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Abstract—Low-altitude Unmanned Aerial Vehicles (UAVs) are
a valuable solution for data gathering, surveillance, warfare,
and mapping. In these applications, differentiating and esti-
mating the position of ground Radio Frequency (RF) emitters
is pivotal. To achieve this, we define an experimental setup
based on Received Signal Strength Indicator (RSSI) collected
by a single UAV at different points of a predefined trajectory.
The experimental setup is evaluated for the two unlicensed
frequency bands of 2.4GHz and 865MHz with and without
interference, respectively. We show that the application of the
maximum likelihood algorithm to the RSSI measures collected
in experiments conducted in rural areas gives a mean absolute
localization error of about 5m and 4m for a single transmitter
with and without interference, respectively. A threshold-based
technique is proposed to improve the accuracy in the presence
of interference. For multiple transmitters, the RSSI data are
divided into clusters and fed into a localization algorithm. A
k-means clustering algorithm eliminates user intervention and
identifies the number of RF emitters in the area. As a further
contribution of the paper, we define an analysis phase where UAV
flight path and data collection are simulated using the QuaDRiGa
realistic radio impulse channel model.

Index Terms—Unmanned Aerial Vehicles (UAVs), Received
Signal Strength Indicator (RSSI), Software Defined Radio (SDR),
GNU Radio, Localization, Interference, k-means clustering.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are expected to have a
great impact in the telecommunications sector thanks to their
unprecedented mobility. Their main envisaged uses are in
search and rescue operations and in providing on-demand de-
ployment of airborne base stations [1]1. For such applications,
the localization of ground targets from UAVs is often a useful
feature and sometimes a necessary requirement [2], [3]. In
search and rescue situations, re-establishing the connectivity
with ground terminals and localizing them can save lives and
expedite time-critical operations. In general, when speaking of
target localization, it is possible to distinguish between passive
or active localization; in the former, targets are often localized
using radar, lidar, or other sensing technologies because they
do not actively emit Radio Frequency (RF) signals while, in
the latter case, they emit RF signals, which can be exploited
to estimate their position [4].

Active localization of RF transmitters is a quite classical and
well-studied problem in terrestrial and non-terrestrial wireless

1This paper is an extension of the conference paper, Moro, Stefano, et
al. ”Experimental UAV-Aided RSSI Localization of a Ground RF Emitter
in 865 MHz and 2.4 GHz Bands.” 2022 IEEE 95th Vehicular Technology
Conference:(VTC2022-Spring). IEEE, 2022.

communication systems because the extensive availability of
devices capable of measuring the Received Signal Strength
Indicator (RSSI) [3], [5]–[8]. Many other approaches can be
adopted to tackle the localization problem, i.e., Time of Arrival
(ToA) [9], Time Difference of Arrival (TDoA) [10], and Angle
of Arrival (AoA) [11], just to cite a few familiar techniques.
However, it is important to observe that all these methods
require more complicated or dedicated hardware than RSSI;
therefore, RSSI localization is the most convenient choice in
applications where devices are subject to tight constraints on
their complexity, such as Wireless Sensor Network (WSN) [5],
[8]. Regarding the specific problem of localization from UAVs,
the crucial limitation is the weight of the payload. A UAV-
based localization platform based solely on RSSI, or the
difference of RSSI [12], may be therefore constructed with sig-
nificantly simpler and lighter hardware compared to alternative
approaches. However, the benefits of RSSI-based localization
solutions come with the main drawback of measures that are
biased due to errors in the UAV position and significantly more
noisy due to path loss, shadowing attenuation, and fading of
the signal.

