
 
 

Abstract— DEVS is a sound formal modeling and 
simulation (M&S) framework based on generic dynamic 
system concepts. Cell-DEVS is a formalism for cell-shaped 
models based on DEVS. This work presents a new 
simulation technique for execution of DEVS and Cell-
DEVS models in parallel environments. These techniques 
are modifications to the original Time Warp mechanism 
offered by WARPED kernel. Time Warp functionalities 
are revised to include two new algorithms namely, Local 
Rollback Frequency Model (LRFM) and Global Rollback 
Frequency Model (GRFM). The resultant simulator is 
used as new simulation engine for CD++, a M&S toolkit 
that implements DEVS and Cell-DEVS theories. The 
results obtained allowed us to achieve considerable 
speedups due to the reductions that LRFM and GRFM 
protocols perform on number of rollbacks and anti-
messages. 

 
Index Terms— Cellular Automata, Parallel Simulator, 
Cell-DEVS, Optimistic Simulator. 

I. INTRODUCTION 

ODELING and simulation (M&S) methodologies have 
become crucial for implementing, designing, and 

analyzing a broad verity of systems. Among the existing 
simulation techniques, DEVS (Discrete Event System 
Specification) formalism [Zei00] provides a discrete-event 
M&S approach which allows construction of hierarchical 
models in a modular manner. DEVS is a sound formal 
framework based on generic dynamic systems concepts that 
allows model reuse, and reduction in development and testing 
time due to its hierarchical approach in constructing models. 
Cell-DEVS [Wai01] is an extension to DEVS which 
integrates DEVS and cellular automata by presenting each 
cell as an atomic DEVS model. Cell-DEVS introduced a 
novel mechanism for computation based on asynchronous 
cellular models with explicit timing constructions. The 
technique has been used to develop a wide variety of models 
in different field, ranging from environmental sciences, 
traffic, biology and physics.  

When large complex models are defined, the computing 
power of a single computer. In these cases, a parallel 
simulator can improve execution times. Here, we present new 
techniques for executing DEVS and Cell-DEVS models in 

parallel and distributed environments based on the WARPED 
kernel [Mar99], an implementation of the Time Warp 
protocol [Jef85]. Our optimistic simulator, called as PCD++, 
is built as a new simulation engine for CD++ [Wai02], a 
M&S toolkit that implements the DEVS and Cell-DEVS 
formalisms. Algorithms in CD++ and the WARPED kernel are 
redesigned based on Near Perfect State Information technique 
to carry out optimistic simulations using a non-hierarchical 
approach that reduces the communication overhead. Two new 
algorithms namely, Local Rollback Frequency Model (LRFM) 
and Global Rollback Frequency Model (GRFM) have been 
implemented and used by our PCD++ simulator. These two 
algorithms have been tested using different Cell-DEVS 
models. Here we present an evacuation model of a ship and a 
model of the Synapsin-Vesicle reaction in neurons.  

II. BACKGROUND 

DEVS [Zei00] is a formalism for modeling and simulation of 
DEDS (Discrete Events Dynamic Systems) which provides a 
framework for the definition of hierarchical models in a 
modular way by decomposing the real system into behavioral 
(atomic) and structural (coupled) components. DEVS theory 
provides a rigorous methodology for representing models, and 
it does present an abstract way of thinking about the world 
with independence of the simulation mechanisms, underlying 
hardware and middleware. A DEVS atomic model is formally 
defined by: 

M = <X, Y, S, dint, dext, ?, ta>, 
where 
X = {(p,v) | p ∈ IPorts, v ∈ Xp} 
                                              is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} 
                                          is the set of output ports and values; 
S                                      is the set of sequential states; 
dint: S → S                          is the internal state transition 
function; 
dext: Q × X →S                  is the external state transition 
function, where 
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)}     is the total state set, e is the 
time elapsed since the last state transition; 
?: S →Y                            is the output function; 

ta: S → R+
0,∞                       is the time advance function. 
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The semantics for this definition is given as follows. At any 
time, a DEVS coupled model is in a state s ∈ S. In the 
absence of external events, the model will stay in this state for 
the duration specified by ta(s). When the elapsed time e = 
ta(s), the state duration expires and the atomic model will 
send the output λ(s) and performs an internal transition to a 
new state specified by δint(s). Transitions that occur due to the 
expiration of ta(s) are called internal transitions. However, 
state transition can also happen due to arrival of an external 
event which will place the model into a new state specified by 
δext(s,e,x); where s is the current state, e is the elapsed time, 
and x is the input value. The time advance function ta(s) can 
take any real value from 0 to ∞. A state with ta(s) value of 
zero is called transient state, and on the other hand, if ta(s) is 
equal to ∞ the state is said to be passive, in which the system 
will remain in this state until receiving and external event.  

A DEVS coupled model is composed of several atomic or 
coupled submodels, which is formally defined by:   

CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>, 
where 
X = {(p,v) | p ∈ IPorts, v ∈ Xp}      is the set of input ports and 
values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and 
values; 
D is the set of the component names, and the following 
requirements are imposed on the components, which must also be 
DEVS models: 
For each d ∈ D, Md = (Xd, Yd, Sd, dint, dext, ?, ta) is a DEVS with 
Xd = {(p,v) | p ∈IPortsd, v∈Xp}, 
        and Yd = {(p,v) | p ∈ OPortsd, v∈ Yp}. 
The component couplings are subject to the following 
requirements: 
External input coupling (EIC) connects external inputs to 
component inputs,  
EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D, ipd∈IPortsd}; 
External output coupling (EOC) connects component outputs to 
external outputs, 
EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd}; 
Internal coupling (IC) connects component outputs to component 
inputs,  
IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, ipb∈IPortsb}; 
Select: 2D - {} ?  D is the tie-breaking function for imminent 
components. 

Due to the closure property, a coupled model is regarded 
as a new DEVS model [Zei00]. This property clarifies that 
the overall behavior of a coupled model is equivalent to a 
basic atomic model, and therefore allows hierarchical model 
construction.  

Cell-DEVS [Wai01] is an extension to DEVS which 
integrates DEVS and cellular automata by presenting each 
cell as an atomic DEVS model. Two types of timing delays 
can be used, namely transport and inertial [Wai00]. When 
transport delay is used, the future value is added to queue 
sorted by output time, allowing the previous values that were 
scheduled for output but have not yet been sent to be kept. On 
the other hand, inertial delays allow a preemptive policy at 

which any previous scheduled output value will be deleted 
and the new value will be scheduled. Cell-DEVS formalism is 
defined by: 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
where 
              X     is a set of external input events; 
              Y    is a set of external output events; 
 

I        represents the model's modular interface; 
S     is the set of sequential states for the cell; 
θ    is the cell state definition; 
N     is the set of states for the input events; 
d     is the delay for the cell; 
δint     is the internal transition function; 
δext    is the external transition function; 
τ     is the local computation function; 
λ     is the output function; and 
D     is the state's duration function. 

