
Received: November 1999; Revised: January 2000; Accepted: February 2000

TRANSACTIONS of The Society for Computer Simulation International
ISSN 0740-6797/00
Copyright © 2000 The Society for Computer Simulation International
Volume 17, Number 2, pp. ##-##

1. Introduction
This article presents an extension to the n-dimensional Cell-
DEVS formalism [1], allowing the definition of parallel models.
The formalism is derived from the binary timed Cell-DEVS [2],
a combination of the DEVS paradigm [3, 4], and Cellular Auto-
mata [5].

Cellular Automata formalism is well suited to describe real
systems that can be represented as cell spaces. A cellular auto-
maton is an infinite regular n-dimensional lattice whose cells
can take one finite value. The states in the lattice are updated
according to a local rule in a simultaneous and synchronous
way. The cell states change in discrete time steps as dictated by
a local transition function using the present cell state and a fi-
nite set of nearby cells (called the neighborhood of the cell).

The DEVS (Discrete EVents Systems specification) formal-
ism allows one to describe a real system in a modular fashion. It
attacks the complexity using a hierarchical approach. A DEVS
model can be described as composed of several submodels, each
being behavioral (atomic) or structural (coupled). Tested mod-
els can be reused, enhancing reliability, reducing testing time
and improving productivity.

Each model is described as a set consisting of a time base,
inputs, states, outputs, and functions. A model uses input and
output ports to communicate with the others. The internal and
external events produce state changes, whose results are spread
through the output ports. The influences of the ports determine
if these values should be sent to other models.

When cellular automata are used to simulate complex sys-
tems, large amounts of computation time are required, and the
use of a discrete time base poses restrictions in the precision of
the model. The Timed Cell-DEVS formalism tries to solve these
problems by using the DEVS paradigm to define a cell space
where each cell is defined as a DEVS atomic model. The goal is
to build discrete event cell spaces, improving their definition by
making the timing specification more expressive.

Each cell can use one of two kinds of delay constructions
[6]. The transport delays allow one to model a variable com-
mute time for each cell with anticipatory semantics. Instead,
inertial delays introduce preemptive semantics: some scheduled
events are not executed due to a too-small interval between two
input events [7]. The paradigm allows the inclusion of integer,

Improved Cellular Models with Parallel Cell-DEVS

Gabriel A. Wainer

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Pabellón I—Ciudad Universitaria, Buenos Aires (1428), Argentina; E-mail: gabrielw@dc.uba.ar; URL: http://
www.dc.uba.ar/people/proyinv/celldevs.

The Cell-DEVS paradigm allows the specification of executable cell spaces with timing delays. This approach
allows easy definition of complex behavior in physical systems, which can be validated formally. The original
definition of this formalism can lead to serialization and incorrect execution when the models are considered to
execute in parallel. The extension presented here permits parallel specification of these models, and an associ-
ated simulation mechanism allows their execution. Cell-DEVS models include timing delay constructions, whose
behavior was extended, and whose use is exemplified in detail. These new constructions improve the definition
of complex timing behavior, reducing the complexity of the rules needed to represent it. In addition, neighbor-
hood sizes can be reduced, cutting down the overhead involved, and allowing a higher number of quiescent cells
in the model.

Keywords: Parallel DEVS models, DEVS paradigm, Cell-DEVS models, discrete event simulation, modelling
methodologies

Figure 1. Sketch of a cellular automaton

Cell’s Neighborhood

June TRANSACTIONS 2000

74 TRANSACTIONS Volume 17, No. 2

real, binary, or three-state values for each of the cells in the space,
and the models can be n-dimensional. Simulation tools were
built using the bidimensional paradigms [8, 9], and have been
extended to n-dimensional models [10].

The simulation literature shows that the use of parallel simu-
lation mechanisms is a promising approach to obtain results,
because it allows speedups in the simulation process [11]. The
provision of a meaningful sample of behavior by using sequen-
tial execution is a time consuming process. These assertions are
valid for the simulation of Cell-DEVS, because they involve a
high degree of computation time. Besides, cell spaces are inher-
ently parallel, and their serial execution is too restrictive.

Unfortunately, the present definition of Cell-DEVS has sev-
eral problems when the spaces are executed in parallel. The re-
maining sections of this work will be devoted to analyzing these
problems, and to consider different solutions based on the Par-
allel DEVS formalism [12]. The work is organized as follows:
the following section will present some serialization problems
related to Cell-DEVS models. Then, a definition for parallel
Cell-DEVS models is introduced. Finally, different definitions
related to the timing delays used for each cell are depicted.

2. Serialization Problems in Cell-DEVS Models
Cell-DEVS has been formally specified to analyze several basic
properties. In the following, a brief review of these specifica-
tions will be presented to allow a more detailed analysis in the
following sections. A Cell-DEVS atomic model is defined by:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X is a set of external input events;
Y is a set of external output events;

I represents the model’s modular interface;

S is the set of sequential states for the cell;
θ is the cell state definition;

N is the set of states for the input events;

d is the transport delay for the cell;

δint is the internal transition function;

δext is the external transition function;
τ is the local computation function;

λ is the output function; and

D is the state’s duration function.

Each cell uses a set of N input values to compute the future
state. These values are received through a well-defined inter-
face composed of a fixed number of ports. The cell computes a
local function by using the cell’s inputs and present state. A de-
lay function can be associated with each cell, allowing one to
defer the execution results of the local computing functions. To
allow the deferral of the computations, a FIFO queue is used to
keep track of the next events. Therefore, the outputs of a cell are
not transmitted instantaneously, but after the consumption of
the delay. The model advances through the activation of the inter-
nal, external, output, and state’s duration functions, as in other
DEVS models.

After the basic behavior for a cell is defined, the complete cell
space will be constructed by building a coupled Cell-DEVS model:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

Xlist is the input coupling list;

Ylist is the output coupling list;
I represents the definition of the interface for the modular model;

X is the set of external input events;

Y is the set of external output events;
n is the dimension of the cell space;

{t1,...,tn} is the number of cells in each of the dimensions;

N is the neighborhood set;
C is the cell space;

B is the set of border cells;

Z is the translation function; and
select is the tie-breaking function for simultaneous events.

Figure 2. Coupling of DEVS models (A1, A3, A4: atomic models)

A1

A5

A4

A3

A2
A1

A5, A4

A2, A5

A1, A2

A5, A3

A5, A3

A2, A4

A1, A2

A1, A1

A2, A1

A3, A4

A3, A2

A4, A5

G.A. Wainer

Volume 17, No. 2 TRANSACTIONS 75

The cell space defined by this specification is a coupled model
composed of an array of atomic cells. Each of them is connected
to the cells defined by the neighborhood. Because the cell space
is finite, the borders should be provided with a different behav-
ior than the rest of the space. Otherwise, the space is “wrapped,”
meaning that cells in one border are connected with those in the
opposite one. Finally, the Z function allows one to define the
internal and external coupling of cells in the model. This func-
tion translates the outputs of mth output port in cell Cij into
values for the mth input port of cell Ckl. Each output port will
correspond to one neighbor and each input port will be associ-
ated with one cell in the inverse neighborhood.