Localization of RF Transmitters: Related Works

In recent years, researchers have looked closely at the use
of UAVs to locate a ground-based RF transmitter. With the
purpose of localizing the ground RF emitter, in [6] a UAV
is employed as an anchor point in the localization process
and its measurements are combined with those from the
ground anchor nodes. In [7] a technique is discussed that
uses three fixed-wing UAVs scanning together a large region
of 10× 10 km2 and locating an unknown-power RF emitter.
To the best of the authors’ knowledge, there are no studies
in the literature that address RSSI-based localization from a
UAV in the presence of interference. These are mostly limited
to indoor environments. Existing solutions use data collected
from numerous directional antennas [13] or exploit the fre-
quency hopping capabilities to avoid the interference [14]. A
UAV-based wireless sensor network was simulated in [15], and
compressed sensing was applied to RSSI for joint estimation
of multiple emitters.

It is worth observing that only a few experimental works
employ UAVs as anchor points, and among these, only a small
number use RSSI-based localization. In [8], multiple ground
anchor nodes based on ZigBee transceivers are deployed as
part of the localization of RF emitters on the ground. Other
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approaches present in the literature use the UAV to gather data
and learn how to maneuver it [16], [17]. In [16], it is shown
how to locate and move a UAV toward a ground RF emitter
by comparing the RSSI from the two antennas mounted at the
front and rear. In [17], many directional antennas onboard a
UAV are connected to a single receiver through a switch to
sense the power and allow for a fast estimation of the ground
RF transmitter bearing.

Contributions

In this work, we propose an experimental setup where a
Raspberry Pi board coupled with an Adalm Pluto Software
Defined Radio (SDR) RF module collects RSSI values using a
single omnidirectional antenna [18]. RSSI data in the 2.4GHz
Industrial Scientific Medical (ISM) band are collected using
different UAV trajectories. Furthermore, a baseline localiza-
tion algorithm based on multi-lateration is provided. For the
localization of the ground RF emitters, the gathered data are
processed by a Maximum Likelihood (ML) algorithm. At the
same time, local WiFi access points or the remote control may
occasionally cause irregular interference at 2.4GHz, which can
reduce localization accuracy. The impact of WiFi interference
is taken into account and a threshold-based solution is defined
to mitigate its impact on RSSI ranging. Differently from the
interference management approach in [13], this work does
not require directional antennas and additional hardware, so
reducing the weight and complexity of UAV operations. Then,
the 865MHz spectrum is also considered for the accuracy
validation without significant interference. The localization
performance in this band is also illustrated by a series of
flights.

The initial feasibility study of the proposed UAV-based
localization approach was done by simulation using the
QuaDRiGa channel model [19]. QuaDRiGa enables the testing
with simulated channels with characteristics that are very close
to those met in real scenarios. The developed simulator repre-
sents a useful tool for the prior assessment of the performance
of the proposed localization platform considering different
UAV trajectories [20]–[22].

The proposed approach has been evaluated both considering
single and multiple ground RF emitters. In order to estimate
their number, we have resorted to the use of k-means clustering
method. Recently, machine-learning approaches have been
widely explored and used in many fields. In localization
technology, machine learning is often used to classify a large
number of characteristic parameters of wireless signals from
user devices in order to improve localization accuracy. They
are mostly employed in indoor scenarios based on finger-
printing [23]–[26]. In [27] it simulates the use of a k-means
clustering algorithm for detecting the presence of multiple
transmitters via UAV-based mapping; a three-dimensional (3D)
contour plot is built using measured power, and machine
learning algorithms are used to estimate the positions of
the transmitters. Here, we solve the issue of identifying the
number of ground RF transmitters when applying the localiza-
tion algorithm. Initially, the k-means clustering algorithm was
adapted to identify the number of transmitters corresponding

to the number of identified clusters and to divide the data for
the localization algorithm into the respective clusters. Then
the centroids of the identified clusters are considered as the
estimates of transmitters’ positions. Simulations employing the
QuaDRiGa channel model have also been used to develop and
test the k-means algorithm before practical trials.

The main new contributions of this paper, which is an
extension of our previous work [1], can be summarized as
follows:

• Definition of a UAV platform and experimental validation
of an RSSI-based localization algorithm of RF ground
emitters at 2.4GHz and 865MHz.

• QuaDRiGa channel model simulations to define and test
scenarios close to realistic conditions.

• Evaluation of the impact of interference from WiFi
sources and development of a threshold-based approach
for its mitigation.