By integrating atomic Cell-DEVS, coupled models can be 
constructed representing the cell space. A coupled Cell-DEVS 
model is formally defined as follows: 
GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 

where 
Xlist   is the input coupling list; 
Ylist    is the output coupling list; 
I  represents the definition of    the model’s 

interface;  
              X    is the set of external input events; 

Y    is the set of external output events; 
n    is the dimension of the cell space; 
{t1,...,tn} is the number of cells in each of the 

dimensions; 
N     is the neighborhood set; 
C     is the cell space; 
B     is the set of border cells; 
Z    is the translation function; and 

select  is the tie-breaking function for      
simultaneous events. 

 The above formalism explains that a coupled model is 
composed of an array of atomic cells with given size and 
dimensions where each cell is connected through standard 
DEVS input/output ports to the cells defined in the 
neighborhood.  Since the cell space is finite, the borders of 
the cells are either connected to a different neighborhood than 
the rest of the space, or they are “wrapped” in which they are 
connected to those in the opposite one using the inverse 
neighborhood relationship. However, border cells have a 
different behavior due to their particular locations, which 
result in a non-uniform neighborhood. A Cell-DEVS coupled 
model is informally presented in Figure 1. 



 
 

 
Figure 1. Description of a Cell-DEVS atomic model[Wai00] 

 
CD++ [Wai02] is a modeling tool that implements the DEVS 
and Cell-DEVS theories by applying the original formalisms. 
The toolkit includes facilities to build DEVS and Cell-DEVS 
models. CD++ toolkit also includes an interpreter for Cell-
DEVS models [Wai00]. The language is based on the formal 
specifications of Cell-DEVS. The model specification 
includes the definition of the size and dimension of the cell 
space, the shape of the neighborhood and the type of cell’s 
bordering. The cell’s local computing function is defined 
using a set of rules with the form        POSTCONDITION          
DELAY 
{ PRECONDITION }. These indicate that when the 
PRECONDITION is met, the state of the cell will change to 
the designated POSTCONDITION after the duration specified 
by DELAY. If the precondition is not met, then the next rule 
is evaluated until a rule is satisfied or there are no more rules. 
The next section will present two Cell-DEVS models 
generated with CD++ toolkit. 

In parallel and distributed environments the entire task of 
simulation is divided among the processors or nodes (Logical 
Process (LP)) and therefore each one of them handles a 
smaller chunk of the simulation while the whole process of 
execution takes place in parallel and as a result in a 
significantly reduced time. In sequential simulations, events 
are executed base on timestamp order, therefore the 
correctness of the result is automatically guaranteed. In 
contrast, parallel and distributed simulations require a 
mechanism to ensure that the result of concurrent execution 
is identical to that of sequential one. To obtain this 
correctness, Local Causality Constraint [Fuj00] must be 
satisfied. This requirement is said to be met if and only if 
each process executes events in non-decreasing timestamp 
order. Therefore, synchronization among LPs is the most 
challenging problem of parallel and distributed simulation. 
There exist three different types of synchronization strategies 
for event driven simulations: 

1. No synchronization at all: synchronization is 
ensured by the application. 

2. Pessimistic (conservative) synchronization [Bry77]: 
causality violations are strictly avoided. 

3. Optimistic synchronization [Jef85]: causality errors 
are fixed by the notion of rollbacks. 

 
Conservative parallel discrete event simulation: This 

synchronization approach disallows any occurrence of 
causality errors. The essential for this technique is the 

lookahead which provides the smallest time stamp of the new 
events that a process can schedule in the future. Null 
messages are responsible to carry out the lookahead 
information among LPs. This way each LP, based on the 
lookahead information that it receives from all other LPs can 
derive a lower bound on the time stamp (LBTS) of the events 
that it will receive in future. As a result, the LP would know 
which event is safe to process. The biggest drawback of the 
conservative synchronization approach is the time wasting 
flow of null messages which degrade the simulation 
performance significantly. Having the fact that optimistic 
approaches lack in terms of causality errors avoidance, 
however, they offer two important advantages over 
conservative techniques: 

1. Optimistic approaches have a higher degree of 
parallelism unlike the conservative approaches 
where they are overly pessimistic and force the 
simulation to behave sequentially when in is not 
necessary. 

2. Conservative approaches rely very much on 
application-specific information when making run-
time decisions on whether it is safe to process the 
event or not. But optimistic mechanism are less 
reliant on the application for correct execution, 
therefore allow a simplified software development 
and more transparent synchronization. 

 
Optimistic parallel discrete event simulation: In this 

technique which was first proposed by Jefferson’s Time Warp 
mechanism [Jef85], each LP has a Local Virtual Time (LVT) 
which advances every discrete step as events are executed on 
the process. Therefore, time warp processes execute their own 
portion of the simulation based on LP’s LVT. Since every LP 
has its own LVT, causality errors occur when LPs send 
messages to each other. This way, an LP may receive a 
message with time stamp smaller than its current LVT. Such 
events are referred to as straggler events. Once a straggler 
event is received the process will rollback. Rollback is the 
operation performed upon reception of a straggler event, 
where the process recovers from the causality error by 
undoing the effects of all the events that were processed and 
had timestamp greater than the time stamp of the straggler 
event. Therefore, these messages were falsely sent to other 
processes and now must be canceled. This cancellation is 
performed by sending anti-messages. The anti-message has 
exactly the same format as the original message (the positive 
message) except for a negative flag to indicate it is an anti-
message.  

Our PCD++ optimistic simulator implements the Parallel 
DEVS and Cell-DEVS formalisms and provides the frame 
work for building and executing DEVS and Cell-DEVS 
models in distributed environments using the Time Warp 
protocol. PCD++ implements a flattened structure for the 
simulation framework. Two types of CD++ processors exist 
on PCD++: Flat Coordinator (FC) and Node Coordinator 
(NC). This approach reduces the communication overhead by 
flattening the structure of the simulation framework. 



 
 

UU (-2,0) 

U (-1,0) 

(0,0) 

D (1,0) 

UL (-1, -1) 

L (0, -1) 

DL (1, -1) DR (1, 1) 

R (0, 1) RR (0, 2) 

UR (-1, 1) 

III. SHIP EVACUATION MODEL 

The first Cell-DEVS model we represent here is the 
illustration of an emergency ship evacuation scenario 
[Klu01]. The model consists of 20×20 cell space in CD++.  
The rules defining the model are based on the following 
restrictions: 

1. Each cell representing a person on the ship, 
calculates its shortest path toward the exit.  During 
initialization phase, people are placed randomly in 
any empty cell to imitate real ship evacuation 
scenario. 

2. People run in their initial direction until they 
encounter another person or an obstacle (e.g. wall).   

At the end of simulation, there should be no one left on the 
ship, i.e. all people must have been left through the exit 
doors. 
The neighborhood of each cell consists of 10 cells which will 
affect the cell’s movement (i.e. they can be walls, exit doors, 
people, or empty cells) as shown in Figure 2.  
 