As stated in [13], if we call e to the elapsed time since the
occurrence of an event, a model can exist in the DEVS structure
at e = 0 or e = D(s). In the case of coupled models, the modeler
can use the select function to resolve the conflicts of simulta-
neous scheduled events. The case is different for basic models:
once they are coupled, ambiguity arises when an event is re-
ceived by a model scheduled for an internal transition. The prob-
lem here is how to determine which of both elapsed times should
be used. The select function solves the ambiguity by choosing
only one of the imminent models. This is a source of potential
errors, because the serialization may not reflect the simultaneous
occurrence of events. Moreover, the serialization reduces the
possible exploitation of parallelism among concurrent events.

Chow [13] required that the following properties hold:

• Collision handling: the behavior of a collision must be con-
trollable by the modeler.

• Parallelism: the formalism must not use any serialization func-
tion that prohibits possible concurrencies.

• Uniformity: the hierarchical construction must have uniform
behavior: different hierarchical constructs of the same model
must display the same behavior.

These properties resulted in the definition of Parallel DEVS
[13]. In this approach, the select function was eliminated and a

new transition function was created to manage the collisions.
This function (called δcon, the confluent transition function)
should be defined by the modeler. Its goal is to define the be-
havior of a model receiving external events at the time of its
internal transition (e = D(s) or e = 0). A scheduled internal tran-
sition function is carried out. However, if there are colliding
external and internal events, the confluent transition function is
activated. The values of the events generated simultaneously
before the execution of each internal function should be gath-
ered together. Therefore, the inputs for each model are collected
into a bag (multiset).

In the timed Cell-DEVS formalism, the desired uniformity
was addressed in a different way. In this case, there was no need
to include a bag construction as in the Parallel DEVS paradigm,
due to the definition of the cell’s interfaces. They are defined
such that only one input per port can be received at a time: each
cell is connected with the others using a unique port, and they
are not allowed to transmit two simultaneous events.

This assertion is based on the fact that each cell cannot use
delays of zero time units. This assumption was made because
the real systems under consideration never have delays or acti-
vation frequency of exactly zero time units. Moreover, zero-
time delays can lead to non-deterministic behavior.

Lemma 1
The use of zero-time delays in Cell-DEVS models can lead to
non-deterministic behavior.

Proof:
Let us suppose the proposition is false. That is, zero-time delays
always lead to deterministic behavior. The following are coun-
terexamples for this proposition. Figure 4(a) shows the original
status for a subset of a cell space for the Life game [14]. The update
rule for a cell in this model says that, if there are two or three
living neighbors (denoted with a dot in the figure), the cell will
remain alive. If fewer than two neighbors are active, the cell dies.

In this case, consider that a transport delay of zero time units
is used for the cell (1,1) (being (0,0) the origin cell). Let us
suppose now that the cells (0,0) and (1,1) should be activated
simultaneously, and both execute in parallel. The cell (1,1)
changes to 0 (it has only one living neighbor), and it sends a
message to the cell (0,0), informing of the state change. When
the cell (0,0) receives the message, it can treat its internal event
prior to the external event. In this case, it will consider that, at

Figure 3. Informal definition of a Cell-DEVS model

Figure 4. Execution evolution for the Life game;
(a) original state; (b) results when (0,0) is activated
first; (c) results when (1,1) is activated first

Cell definition

Cell’s connections

τ (s) = s
IN OUT

(1)

(4)

(3)

(2)

d

(1,1)

(0,0)

(a) (c)(b)

June TRANSACTIONS 2000

76 TRANSACTIONS Volume 17, No. 2

present, the cell has two living neighbors. Therefore, it will re-
main alive, and the result in Figure 4(b) will be obtained. In-
stead, if the external message is processed first, the cell will
consider that there is only one living neighbor, and the result
will be the one presented in Figure 4(c).

The case is similar when an external DEVS model produces
two events with the same simulated time. The model in Figure 5
represents a section of urban traffic. The update rule says that if
there is a new car arriving at a cell, and the north cell has a car,
a collision occurs. Let us suppose that the external model sends
the output value 1 (indicating a car’s arrival). Then, another in-
ternal transition is executed in the same simulated time, and the
value for the external model is 0. If the first external event is
processed when it arrives, the collision status is raised for the
cell. As a collision exists, the second event is ignored, and when
the new external value (saying that there is no car in the exter-
nal model) appears, the cell stays in collision status. Instead, if
both events are treated together, the car coming from the north
advances and no collision occurs.

As stated earlier, the definition for Cell-DEVS models con-
sidered that the delays should have non-zero values and that a
DEVS connected as input should not activate simultaneous out-
puts. Nevertheless, if general models are needed, zero-time de-
lays can lead to a non-uniform behavior. The following lemma
will show that in those cases we must include an input bag for
atomic Cell-DEVS.

Lemma 2
Cell-DEVS models should be built as Bag-DEVS when:

a. Cells with delays of zero-time units are used, or

b. A DEVS model connected to the cell is allowed to send two
output events in the same simulated time.

Proof:
To show that the Lemma 2(a) is valid, it must be seen that only
when the timing delays are zero, two different values can arrive
simultaneously at a cell’s port. The Cell-DEVS definition in-
cludes one input port for each connection with the other models,
as defined in the model’s interface, I = < η, µx, µy, Px, Py >.
Here, η ∈ N, η < ∞ is the neighborhood’s size, µx, µy ∈ N, µx,
µy < ∞ is the number of other input/output ports, and j ∈
[1, η], i ∈ {X, Y}, Pj i is a definition of a port (input or output
respectively), with Pj i = { (Nj i, Tj i) / j ∈ [1, η+µi], Nj i ∈ [i1,
iη+µ] (port name), y Tj i ∈ Ii (port type) }, where Ii = { x / x ∈ X
if X } or Ii = { x / x ∈ Y if i = Y }.

Figure 6 presents an example of the definition of this inter-
face. The cell with a mark in Figure 6(a) is connected to the
neighborhood and to other two DEVS models. The A model
transmits integer values, and the B model uses real state vari-
ables. The internal coupling of this cellular model is defined as
shown in the Figure 6(b) and 6(c). Because two neighbors are
used, two input/output ports are included in each cell. Figure
6(b) shows the cells to which both output ports are connected.
Figure 6(c) represents the ports giving input to the cell. Finally,
because the marked cell is connected with other DEVS, two
extra input/output ports are needed. Figure 6(d) shows the inter-
face of this cell. In this case, η = 2, µx = µy = 1. Therefore, Px =
{P1

x, P2
x, P3

x} = { (N1
x, binary), (N2

x, binary), (N3
x, integer)}

and Py = {P1
y, P2

y, P3
y} = {(N1, binary), (N2, binary), (N3,real) }.

A given input port can receive two different inputs with the
same simulated time only if the influencer transmits more than
one value in that given simulated time. Considering the seman-
tics for a cell execution, this only occurs if two internal transi-
tions are executed in the same instant (details of this semantics
can be found in [1]). When the internal function is executed, the
first event in the squeue is transmitted. This queue keeps all the
delayed values; therefore, the simultaneous outputs in the influ-
encer only can occur if zero-time delays are allowed. There-
fore, the Lemma 2(a) is valid.