• Identification and localization of multiple RF ground
transmitters based on the k-means clustering and experi-
mental validation.

Compared to [1] new scenarios have been investigated,
tested, and experimentally evaluated.

Organization of the Paper
The rest of the paper is organized as follows: Sec. II

introduces the scenario focusing on the path loss model, the
threshold-based interference mitigation, the ML localization
algorithm, and the k-means clustering algorithm. MATLAB
simulations reporting the performance obtained using the
QuaDRiGa channel model are reported in Sec. III. Then
Sec. IV describes the measurement campaign for gathering
real RSSI values, including the UAV path control. Sec. V
presents the localization results concerning single and multiple
RF ground transmitters. Finally, Sec. VI concludes the paper
and discusses future work.

II. SYSTEM MODEL

A. Path Loss Model
The signal attenuation is related to the RSSI through the

path loss model, expressed in the logarithmic domain [28]. In
this relation, the inaccuracy is mainly due to the shadowing
impact, which increases linearly with the distance (as shad-
owing introduces a constant error in the log-distance relation),
and to the multipath (particularly for indoor scenarios), where
RSSI fluctuations cannot be predicted by deterministic models.
Thus, the measured power at the distance dm can be expressed
as

Pr(dBm) = Pref(dBm)− np · 10 log10
(

d

dref

)
+ n, (1)

where Pref is the power received at the reference distance of
dref m, np is the path loss exponent, and n is the random
shadowing component, which is Gaussian with zero mean (in
dB). This model is adapted to the experimental scenario by
setting np; in addition, due to the absence of large structures
such as buildings or trees, the channel model that fits best this
experimental scenario is the two-ray ground reflection and this
is validated by the real measurements on the field.
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Fig. 1: Experimental setup of the ground-to-air link. There
are two ADALM-Pluto SDRs on the roof of a car: one is the
transmitter and the other is used for monitoring.

Fig. 2: Data points clustering approach in the presence of two
transmitters.

B. Maximum Likelihood Estimation of the Ground RF Emitter

The ML algorithm uses the collected data to estimate
the parameters of a given distribution by maximizing the
likelihood function [29]. In the considered scenario, each UAV
position defines an Anchor Point (AP). Let u and si be the
3D state vectors that give the coordinates of the active RF
emitter and of the UAV associated with the ith RSSI measure,
respectively. A single RSSI measurement ρi at position si is
modelled as [30]

ρi = hi(u, si) + ni, i = 1, . . . , NAP , (2)

where NAP is the number of APs, ni is the zero-mean additive
white Gaussian noise with standard deviation σi, and

hi(u, si) = Pref − np · 10 log10
∥u − si∥
dref

(3)

is a non-linear function of the state vectors (u,si) obtained
from (1) with d= ∥u − si∥, being ∥v∥ the norm of the vector
v. The ML estimate of the position of the ground RF emitter
û is obtained from the set of measurements in (3) as

ûML = argmax
u

NAP∏
i=1

1√
2π(σi)2

e
−
(

ρi−hi(u,si)
2σi

)2

. (4)

The absolute error is calculated as the distance between the
true position of the transmitter and the ML estimation.

C. Threshold-based Approach for Data Processing

In order to improve the accuracy of the ML localization
algorithm, a pre-processing phase can refine the raw data and
reduce the impact of noise and interference [31]. In this paper,
the definition of the lower and upper thresholds makes the data
usable and increases the algorithm’s efficiency. For the initial
measurements, the UAV is close to the transmitter, as shown on
the car roof in Fig. 1, and there is also some interference due to
the persons before the takeoff and multipath reflections. Hence,
the measurements when the UAV is close to the transmitter
are neglected, and an upper threshold of −50 dB is used to
this aim. At the same time, RSSI measurements lower than a
certain value are discarded as they are comparable to the SDR
noise floor. These lower and upper thresholds were derived
empirically from the measures will be presented in Sec. V.