 
 

 
 

Figure 2. Cell neighborhood 
From the above figure we can see that the neighborhood 
consists of 11 cells: {(-2,0), (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), 
(0, 1), (0, 2), (1, -1), (1,0), (1, 1)} where UU is the upper’s 
upper cell, UL is the upper’s left cell, U is the upper cell, UR 
is the upper’s right cell, L is the left cell, R is the right cell, 
RR is the right’s right cell, DL is the down’s left cell, D is the 
down cell and DR is the down’s right cell. Each value on the 
cell space defines a distinct state, such as the type of the cell: 
wall, empty, exit door, a moving person. Also each type of 
movement is given a state value in order to identify the next 
position of the person. Table 1 summarizes these values. 
 

Name Value Comments 
N/A 0 Unknown Empty cell. 
Wall 1 Represents an obstacle or a wall. 
Exit 2 Represents an exit (e.g. stairs, door). 
ED 3 Empty cell and its down (D) cell is the 

shortest path to the nearest exit. 
ER 5 Empty cell and its right (R) cell is the 

shortest path to the nearest exit. 
EU 7 Empty cell and its up (U) cell is the 

shortest path to the nearest exit. 
EL 9 Empty cell and its left (L) cell is the 

shortest path to the nearest exit. 
FD 4 A Full cell (cell with person) and its 

down (D) cell is the shortest path to the 
nearest exit. 

FR 6 A Full cell (cell with person) and its 
right (R) cell is the shortest path to the 

Name Value Comments 
nearest exit. 

FU 8 A Full cell (cell with person) and its up 
(U) cell is the shortest path to the 
nearest exit. 

FL 10 A Full cell (cell with person) and its left 
(L) cell is the shortest path to the 
nearest exit. 

Table 1. State values and their description 
 
Based on these values, we define different rules for the 
movement of people in the vessel. The first four rules 
initialize the model by calculating the shortest path for each 
undefined cell and placing people on the cell space randomly. 
 

Result Precondition  

3 or 4 (ED or FD)  (0,0) = Undefined and (1,0) is defined. 

5 or 6 (ER or FR) (0,0) = Undefined and (0,1) is defined. 

7 or 8 (EU or FU) (0,0) = Undefined and (-1,0) is 
defined. 

9 or 10 (EL or FL) (0,0) = Undefined and (0, -1) is 
defined. 

 
The algorithm works as follows: when a cell detects that one 
of its attached cells has changed its state to “defined”, it 
would know that the attached cell is the shortest path.The 
above four rules are implemented as the following: 
 
rule: {3+randInt(1)} 0 {(0,0)=0 and (1,0)>1 and 
(1,0)<11} 
rule: {5+randInt(1)} 0 {(0,0)=0 and (0,1)>1 and 
(0,1)<11} 
rule: {7+randInt(1)} 0 {(0,0)=0 and (-1,0)>1 and 
(-1,0)<11}  
rule: {9+randInt(1)} 0 {(0,0)=0 and (0,-1)>1 and    
(0,-1)<11} 
 

Then the second four rules define the case when a cell 
knows that a person will move towards it. The cell knows it 
will soon be occupied by a person if it is empty and it is the 
shortest path to at least one cell with a person occupying it. 
 

Result Precondition 
 4  
?  FD state 

(0,0) = ED and ((0,1) = FL or (-1,0) = 
FD or (0,-1) = FR ) 

6 
?  FR state 

(0,0) = ER and ((1,0) = FU or (-1,0) = 
FD or (0,-1) = FR) 

8 
?  FU state 

(0,0) = EU and ( (1,0) = FU or (0,1) = 
FL or (0,-1) = FR ) 

10 
?  FL state 

(0,0) = EL and ( (1,0) = FU or (0,1) = FL 
or (-1,0) = FD ) 

 
The third four rules define when a cell occupied with a 

person is attached to the exit.  Then, the cell knows that a 
person will leave it and exit. 

Result Precondition 
 3?  ED state (0,0) = FD and (1,0) is exit 
5?  ER state (0,0) = FR and (0,1) is exit 
7?  EU state (0,0) = FU and (-1,0) is exit 
9?  EL state (0,0) = FL and (0,-1) is exit 



 
 

 
Then the fourth four rules define when a cell knows that 

a person will leave it when it is not near an exit.  The cell 
knows that a person will leave it when it is already occupied 
by a person and its shortest path cell is empty.  However, only 
one person can move to the empty cell when more than one 
person is trying to move to the same cell.  In this case, the 
priority is first with the person who is in the upper cell, 
second the one in the right cell, third the one in the down 
cell, and finally the one in the left cell has the lowest priority. 
 

Result Precondition 
 3?  ED state (0,0) = FD and down (D) cell is empty. 
5?  ER state (0,0) = FR and right cell (R) is empty and 

UR,RR, and DR cells don’t have a person 
moving to R. 

7?  EU state (0,0) = FU and upper cell (U) is empty and 
UU and UR cells don’t have a person moving 
to U. 

9?  EL state (0,0) = FL and left cell (L) is empty and UL 
doesn’t have a person moving to L. 

Finally if none of the rules are evaluated, the following 
rule which serves as a default case, will evaluate. A cell 
executing this line will remain unchanged and stay as before. 
 
rule : {(0,0)} 100 { t } 
Figure 3 shows an extract of the model’s definition in CD++. 
 
[top] 
components : ship 
 
[ship] 
type : cell dim : (20,20) delay : transport 
defaultDelayTime : 20 border : nowrapped 
 
neighbors : (-2,0) (-1,-1) (-1,0) (-1,1) (0,-1) 
neighbors : (0,0) (0,1) (0,2) (1,-1) (1,0) (1,1) 
… 
localtransition : ship-rule 
[ship-rule] 
rule : {3 + randInt(1)} 0 {(0,0)=0 and (1,0)>1 and 
(1,0)<11} 
… 
rule : 4  100 {(0,0)=3 and ((0,1)=10or(-1,0)=4 or 
(0,-1)=6)} 
… 
rule : 3 100 { (0,0) = 4 and (1,0) = 2} 
… 
rule : 3  100 { (0,0) = 4 and odd((1,0)) } 
… 
rule : {(0,0)} 100 { t } 

 
Figure 3. Definition of ship evacuation model in CD++ 

 
The ship evacuation model can be modified by adding 

more exit doors or changing the position of these cells. As 
presented in Figure 4 initially four different types of cells 
appear on the grid: empty spaces, walls, people, and exit 
doors, while the final result of the simulation shows no 
presence of people, i.e. the ship is evacuated. 

 

 
 

 
Figure 4. Model Execution Results; initial values; final 

execution 

IV. SYNAPSIN-VESICLE REACTION MODEL 

The second model we built was the reserve pool of 
synaptic vesicles in a presynaptic nerve terminal, predicting 
the number of synaptic vesicles released from the reserve pool 
as a function of time under the influence of action 
potentials at differing frequencies. Time series amounts for 
the components are obtained using rule-based methods (the 
rules defined by Cell-DEVS) [ALA07]. 