Lemma 2(b) considers that a cell space can be connected to
other DEVS models, using the last µ input ports defined in the
interface. The semantics for a DEVS model is that the output
function transfers information between models, and they are acti-
vated prior to the internal transitions. Therefore, the execution
of two simultaneous internal transitions can occur only if the

Figure 5. A Cell-DEVS model coupled with a traditional model

Figure 6. Cell-DEVS models coupling and interfaces

A B

(1) (1)

(2)

(2)

Px

Px

Px

Py

Py

Py

1 1

2

3 3

2

(a) (b)

τ

(d)(c)

A

A

G.A. Wainer

Volume 17, No. 2 TRANSACTIONS 77

model schedules an internal transition with zero time, and
Lemma 2(b) is valid.

A second problem for the defined Cell-DEVS is related to
the desired behavior for parallelism. In this case, the following
approach was used: the occurrence of external simultaneous
events for a given cell is treated by the local computing func-
tion. Whenever an external event arrives, it is stored in the input
set for the cell. Therefore, simultaneous models will transmit
their generated values in parallel, which will be stored in the
input set. If an event occurs simultaneously with an internal
scheduled event, the internal transition function is activated prior
to the external transition (as in the E-DEVS formalism [13]).

One final problem of the previous formalism is related to
the collision handling. In most cases, a collision is controlled
because the local computing functions use the values obtained
through each input port, and it has been shown that they cannot
have more than one value. Instead, if zero-time delays or simul-
taneous events are considered, the user cannot manage the model
behavior.

The formalism should be as general as possible, to allow the
modelling of any kind of n-dimensional cell spaces. Hence, the
prohibition of zero-time delays is too restrictive. Even when it
was shown that Cell-DEVS behaves uniformly thanks to the
interface definition, a bag-DEVS is needed for the cases of zero-
time transitions. In addition, the Cell-DEVS models can be coupled
with traditional DEVS submodels. All the factors considered in
this section were taken into account, resulting in a redefinition
of the Cell-DEVS formalism. The following section will present
the main changes introduced to meet the stated goals.

3. Parallel Cell-DEVS
This section defines a new approach to using the concepts of
confluent transition function explained earlier. Other extensions
allow the management of complex delay behavior that was not
previously possible. The first part of this section explains the
definition of atomic models, and then coupled models are de-
fined. The delay behavior will be used in the following sections
to introduce complex timing for the cells.

3.1 Atomic Models

A parallel Cell-DEVS atomic model can be formally defined as:

TDC = < Xb, Yb, I, S, θ, N, d, δint, δext, δcon, τ, τ con, λ, D >

The contents of a model are similar to those presented in Sec-
tion 1. A detailed specification can be found in the Appendix,
but most components have not changed. Two confluent functions
have been added: δcon and τ con. In addition, the external tran-
sition and output functions have been changed to handle input/
output bags (Xb and Yb) for each cell. The external transition
function activates the local computation, whose result is delayed
using one of both kinds of constructions: transport or inertial
delays. The output function executes prior to the internal transi-
tion function, transmitting the present values to other models.
The δint function is in charge of keeping the values for a trans-
port delay. Figure 7 shows a sketch of the contents of each cell.

The present definition changes the semantics of the delay
functions. Originally, only one kind of delay of a given duration
was related to each cell. Now, the local transition function will
return the type and length of the delay, and the cell’s outputs
will be delayed accordingly. This redefinition allows to include
complex timing behavior, as will be seen in Section 5. The con-
fluent transition function δcon is activated when there are colli-
sions between internal and external events. It must activate the
confluent local transition function τ con , whose goal is to ana-
lyze the present values for the input bags, and to provide a unique
set of input values for the cell. In this way, the cell will compute
the next state by using the values chosen by the modeler. The
semantics for the transition functions are defined in the Appen-
dix.

In this case, the external transition function activates the lo-
cal computation, whose result is delayed using one of both kinds
of constructions. The output function, which executes prior to
the internal transition function, is in charge to transmit the present
values to other models. This is done after the execution of a
delay function, carried out by the internal transition.

In case of a collision, the confluent transition function
chooses members from the bag, and updates the inputs for the
cell. Then it deletes the unnecessary members of the bag. Be-
cause σ = 0, an internal transition function is scheduled imme-
diately. The modeler should define the behavior for the τ con
function in each cell, thus allowing the definition for this be-
havior under collisions.

3.2 Formal Specification of Generic Coupled Cell-DEVS
Models

A parallel Cell-DEVS coupled model can be represented
as:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z >

All the model’s contents for this case have been defined in Sec-
tion 1. The main change is that C is a cell space, with C = { Cc
/ c ∈ I ∧ Cc = < Ic, Xc , Yc , Sc, Nc, dc, δintc, δ extc , δ conc, τ c,
τconc λ c, Dc > }, where Cc is a parallel Cell-DEVS atomic model,
and I = { (i1,...,in) / (ik ∈ N ∧ ik ∈ [1, tk]) k ∈ [1, n]}. That

Figure 7. Cell’s definition

td

id

s s′ f

σ queue

τ /
τ con

N

A

June TRANSACTIONS 2000

78 TRANSACTIONS Volume 17, No. 2

is, each cell in the space is a parallel Cell-DEVS atomic cell
using the δcon and τcon functions to avoid collisions. Hence,
the select function has disappeared. A detailed definition can be
found in [2].

DEVS coupled models have been redefined to include base
models that can be seen as cell spaces. Therefore, a coupled
DEVS model will be defined as:

CM = < I, X, Y, D, {Md}, {Id}, {Zdj} >

I = < Px, Py> represents the interface of the modular model.
Here, j ∈ [1, η], i ∈ {X, Y}, Pj i is a definition of a port (input
or output, respectively) where:

Pj i = { (Nj i, Tj i) / j ∈ [1, µ], (µ ∈ N, µ < ∞),

Nj i ∈ [i1, im] (port name), y Tj i = port type};

X is the external input events set;

Y is the external output events set

D ∈ N is an index for the components of the coupled model,
and

Md is a DEVS basic model d ∈ D ∪ {self}, where:

Md = GCCd = < Id, Xd, Yd, Xlistd, Ylistd, nd,

{t1,...,tn}d, Nd, Cd, Bd, Zd >

is a General Coupled Cell-DEVS as those defined in Section
3.2, for cellular models, and:

Md = < Id, Xd, Yd, Sd, δintd, δextd, δcond, Dd >

otherwise.

Id is the set of models influenced by the model d, and j ∈
Id, d ∈ D, Id ⊆ D ∪ {self}, d ∉ Id,

Zdj is the translation function from d to j, where
Zself j: Yself → Xj if none of the implied models is Cell-

DEVS, or

Zself j : Y(c1)self → X(c2)j , with (c1) ∈ Ylistd, and (c2) ∈
Xlistj if any of the models self or j is a GCC;

Zd self : Yd → Xself if none of the implied models is Cell-

DEVS, or
Zd self : Y(c1)d → X(c2)self, with (c1) ∈ Ylistd, and (c2) ∈
Xlistself if any of the models d or self is a GCC;

Zdj: Yd → Xj if none of the implied models is Cell-DEVS, or
Zdj: Y(c1)d → X(c2)j , with (c1) ∈ Ylistd, and (c2) ∈ Xlistj if

any of the models d or j is a GCC.

