP with a potential error (PE) to
control the optimism of LPi. During the simulation run, the
value of each PE is kept updated by evaluating a function
called M1 which uses state information that is received from
the feedback system. Then, the function M2 translates
dynamically every update of PEi in delays in the execution
events.

VI. LOCAL ROLLBACK FREQUENCY MODEL

The Local Rollback Frequency Model (LRFM) protocol is
only based on local information of the logical processes. That
is, the simulation object within a LP will be suspended or
allowed to continue simulating only based on the number of
rollbacks it had. First M1 and M2 functions must be defined:

- Function M1: The potential error of a simulation object is
the number of rollbacks that the object had from a time T1
until the actual time T2, having that T2 - T1 <= T, where T is
the interval after which the local number of rollbacks of the
simulation object gets restarted back to zero.

- Function M2: If the number of rollbacks for a simulation
object at the interval T is greater than a specified value, then
the object is suspended, adopting a conservative behavior. By
suspending the simulation object, the LP where the object
resides on will still be able to receive incoming events, but the
events are not processed until the simulation object is again
given the chance to resumes. However, if the number of
rollbacks of the simulation object is less than the predefined
value, then the object simulates aggressively, adopting its
usual optimistic behavior (Time Warp).

To implement this protocol each LP has to be informed
about two values: max_rollback, and period. Where
max_rollback is the maximum number of allowed rollbacks
before suspension of the simulation object, and period is the
duration for which the simulation object will stay suspended.
The algorithm is presented in Figure 12.

1. In each LP, at the beginning predefine:
 max_rollbacks and period
2. In each simulation object, at the simulation start:
 previous_time = 0
3. In each object, when the LP is scheduled to run:
 actual_time = Warped.TotalSimulationlTime ()
 if (actual_time - previous_time >= period)
 simulateNextEvent()
 previous_time = actual_time
 rollbacks = 0
 else
 if (rollbacks < max_rollbacks)
 simulateNextEvent()

 /* else, SUSPEND the simulation object */
Figure 12. LRFM Algorithm

VII. GLOBAL ROLLBACK FREQUENCY MODEL

In Global Rollback Frequency Model (GRFM) protocol
each simulation object uses global information in such a way
that among all the simulation objects residing on all LPs, the
one with greatest number of rollbacks must be suspended for
the duration of time defined at the beginning of the
simulation. Therefore, at each simulation cycle all the LPs
must broadcast the information regarding the rollback counts
of all of their simulation objects. As in LRFM, M1 and M2
functions must first be defined:
Function M1: The potential error of a simulation object is the
number of rollbacks that the object had minus the maximum
number of rollback of the other simulation objects of the
simulation, from a time T1 until the actual time T2, having
that T2 - T1 <= T, where T is the interval after which the
local number of rollbacks of the simulation object gets
restarted back to zero.
Function M2: If the number of rollbacks for a simulation
object at the interval T is greater than other number of
rollbacks of the other simulation objects, then the object is
suspended, adopting a conservative behavior. By suspending
the simulation object, the LP where the object resides on will
still be able to receive incoming events, but the events are not
processed until the simulation object is again given the
chance to resumes. However, if the number of rollbacks of the
simulation object is less than the predefined value, then the
object simulates aggressively, adopting its usual optimistic
behavior (Time Warp).

This algorithm is implemented as follows:

1. In each LP, at the beginning predefine: period
2. In each simulation object, at the beginning predefine:
 previous_time = 0
 max_rollbacks = 0
3. In each simulation object, when the LP is scheduled to run:
 actual_time = Warped.TotalSimulationlTime ()
if (actual_time - previous_time >= period)
 simulateNextEvent()
 previous_time = actual_time
 rollbacks = 0
else
 if (rollbacks < max_rollbacks)
 simulateNextEvent()
/* else, SUSPEND the simulation object */
4. For i from 1 until the number of LPs
if (i is NOT this PL id)
send to LP i the number of rollbacks of the objects of the LP id
Subroutine that receives the number of rollbacks from other LP:
For j from 1 until the numbers received
If (rollbacks[j] > max_rollbacks)
max_rollbacks = rollbacks[j]

Figure 13. GRFM Algorithm

With LRFM and GRFM different simulation results can be
collected since the RFM period (and in case of LRFM the

max_rollbacks) can be modified very easily at the beginning
of the simulation. This is done by changing these values in
the configuration files right before the simulation starts and
therefore, there is no need to rebuild the whole simulator in
order for these modifications to have effect.

VIII. SIMULATION RESULTS

After modifying WARPED kernel of PCD++ simulator to
include LRFM and GRFM, the Ship Evacuation model and
Synapsin-Vesicle Reaction model were executed and results
were collected. To study the performance of our optimistic
PCD++ simulator, the experiments were first carried out on
standalone CD++ on a single machine, and then on a cluster.
The cluster consisted of 32 compute nodes (dual 3.2 GHz
Intel Xeon processors, 1GB PC2100 266MHZ DDR RAM)
running Linux WS 2.4.2.1 interconnected through Gigabit
Ethernet and communicating over MPICH 1.2.6.

The metric used to measure the performance of PCD++
simulator is the Execution Time which is the total execution
time of the simulation collected from the execution
environment. During the experiment, results of execution of
both protocols; the LRFM and GRFM were conducted and the
Overall Speedup which is defined as follows was calculated.