Synapsin is a neuron-specific phosphoprotein that binds to 
small synaptic vesicles and actin filaments in a 
phosphorylation-dependent pattern. Microscopic models have 
demonstrated that synapsin inhibits neurotransmitter release 
either by forming a cage around synaptic vesicles (cage 
model) or by anchoring them to the F-actin cytoskeleton of 
the nerve terminal [Fab90]. 

We modeled the molecular interaction of synapsin (S) 
with vesicles (V) which occur inside a nerve cell. The model 
describes the behavior of synapsin movements until reaching 
a vesicle and binding to it. Once binding has occurred, 
depending on offrate V and S can again go apart and break 
their bindings. The onrate and offrate describe how often 
bindings occur or break then after. The following formula 
describes the nature of the reaction: 

S + V ?  SV 
From the above formula, the left hand side of the 

equation demonstrates the binding scenario where synapsin 
and vesicles perform a bind at a rate specified by onrate, 
while the right hand side of the equation illustrates the  bind-
break scenario where an synapsin-vesicle at an offrate which 
is always smaller than onrate breaks apart and again synapsin 



 
 

and vesicles get released. Then, synapsin and vesicles can 
again perform binding and break apart then after. This 
equation shows an on-going process of “binding” and 
“breaking apart” which depends on offrate/onrate. The larger 
the offrate is, the more bindings get broken apart. Similarly, 
the larger the onrate is, the more V-S binds are produced. 
Three different scenarios are modeled: 1) V is stationary 
(with a fixed position on cell space), and S is mobile, 2) V is 
mobile and S is stationary, and 3) V and S are both mobile 
(leads to maximum number of total movements and therefore 
bindings). 

The coupled Cell-DEVS model for this application is 
described as follows. 
       M=<I,X,Y,Xlist,Ylist,? , N,{m,n}, C, B, Z, select> 
Xlist=F  Ylist=F  ? =9 I=<PX,Py>,with PX={F },Py={F }; 
N={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1)(1,0) 
(1,1)}; 
X={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44}; 
Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44}; 
m=26; n=22; B={F }; C={Cij/ie [1,26], je [1,22]} 
select ={  (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), 
(1,0), (1,1) }; 

Z:  
Pij Y1 → Pi,j-1 X1         
Pij Y2 → Pi+1,j X2                 
Pij Y3 → Pi,j+1 X3        
Pij Y4 → Pi-1,j X4         
Pij Y5 → Pij X5 

Pi,j+1 Y1 →  Pij X1 
Pi-1,j Y2 →   Pij X2 
Pi,j-1 Y3  →  Pij X3 
Pi+1,j Y4 →  Pij X4 
Pij Y5 →  Pij X5 

 
The cell space, the value 1 was used to represent V, and 

the value 2 was used to represent S. The number 0 represents 
an empty cell for which a mobile S can occupy. To give 
direction to the V (although the model assumes fixed V) or S, 
a two digit number was used. For example, the following 
represent: 

 
11    “up” moving V 
12    “right” moving V 
13    “down” moving V 
14    “left” moving V 

21  “up” moving S 
22  “right” moving S 
23  “down” moving S 
24  “left” moving S 

 
As we can see, Cell-DEVS provides great support for 

defining these models, for having independent cell states and 
random mobility of cells, provide an excellent environment to 
simulate the process of synapsin-vesicles interactions of a 
nerve. As mentioned earlier, the model constructed can be 
further extended to include the movement of both synapsin 
(S) and vesicles (V) as well as defining different off and on 
rates. Aside from V-S reactions, the model can also include 
Actins, which bind to synapsins. Actins can be represented as 
a string of cells being fixed at their cell space position. A 
summarized version of the model’s definition in CD++ is 
as follows: 

 
[top] 
components : chemCell 
 
[chemCell] 

type : cell dim : (26,22)  delay : transport 
defaultDelayTime : 100    border : wrapped  
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1)  
neighbors :  (1,-1)  (1,0)  (1,1) 
localtransition : chemCell-rule 
 
[chemCell-rule] 
rule : {round(uniform(11,14))} 100 { (0,0) = 1  } 
… 
rule : {round(uniform(31,34))} 100 {((0,0)=21 or 
(0,0)=22 or (0,0)=23 or (0,0)=24) and(((-1,0)-10=1 
or (-1,0)-10=2 or…} 
… 
%moving up 
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and 
(1,0)=91 } 
… 
%release 0.1 of the S (the offrate is 0.1) 
rule : {round(uniform(21,24))} 100 {((0,0)=33 or 
(0,0)=32 or 
(0,0)=31 or (0,0)=34) and random < 0.10} 
… 
rule : { (0, 0) } 100 { t} 

Figure 5. Synapsin-Vesicle Reaction model in CD++ 
 
 In the following code, we explain in details each part of 

the model definition. 
 

initialrowvalue : 0       0010201202201012020100  
initialrowvalue : 1       0001020120101020120100  
initialrowvalue : 2       0000000000000000000000 
initialrowvalue : 3       0010112010120220220100  
initialrowvalue : 4       0002010001120220111200  

... 
initialrowvalue : 25      0001202020111202201000 

 
...          

rule : {round(uniform(11,14))} 100 { (0,0) = 1  } 
rule : {round(uniform(21,24))} 100 { (0,0) = 2  } 

 
In the above two rules, the cells are first initialized with 

11-14 (for Vesicles) and 21-24 (for Synapsin) to show the 
scenario at time = 0, where bindings have not yet been 
performed. Once bindings occur, cells change their values; 
11-14 get replaced with 31-34, and 21-24 get replaced with 
41-44. Also for Synapsins, four intermediate values 91-94 are 
used to represent a moving cell that has not yet being settled 
down. Once it settles down its value changes back to 21-24 
(depending on its direction of movement) and gets ready to 
bind to a vesicle in its neighborhood.  

 
rule : {round(uniform(31,34))} 100 {((0,0)=21 or 
(0,0)=22 or (0,0)=23 or (0,0)=24) and  
( ((-1,0)- 10 = 1 or (-1,0)- 10 = 2 or (-1,0)- 10 = 
3 or (-1,0)- 10 =4 ) or 
  ((1,0)- 10 = 1 or (1,0)- 10 = 2 or (1,0)- 10 = 3 
or (1,0)- 10 = 4)     or 
  ((0,-1)- 10 = 1 or (0,-1)- 10 = 2 or (0,-1)- 10 = 
3 or (0,-1)- 10 = 4) or 
  ((0,1)- 10 = 1 or (0,1)- 10 = 2 or (0,1)- 10 = 3 
or (0,1)- 10 = 4 )    or 
  ((-1,1)- 10 = 1 or (-1,1)- 10 = 2 or (-1,1)- 10 = 
3 or (-1,1)- 10 = 4) or 
  ((1,-1)- 10 = 1 or (1,-1)- 10 = 2 or (1,-1)- 10 = 
3 or (1,-1)- 10 = 4) or 
  ((1,1)- 10 = 1 or (1,1)- 10 = 2 or (1,1)- 10 = 3 
or (1,1)- 10 = 4)     or 
  ((-1,-1)- 10 = 1 or (-1,-1)- 10 = 2 or (-1,-1)- 10 
= 3 or (-1,-1)- 10 = 4)) and random > 0.10} 