In [15], it has been shown the equivalence between the par-
allel Cell-DEVS models and parallel DEVS models. In addition,

the closure under coupling has been proved, showing that a
coupled Cell-DEVS is a DEVS is equivalent to an atomic DEVS.
Hence, the models can be integrated into a DEVS hierarchy.
These results are summarized in the following propositions,
which will not be proven here.

Lemma 3
Parallel Cell-DEVS models are equivalent to parallel DEVS
models.

Lemma 4
Closure under coupling for parallel Cell-DEVS models: a
coupled parallel Cell-DEVS model is equivalent to a basic par-
allel Cell-DEVS model.

4. Cell-DEVS Spaces Simulation
A Cell-DEVS model can be mapped onto an executable specifi-
cation that can be simulated using an abstract mechanism. This
is achieved by using a set of specialized Processors that drive
the simulation process (as it was originally defined in Zeigler’s
works). The so called Coordinators are associated with the ac-
tivities of the hierarchical coupled models. The others, called
Simulators, are associated with the atomic model’s activation.

In [9], an environment for Cell-DEVS modelling and simu-
lation was built. It is defined as a class hierarchy of models and
processors, and it has been redefined to include parallel mod-
els. This new strategy should allow the simulation of parallel
Cell-DEVS; therefore, the original algorithms were changed,
using the strategies defined in [12]. The main components of
processors in this hierarchy are included in Figure 8.

In Cell-DEVS spaces, the coupled models are composed by
several atomic cells, each associated with one simulator. The
model’s parameters (as specified in the previous section) are
used to create the simulators and to define their names. The
internal coupling is set up using the previous definitions, and a
coordinator is associated with the coupled model.

The coordinators for the standard DEVS models follow the
procedures defined in [12] based on the interchange of different
messages. Instead, a new procedure has been defined for the
simulators for cell spaces. The parallel processors include a syn-
chronization mechanism based on the use of a specialized mes-
sage, called the “@-message.” When one of these arrives at a
coordinator, all the models scheduled for the present simulated
time (called the imminent) are activated. Their output values are
collected into y-messages, and these are translated using the Zdj
function. New input messages (x-messages) are created, and their
values are inserted into the input bags of the corresponding
models. When the synchronization phase finishes, the resulting
imminent models are executed by sending an *-message to their
simulators.

Figure 9 shows a sketch of the procedure executed by the
simulators. (Note that the present mechanism only includes the
basic behavior of the simulator.)

The imminent model will be a cell in the space. Therefore,
the cell’s coordinators should have a list of imminent children to
detect it. Each simulator linked with an imminent cell activates

A

A

A

A

G.A. Wainer

Volume 17, No. 2 TRANSACTIONS 79

the model’s output and internal transition functions, activating
the local computation. Consequently, the @-message produces
an output of the selected model, whose result is sent to the parent
coordinator. The model’s behavior upon arrival of an external mes-
sage is simple: a q-message carrying the input value is queued
into the bag corresponding to the input port receiving the message.

The main activity is driven by the *-message. The simulator
activates the external transition function if the external event
arrives prior to the scheduled internal transition. Instead, if the
message arrives simultaneously with the internal event, two dif-
ferent actions should be taken. If there are several events queued

into the bag, the δcon function should be activated to decide
which messages will be used as inputs for the local transition.
This decision depends on the behavior defined by the user by
coding the τ con function. Then, the internal transition function
is executed with correct input values.

The simulators return done-messages and y-messages that will
be translated to new @-messages, *-messages and q-messages,
respectively. The coordinators translate the messages by using
the cell coupling previously defined. In this case, the arrival of
the @-message produces a set of @-messages that are sent to
the lower level processors (in this case, the cell’s simulators).

Figure 8. Class hierarchy for parallel Cell-DEVS processors

Processor
~Parent ~TimeOfLastEvent
~TimeOfNextEvent
~ChangeDateOfEvent()
~VerifDateOfEvent()

Simulator
Phase ~e ~Sigma

~ReactionToMsg(type)

Coordinator
~Children ~WaitList
~StopList ~EventList

~ReactionToMsg(type)
~Translate()

Root-Coordinator
~Children ~WaitList
~StopList ~EventList
~Clock

~ReactionToMsg(type)

Flat-Coordinator
~Cells ~Neighbors
~New-State
~Next_Events

~ReactionToMsg(type)

Cell-Simulator
Phase ~e ~Sigma

~ReactionToMsg(type)

Parallel-Coordinator
~Processors ~Type
~Processor_mapping
~Input_links ~LVT
~Output_links ~GVT
~Map_tasks()
~Transmit_message()
~Create_link()
~Receive_message()

Optimist_Par_C
~Detect_rollback_freq()
~Cancellation_type
~Transmit_Message()
~Execute_Message
~Next_Events_List
~Compute_GVT()
~Rollback()

Pessimist_Par_C
~Lookahead()
~Deadlock_det_mech
~Recovery()
~Execute_message()
~Lock()
~Unlock()

June TRANSACTIONS 2000

80 TRANSACTIONS Volume 17, No. 2

Cell_Simulator() {
Receive(message, port);

Case message of:
(@, t): y = λ(s);

send (y, t) to the parent coordinator;

 (q, t): add q to the bag associated with the input port;

(*, t): t ∈ [tl, tn] ⇒ e = t – tl; s = δext(s, e, bag);
if (t = tn)

bag ≠ {∅ } ⇒ N = δcon(s, N, d, bag); bag = {∅ };
s = δint(s, N, d);

tl = t;
t = tn = tl + D(s);

send (done, t) to the parent coordinator;
}

Figure 9. Simulation mechanism for a cell

Cell_Coordinator() {

Receive(message, port);

Case message of:
(@, t): imminent child (X1,...,Xn)

send (@, t) to (X1,...,Xn);
add (X1,...,Xn) in the SYNC set;

wait (done, t) imminent child;
send (done, t) to the parent coordinator;
tl = t;

(y, t): sender: cell (Y1,...,Yn)
 (X1,...,Xn) / (X1,...,Xn) belongs to the neighborhood of (Y1,...,Yn)

send (y, t) to the cell (X1,...,Xn);
add (X1,...,Xn) in SYNC;

if ((Y1,...,Yn) ∈ Ylist of the coupled model) then send (y, t) to the parent coordinator;

(q, t): Destination: Cell (X1,...,Xn)
add q to the bag of cell (X1,...,Xn);

(*, t): q ∈ bag of cell (X1,...,Xn)
send (q, t) to (X1,...,Xn);
add (X1,...,Xn) to the SYNC set;

empty bag of the cell (X1,...,Xn);
 (Y1,...,Yn) ∈ SYNC send (*, t) to (Y1,...,Yn);
wait all (done, tn);
tl = t;
tn = minimum of all the received tn’s;
empty SYNC;
send (done, t) to the parent coordinator;

}

The upper level coordinator is informed when all the imminent
children have received the message. The behavior of the coor-
dinators can be defined as seen in Figure 10.