Overall Speedup = T(1) / T(N)
Table 2 represents the execution of both models on single

machine using the standalone sequential CD++ simulator.
Model Total Execution Time (sec)

Ship Evacuation 6.4327
Synapsin-Vesicle Reaction 3.7621

Table 2. Results of standalone CD++ simulator

Then, simulations were run for both models on 1 to 8
nodes and for each node five trials were collected. The values
shown on the graph (Figure 14, Figure 15) are the average of
these five trials for each node which are within a confidence
interval of 95%.

Ship Evacuation Execution Time

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Number of nodes

E
se

cu
tio

n
 T

im
e

(s
ec

)

LRFM

GRFM

Figure 14. Execution time of Ship Evacuation model with

LRFM and GRFM protocols

V-S Reaction Execution Time

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Number of node

E
xe

cu
tio

n
 T

im
e

(s
ec

)

LRFM

GRFM

Figure 15. Execution time of Synapsin-Vesicle Reaction

model with LRFM and GRFM protocols

The following figures show the speedups for both models:

Ship Evacuation Speedups

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8

Number of node

S
pe

ed
up LRFM

GRFM

Figure 16. Speedups of Ship Evacuation model with

LRFM and GRFM protocols

V-S Reaction Speedups

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8

Number of node

S
pe

ed
up

s

LRFM

GRFM

Figure 17. Speedups of Synapsin-Vesicle Reaction model

with LRFM and GRFM protocols

IX. CONCLUSION

We have introduced two new simulation techniques for P-
DEVS and Cell-DEVS optimistic simulator by modifying
Time Warp, a well-known optimistic synchronization
protocol. Our efforts address the need for efficient, fast
execution of models using parallel and distributed simulation.
We propose an optimistic-based mechanism to reduce the
number of rollbacks and anti-messages. Our two algorithms,
namely Local Rollback Frequency Model (LRFM) and Global
Rollback Frequency Model (GRFM) are implemented as
modifications of the optimist one that Time Warp
implements. The use of LRFM and GRFM enable achieving

higher speedups and lower execution times. Under our new
protocols, during the simulation objects with a large number
of rollbacks are suspended for a predefined period (although
the objects will continue receiving input events). The idea is
to stop the objects with large number of rollbacks from
flooding the simulation with anti-messages and only allowing
the rest of objects to advance. These new protocols are based
on the Near Perfect State Information protocol. The execution
results (based on two Cell-DEVS models) showed better
performance than stand-alone execution. Using more complex
and larger models will show considerable speedups.

X. REFERENCES

[ALA07] "Advanced DEVS models with applications to
biomedicine". B. Al-aubidy, A. Dias, R. Bain, S. Jafer, M.
Dumontier, G. Wainer, J. Cheetham. AIS 2007, Artificial
Intelligence, Simulation and Planning. Buenos Aires,
Argentina.

[Bry77] Bryant, R.E. Simulation of Packet Communication
Architecture Computer Systems. Massachusetts Institute of
Technology, Cambridge, MA. USA. 1977.

[Fab90] Fabio Benfenati, Flavia Valtorta, Paul Greengard;
Computer Modelling of Synapsin 1 Binding to Synaptic
Vesicles and F-actin: Implications for Regulation of
Neurotransmitter Release, October1, 1990.

[Fuj00] Fujimoto, R. M. “Parallel and Distributed Simulation
Systems”. A Wiley-Interscience publication. ISBN 0-471-
18383-0. 2000.

[Gli04] Glinsky, E. “New Techniques for Parallel Simulation
of DEVS and Cell-DEVS Models in CD++”. M. A. Sc.
Thesis. Carleton University. Canada. 2004.

[Gro96] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. “A
high-performance, portable implementation of the MPI
message-passing interface standard”. Parallel Computing.
Vol. 22, pp. 789-828. 1996.

[Jef85] Jefferson, D. “Virtual Time”. ACM Transactions on
Programming Languages and Systems. 7(3):405-425. 1985.

[Klu01] WaH. Klüpfel, T. Meyer-König, J. Wahle, M.
Schreckenberg: "Microscopic Simulation of Evacuation
Processes on Passenger Ships" (pp 63-71) in S. Bandini , T.
Worsch (eds: "Theoretical and Practical Issues oin Cellular
Automata, Springer-verlag 2001.

[Mar99] Martin, D. E.; McBrayer, T. J.; Radhakrishnan, R.;
Wilsey, P. A. “WARPED – A Time Warp Parallel Discrete
Event Simulator (Documentation for version 1.0)”.

[Rad98] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao,
D. M.; Wilsey, P.A. “An Object-Oriented Time Warp
Simulation Kernel”. Proceedings of the International
Symposium on Computing in Object-Oriented Parallel
Environments (ISCOPE’98). Vol. LNCS 1505, pp. 13-23.
Springer-Verlag. 1998.

[Sri98] SRINIVASAN S.; REYNOLDS, J, "Elastic time",
ACM Transactions on Modeling and Computer Simulation,
Vol. 8, No. 2. 103-139. April 1998.

[Szu00] Szulsztein, E.; Wainer, G. “New Simulation
Techniques in WARPED Kernel” (in Spanish). Proceedings
of JAIIO, Buenos Aires, Argentina, 2000.

[Wai01] Wainer, G.; Giambiasi, N. "Timed Cell-DEVS:
modeling and simulation of cell spaces ". In "Discrete Event
Modeling & Simulation: Enabling Future Technologies",
Springer-Verlag. 2001.

[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS
models”. Software – Practice and Experience. Vol. 32, pp.
1261-1306. 2002.

[Zei00] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. "Theory
of Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems". Academic Press.
2000.