D. k-means Clustering Algorithm

Clustering is one of the most established unsupervised
learning techniques in machine learning. One of the most
prominent clustering algorithms is k-means, where the goal
is to divide the data into k clusters [32]. In our approach, this
translates to clustering data points collected during the UAV
flight, as shown in Fig. 2. These clusters are useful to dis-
tinguish multiple transmitters and their relative centroids can
be used directly as an estimate of the transmitters’ positions.
A centroid is the center of the cluster, at which the sum of
distances from all the data points that belong to that cluster
is minimum. In order to evaluate the appropriate number
of clusters, the elbow method is used [33]: the algorithm
is run several times with an increment in K and records
Within cluster the Sum of Squares (WSS), which measures
the distance from the centroid of the points belonging to that
cluster.

In a D-dimensional space, let us consider N sets of points
represented by a N ×D data matrix X. Each row of X
represents a single point. Initially, the k-means algorithm
assigns randomly k cluster centroids, which can be represented
by a k×D centroid matrix C. For each iteration, each point
is assigned to the closest cluster centroid by calculating the
squared Euclidean distance. Then, the centroid of each cluster
is recalculated by averaging all the coordinates of the points
belonging to that cluster. These steps are repeated until kmax

(specified by the user) is reached or until the WSS no longer
decreases. The optimal k is chosen when the WSS curve starts
to bend and converge, which is also known as the elbow point.

III. QUADRIGA SIMULATIONS

Prior to the experimental campaign, the QuaDRiGa channel
model was used to evaluate the feasibility of the proposed
hardware setup by simulating the UAV flight path in the
presence of RF emitters. The Non-terrestrial Network rural
Line-of-Sight (NTN Rural LoS) scenario was considered to
introduce realistic parameters in the propagation model, which
are consistent with the experimental campaigns. Parameters
such as velocity, altitude, flight time, flight path, and receiver
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Fig. 3: QuaDRiGa Rural LoS simulation with 3 emitters.

Fig. 4: QuaDRiGa simulated track with RSSI as gradient.

antenna array on UAVs were introduced based on specifica-
tions from the commercially available UAVs. Afterward, the
number of RF emitters, their position, and antenna array are
defined as parameters of our simulations. Once the scenario is
established, the simulation yields RSSI coupled with the UAV
positions. An example of a QuaDRiGa simulation in MATLAB
with three emitters and a UAV track is shown in Fig. 3.

The data obtained using the Rural LoS simulation after min-
max normalization are shown in Fig. 4 with RSSI illustrated
by the gradient. Once the cutoff of RSSI<−90 dB is applied,
the darker points in the track are cleared out. Then data are fed
into the k-means clustering algorithm to identify the number
of transmitters and to partition the data. The elbow graph
in Fig. 5 shows that at k=3 the WSS starts to diminish.
The clusters formed along with the simulated track are shown
in Fig. 6. Then, the same parameters were used in the Urban
LoS scenario, and the WSS starts to diminish at k=3 as shown
in Fig. 5. The final clustering, along with the estimate of the
transmitter’s position, is shown in Fig. 7.

Fig. 5: Elbow Plot - QuaDRiGa Rural and Urban LoS simu-
lation.

Fig. 6: k-means output - QuaDRiGa NTN Rural LoS.

Fig. 7: k-means output - QuaDRiGa NTN Urban LoS.

IV. EXPERIMENTAL MEASUREMENT CAMPAIGN

The experimental setup used in this study was designed
to be simple and efficient. The ground segment involved an
ADALM-Pluto SDR [18], which is lightweight and has a wide
frequency range for both single and multiple emitter scenarios.
The ADALM-Pluto SDR allowed experimental campaigns
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Fig. 8: The light blue signal is the UAV controller transmission
at 2.4GHz and the yellow one is the max-hold of the received
power. The frequency-hopping nature of the transmission is
the main cause of interference.