The reaction for y-messages is different than the one obtained
in other DEVS models. In this case, the output messages are
sent to the neighbors, or to other models (in this case, using the
Ylist). Here, the only task to execute when a new y-message is
received is to queue it into the input bag of the cell. Finally, the
*-message is in charge of the transmission of the messages to the
lower-level coordinators, and to synchronize the activity of the
@-messages.

The standard coordinator should be modified, because now
it is in charge of manipulating the mapping between the Xlist
and Ylist. Therefore, the code for the simulator should use the
new definition for the Zdj function as seen in Figure 11.

As can be seen, the coordinators for cell spaces have a dif-
ferent behavior than that defined for standard DEVS models,
because they have to execute the Zdj function in a different way.
The coordinators now behave differently when detecting the
message destinations, as they are composed of a cell and a model

Figure 10. Cell spaces coordinators

A

A

A

A

A

G.A. Wainer

Volume 17, No. 2 TRANSACTIONS 81

name. The model name is used by the high-level coordinators
and the cell position is employed by the cell space coordinator.
The behavior for the root coordinator is the same that the de-
fined for other Parallel-DEVS models, that is:

t = tn of the topmost coordinator
while t ≠ ∞

send (@, t) to the topmost coordinator
wait until (done, t) is received from it
send (*, t) to the topmost coordinator
wait until (done, tn) is received from it

In [1], a flat simulation mechanism was defined, allowing
the reduction of intermodule interaction and the overhead pro-
duced by the simulation mechanism. A flat simulator is imple-
mented as a bidimensional array of records associated with the
cell space. Each record includes information of the state and
delay for the cell and a neighborhood list to record the cell’s
influences for the cell space. Using this approach, the hierarchi-
cal message interaction is not needed, because the multiple pro-
cessors are eliminated. This simulation mechanism has been
redefined for parallel Cell-DEVS models, and its definition can
be found in [15].

5. Cell’s Delay Behavior
The behavior for the cell delays was presented in [1, 2]. Origi-
nally, each cell had a fixed kind and duration for the delay func-
tions. Nevertheless, as shown in Section 3, this behavior was ex-
tended so each rule of the local function is allowed to activate

the delay. This section analyzes the behavior of the delay func-
tions under normal execution and under collisions.

5.1 Cell’s Timing Basic Behavior

The behavior of transport delays allows reflecting the straight-
forward propagation of signals over lines of infinite bandwidth.
They allow the modeling of variable commuting time for each
cell with anticipatory semantics (every scheduled event is ex-
ecuted). Instead, inertial delays provide a preemptive semantics
to represent that a state change needs an amount of energy to be
provided to the system. In these cases, the scheduled events rep-
resenting the system state changes cannot be executed due to a
too-small interval between two inputs. These delays allow the
analysis of the limit response frequency of the systems [7].

Let us consider a transport delay of five time units for a given
cell. The input/output trajectories depicted in Figure 12(a) show
the behavior of the delay function. It can be seen that the results
are delayed for five time units, and the cell remains active while
there are queued values waiting to be transmitted. In contrast,
the behavior for atomic cells with inertial delays is presented in
the input/output trajectories of Figure 12(b). In this case, an in-
ertial delay function of five time units is used. The input values
are delayed as in the previous case, but at the simulated time 19,
the input value changed before the consumption of the delay,
and the previous input is preempted. At the simulated time 15, a
transition to the state zero has occurred. This external event
schedules an internal event for simulated time 20. In that mo-
ment, the cell should send the state change produced as an out-
put. Instead, a new external event arrives before the consump-
tion of the delay, representing that the zero value was not kept
during the delay. Therefore, this state change is preempted, and
the previous state (1) is restored.

These constructions have been taken from the domain of cir-
cuit modeling. Nevertheless, they are useful for representing
different phenomena. For instance, the transport delay can be
used to represent the speed of a car in a traffic simulation (the
inverse of the delay length). In addition, an inertial delay could
represent cars arriving to a crossing. Let us suppose that a car is
waiting to get into a crossing from the left. This cell checks if

 influences j of child i
if j is a Cell-DEVS model then

 (X1,...,Xn) ∈ Xlist j, (Y1,...,Yn) ∈ Ylisti
y = value of cell (Y1,...,Yn)
send (y, t) to the cell (X1,...,Xn) of the model j

Figure 11. Modification to the standard coordinator

input

21

35 39 45t

t

t

t39 44 50

(b)

input

output
5 8 14 16

10 15 19

output
5

10 19

15 19

24

1

0

1

0

1

0

1

0

(a)

Figure 12. (a) Transport delay behavior; (b) inertial delay behavior

A

June TRANSACTIONS 2000

82 TRANSACTIONS Volume 17, No. 2

there is a car in the crossing or in the street to the right. If there
is no car in either cell, a state change with inertial delay is sched-
uled. If the delay is consumed, the event is transmitted and the
crossing receives the car. Instead, let us suppose that a high-speed
car arrives from the right prior to the consumption of the delay.
The neighborhood of the left cell has changed, and the local
function must be computed. Since the previous state of the cell
has changed, the scheduled event representing advance to the
crossing is preempted.

5.2 Combined Delay Functions

The definitions presented in Section 3.1 allow the inclusion of a
combination between transport and inertial delays. The behav-
ior for each of them is the same as that defined originally. That
is, if a transport delay is activated, the value is transmitted only
after the delay (the σqueue is used to keep the value). Instead,
an inertial delay is used to transfer the value only if it is kept
during the whole length of the delay. Several combined behav-
iors will be included in the following paragraphs.

a. Transport/Inertial Delays

Figure 13 presents several behaviors that can be achieved
by using different delay functions, and the results obtained un-
der collisions. It shows an example of execution for an atomic
binary cell with a combination between transport and inertial de-
lays. The basic behavior is that, if an inertial delay is not ac-
complished and several values are waiting at the end of a trans-
port delay, they are preempted.

It is supposed that the local computing function activates de-
lays of different kinds and durations, depending on the simu-
lated time of occurrence for each event. Initially, the cell uses a
transport delay of 17 time units. Between 50 and 60, and from
90 to 100, an inertial delay of six time units is considered. The
values obtained from 60 to 70 will be delayed using an inertial

delay of nine time units. Finally, a transport delay of 25 time
units is applied under collisions.

The input trajectories represent inputs to the delay function.
This function reacts to the inputs by sending the outputs shown
in the figure. The execution details of the model are presented
in Table1. Each line of this table shows the state for the cell.
The lines marked with a “*” symbol represent the execution of
the internal transition functions. The lines marked with a “!”
symbol (arrows in the figure) represent preemption. Each col-
umn represents a different state variable. First, we include the
time advance (t), present state and computed state (s, s′). Then
the model’s phase (Active or Passive), next scheduled time (σ)
and elapsed time for the model (e), are presented. Finally, the
feasible future value for the cell (f), the kind of delay (trans-
port or inertial), and the queue of scheduled events (σqueue)
are defined. In several cases, we show the values of the state
variables before and after the execution of the corresponding
transition functions (x/y).

The delay function receives external events at instants 30
and 40, and they are delayed for 17 time units. These values are

Figure 13. Input/output trajectories for combined transport/inertial delays

Table 1. Execution sequence of the previous trajectories

t s s′ p σ e f d σ queue

… 0 0 P

30 0/1 1 A 17 0 1 tr. (1,17)

40 1/0 0 A 7 10 0 tr. (1,7), (0,17)

* 47 0 0 A 0/10 17/0 0 (0,10)

* 57 1 1 P 0/∞ 10/0 0

58 0/1 1 A 6 0 1 in.