 



 
 

The above rule describes the following scenario: if there 
exists a synapsin having the value 21, 22, 23, or 24 (a 
synapsing that can move up/right/down/left) and there is a 
vesicle in its neighboring which could be an adjacent cell or a 
diagonal cell, then the synapsin (red cells) will move toward 
this vesicle and a binding will occur soon, the value of the 
synapsin gets changed to 31, 32, 33, or 34 (i.e. 21 changes to 
31, 22 changes to 32, 23 changes to 33, and 24 changes to 34) 
to represent a synapsin that is bonded to a vesicle. 

 
rule : {round(uniform(41,44))} 100 {((0,0)=11 or 
(0,0)=12 or (0,0)=13 or (0,0)=14) and 
( ((-1,0)- 30 = 1 or (-1,0)- 30 = 2 or (-1,0)- 30 = 
3 or (-1,0)- 30 = 4) or 
((1,0)- 30 = 1 or (1,0)- 30 = 2 or (1,0)- 30 = 3 or 
(1,0)- 30 = 4) or 
((0,-1)- 30 = 1 or (0,-1)- 30 = 2 or (0,-1)- 30 = 3 
or (0,-1)- 30 = 4)  or 
((0,1)- 30 = 1 or (0,1)- 30 = 2 or (0,1)- 30 = 3 or 
(0,1)- 30 = 4 ) or 
((-1,1)- 30 = 1 or (-1,1)- 30 = 2 or (-1,1)- 30 = 3 
or (-1,1)- 30 = 4) or 
((1,-1)- 30 = 1 or (1,-1)- 30 = 2 or (1,-1)- 30 = 3 
or (1,-1)- 30 = 4) or 
((1,1)- 30 = 1 or (1,1)- 30 = 2 or (1,1)- 30 = 3 or 
(1,1)- 30 = 4) or 
((-1,-1)- 30 = 1 or (-1,-1)- 30 = 2 or (-1,-1)- 30 = 
3 or (-1,-1)- 30 = 4))  and random > 0.10} 

 
Similarly, the above rule describes the following: if there 

exists a vesicle having the value 11, 12, 13, or 14 (a vesicle 
that can move up/right/down/left) and there is a synapsin in 
its neighboring which could be an adjacent cell or a diagonal 
cell, then since the synapsin will come toward this vesicle and 
a binding will occur soon, the value of the vesicle gets 
changed to 41, 42, 43, or 44 (i.e. 11 changes to 41, 12 
changes to 42, 13 changes to 43, and 14 changes to 44). 
 
 

For the movement of synapsin the following four rules 
are implemented: (each movement is performed in three 
steps) 

 
%moving up 
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and 
(1,0)=91 } 
rule : 00 0 {(0,0)=91} 
 
step 1: checking to see if there is an empty cell so the 
synapsin can move into it, for example if the synapsin’s 
direction is upward (value = 21), then at first we need to 
check if there is an empty cell right above it. (91 is used as an 
intermediate value to occupy the empty cell) 
step 2: once an empty cell is found, it gets occupied by the 
synapsin (i.e. the cell’s value changes from 0 to a random 
number 21-24). 
step 3: the previous position of the synapsin that just moved 
to an empty cell gets cleared by setting the value of the cell to 
0. 
 
 Same procedure is used for right, left, and down 
movement. 

 
%moving right 

rule : 92 100 {(0,0)=22 and (0,1)=00 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,-
1)=92} 
rule : 00 0 {(0,0)=92} 

 
%moving down 
rule : 93 100 {(0,0)=23 and (1,0)=00 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (-
1,0)=93 } 
rule : 00 0 {(0,0)=93} 

 
%moving left 
rule : 94 100 {(0,0)=24 and (0,-1)=00 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and 
(0,1)=94 } 
rule : 00 0 {(0,0)=94} 

 
%release 0.1 of the S (the offrate is 0.1) 
rule : {round(uniform(21,24))} 100 {((0,0)=33 or 
(0,0)=32 or (0,0)=31 or (0,0)=34) and random < 0.10} 

 
The above rule is used to break the S-V bindings using 

an offrate = 0.10. According to this rule, 10% of the bindings 
get broken and as a result synapsins get released and will be 
given another direction and they will move around until 
finding a vesicle and binding to it. 

Figure 6 shows the grid at the initial case where S and V 
have not yet interacted to perform a bound. Then, Figure 7 
will show how bounds are formed and the corresponding cells 
change their values to represent the binding.  

 
 
       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  
    +----------------------------------------------------------------------------------------+ 
   0|          13      24      14  24      23  23      11      13  21      22      12        | 
   1|              12      23      13  22      14      12      22      12  23      13        | 
   2|                                                                                        | 
   3|          12      12  11  23      14      13  21      22  23      22  23      11        | 
   4|              23      11              14  11  22      22  23      13  14  14  23        | 
   5|                                                                                        | 
   6|          12  22      12  23      23      13  22      23      13  13  11  22            | 
   7|              13  21      24  23      12      12  22      14  24      13  22            | 
   8|          12      22      13  22      23  23      11  13      14  22      13  24        | 
   9|                                                                                        | 
  10|              12      13      12      13  23      23      11  23      24      11        | 
  11|              12  22      24      22      12  13  13  22      24  22      13            | 
  12|          13      22      13  24      12  14  24      24      12      22      12        | 
  13|          24      13      24      12  13      22      12  24      12  21      14        | 
  14|                                                                                        | 
  15|          13  22      21  22      12      14      12      13  24      23      13        | 
  16|          12  23  11  23  21      22      13  21      14      21      12      13        | 
  17|              12      13      12      12  22      21      12  21      22      12        | 
  18|                                                                                        | 
  19|          14      22      13      22      14      11  23      13  24      13            | 
  20|                                                                                        | 
  21|          14  23      23  24      11  23      22      23      13      12      13        | 
  22|                                  21  12                              24                | 
  23|                                                      22  13                            | 
  24|          12      24      13  22      21  21      12  14      12  22      12  23        | 
  25|              12  21      22      23      12  14  12  21      22  23      14            | 
    +----------------------------------------------------------------------------------------+ 

 

Figure 6. V and S before binding at Time: 00:00:00:100 
(bold boxes represent examples of binding structures) 