Fig. 9: Transmitter setup in multiple emitters scenario.

both in the 865MHz [34] and 2.4GHz frequency bands. The
emitter setup for the standalone scenario depicted in Fig. 1
was described in detail in [1], which involved transmission
of a QPSK-modulated signal at a carrier frequency of fc =
865MHz without interference and fc =2.4GHz with interfer-
ence. The source of interference in the experimental campaign
was a WiFi hotspot and the UAV controller, as shown by
Fig. 8. As both frequencies are part of the unlicensed spectrum,
signals were transmitted with the maximum power of the
SDR, which is 7 dBm. In the multiple emitter scenario, each
emitter included an ADALM-Pluto SDR running a MATLAB
script paired with a power bank, as shown in Fig. 9; we
took advantage of the transmit and repeat mode available in
the MATLAB API, which allowed us to load the waveform
samples in the internal memory of the SDR and transmit them
continuously. This setup allowed the SDR to emit constantly
a QAM-modulated signal without the need for an external
computer.

The receiver component of the setup involved an identical
SDR paired with a Raspberry Pi 3B on the UAV, as depicted
in Fig. 10. The RSSI values were recorded using the GNURa-
dio application with 10ms sampling time. This sampling time
of the RSSI signal is easily achievable also with a low-cost
transceiver [35]. The transceiver AD9361 used in the setup

Fig. 10: The Tarot UAV in its complete configuration: the
ADALM Pluto SDR as RF front end and the Raspberry Pi
with the SenseHat IMU board for data logging.

Fig. 11: The flight track of the UAV was predetermined before
the flight. We used a serpentine-like pattern to cover the
designated area.

measures the dB power level and compensates for the receiver
gain in order to provide the RSSI value. For this reason, we
could take advantage of the Adaptive Gain Control (AGC)
system on the board to face near and far-range situations
without manually changing the receiver gain value. However,
the RSSI value returned by the board is not calibrated but
is only a relative value. Therefore, a calibration measure at
a distance of 1m was used to estimate the values of all the
gains at the receiver and match the relative RSSI measures
to the actual path loss values. Overall, the experimental setup
turned out to be effective in collecting the necessary data to
evaluate the performance of the k-means clustering algorithm
and localize an active RF transmitter.

A. UAV Path Control

Localizing a ground RF emitter using UAVs involves several
key steps, and defining the flight path is one of the fundamental
aspects. Several path planning algorithms have been developed
to optimize the path and ensure accurate localization, such as
the one reported in [36]. This particular algorithm defines a
set of way points on a circular path covering the target area.
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Fig. 12: The RSSIs collected by the UAV while rotating around
its vertical axis are presented in polar form. The graph shows a
clear relationship between the change in the UAV bearing and
the RSSI values. The variation in the RSSI can be attributed
to the shadowing effect caused by the UAV.

The circle radius is a crucial parameter, as it should be large
enough to cover all possible target locations while minimizing
battery usage. Another approach studied in [37] relies on a
Reinforcement Learning (RL) algorithm to dynamically define
a trajectory that minimizes the error in the localization. In this
work, it has been simulated a double-phase approach where
firstly, the UAV has to scan the complete area and then fly
with an RL-based trajectory.

In our experimental activity, we prioritized a fast and simple
setup deployment. Therefore, to evaluate the effectiveness
of the path-planning algorithm, we conducted a series of
experiments using both programmed and manual flight paths.
The programmed flight path followed a serpentine and Ulam
spiral pattern to keep the UAV tilt angle low and minimize
potential interference with the RF emitters. The UAV was
moved at a controlled speed between 2 and 3m/s, and the
RSSI measuring interval was set to 10ms, which corresponds
to a spatial interval ∆d=2.3 cm. These parameters allowed
for a high spatial sampling frequency, enabling an effective
averaging of the measurements. We verified that the path
planning algorithm used in this study localized the ground RF
emitters effectively with good accuracy, as shown in Sec. III.