! 63 1/0 0 A 1/9 5 1/0 in.

* 72 0 0 P 0/∞ 0 0

72 0/1 1 A 25 0 1 tr. (1,25)

77 1/0 0 A 20 5 0 tr. (1,20), (0,25)

82 0/1 1 A 15 5 1 tr. (1,15), (0,20), (1,25)

87 1/0 0 A 10 5 0 tr. (1,10), (0,15), (1,20), (0,25)

92 0/1 1 A 5/6 5/0 1 in. (1,5), (0,10), (1,15), (0,20), (1,25)

! 97 1/0 0 A 1/6 4 1/0 in.

* 103 0/0 0 P ∞ 7 0

30 40 58

97635747 t

63

X1

Y.

1

0

1

0
t979287827772

G.A. Wainer

Volume 17, No. 2 TRANSACTIONS 83

stored in the σqueue, and they are transmitted when the trans-
port delay is consumed. At simulated time 58, the input event is
retarded using an inertial delay of six time units. As in instant 63,
the input changes from 1 to 0, the value is not kept during the
delay, and it is preempted. In addition, a collision is shown at
instant 72. The transition that occurred at instant 63 was delayed
using nine time units. As in the same simulated time an external
transition is activated, the confluent transition function is ex-
ecuted, the local transition function is carried out, and its result
is deferred using a transport delay of 25 time units. Finally, at
simulated time 92, an external event occurs. The previous val-
ues were delayed using a transport delay of 25 time units. Here,

the inertial delay is activated prior to the output of the previous
transport delays. As the value is not kept during six time units,
preemption occurs at instant 97, and the σqueue is emptied.

b. Inertial Delays with Selective Preemption

Two new constructions related to the execution of inertial
delay functions were added. They are devoted to selectively pre-
empt queued events for inertial delays. The preempt-last(n) and
preempt-first(n) constructs will select the last/first n events in
the queue, and they will be preempted when a new event arrives
prior to the delay consumption.

X1

Y.

1

0

1

0

t979287827772

97 98 103 t

t979287827772

97 98 113 t118 123

X1

Y.

1

0

1

0

Figure 14. Input/output trajectories for selective preemption

Table 2. Execution sequence of the previous trajectories

t s s′ p σ e f d σ queue

… 0 0 P

77 1/0 0 A 20 5 0 tr. (1,20), (0,25)

82 0/1 1 A 15 5 1 tr. (1,15), (0,20), (1,25)

87 1/0 0 A 10 5 0 tr. (1,10), (0,15), (1,20), (0,25)

92 0/1 1 A 5/6 5/0 1 in. (1,5), (0,10), (1,15), (0,20), (1,25)

! 97 1/0 0 A 1/6 4 1/0 in. (1,1), (0,6)

* 98 0/1 1 A 0/5 1/0 0 in. (0,5)

* 103 1/0 0 P 0/∞ 5/0 0

Figure 15. Input/output trajectories for selective preemption

t s s′ p σ e f d σ queue

… 0 0 P

77 1/0 0 A 20 5 0 tr. (1,20), (0,25)

82 0/1 1 A 15 5 1 tr. (1,15), (0,20), (1,25)

87 1/0 0 A 10 5 0 tr. (1,10), (0,15), (1,20), (0,25)

92 0/1 1 A 5/6 5/0 1 in. (1,5), (0,10), (1,15), (0,20), (1,25)

! 97 1/0 0 A 1/6 4 1/0 in. (1,1), (1,11), (0,16), (1,21)

* 98 0/1 1 A 0/10 1/0 1 in. (1,10), (0,15), (1,20)

* 108 1/1 1 A 0/5 10/0 1 in. (0,5), (1,10)

* 113 1/0 0 A 0/5 5/0 0 in. (1,5)

* 118 0/1 1 A 0/5 5/0 0 in.

* 123 1/0 1 P 0/∞ 5/0 0

Table 3. Execution sequence of the previous trajectories

June TRANSACTIONS 2000

84 TRANSACTIONS Volume 17, No. 2

X1

Y.

1

0

1

0
t

t

30 42 50 56

40 47 6061

Table 4. Execution sequence for the previous trajectories

t s s′ p σ e f d σ queue

… 0 0 P

30 0/1 1 A 10 0 1 tr. (1,10)

* 40 1 1 A 0/∞ 10/0 1

42 1/0 0 A 5 0 0 tr. (0,5)

* 47 0 0 A 0/∞ 5/0 0

50 0/1 1 A 10 0 1 tr. (1,10)

56 1/0 0 A 4 6 0 tr. (1,4), (0,5)

* 60 0 0 A 0/1 4 1 (0,1)

* 61 0 0 P ∞ 1 0

Figure 16. Input/output trajectories for rise/fall delays

Figure 14 analyzes the behavior for such construction. The
input/output trajectories of the previous example were consid-
ered, and in this case, at simulated time 97, an inertial delay using
the preempt-last(3) function is executed.

In this example, the inertial delay is not accomplished, and
the last three events are preempted, reflecting the transmission
of the first ones.

The second construction introduced is the preempt(start, end)
behavior. In this case, the modeler can choose the individual
events to preempt when an event arrives. Figure 15 presents the
execution flow for the previous example. In this case it is con-
sidered that when the preemption occurs, the preempt(2, 2) func-
tion is used.

In this case, as the value is not maintained during the six
time units of the transport delay, it can be seen that the internal
event scheduled for simulated time 103 is preempted. There-
fore, the behavior is equivalent to having a longer sequence of
the previous scheduled value.

c. Inertial/Transport Delays

As showed previously, if an inertial delay is activated after the
reception of several events using transport delays, every queued
event is preempted. The opposite combination does not intro-
duce any change from the standard behavior. If the value pro-
duced by a transition function is delayed using an inertial delay
function, and in the meantime a new external event arrives, it

t s s′ p σ e f d σ queue

… 0 0 P

30 0/1 1 A 10 0 1 tr. (1,10)

! 40 1/0 0 A 0/∞ 10/0 1

42 1/0 0 A 5 0 0 tr. (0,5)

! 47 0 0 A 0/∞ 5/0 0

50 0/1 1 A 10 0 1 tr. (1,10)

56 1/0 0 A 4 6 0 tr. (1,4), (0,5)

* 60 0/1 1 A 0/1 4 1 (0,6)

* 66 1/0 0 P ∞ 6 0

X1

Y.