 
        0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  
    +----------------------------------------------------------------------------------------+ 
   0|          13  32          41  22  32  34  31      44      42  34      31      12        | 
   1|              12      32      44  21      42      12      23      42  32      13        | 
   2|                                                                                        | 
   3|          41      42  41  32      14      42  32      22          33  33      44        | 
   4|              32      43              14  41  34          23      13  43  14  32        | 
   5|                                                          33                            | 
   6|          42  33      44  32      31      43  32      21      44  42  42  34            | 
   7|              42  31      34  32      41      42  23      42  32      44  31            | 
   8|          12      31      41  24      34  33      41  13      43      34  42  31        | 
   9|                                                                                        | 
  10|              42      44      42      41  23      31      43  32      33      11        | 
  11|              41  32      32      33      44  44  13  33      33  33      43            | 
  12|          42      31      41  32      42  43  33      32      12      22      12        | 
  13|          22      41      32      42  13      34      42  32      44  31      14        | 
  14|                                                                                        | 
  15|          41  34      32      33  44      42      42      42  34      32      13        | 
  16|          44  31  42  31  31      31      42  31      44      33      41      13        | 
  17|              12      43      43      42  32      31      44  33              12        | 
  18|                                                                          24            | 
  19|          14          22  13          32  14      42  31      13  33      13            | 
  20|                                                                                        | 
  21|          43  33      22          44  31              22      13      44      13        | 
  22|                          23      32  42              32              33                | 
  23|                                                      33  41                            | 
  24|          12      33      43  31      33  33      42  14      42  23      44  34        | 
  25|              42  32      34              41  42  42  31      34  21      14            | 
    +----------------------------------------------------------------------------------------+ 

Figure 7. V and S after binding at Time: 00:00:00:300 
 
 As illustrated on the above figures, the bold boxes show 
bindings between synapsin (31-34) and vesicle (41-44). The 
first illustration (Figure 6) represents the initial scenario 
where synapsins (21-24) and vesicles (11-14) are free and 



 
 

have not yet performed bindings. Once synapsins walk toward 
vesicles, the values of the corresponding cells change to 31-34 
(bonded synapsins) and 41-44 (bonded vesicles). It is shown 
that vesicles can be surrounded by more than one synapsin, 
but each synapsin can bind to only one vesicle at any time. 
From the above figure we can see the following possible 
binding scenarios: 

?  corresponds to:         V– S          
  

 ?             corresponds to:       S – V                                                                                                                                                       
                                                                                       | 

                                                                               S 
Several initial parameters were tested in order to see the 

running process of cell nerve with different offrate.  

V. PARALLEL AND DISTRIBUTED SIMULATION 

As was mentioned earlier, P-DEVS and Parallel Cell-
DEVS extend the standard formalisms of their type to allow a 
higher degree of parallelism in parallel and distributed 
environments. In our research, we have modified CD++ 
sequential simulator to enable parallel and distributed 
simulations by implementing optimistic synchronization 
protocol that was first proposed by Jefferson as Time Warp 
mechanism [Jef85]. We have built an optimistic parallel 
CD++ simulator (optimistic PCD++) that executes simulation 
via several Time Warp processes [Mar99] by exchanging 
time-stamped event messages using MPI [Gro96]. The Time 
Warp protocol used by PCD++ simulator consists of two 
parts: the local control mechanism and the global control 
mechanism. The local control mechanism which is provided 
in each Time Warp process is in charge of rollback operations 
which include: sending anti-messages, restoring the state of 
the LP, readjusting Local Virtual Time (LVT), etc. On the 
other hand, the global control mechanism takes care of global 
issues such as memory management, I/O operations, and 
termination detection.  

Our optimistic PCD++ simulator employs a layered 
architecture, where each layer depends only on the layers 
below it. Figure 8 represents these layers. 
 

 

 

 

 

 

Figure 8. Layered architecture of PCD++ [Gli04] 
 

On the bottom of the architecture the operating system 
resides. We have chosen Linux Operating System as the 
underlying platform on which our simulator runs. Above the 
Operating System lies the Message Passing Interface (MPI). 

MPI is a standard specification of message-passing library for 
high-performance communications on both massively parallel 
machines and on workstations clusters. The Operating 
System with the use of MPI provides the communication 
infrastructure for the PCD++ simulator. We have used 
MPICH [Gro96] portable implementation of MPI which 
provides a vehicle for MPI implementation research and for 
developing parallel and distributed applications. The 
WARPED [Rad98] simulation kernel is our next layer which 
serves as a configuration middleware that implements the 
Time Warp mechanism and a verity of optimization 
algorithms. On top of the WARPED kernel we have our 
PCD++ simulator implementing the Parallel DEVS and Cell-
DEVS formalisms which provides the frame work for 
building and executing DEVS and Cell-DEVS models in 
distributed environments using the Time Warp protocol.  

PCD++ implements a flattened structure for the 
simulation framework. Two types of CD++ processors exist 
on PCD++: Flat Coordinator (FC) and Node Coordinator 
(NC). This approach reduces the communication overhead by 
flattening the structure of the simulation framework. The 
class hierarchies in the modeling and the simulation 
frameworks are shown in Figure 9. 

 
Figure 9. Processor hierarchy 

 
As seen on the diagram, there are four types of PCD++ 

processors during the simulation: Simulator, FC, NC, and 
RC. When DEVS and Cell-DEVS models are executed over 
multiple machines, a distributed processor structure is 
constructed in PCD++ to carry out the simulation. Lets 
consider the following example to see how partitioning takes 
place when simulating a coupled DEVS or Cell-DEVS model 
on two machines using PCD++ simulator. Figure 10 
represents this scenario. In this example there are four atomic 
models (A1, A2, A3, and A4) where A1 and A2 are grouped 
by the coupled model C1, and C1, and the other two atomic 
models A3, and A4 are then grouped by the TOP coupled 
model. The whole model is referred to as TOP model. Since 
we will execute the simulation on two machines, there will be 
two partitions encapsulating the atomic models two by two. 
Partition 0 will take care of A1 and A2, and partition 1 will 
be responsible for A3 and A4. By partition we mean the 
machine that will run the simulation.  

MPI 

WARPED 

Parallel CD++ 

MODEL 



 
 

 
Figure 10. Example model and partition definition 
 
Moreover, a graphical representation of the distributed 

processors structure of this example is illustrated by Figure 11 
. 

 
Figure 11. Distributed processor structure for the example  
 
For this example, two logical processes are created, one per 
each machine: LP0 and LP1. LPs group together the PCD++ 
processors on the machine they belong to. Two types of 
messages exist: remote messages and local messages. Local 
messages are exchanged among those Simulators which 
reside on the same LP, while remote messages are exchanged 
among simulators residing on LPs other than the one they are 
originating from. Local messages are handled by the FC, and 
the remote messages are handled by the NC and then sent to 
the appropriate Simulator through the destination FC. The 
root coordinator is created only on machine 0. It starts the 
simulation and handles I/O operations. The NC which exists 
on each machine is the local central controller on each LP 
and the end point of inter-LP communications. The FC 
residing between the NC and the Simulators is responsible for 
synchronizing the execution of its child Simulators. Finally, 
the Simulator is responsible for executing DEVS abstract 
functions defined in the atomic models. When a Simulator 
sends a message to another Simulator sitting on a remote 
machine, the message is first directed to the FC, then to the 
local NC through direct communication. Once the message 
gets to the NC, it will be forwarded to the destination NC 
through MPI communication. On the receiving end, the NC 
will then forward the message to the destination Simulator 
through the child FC.  
 In PCD++, two types of communications exit among LPs: 
synchronous intra-LP communications which are carried out 
by all types of PCD++ processors (i.e. Simulator, NC, FC, 
RC), and asynchronous inter-LP communications carried out 
by NCs. Since inter-LP communications are asynchronous, 
the NCs require a special structure named as NC Message 
Bag to handle the message passing between LPs who have 

different local virtual times. The following properties hold for 
NC Message Bag: 

1. Messages inside a Message Bag can have different 
timestamps. 

2. The time of a Message Bag is equal to the minimum 
timestamp among the contained messages. If the 
Message Bag is empty, then its time is set to infinity.  