B. UAV Trajectory Estimation

Accessing UAV flight telemetry can be challenging, espe-
cially during a flight when the log file stored in the UAV
may not be available. To overcome this issue, we utilized an
external add-on board mounted on the drone to acquire attitude
and position data. Regarding the attitude data, we chose an
Inertial Measuring Unit (IMU) board that can collect pitch,
yaw, and roll angles using an accelerometer, a gyroscope, and
a compass [38]. Although the sensor returned noisy measure-
ments, we were still able to obtain a realistic representation of
the UAV attitude. Fig. 12 shows the effect of the UAV bearing
on the measured RSSI.

By rotating the UAV away from the transmitter, we expe-
rience an instantaneous fading in the received power, which
follows the trend of the yaw measure. This data was useful for
the localization algorithm since we could compute the exact
directivity of the onboard antenna and weigh each collected

Fig. 13: ML estimation of the transmitter position with and
w/o interference for the shown circular UAV flights.

RSSI sample. It is important to notice that all the attitude
data provided by the IMU board are relative angles w.r.t. the
orientation at the startup time. An external GPS dongle [39]
was used to evaluate 2D positions of the UAV. The position
accuracy of the 2D estimate is around 2.5m and depends on
the number of visible satellites at the time of the trial. This
framework is further detailed in [1].

V. LOCALIZATION RESULTS

In this section, the estimation of the emitters’ positions
by means of the ML localization and k-means clustering
algorithms is presented and discussed. In the case of a single
emitter, a traditional ML localization algorithm is used, and the
results in the absence and presence of interference at 865MHz,
and 2.4GHz are presented. The channel is essentially a two-
ray model, i.e. LoS plus a reflection from the ground, as the
emitter is located on the rooftop of a car. Hence, np =2.2 was
used in (1), and it was verified empirically. RSSI is sampled
and recorded each 10ms while the position update rate is
twice per second. The standard deviation σi used in (4) varies
between 2 and 6 dB, and it was estimated by calculating the
mean value of the measurements taken at a reference position.
For mitigating the presence of interference and low reliability
of the RSSI measure, only a subset has been considered,
i.e. data derived from the application of the threshold-based
approach (Sec. II.B).

The position estimate of the emitter is reported in Fig. 13.
Two scenarios with and without interference using cir-
cular tracks are shown. Here, the same value σ̂i =4 dB,
i=1, . . . , NAP , was used in (4), since it was selected as a
median of the standard deviation values observed from the
collected RSSIs. The green and gray points in the figure
represent the UAV APs considered for the localization after
the threshold-based approach. The likelihood of the estimated
positions of the target is reported on the right of the figure.
Here, a mean absolute error of 4m is obtained in the absence
of interference, while it increases to 4.8m with interference.
Notably, interference degrades the estimate by less than a
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TABLE I: RSSI range (thresholds) and mean absolute position
error for circular and serpentine tracks.

RSSI Thresholds
(upper and lower)

Mean Absolute Position Error
Circ.

w\Int.
Serp.

w\Int.
Circ.

No Int.
Serp.

No Int.
-50 to -90 dBm 7 m 17 m 5.1 m 11.3 m
-50 to -95 dBm 5.5 m 14 m 4.1 m 16.4 m
-50 to -100 dBm 7.2 m 19 m 9.5 m 17.0 m
-50 to -105 dBm 10.8 m 14 m 12.2 m 16.5 m
-60 to -90 dBm 6.7 m 17.7 m 5.1 m 10.2 m
-70 to -90 dBm 6.1 m 16.7 m 5.1 m 16.4 m
-70 to -100 dBm 7.1 m 10.5 m 9.4 m 17.1 m
-70 to -110 dBm 12.9 m 13.2 m 12.3 m 16.2 m

Fig. 14: Multiple transmitters position estimation using ML
algorithm with a serpentine track.

meter. The summary of the results obtained with different
RSSI thresholds in multiple experimental tests for circular and
serpentine tracks (Fig. 11) is reported in Table I. It is clear
that (i) the interference does not affect the position estimate
significantly and (ii) a circular track is generally better for
localization as there are measurements from all directions.