1

0

1

0
t

t

30 42 50 56

60 66

Figure 17. Input/output trajectories for direct preemption

Table 5. Execution sequence for the previous trajectories

G.A. Wainer

Volume 17, No. 2 TRANSACTIONS 85

can preempt the previous value. This will happen only if the
new value is different from the original one, as shown in Sec-
tion 5.1. The remaining events will be delayed using the trans-
port delay.

d. Rise/Fall Delays

In [6], the Rise-Fall delay function is presented as a way to pro-
vide a different timing behavior according to the result obtained
when a Boolean function is executed. In this case, a delay length
is used when a rise occurs (0–1 transition), whereas a different
one is chosen for a fall (1–0 transition). This basic behavior was
extended, providing different delays associated with rules ap-
plied by a cell. In the following example, the cell uses a trans-
port delay of 10 time units for a 0–1 transition, and a delay of
five time units for 1/0 transitions, as is shown in Figure 16.

e. Direct Preemption

A final behavior that can be applied to a cell is to provide direct
preemption to the inputs of the delay functions. In this case, we
want to represent that a cell changes its present state, but the
value is not sent to the neighboring cells. In the following ex-
ample, the cell uses a transport delay of 10 time units, and the
first inputs will be directly preempted. This construction is
equivalent to an inertial delay of zero time.

5.3 Example: Representation of an Ecomodel

In this section, we will analyze the use of the new constructions
using an example of an ecological system. It presents the combi-
nation between a field of ants and a fire diffusion model. The cell
space represents the movements of ants in the ground, and it
allows representing fire or rain in the cells. If the fire spreads to
a cell with ants, the ants die. Instead, if it rains, the fire extinguishes.
The model uses a 3 × 3 neighborhood. The execution results of
the standard model are presented in Figure 18(a) and 18(b). We
can see the movement of the ants (represented as light dots) in
the ground. The ants move at random, using a transport delay of
500 ms. These movements can be seen in the lower part of Fig-
ure 18(a) and (b), which represents the model’s advance after 500
ms. We have also introduced several cells with fire (dark dots),
and we can see that the ants passing through them have died (this
can be seen, for instance, in the lower left part of the figure).

The new constructions are useful to represent complex tim-
ing conditions that could not be represented in the previous

specifications. For instance, Figure 18(c) and 18(d) show the
application of the rise/fall delay construction. These figures also
represent the model’s advance after 500 ms. After 10 seconds,
the fire cells introduced in Figure 18(a) and 18(b) have expanded,
obtaining the present configuration. This behavior has been ac-
complished using a variable delay for each cell, according to its
present state. The ant movement delay (500 ms) represents the
speed of the ants in the ground. Instead, the fire spreads more
slowly (a delay of five seconds). This is shown in Figure 18(d),
where the fire remains fixed in several cells while some ants
have moved. For instance, we can see that there are two cells in
the middle-left containing ants that cannot move due to the fire.
Nevertheless, the fire is not invading those cells due to the length
of the delay used. In addition, we have introduced the influence
of rain, showing some cells where the previous existing fires
have disappeared.

These delay construction could be also used, for instance, in
a heat diffusion model, where each cell will compute its future
state by averaging the present values of the neighbors. The rise/
fall delay construction can be used to represent that heat spreads
faster than cold. Therefore, the hot cells can use a small delay,
whilst the colder ones use a larger one. If this construction were
not available, rules that are more complex should have been
used to define the variable delay. For instance, when fire is de-
tected in the ecomodel, several intermediate states representing
the passage of fire should be used. Each intermediate state would
represent the consumption of the delay associated with the ant
movement (500 ms), and the fire status would rise after passing
10 intermediate states. As can be seen, this involves more com-
plex rules and waste of computation time.

A similar situation occurs when the combination of trans-
port/inertial delays is allowed. Let us suppose that we want to
model the following case: three ants arrive at a cell, and then
the cell changes to a “rain” state. The combined construction
can be used as follows. A transport delay of 20 units is used for
the arrival of each ant, and an inertial delay of 10 time units is
used for the change to rain. In this way, if a fire condition oc-
curs before the consumption of the delay, the arrival of the ants
and the wet state are not transmitted to the neighboring cells.
The ants that did not leave the cell die, and the rain state is not
sent. Instead, if the inertial delay finishes before the fire, the
ants and the rain will spread to the neighbors. This combination
was not allowed in the original specifications, and this kind of
situation could not be easily modeled. One way to represent it is

Figure 18. Execution of a simple Ecomodel

June TRANSACTIONS 2000

86 TRANSACTIONS Volume 17, No. 2

to include a wider neighborhood. In this case, we could detect
the presence of fire in far cells, and in that case, activate an
alternative rule turning on an intermediate state variable. This
value reflects that fire is approaching, and another rule should
avoid the diffusion of the wet state and the ants. Again, the in-
troduction of several complex rules introduces a higher amount
of computation time. Moreover, when the neighborhood size is
increased, overhead is introduced due to the need of to keep a
more complex data structure. In addition, a larger neighborhood
produces activation of other cells, activating them even when
they are quiescent.

Now, let us consider that a cell receives fire after the intro-
duction of two ants. A transport delay of two time units is used
for the ant arrival, and an inertial delay of five time units is used
for the fire. We could include a rule such that, if at instant four
of the inertial delay the rain arrives at the cell, the fire is pre-
empted using preempt_last(1). Therefore, the arrival of both ants
is still recorded, and their existence in the present cell is trans-
mitted to the neighbors. Instead, if the inertial delay finishes,
the fire spreads and the arrival of the ants is not recorded. The
original constructions would preempt all the previous events,
loosing both ants. In this case, a larger neighborhood would
have helped to detect the arrival of fire by looking to a greater
distance, as in the previous case.

Finally, a cell could be provided with direct preemption of
the inputs to represent, for instance, the transmission of the
present content of a cell only when the number of ants in each
cell is a multiple of five. Each input of an ant is directly pre-
empted, except when a multiple is reached. This behavior could
not be achieved in any way using the original constructions,
because every time a state variable changes, the neighbors are
informed after the delay consumption.

6. Conclusion
This work presented an extension of the Cell-DEVS paradigm,
allowing the parallel execution of the models. To do so, the be-
havior under collisions was defined accurately. In this case, the
user is in charge of defining the cell behavior under simulta-
neous events. A simulation mechanism related to this kind of
model was presented, and a new extension to the flat coordina-
tion mechanism was developed.

The formalism enables the specification of complex cell-
shaped models. In this way, the construction of the simulators is
improved, enhancing their safety and development costs. Be-
sides, the parallel execution allows performance improvements
without adding extra costs in development or maintenance. Paral-
lel implementation of these models could not be achieved in the
original definitions. Instead, this new approach introduces mod-
els than can be executed correctly in parallel environments. The
use of a formal specification based on the DEVS formalism im-
proves the validation of the specifications. An accurate semantics
was defined, allowing one to ensure the validity of the models.

The formal specification of the delays for Cell-DEVS mod-
els was extended, in such a way that the modeler could define
complex behavior using simple constructions. These construc-
tions are useful in different domains, including digital circuit
design, prediction of the behavior in ecological systems, analysis

of traffic in urban populations, etc.
Combined delay behavior was allowed, depending on the

rules executed by each cell. The combination of both behaviors
can improve the definition of these complex models. These new
constructions allow the reduction of the sizes of the needed
neighborhoods, and the complexity of the rules involved for
each cell. They also introduce a simple definition of complex
timing behavior that was not allowed in the original definitions,
or was too difficult to develop. Consequently, performance gains
and reductions in the development times can be achieved.

At present, a mapping between parallel Cell-DEVS models
and the parallel simulation environment was defined, and is under
implementation. In this way, a tool to run complex n-dimen-
sional Cell-DEVS models with timing delays will be available.
This tool will reduce development costs of the application (as
was proven for the two-dimensional binary case), and efficient
execution will be achieved using a parallel framework.