3. Messages inside a Message Bag are processed based 
on their timestamp in an increasing order. That is 
the message whose timestamp is equal to the 
Message Bag’s time is processed first. Once the 
message is processed, it is then removed from the 
bag, and the bag’s time is advanced to the next 
minimum value among the timestamps of the 
remaining messages. Once all the messages are 
processed and removed from the bag, the Message 
Bag’s time is restored back to infinity implying that 
the bag is empty. 

In contrast, synchronous intra-LP communications are 
handled by the Simulators and the FC since they are local to 
the LP and do not pass the boundary of the LP. Similar to the 
NC Message Bag, for intra-LP messages the FC holds a 
message bag. In this case, when two local Simulators (i.e. 
sitting on the same LP) need to communicate to each other, 
they send the message to the local FC, and then the message 
will be directed to the destination local Simulator by the FC. 
There is no direct communications between Simulators, even 
the ones sitting on the same LP. Local Simulators can only 
communicate to each other through their FC. This is the 
purpose of having FC message bag. PCD++ messages are in 
form of data objects which are dynamically allocated and 
deleted by the PCD++ processors.  

PCD++ processors exchange two categories of messages: 
content messages and control messages. The first category 
includes the external message (x) and the output message (y), 
and the second category includes the initialization message 
(I), the collect message (@), the internal message (*), and the 
done message (D). To describe these messages, external and 
output messages are used to exchange simulation data 
between the models, initialization messages start the 
simulation, collect and internal messages trigger the output 
and the state transition functions respectively in the atomic 
DEVS models, done messages handle synchronization by 
carrying the model timing information. The simulation is 
executed in a message-driven manner.  

Each type of PCD++ processor, define its own receive 
functionality for each type of messages. Let’s what happens at 
each PCD++ processor considering the scenario of reception 
of different types of messages: 
Simulator: upon receiving (I, 0) from the parent FC, two 
variables are used to record the current simulation time (tL) 
and the value of sigma (ta). Upon receiving the initialization 
message, (I, 0), the Simulator resets tL to the timestamp of the 
message, therefore the Simulator’s virtual time now is equal 
to zero. Then the simulator initializes the variables defined in 
its associated atomic model, and after that, it informs its 
parent FC of the value of ta by sending a done message 
stamped with time 0. When a (@, t) message is received, the 



 
 

Simulator invokes the output function (?) of the atomic model 
and as a result an output message (y, t) is sent to the FC. 
After this, the Simulator will send (D, t) to the FC with ta = 0 
to indicate that it is imminent. Following the collect message, 
a (*, t) will arrive to trigger internal/external/confluent 
function of the atomic model depending on the timing of the 
message and the status of the Simulator’s message bag. The 
last message that may arrive at the Simulator is (x, t) which is 
simply inserted into the Simulator’s message bag. 
Flat Coordinator: when (I, 0) is received, the FC records the 
total number of its children in a variable named as doneCount 
then forwards the (I, 0) message to each child. After this, the 
FC waits for all its children to respond to this initialization by 
sending back a (D, 0). The FC will only pass the control over 
to the NC if all its children have finished their previous 
computation and have sent done messages as notification 
messages. Upon receiving a (@, t) message, the FC forwards 
it to all imminent Simulators and will keep a record of this 
for later use (to know which children need to do state 
transitions when (*, t) is received). Moreover, when (y, t) is 
received, the FC searches the model coupling information to 
find out the correct destination. The destination is either an 
input port on an atomic model, or an output port on the 
topmost coupled model. In case of receiving (x, t) message, 
the FC will simply insert the message into its message bag. 
Upon receiving (*, t) message, the external messages inside 
the FC’s message bag are flushed to the local receiving 
Simulators. This will trigger the imminent Simulators to 
perform a state transition. Finally, when a (D, t) message is 
received from a child Simulator, the FC updates the child’s tN 
to the sum of the current simulation time and the sigma value 
carried by the received (D, t)    message. 
Node Coordinator: upon receiving (I, 0), the NC simply 
forwards it to the child FC. In case of receiving (x, t), NC will 
insert this message into the NC Message Bag. These external 
messages contain values sent from remote Simulators to local 
ones. When (y, t) is received the NC simply forward it the 
Root (it has to be sent to the environment). Reception of a (D, 
t) message by the NC from a child FC indicates that this is a 
response to a control message that was previously sent out by 
the NC.  
Root Coordinator: this processor only handles environment-
oriented output messages during the simulation. Output to the 
environment is done through a test file called as output file or 
OUT file.  

Aside from the functionalities of each of the PCD++ 
processors, we have modified the WARPED [Mar99] kernel 
in order to run simulations under different protocols. These 
protocols are modifications of the optimistic one that 
WARPED implements. The idea is to reduce the number of 
rollbacks by suspending the LP that has large number of 
rollbacks and therefore stopping it from flooding the net with 
anti-messages. However, the LP will still be able to receive 
input events and they will be inserted into the corresponding 
message bags. After a predefined duration, the suspend LP is 
released and will go on simulating. These two protocols 
[Szu00], namely Local Rollback Frequency Model (LRFM) 
and Global Rollback Frequency Model (GRFM) are based on 

the “Near Perfect State Information - NPSI” protocol [Sri98]. 
The NPSI protocol implements the Elastic Time mechanism. 
Briefly, Elastic Time is composed of two parts: 

1. Identifying the NPSI of the simulation. 
2. Translating the NPSI in optimism on the simulation 

objects.  
Each part can be implemented in many ways. The main 
concept is to associate each LP with a potential error (PE) to 
control the optimism of LPi. During the simulation run, the 
value of each PE is kept updated by evaluating a function 
called M1 which uses state information that is received from 
the feedback system. Then, the function M2 translates 
dynamically every update of PEi in delays in the execution 
events.  

VI. LOCAL ROLLBACK FREQUENCY MODEL 

The Local Rollback Frequency Model (LRFM) protocol is 
only based on local information of the logical processes. That 
is, the simulation object within a LP will be suspended or 
allowed to continue simulating only based on the number of 
rollbacks it had. First M1 and M2 functions must be defined: 
 
- Function M1: The potential error of a simulation object is 
the number of rollbacks that the object had from a time T1 
until the actual time T2, having that T2 - T1 <= T, where T is 
the interval after which the local number of rollbacks of the 
simulation object gets restarted back to zero. 
 