A. Multiple Transmitters

In order to verify the performance of the experimental setup
and ML algorithm in the presence of multiple transmitters,
measures were collected in an area of 300 × 300m2 in the
presence of 3 transmitters. A serpentine and an Ulam spiral
track were pre-programmed for the UAV, lasting 15 minutes
and 8 minutes respectively. Data were divided into 3 clusters
followed by the analysis of RSSI measures and detection of
the hot spots in the UAV track, suggesting the presence of
a transmitter on the ground. In both cases, σ̂i =6 dB was
chosen after observing the standard deviation in the raw RSSI
data. Then, the localization procedure is applied in the 3
clusters independently, and the results are merged. Fig. 14
shows the estimated positions returned by the ML algorithm
in the serpentine track while those obtained with the Ulam
spiral track are shown in Fig. 15. The mean absolute errors
in both the scenarios are reported in Table II. We can observe
that the estimation is worse in the case of a spiral track as

Fig. 15: Multiple transmitters position estimation using ML
algorithm with a Ulam spiral track

Fig. 16: Elbow plot to determine the number of transmitters.

this track is not dense enough and not enough measures are
collected to estimate accurately the final position.

Now, moving to the localization of multiple emitters using
the k-means clustering algorithm, we can observe that in the
case of the serpentine track, the algorithm was able to divide
the data into clusters equal to the number of transmitters
present and the corresponding elbow plot is presented in
Fig. 16. The symbol k is the number of clusters on the x-
axis and the plot starts to converge at k = 3 . The final
output of the clustering algorithm, along with the centroids, is
presented in Fig. 17. Assuming the centroids of the clusters
as estimates of transmitters’ positions and comparing them
with Fig. 14, we observe that the k-means clustering algorithm
performs slightly better than the ML localization algorithm.
It is worth mentioning that the k-means algorithm requires
very limited computing power and time compared to ML
localization. Now, feeding the data from the Ulam spiral track
into the k-means clustering algorithm, the resulting elbow plot
is depicted in Fig. 16. Similarly to the serpentine track, the
elbow plot starts to converge at k = 3 and the final estimates
of transmitters, i.e. centroids along with respective clusters,
are shown in Fig. 18. The mean absolute errors obtained
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Fig. 17: k-means output - Serpentine Track

Fig. 18: k-means output - Ulam Spiral Track

TABLE II: Mean absolute error of ML and k-means estimates
for the 3 transmitters.

UAV Track ML algorithm k-means Clustering
Serpentine (25, 11, 15) m (20, 6.1, 19) m

Ulam Spiral (33, 24, 22) m (14, 19.4, 19) m

using the k-means algorithm in both scenarios are reported
in Table II: the differentiation and position estimation of the
multiple transmitters using the Ulam spiral track turns out to
be equivalent to the serpentine track. This latter saves UAV
flying time by about 40 percent and gives a decent estimate
of the positions of the transmitters.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the utilization of Maximum
Likelihood localization algorithm and k-means clustering al-
gorithm for estimating the positions and the number of active
RF transmitters from RSSI measures collected by a UAV
in two unlicensed frequency bands. An experimental setup
that uses an inexpensive and lightweight ADALM Pluto SDR
development board programmed with open-source software
GNU Radio was described. Circular, serpentine, and Ulam
spiral tracks have been considered as trajectories for the UAV
in the experimental data collection campaign. Performance

has been evaluated in terms of mean absolute position error
either without interference at 865MHz or with interference at
2.4GHz. A threshold-based solution on the measured RSSI
inputs has been proposed to improve the accuracy of the
estimates. Our results show that the performance in the pres-
ence of interference at 2.4GHz is comparable to the scenario
without interference at 865MHz. The applicability of this
approach to a multi-transmitter case has been demonstrated for
a scenario with three RF emitters, in which good accuracy is
achieved. It is shown that using k-means clustering algorithm
provides a more efficient localization in terms of consumed
energy and computational requirements.

This work can be extended in the future to more complex
environments. The data collection campaign can be extended
to allow the training of more complex machine learning
algorithms. Finally, the setup can be extended by introducing
user feedback based on real-time measures or autonomous
UAV path planning in order to maximize localization accuracy.
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