7. Acknowledgments
I would like to thank the anonymous referees and Dr. Bernard
Zeigler for their comments on this article. This work was partially
funded by ANPCYT Project 11-04460 and UBACYT Projects
TX04 and JW10.

8. References
[1] Wainer, G. and Giambiasi, N. “Specification, Modeling and Simu-

lation of Timed Cell-DEVS Spaces.” Technical Report No. 98-
007, Departamento de Computación, Facultad de Ciencias
Exactas y Naturales, Universidad de Buenos Aires, 1998.

[2] Wainer, G. “Discrete-Events Cellular Models with Explicit De-
lays.” PhD Thesis, Université d’Aix-Marseille III, 1998.

[3] Zeigler, B. Theory of Modeling and Simulation, First Edition,
Wiley, 1976.

[4] Zeigler, B. Multifaceted Modelling and Discrete Event Simula-
tion, Academic Press, 1984.

[5] Wolfram, S. Theory and Applications of Cellular Automata. Vol.1,
Advances Series on Complex Systems, World Scientific,
Singapore, 1986.

[6] Giambiasi, N. and Miara, A. “SILOG: A Practical Tool for Digi-
tal Logic Circuit Simulation.” Proceedings of the 16th D.A.C.,
San Diego, 1976.

[7] Ghosh, S. and Giambiasi, N. “On the Need for Consistency be-
tween the VHDL Language Constructions and the Underlying
Hardware Design.” Proceedings of the 8th European Simula-
tion Symposium, Vol. 1, Genoa, Italy, pp 562-567, 1996.

[8] Barylko, A., Beyoglonian, J. and Wainer, G. “GAD: A General
Application DEVS Environment.” Proceedings of IASTED
Applied Modelling and Simulation ’98, Hawaii, 1998.

[9] Barylko, A., Beyoglonian, J. and Wainer, G. “CD++: A Tool to
Develop Binary Cell-DEVS Models” (in Spanish). Proceed-
ings of the XXII Latin-American Conference on Informatics,
Quito, Ecuador, 1998.

[10] Rodriguez, D. and Wainer, G. “New Extensions to the CD++
Tool.” In Proceedings of the SCS Summer Computer Simula-
tion Conference, San Diego, 1999.

[11] Fujimoto, R. “Parallel Simulation of Discrete Events.” Commu-
nications of the ACM, Vol. 33, No. 10, pp 30-53, 1990.

G.A. Wainer

Volume 17, No. 2 TRANSACTIONS 87

[12] Chow, A. and Zeigler, B. “Abstract Simulator for the Parallel
DEVS Formalism.” Proceedings of the Winter Simulation Con-
ference, 1994.

[13] Chow, A. and Zeigler, B. “Revised DEVS: A Parallel, Hierarchi-
cal, Modular Modeling Formalism.” Technical Report, Univer-
sity of Arizona, 1994.

Appendix

A parallel Cell-DEVS atomic model can be formally defined as:

TDC = < X, Y, I, S, θ, N, d, δint, δext, δcon, τ, τ con, λ, D >

In this case, #T < ∞ ∧ T ∈ {N, Z, R, {0,1} } ∪ {φ};

X ⊆ T;

Y ⊆ T;

I = < η, µx, µy, Px, Py >. Here, η ∈ N, η < ∞ is the neighborhood’s size; µx, µy ∈ N, µx, µy < ∞ is the number of other input/

output ports; and j ∈ [1, η], i ∈ {X, Y}, Pj
i is a definition of a port (input or output, respectively), with Pj

i = {(Nj
i, Tj

i) / j

∈ [1, η+µi], Nj i ∈ [i1, i η+µ] (port name), y Tj
i ∈ I i (port type)}, where I i = {x / x ∈ X if X} or I i = {x / x ∈ Y if i = Y};

S ⊆ T;

θ = {(s, phase, σqueue, f, σ) /

s ∈ S is the status value for the cell,

s′ ∈ S is an intermediate status value for the cell;

phase ∈ {active, passive},

σqueue = {(((v1,σ1),...,(vm,σm)) / m ∈ N ∧ m < ∞) ∧ (i ∈ N, i ∈ [1,m]), vi ∈ S ∧ σ i ∈ R0
+ ∪ ∞ };

f ∈ T; and

σ ∈ R0
+ ∪ ∞ };

N ∈ Sη+µ;

d ∈ R0
+, d < ∞;

δint : θ → S;

δext : QxXb → θ, Q = {(s, e) / s ∈ θ x N x d; e ∈ [0, D(s)]};

δcon : qxXb → S;

τ : N → S x {inertial, transport} x d;

τcon : XbxN → S x {inertial, transport} x d;

λ : S →Yb; and

D: θ x N x d → R0
+ ∪ ∞ .

[14] Gardner, M. “The Fantastic Combinations of John Conway’s New
Solitaire Game ‘Life.’” Scientific American, Vol. 23, No. 4,
pp120-123, April 1970.

[15] Wainer, G. “Definition of Parallel Cell-DEVS Spaces.” Techni-
cal Report No. 98-021, Departamento de Computación, Facultad
de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
1998.

AA

A

June TRANSACTIONS 2000

88 TRANSACTIONS Volume 17, No. 2

The semantics definition for the transition functions is defined as follows (note that tail/head/add represent the methods used to
manage the elements of a list):

δint:
σ = 0; σqueue ≠ {∅ }; phase = active

 i ∈ [1, m], ai ∈ σqueue, ai.σ = ai.σ – head (σqueue.σ); σqueue = tail (σqueue);

s = head (σqueue.v); σ = head (σqueue.σ);

σ = 0; σqueue = {∅ }; phase = active

σ = ∞ ∧ phase = passive

λ:

σ = 0;

out = s;

δext:
(s′, transport) = τ (Nc); σ ≠ 0; e = D(θ x N x d); phase = active;

s ≠ s′ ⇒ (s = s′ ∧ i ∈ [1,m] ai ∈ σqueue, ai. σ = ai.σ – e ∧ σ = σ – e; add(σqueue, <s′, d>) ∧ f = s)

(s′, transport) = τ (Nc); σ ≠ 0; e = D(θ x N x d); phase = passive;

s ≠ s′ ⇒ (s = s′ ∧ σ = d ∧ phase = active ∧ add(σqueue, <s′, d>) ∧ f = s)

(s′, inertial) = τ (Nc); s ≠ 0; e = D(θ x N x d); phase = passive;

s ≠ s′ ⇒ (s = s′ ∧ phase = active ∧ σ = d ∧ f = s)

(s′, inertial) = τ (Nc); σ ≠ 0; e = D(θ x N x d); phase = active;

s ≠ s′ ⇒ s = s′ ∧ (f ≠ s′ ⇒ σqueue = {∅ } ∧ σ = d ∧ f = s)

δcon:
Nc; Xb; e = 0 ∨ e = D(θ x N x d);

Nc = τ con(Xb); σ = 0; Xb = Xb – {X / e = 0 };

A

A

T.A. Sidani and A.J. Gonzalez

Volume 17, No. 2 TRANSACTIONS 89