- Function M2: If the number of rollbacks for a simulation 
object at the interval T is greater than a specified value, then 
the object is suspended, adopting a conservative behavior. By 
suspending the simulation object, the LP where the object 
resides on will still be able to receive incoming events, but the 
events are not processed until the simulation object is again 
given the chance to resumes. However, if the number of 
rollbacks of the simulation object is less than the predefined 
value, then the object simulates aggressively, adopting its 
usual optimistic behavior (Time Warp).  

To implement this protocol each LP has to be informed 
about two values: max_rollback, and period. Where 
max_rollback is the maximum number of allowed rollbacks 
before suspension of the simulation object, and period is the 
duration for which the simulation object will stay suspended. 
The algorithm is presented in Figure 12. 
 
 

1. In each LP, at the beginning predefine: 
 max_rollbacks and period 
2. In each simulation object, at the simulation start:  
 previous_time  = 0 
3. In each object, when the LP is scheduled to run:  
 actual_time = Warped.TotalSimulationlTime () 
  if (actual_time - previous_time >= period) 
    simulateNextEvent() 
    previous_time  = actual_time 
    rollbacks = 0  
  else  
   if  (rollbacks < max_rollbacks)  
    simulateNextEvent() 



 
 

   /* else, SUSPEND the simulation object */ 
Figure 12. LRFM Algorithm 

VII. GLOBAL ROLLBACK FREQUENCY MODEL 

In Global Rollback Frequency Model (GRFM) protocol 
each simulation object uses global information in such a way 
that among all the simulation objects residing on all LPs, the 
one with greatest number of rollbacks must be suspended for 
the duration of time defined at the beginning of the 
simulation. Therefore, at each simulation cycle all the LPs 
must broadcast the information regarding the rollback counts 
of all of their simulation objects. As in LRFM, M1 and M2 
functions must first be defined: 
Function M1: The potential error of a simulation object is the 
number of rollbacks that the object had minus the maximum 
number of rollback of the other simulation objects of the 
simulation, from a time T1 until the actual time T2, having 
that T2 - T1 <= T, where T is the interval after which the 
local number of rollbacks of the simulation object gets 
restarted back to zero. 
Function M2: If the number of rollbacks for a simulation 
object at the interval T is greater than other number of 
rollbacks of the other simulation objects, then the object is 
suspended, adopting a conservative behavior. By suspending 
the simulation object, the LP where the object resides on will 
still be able to receive incoming events, but the events are not 
processed until the simulation object is again given the 
chance to resumes. However, if the number of rollbacks of the 
simulation object is less than the predefined value, then the 
object simulates aggressively, adopting its usual optimistic 
behavior (Time Warp).  
 
This algorithm is implemented as follows: 
 
1. In each LP, at the beginning predefine: period 
2. In each simulation object, at the beginning predefine: 
        previous_time  = 0  
        max_rollbacks = 0 
3. In each simulation object, when the LP is scheduled to run: 
       actual_time = Warped.TotalSimulationlTime () 
if (actual_time - previous_time >= period) 
    simulateNextEvent() 
   previous_time  = actual_time 
   rollbacks = 0  
else  
   if  (rollbacks < max_rollbacks)  
         simulateNextEvent() 
/* else, SUSPEND the simulation object */ 
4. For i from 1 until the number of LPs 
if (i is NOT this PL id) 
send to LP i the number of rollbacks of the objects of the LP id 
Subroutine that receives the number of rollbacks from other LP: 
For j from 1 until the numbers received 
If (rollbacks[j] > max_rollbacks) 
max_rollbacks = rollbacks[j] 

Figure 13. GRFM Algorithm 
 

With LRFM and GRFM different simulation results can be 
collected since the RFM period (and in case of LRFM the 

max_rollbacks) can be modified very easily at the beginning 
of the simulation. This is done by changing these values in 
the configuration files right before the simulation starts and 
therefore, there is no need to rebuild the whole simulator in 
order for these modifications to have effect.  

VIII. SIMULATION RESULTS 

After modifying WARPED kernel of PCD++ simulator to 
include LRFM and GRFM, the Ship Evacuation model and 
Synapsin-Vesicle Reaction model were executed and results 
were collected. To study the performance of our optimistic 
PCD++ simulator, the experiments were first carried out on 
standalone CD++ on a single machine, and then on a cluster. 
The cluster consisted of 32 compute nodes (dual 3.2 GHz 
Intel Xeon processors, 1GB PC2100 266MHZ DDR RAM) 
running Linux WS 2.4.2.1 interconnected through Gigabit 
Ethernet and communicating over MPICH 1.2.6.  

The metric used to measure the performance of PCD++ 
simulator is the Execution Time which is the total execution 
time of the simulation collected from the execution 
environment. During the experiment, results of execution of 
both protocols; the LRFM and GRFM were conducted and the 
Overall Speedup which is defined as follows was calculated. 

Overall Speedup = T(1) / T(N) 
Table 2 represents the execution of both models on single 

machine using the standalone sequential CD++ simulator.  
Model Total Execution Time (sec) 

Ship Evacuation 6.4327 
Synapsin-Vesicle Reaction 3.7621 

Table 2. Results of standalone CD++ simulator 
 

Then, simulations were run for both models on 1 to 8 
nodes and for each node five trials were collected. The values 
shown on the graph (Figure 14, Figure 15) are the average of 
these five trials for each node which are within a confidence 
interval of 95%. 
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Figure 14. Execution time of Ship Evacuation model with 

LRFM and GRFM protocols 
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Figure 15. Execution time of Synapsin-Vesicle Reaction 

model with LRFM and GRFM protocols 
 
The following figures show the speedups for both models: 
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Figure 16. Speedups of Ship Evacuation model with 

LRFM and GRFM protocols 
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Figure 17. Speedups of Synapsin-Vesicle Reaction model 

with LRFM and GRFM protocols 

IX. CONCLUSION 

We have introduced two new simulation techniques for P-
DEVS and Cell-DEVS optimistic simulator by modifying 
Time Warp, a well-known optimistic synchronization 
protocol. Our efforts address the need for efficient, fast 
execution of models using parallel and distributed simulation. 
We propose an optimistic-based mechanism to reduce the 
number of rollbacks and anti-messages. Our two algorithms, 
namely Local Rollback Frequency Model (LRFM) and Global 
Rollback Frequency Model (GRFM) are implemented as 
modifications of the optimist one that Time Warp 
implements. The use of LRFM and GRFM enable achieving 

higher speedups and lower execution times. Under our new 
protocols, during the simulation objects with a large number 
of rollbacks are suspended for a predefined period (although 
the objects will continue receiving input events). The idea is 
to stop the objects with large number of rollbacks from 
flooding the simulation with anti-messages and only allowing 
the rest of objects to advance. These new protocols are based 
on the Near Perfect State Information protocol. The execution 
results (based on two Cell-DEVS models) showed better 
performance than stand-alone execution. Using more complex 
and larger models will show considerable speedups. 
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